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Smocth Preferences

and Differentiable Demand Functions¥

Andreu Mas-ColellT

There ig a whole variety of problems in eguilibrium theory (on unigque-
ness, stabiiity; continuity of equilibria, for example).the study of which,
to be tractablé and fruitful, has to be placed in a smooth, differentisble
environment. The commoﬁ situation then is that one wants to keep the theory
grounded on the formalization of an agent {consumer, from now on) as a pref-
erence relation 5ut that what is. technically needed is the differentiability
of the demand functions. As it turns out (and is wéllxknoﬁn) this is not
implied by the natural smoothness hypothesis on preferences. The reason
should be clear to economists, at least since Samuelson's Foundatioms: not
every maximum.is regular (i.e., the second order conditions ate not nec-
essary); an exaﬁple has recently been given by D. Katzner [13]. sStill, ome
intuitively feeis, and much theoretical work has proceeded on this assumption,
that, given the smoothness of preferences, the absence of differentiability
of demand is exceptional, that is to say that, granted smoothness, we can

safely expect that any practical situation we may confront will be "well

#Research for this paper was gupported by NSF Grants GS-2T7226 and
GS=-327h. _

+I want to express my acknowledgement to Professor M. Richter for care-
fully going through the early version of the parts of this paper which were
Chapter 4 of my dissertstion (University of Minnesota, August 1972) and
also to Professors G. Debreu and L. Hurwicz for encoursgement in the work
on one or the other of the topics discussed here. I implicate no one.




behaved." Follow1ng the suggestions of G. Debreu in [3] {page 31), where

the problem treated in this paper is raised, we will provide a formulation
and proof of this contention in the framework of a standard mathematical
approach which, starting in ﬁhe study of G. Debreu [2] on the finiteness of
the set of price-equilibrium, has begn increasingly uéed-in eéonomics for

the formﬁlization of notions of this kind (H. and E. Dierker {71, F. Delbaen
{51, S. Smale [19])}. In a few words, what is done is to endow the space of |
smooth (convex and monotone) preferences with a Cl—type métric with respect
to which it becomes a complete metric space and to show then, that the

"good" set is residual (hence of the second category) in it, i.e. a countable
intersection of open, dense sets {hence, by Baire Category Theorem, dense) .
An application (which may sérve as a test of the usefulness of the result

as an avenue for recovering the preference framework in some of the work
referred to above) is mentioned.

The analysis reported here is closely related to the subject matter
studied in [15]. There it is considered a spacé of-c§ntinuous preferenées
endowed with the usual, Co-type, closed convergence.topology and it is
shown that every preference reiation can be approximated by a c® one.
However, if the preference relation is itself smooth there'is no guaranty
that the seguence approximates in the stronger (Cl) topology we adopt here.
So a proof is given in the presgent context 5ut we want to point out that
the question turns out to be, in this case, an altogether simpler one.

The problem so far examined has a dusl; the demand funcfion

1.2 w_ . ™
n(p~,p",w) = T 5 is C and generable by preferences (u(xl,xa) = min{xl,xz})

P +p

but not by smooth ones. In analogy to what has been said in the preceding

paragraphs, i1t makes sense to ask for the posgition of the set of demand




functions geriérated by smooth preferences in a space of differentiable
derﬁand functiqné satisfying rationality re_quirements (i.e., the symetry" and
negative. semidefiniteness of the Slutsky matrices). The theorem parellel to
the one'f_or p-references is then proved, partly as an application of it an
integrability—typ.e result is obtained.

Sectioﬁ I is devoted to preliminaries, the theorems are stated and

discussed in Section II, Section III contains the proofs.
I. Definitions and Preliminaries

The consumption set is P = {x ¢ R : x >> 0} -];/ The set of monctone,

continuous, convex preference relations on P is denoted'-ﬂ. For every

lSome notstional conventions and definitions: superscripts denote
components of vectors and subscripts denote vectors. x >> ¥ means xi > yi
for every i; x > y means xi z_yi for every i, and x # y; X > ¥y means X > ¥
or X = ¥. -Tx-:_'Ls the transpose of the (rcw)' vector x. No distinection is
made between s finite-dimensional Euclidean space and its dual, so
xy =z xiyi, x,y ¢ R°. A function f : A sRY, Ac B is ¢ (r > 1) if it can
be ex'tended in a neighborhood of A to a funetion for which every component

has continuous partial derivatives up to the r-th order; it is C if it is
¢’ for every r > 1. The derivative of a Cl mepping £ : A =+ R® at x ¢ A is

denoted Df{x); D if(x), Dx,f(x',x") have the obvious meaning; if £ : A+ R

X
AcE is 02, Hf(x) designates the Hessian at x € A. Let £ : A ~+ R",
- . _ n
A c /", then ||g]], = sup |Je(x)|| end, if £ is ct, Hfﬁ =g, + =l 163118
. X A i=l x

For every set A < 1Rn, E, 3A, Int A denote, respectively, the closure,

boundary and interior. The (n-1) unit circle is g, and the e-ball, BI:;
Si ={x e S0 : x >> 0}. Intervals are designated [a;b], lay=], ete.,
I ={0;1].




(R,x) efxP we let UlR,x) = {y ¢ P : (y,x) ¢ R}gj, and for every R ¢ R the

correspondence g, i P > s* is defined by gR{x) = {p ¢ g* . py > px for
every v ¢ U{R,x)}. Clearly, gR(P) c P.

r
A preference relation R e R will be said to be of class C (r = 2,...,%)

if g is 8 ¢ function or, equivalently, if it is representable by a C°

utility function with no critical points.gj We refer to G. Debreu [3] for a
proof of this fact and for a thorough discussion of those, related and

subsequent concepts; one has:
If R,R' are of class O (r > 1) and gy = 8gr » then R =R' . (1.1)

Letﬁzr = {R eGQ :Ris CT), r=2,...,%
A preference relation R EG{E is regular at x € P if M(R,x) # 0, where

M{R,x) = Let u : P> be a ¢ utility function with no
g 0
R

eritieal points representingIL Then R is regular at x € P if and only if
the restriction to the hyperplane {y € ﬂg : Du(x)y = 0} of the form
. N . . (r), . _ r oo .
determined by Hu(x) is negative definite. Let 6{ (x) = {Re® : Ris
. | .
regulayr at every x € K}, K e P, r = 2,...,%; @fr) = Qéxq(P). AR eﬁi( )
will be called regular.

r
Denote by‘G{b (and, similarly, @lb’ _&r),...) the subset of‘ﬁz whose

elements R fulfill the boundary condition:

2A preference relation R is a subset of PxP which is reflexive (i.e.,
(x,x) ¢ R for every x € P), total {i.e., (x,¥y) € R or (y,x) € R for every
X, ¥ P, x #y), and transitive (i.e., if {x,y) ¢ R and (y,z) € R, then
{x,2) € R, for every x,¥,% € P). It is continuoug if it is closed (rel. to
PxP); it is convex (resp. monotone) if, for every x € P, (R,X) is convex
{resp. contains x + P). )

S1p general we keep the notation in line with G. Debreu [3].




For every x ¢ P, U(R,x) c P . _ (1.2)

Let V = Px(0;%). Then, for every R R p » the demand correspondence
hR : V> P is well defined.ﬂj The interest of regularity comes from the fact
that if R e@r (r > 1) is regular at x = hR(p,w), then h is a ¢’ % function
at (p,w) (seg D. Katzner [13] or G. Debreu [3]).

-We want to endow Re with a Cl—type topology. We do this by giving to
&2 the tdpology induced by the uniform convergence on compact sets of the
gR's functions and their firét partial derivatives (see G. Debreu [3], p. 31);
in other words, we say that <Rn> -l> R, Rn, R E(RQ if and only if
”an - gRﬁ + 0 for every compact K ¢ P. Actually, under the nstural identi-
ficaticon of R with gp s @-2 becomes a complete separable metric space (see
1.1)). |

The C°-type topology on & which has proved most fruitful {see W. Hil-
denbrand [10]) is the one induced by the closed convergence of sets.-5—/
T_her adequacy of the toﬁology we are intfoducing on 62\2 rest in ‘tﬁé fact that
it genuinely refines the closed convergence one, that is to say {(letting Lim
denote closed limit):

i
If < Rn > + R (R-n, R 5@2), then Lim R, = R. (1.3)

lLI*"rom now on if we write hR, R R , we are assuming that this is well

defined (i.e. hR(p,w) # 0, for every (p,w) ¢ V).

5Th{-:- fact that we are taking P instead of P as the consumption set does
not affect the definition of the closed convergence topology. The basic
theorens carry over unaltered; for example, the demand correspondence is
continuous on& xV and, in general, whenever it is defined and compact

valued. b




Proof: We can assume that Lim R =T (F. Hausdorff [9], p. 169) where
T is closed (relﬂ PxP). Every x ¢ P is a boundary point of the nonempty,
convex set U{(T,x) = {y ¢« T : (y,x) ¢ T}. Therefore & correspondence
gp * P > SQ can be defined analogously to the gR'é above. It is immediate
that <:Rh:> i R implies gR<: B Suppose that, for some X e P,
gT(x) ¢7g3(x); then a simple argument (using the fact that the set on which
&y is Singlevglued is dense in oU(T.x)) yields the existence of a sequence
ﬁth:> + x with gT(Xﬁ) singlevalued (i.e., gT(Xﬁ) = gR(xh)} and

<réT(xn):> > #'gR(x}'contradicting the continuity of Bg-

Hénce & = gR. We should have T = R, Otherwise we could find a y ¢ P
such that 3U(T,y) and 5U(R,y) would be two distinet (maximsl) connected Cl
integral manifolds through y of the (2-1) Cl distribution determined by Bp»

which is impossible {see G. Debreu [3] and F. Warner [20], p. h2).

For every ct £: V> P and {p,w) € V define the (substitution term or
Slutsky) matrix Sf(p.w) = Df(p,w) + Tf(p,w) Dwf(p,w). Let g;'(r=2,...,w)

be the set of Cr_l functions h : V - P which, for every {p,w) ¢ V, satisfy:

phip,w) = w ‘and h{ip,Aw) = n(p,w), A >0 . (1.4)

Ship,w) is symmetric and negative semidefinite. {1.5)

Ahe 3 (r>1) is regular at (p,w) e V if rkSh(p,w) = 2-1 or,
equivalently, if every (f-1) principal minor of Sh(p,w) is nonvanishing.

Let y‘r)(J) = {h ¢ g}iz h is regular at every {(p,w)} ¢ J} J <V,

()

e N y'(r) = y(r)(v). Ah ey’ will ve called regular.



(r)

Define ﬂi(resp. H(;}, r > 1, to be the subsets of ¥ © (resp. x'.7)
whose elements h satisfy the boundary condition:
1 <p w > > (pyw), (p,w) eV, 0#p£P, w>o0,
non noon (1.6)

then 1im ”h(pn,wn)ﬂ =,

Let h € ¥ (r > 1) and suppose that hlsi %(03%) possésses actt
inverse. The composition of this inverse with the projection on Sg yields a
(Cr_l) function g : h(V) - s* satisfying {because of the symmetry part of
(1.5); see P. A. Samuelson [18] or L. Hurwicez {ll]] the (local) integraﬁility
condition at eﬁery point of its domain. Suppose now thét n{v) = P. Then,
since g(P) ¢ P, a global integrability result of G. Deﬁreu (I3], ». 16) &/

applies, and we can conclude the existence of a 02 function u : P * R such
that g{x) ="gg(§)i’ X ¢ P. Moreover {negative gsemidifiniteness part of

(1.5)) u is quasi concave. Therefore g = g for some R 5 @zr. In addition,

hR = h Implying R € Gk(r). The interest of regularity comes from the fact:

Ifhe ¥ (r>1) is regular and satisfies the boundary

condition {1.6), i.e., h ¢ %‘i), then h(V) = P and

hlsi x(03) is invertidle. (1.7)

Proor: Let P, = (O;m)z-z and take a arbitrary x € P. Define the

"normalized excess demand” function dx : Pl -> Pl +'{~x2,...,-x£} by

686e, also, S. N. Afriat [1], p. 213.

TIt seems to have been taken for granted that if a {normalized) demand
function h has everywhere symmetric and negative definite Slutsky matrix,
then it is invertible (see, for example, P. A. Samuelson [18], p. 377, last
paragraph). Of course, by the Inverse Function Theorem, this is true locally
but the similar global assertion needs proof, It would follow from the fact
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dx(P') = (hE(P,PX)—XQ,---,hg(p,px)—xz), vhere p = (l,p'z,...,p'z). Because
of (1.4) the proof will be concluded if it is shown that the equation

dx(p') = O has a unique, regular (i.e., if dx(p'} = 0, then |Ddx(5')| # 0)
solution. Given that h satisfies (1.6), it is known.that this will be the

. case (see E. Dierker [6] or A. Mas-Colell [1k]) if tﬁe following condition

is fulfilled: If 4 (p') = dx(ﬁ') = 0, then signlDdx(§')| = sign|Dd,(p')] # 0.
But this is true since if dx(ﬁ') = 0, then ]Ddx(ﬁ')l equals the south-west
(g-1) prinéipal.minor of Sh{p,px). This ends the proof.

Summarizing:

I
If he g(z), (r=2,...,9), then h = b for some R ¢ ﬂ( ),

i.e., if h is a regular C° demend function satisfying (1.k),
(1.5), and (1.6), then it can be generated by a c’, regular

preference relation on P. {1.8)

a2 :
We endow & with the topology of uniform convergence on compact sets

1
of the functions and their first partial derivative, i.e., <:hn:> + h,

that, under the above hypothesis, h"l(x) is always a convex set. However,
every demonstration of this statement that we know of (one is subsumed in
Lemma 4 of L. Hurwicz and H. Uzawa [1], p. 126; for another, see S.A. Afriat
{1], p. 222) uses "income-compensation" functions obtained through the
integration of the direct demand functions (which, paradoxically, is what
iz supposed to be dispensable if the function is invertible). Since we
are purposely trying to avoid this specific integration step (see Remark 3
in Section IT) our proof of (1.7) will proceed, with the help of the
boundary condition, by assimilating the problem to one of existence of a
unique competitive equilibrium for a one-consumer economy and applying,
then, existence and uniqueness results relying on fixed-point index
theorems. 8o, Frobenius is left out but Poincaré is brought inj this is
no limitation to our line of attack, but it would, indeed, be nice if

an elementary proof could be worked out.
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hn’h € %2, if and only if ”h.n - h"§ + 0 for every compact J € V. Analogously

to E?, HE becomes a complete separable metric space.
II. Theorems

Theorem 1: Gz(z) is a dense subset of(R?, and for every compact

K <P, 02(2)(K) is open; i.e., every 02 preference relation on P can
be approximated by a ¢ one generating a ¢” demand fﬁnction; moreover,
the set of 02 preference relations which are regular on a given compact

set is Cl-open. ’

Remﬁrk 1: An immediate consequence of Theorem 1 is that @62) is a
Baire (i.e., residual) subset of 0?2 (a2 complete metric space). Therefore,
defining & consumer as a preferences (in ﬁ2)—endowments pair, it is a
corollary of Theorem 1 in G. Debreu [2] that the subset of the space of pure
exchange n-partiéipants economies {with the product topology) which eiements
have a discreet aﬁd stable price equilibrium set is of the second category.
This is a result along the lines of a theorem of §. Smale [19] {see G. Debreu
[3], p. 31); it has less scope than the latter since Smale does not assume

convexity, but for precisely this reason it cannot be deduced from it.

Remark 2: The generalization of Theorem 1 to a space of nonsaturated
preferences can be worked out rather straighforwardly. With the obvious
changes in the statements the Cl topology can be replaced throughout by &

r . .
¢ topology (r_a 1) without any change in the proofs.
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Theoream 2 is the dual of Theorem 1:

()
b

Jcv, #(2)(6() is open. Moreover, every h € %2 is the demand function

Theorem 2: ¥ is a5 dense subset of 32, and for every compact

generated by an upper-semicontinuous, convex, monotone preference

. 2
relation R. If h €A¥£ s then R is continuous.

Remark 3: The theorem can be proved in two alternative manners. One
is to exploit the duality structure and to reduce the proof tc the solution
of a problem which is fofmally identical to the one solved by Theorem 1
(essentially, direc£ utility functions would be substituted by indirect ones).
The other, which i1s perhaps more instructive and -is the one we follow,
shows that Theorem 2 is, in substance, & corollary of Theoreﬁ 1 (orj
vice versa);-tiat is to-say, there are not two independent (élthough formally
similar) theorems but very nmuch the same one.

The second part of the theorem is an integrability result for direct
demand functions very related to the theorems of L. Hurwicz and H. Uzawa [12]
although not covered by them.éj 1t is, in eésence, the same one ,that
was obtained recently by S. N. Afriat [1]. However, the proof is different
{see last paragraph): we do not integrate direct demand functions, the tradi-
tiornal "Antonelli" approach (integration of the indirect demand functions) is
retained, and the theorem is proved by the combination of an approximation
argument (relying on the first pert of the theorem and Theorem 1) with some

revealed preference results in [16].

8They require a certain income Lipschitz condition (not implied by the
demand function being Cl) to hold {Condition (), p. 117 in [12}) in order to
get global integrability. But, as has been shown in G. Debreu [3], the
positivity of prices and commodity bundles can be exploited for this purpose.
One should emphagize that the main thrust of the work of L. Hurwicz and
H. Uzawa ig to go beyond the ¢l framework which we certainly do not do.




1l

JII. Proof of the Theorems

1. Proof of Theorem 1

For every compact K < P, (R(g)(K) is open. - {3.1)

Proof: Tt follows immediately from the compactness of K and the

continuity of M(R,x) on GQexP.

IfV:P>R is a Cr {(r » 1) quasi-concave, increasinggf function, then

R(v) eﬁﬁr'will dencte the preference relation that it represents.
&{Iﬁ is dense in 62?, TS 2yiees® (3.2)

Proof: Consider a fix 1 < r € =, Let R sﬁ%r and K <« P be a compact

set. Take u : P +~[R to be a ¢ function representing R. Note that {letting

L Ly, s . by = .
e, = [;1‘,-._.,;1-)) if we define u) : P > R (0 <n <) by ulx)=ulx+x eh)s

then u; is a CF gquasi-concave function satisfying: Dxlug(x) >> 0 for every
1 .
x € P. Obviously, <(R(u;):> + R. Therefore we can assume, for our purposes,

that

Dxl w(x) >> 0 for every x € P. ' (3.3)

Let Pl = (Q;W)Q_l and denote the genéric element of Pl by

y = (yg,...,yzj. Take a concave function T : ?l->§{of class C° bounded

ahove by % and having strictly positive gradient and nonsingular Hessian at

%

every y € Py (fOr éxample, fly) = & - Z .l )-
. i
i=2 y +1

9I.e., Dv(x) > 0 for every x ¢ P.




iz

Roughly speaking, we are going to form a new preference relation by
substracting vertically a fraction of the function f from every indifference

curve (see Fig. 1). For every 0 < n £ = define the Cr function uy t: PR

by
' : 1 1 2 L 2 £
wo(x) = dlx + T £(xT,. 005X )X 500X )e
n : n
By (3.3):
For every x € P and 0 <n 2%, Dx un(x) >> 0 . (3.4)

Since u is quasi concave and increasing, and f is concave, uy is
1
quasi concave. Therefore R(un) EQQF. Moreover, <fR(un);> + R. We want to

show that for every n < « , R(un) is regular.

For every 0 < n £ © , X € P, it follows by the I.F.T. and (3.4) that
: . — = 1 r+l
the equation un(x) = un(x) can be solved so as to express X~ as a C
, 2 Ly s , =2 =% X .
function of (x"4...,x*) in a neighborhood of {x%,...,x" ). Let ¥, be this
function.
Take any x' e Pand 0 < n < ® , and regard them as fixed. Define

x" = (xfl + %-f(x'z,.;.,x'ﬂ), x'2,...,x'%), Tt is immediately seen (Fig. 1)

" that, in a neighborhood of (x'2,...,x"%):

@i'(xz;..;,xg} = @in(xg,...,xg) -~% f(x2,;..,x2)
and.

u(@:"(xe,...,xz),xg,...,xn) = y(x").
Thus

. ) ] 11
H@i_(x'e,...,x'g) = H@i (x'e,...,x'g) —-% B (x'2,...,x'%)

is positive definite which implies (actually, it is equivalent) that R(un)

is regular at x' . (Let zHun(x')¢z = 0 for some z € R, z # O, Dun(x')z = 0,




Fi
igure 1

x2
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then if z = (22,;..,22), a straighforward calculation yields

- x!

' T -
zH@n_(x'z,...,x‘E) z = 0; of course, z # 0). This ends the proof,

Gf is dense in 61(2) : ' (3.5)

Proof: ILet R € GQ(Q) and X,K',K" c P be compact, convex sets with

K ¢ Int K', XK' ¢ Int K". By definition, R is representable by a quasi-concave

Cg_function u : P 2 R having no critical points and such that hR(u) is Cl.

It has been noted by R. Aumann;g/ that those hypothesis on y met the
sufficiency conditions of a theorem of W. Fenchel ([8], see Chap. III, Seec. 8,
and the historical note on p. 1123) for the existence of a strictly increasing
2 . . 1 ’ ll/ . 2
C” function f: R ~ R , making fou]K coneave .~ Therefore, there is a C—,

_ ' [
concave function v' : K" + R , representing R on K'. We can let v : R +JR

be a C2 concave, increasing function such that viK' = v'[K' (for'example,

g
V = inf V_ vhere v, * R~ -~ R is given by Vx(y) = v'(x) + Dvi{x)y).
xeX'

10I owe this réference toc Professor G. Debreu.

1 2

Actually, this is not difficult to prove: let L = {(s,x) € S
Du(x)s = 0} and for every (s,x) € et x X", define y(s,x) = sHu{x)Ts, A(s,x) =
s Tpu(x)D (x)Ts > 0. By the regularity hypothesis, continuity and compactness
there is an open set A ¢ S%X" such that L ¢ 0 and y(s,x) < 0 for every

(s,x) ¢ A, TLet T = (s%xk") ~ A. Clearly, A(s,x) > 0 for every (s,x) € T.

x Kn

Therefore, r = s I 2220 is finite, and if we let n > max {0,r}, then
g,X)€eT ?

for every {(s,x} € SQXK" the expression Y(s.,x) + ni(s,x) is negative. Take
£:R>Rtobe £(t) = e ¥ (see de Finetti [1L]). Then Df{t) > O and

.y
%§%%%l =n, t € “R. Hence, for every x ¢ K', H(fou)(x) = fou(x))[ﬁu(x) +

n TDu(x)Du(x)] is negative definite which implies that foulX" is concave.
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If <‘sfn>, v‘n : P >R is a seqguence of Cw concave, increasing functions

converging to v, uniformly on K, in the first and second partial derivatives,

then "gR ()~ g "I]i + 0. Hence our problem reduces to find such a sequence.
n
This is standerd: let ¥ : ﬁ_ﬂ' >R be a ¢ function such that ¥ (x) = 0 if

X ¢ B (x) >0 if x ¢ Bi/n and f ¥ =1, Define v, : Rz 2> R by

2 'n n
R

. . - . oo
vn(x) = f{a‘fa v(t)‘.{’n(x+t)dt (i.e., v, = v#¥,). Then v, is C
and <fvn:> converges to v, uniformiy on K, in the first and second partial

2
1/n’ Tn

derivatives (see J. Munkres [17], Lemme L4.1 and its proof, pp. 39-40). Note
that, with a change of variable, vn-.(x) = f 0 v(s—x)‘?n(s)ds, x ¢ P. From

. R
this and the nonnegativity of ‘Fn the coneavity and increasingness of 'u"n

follow.

()1(:) iz dense in Q,(bo) . , (3.6)

Proof: et R ¢ @(m) and ¥ ¢ P be a compact, convex set. We can
assume that [see proof of (3.5)) there is a C°, conecave function u : [ A
such that ulK represents R on K. For every n > 1 define a concave,

‘ ' : 1 g i
increasing, ¢ function wos P> R by un(x) = wlx)+qg Z log x-. Obviously,

1=1
i

gR(uﬂ)

- g 1 -+ 0, and it 1s essily seen that for every u, B(u_) is regular
RUK n

()

and satisfies the boundary condition, i.e., R(un) e Ry

-

The density of G{(:) in @2 follows by combining (3.2), {3.5), and (3.6).

Hence the proof of the theorem is completed.
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2. Proof of Theorem 2:

For every compact J < V, yﬂ2)(J) is open. (3.7)

Proof: Straightforward.

()

b is a dense subset of xg . _ {3.8)

X

. - 3
Proof: For every s > 0, define Ps =P+ {(5,.0..48)) » As = Int(Bs n P)
il * o, stmiteriy, 2 sne .
and V_ = A X (s ; =). Denote by #_ (and, similarly, #'.") thé set of functions
h : Vs + P which satisfy at every point of its domain the conditions defining
e C* (resp. regular) demand function {(1.k), (1.5)).
. 5 |
Let h € ¥" and J < V be compact. Take an N such that J < Vg and
h(J) < Py.

Now we claim:

There is & seguence <(hﬁ:>,rn > N, hh eii(i) such that
fIn, - hﬂf} > 0; P« h (V) and b |n"l(R ) n s¥ x(0;%)

has a ¢! inverse. ' . (3.9)

In order to prove (3.9), let £ : P ~ R be a C°, concave linear
homogenéous funétion such that:
. L
i) f£[8] is bounded;
ii) for évery p ¢ P, Df{p) >> 0 and rkEf(p) = 2-1;

111) if p, > * P, B. € P, p =0, p # 0, then 1lim D, f(p;) = =

g

We could taxe f(p) = { }
i=1

2 )2 .
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fet 0 <8 <mind{ %, —E __ 1 o1a define n : V. > P(n > N) by
7 1n ? sup £(p) n n
p:—:An '

8
hﬁ(p,w) = hfp,ww—ﬁf(p)) + gbf(p). Tasy calculations yield:

i) for every (p,w), (Ap,Aw) € Vn, A > O, phn(p,w) = w and
h (Ap,Aw) = n (pow);
ii) for every (p,w) € Vn, Shﬁ(p,w) = Ship.,w) + %Hf(p). Therefore

rkSh_(p.w) = 2-1;
|3i1) I]hn'-'hlg > 03

Moreover:
A

iv) P €n (V) and h_|n (P ) n §7x(05%) has a ¢t inverse.
n n'n n''n "' n

To see this for every x ¢ Pn, define 4 : P > P + {~x} by

- P i, P, 1 . ‘o
dx(P) hn [ Tﬁ%ﬂ,-—mﬁnx]. Since ﬂEﬂ}x 23 for every p, x € P, this is

always possible. Because of the boundary condition on f, dx satisfies: if

<p,>*+p, 0#p ¢ P, p P, then lin de(pn)![= ®, The conclusion now

follows as in (1.7).

- Let h' e ﬁfg) (s > 0) be such thet J < Vs, n'{s) < Ps c h'(Vs)s
and h'[h"l(Ps) n s%x(0;%) nas a ol inverse, then there is a

, {oo 1
sequepce.<fhﬁ:> » b € H‘b), such that th - h'HJ + 0. (3.10)

To‘prbve (3.10) let X c Ps be a compact set with h'{J) < Int K. Denote

by g : P > g% the projection on 8% of the inverse of h’[h"l(?s) n s¥x(0;%).

Applying, mutatis mutandis, the reasoning leading to (1.8) and some of the
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arguments in the proof of (3.5) we immediately find an R' ed}? with
Egr I.K = gk (implying n® |J = h'|J). Take <Rn> ig, R e(R,;g‘”) {Theow
reﬁ 1}. Clearly hRnezzégw} for every n. Note that Rn edl(g)(K); for n
greater than a large enough N'. |

M(Rg,x) is bounded away from zero for X ¢ K, n > N'. (3.11)
Moreoever {(1.3) and the continuity of the demand correspondence,-see foot~
note 5 and [15] pg 16):

’lhB"’ - h']|§ > 0.  (3.12)
Aprlying the I.F.T., (3.11) and (3.12) yield the convergence {(uniform on J)
of the partial derivatives of 1™ to the partial derivatives of h'. So we
have ”hRﬁ.-,h'NE > 0 finishing the proof of (3.10).

The proof of (3.8) follows combining (3.9) and (3.10). Note that if

<:hﬁ:> is the sequence.which existence is asserted in (3.9} the fact that

n{J) < Py does eventually imply hn(J) <P

If h e %2 then h can be generated by an upper semi-con-
tinuous monotone, convex preference relastion R, {(i). If h
h e{xi then R is continuous (ii). (3.13)
Proof: It has been seen in the proof of (3.8) that h is the limit of
8 sequence of demand functions satisfying the Strong Axiom of Revealed
preference {i.e., generated by preferences). Hence it satisfies likewiée
this Axiom (A. Mas-Colell [16], Proposition 2). Therefore i) and ii) fol-

low, respectively, from Propositions 1 and 5 in [16].
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