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1. GENERAL DESCRIPTION OF THE ROUTINE AND ITS CAPABILITIES

This routine computes parameter estimates for the linear regres-
sion model by minimizingAthe sum of absolute values of.the residuals.
Linear constraints on the parameter'estimates may be utilized. A modified
version of the Linear'Progfamming Simplex Routine frém the SHARE Library
(SDA 3384) is ‘'used as the core of this routine.

The main storage and control variables are located in either
blank-or'lébeled COMMON to reduce the amount of core required by ﬁhe
routine, as well as to give the user coﬁplete éccess to, and control of,
intermediate steps in the calculation procedure. The rouﬁine is currently
dimensioned for a maximum of 204 observations and Z0 explanatory variables.

Tﬁreé basic modeé of dperatioh have been designed to allow the
user, through his own FORTRAN program, coﬁplete flexibility in utilizing

the many features of this routine.

Mode 1

Mode 1 simply computes the least absolute residuals (LAR) para-
meter estimates of a single regression equation. The output curfently
provided by the routine operating in this mode iﬁcludes the'pa:ameter
estimates, the unadjusted Rz, the Durbin-Watson statistic, the sum of
absolute values of residuals,.the sum of squared residuals, and the

standard error of the regression.




Mode 2

The second mede enables the user to perform a Monte Carlo study
as efficiently as possible. TFor this modé, the output, as described
for Mbde 1, can be'requgsted for each regfession eguation or it can be
suppressed. That is, if the user is interésted.only in retrieviﬂg and
storing the parémeter eétimates from each_equation, the printed output
can be suppreésed aﬁd the parameter eStimapes'rétrieved from the afray
BHAT(20) which is in labeled common DATA. In_Mode 2, the user must call
the Least Absoluté Residuals subroutine (LAR) for each simulated regres-
sion equatibnrand retrieve any'results waﬁted'from the COMMON blocks
before the subroﬁtine'LAR ié called for the nexﬁ equaﬁioﬁ. Example (c)
in Section V will illustrate;'in detail, fhis-interactién between the

user's program and ﬁhe'LAR'subroutine.

Mode'g

Mode 3 calculatés-the.férecasting performanée.of the LAR pafa—
.meter estimates over a.éubset'of-the &ata history in a timewsefies prob-
lem as foilows:

The parameteré are initia}l& estiméted over some base pericd of
the obsérvétions? say, £ = 1,2;...,L,'whefe L  is at least as great as
the number of parameters to be estimated and is smaller than the total
number of observations availéble'(T). These initial.estimates are used
to forecast the next period's (L + 1)'valpe of-the-dependent variable,
using the known values for the explanatory'variables in Period L + 1.

This forecasted value is compared to the actual value for that period,




yielding an evaluation of forecasting performance. Then, observation

L + 1 is incorporated into the estimation period to yield "updated"
parameter.estimates, reflecting iﬁformation for observations 1 through
L + 1. This pioeedure is continued recursively, first forecasting and
‘then iecorporating each successive observation,.until the data history
is exhausted.

Thus, the forecasting performance, with a lead.time of one oﬁser—
vation, of the regression model can be evaluated over the (T - L) fore-
casted periods; The forecasting performance can also be evaluated for
leads of greater than one observation. The roetine-will currently handle
a maximum lead of 10 observations. If M 1is the number of periods lead,
the ferecasting performance of ﬁhe regression model can then be evaluated
over (T -.L - M+ 1) forecasting periods. The output currently provided
with Mode 3 for each period is the parameter estimates and the forecast
error for whatever lead ie requested. The program will continue to
recursively estimate and erint out the parameter estimates until the
last period.in the data hiseory 1s reached, but forecast errors will be
omitted when the forecast period exﬁends beyond the data history. Also,
the complete printout (Rz, Durﬁinwwetson, etc.) as in Mode 1 is given
for the parameter.estimates over the first and last estimation periods.
If the user desires to have ‘this information printedrfor all perieds, a
control parameter can be set appropriately as illustrated in Example (d)
of Section V. After the parameter estimates and statistics are printed
for the last estimation period, the sum of absolute values of forecast

errors over the evaluation interval is printed.




By setting the coﬁtrol parameter NRET = 1, the routine will
return contral to the user's program after each successive estimation and
forecast evaluaéion to enable the user to save or use the parameter
estimates and forecast error at each step. Thé estimates are stored*in
BHAT (20} and the forecast error for the specified lead in FORSAV. Example
(e) in Section V illustrates the use of NRET = 1, With NRET = 0, the LAR
routine will not return to the usér's program until the parameter estimates
of the final period have been computed and printed.
Options

In addition to the three basic modeé, two optienal featﬁres can bhe
implemented_with any mode. First, linear inequality constraints on the
parameters to be estimated can be introduced. The general form of these

addition constraints is:

- |
oGP Tl ke BT LN
i=1 : :

where: N is the number of parameter constraints,
K is the number of explanatory variables, and
Cis an N X (XK + 1) matrix of constraint coefficients with

elements:
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For example, if the regression equation has four parameters to be esti-

mate& (bi, i=1,2,3,4), then the following"éonstraints:

b, >0, . 2by+3b;>0,  3b,>7

would be impoéed by the C matrix:

1.0 000
0.2 3 0 0

000 0 3 7

Tﬁe roufine is currently.dimensioned fgr a maximum of ten paramefer con-—
straints. See Example (b) of Secfion v for a.detailed illustration of
the use of this feature{.

The second optional feature is the use of extrameous initial
parameter estimates to reduce the amount of searching necessary to reach
the opfimal solution. As with the parameter constraints,. this feature

may be implemented with any mode of operation. Example (¢) of Section V




illustrates the details of inputting extraneous initial estimates into

the LAR subroutine.

II. FORMULATION OF AN LAR REGRESSION AS A BOUNDED
VARIABLES LINEAR PROGRAMMING PROBLEM

For the standard linear regression model,

K . _
= + u, t=1,...,T
o= IoBXg o L,
i=1
the parameter estimates bi’ i=1,.,.,K and residuals (or fitting errors)
s t=l,...,T aré related by the equations.
K
Yt = .2 b.Xit + s t=l,...,T.
i=1 :

The following linear pfogramming model can be constructed to minimize

the sum of absolute values of the regression residuals:

o T
MINIMIZE % | e |
b, -o=1
i -
subject to the constraints:

K
.E blxit + e, = Yt t=1,...,T
i=1




To facilitate solution by a standard linear programming algorithm,
the objective function can be transformed, usiﬁg the method in Charnes,
Cooper, and Fergusen [2], by defining two additional variables, ei- and

e;, to take the value of the positive and negative residuals, respectively,

. ] o4 -
T . . s 0. - _ _— - . <
hat is, if e > 0, then e e and e, 0 Similarly, if e, g,
then eE = Fet and et = 0, The objective funection can then be written
as:
T N T .
MINIMIZE % e + e .
b, t=1 t=1

With constraints on the parameters added, the'linear-programming model

with N parameter constraints will be:

| T, T
MINIMIZE I e + L e
b, t=1 t=1
1
subject. to the constraints:

K .
¥ b X, te =-e =1 t=1,...,T
. it -t t t ‘
i=1 :
K
151 CaiPs 2 Cn ka1 nel,.n o

. . . + -
bi unrestricted in sign, e, > 0, ey > 0,




This yields a linear programming model consisting of T + N
(the number of observationé plus the number of parameter constraints)
linear relations in K + 2T (the number of parameters to.Ee estimated
plus the number of error terms) unknowns, which can becomé'computationally
unwieldy if (f +-N)_-is”largé.

Following the procedure suggested by Wagner [3], a more manageable
dual form of this probleﬁ can Ee derived. The direct dual of the above

model is:

T N
MAXIMIZE Y + I
P tEl PR RS S
e Yy _ i
subject to the constraints:
T N
I z X f T Love T 0 i=1,...,K
t=1 = © j=r 93
<1 =1,...,T
zt__ t=1i, ,
-z <1 t=1,...,T

which has K + 2T linear relations in T + N unknowns. However, hy

letting W, =z, + 1 (t=1,...,T), the dual can be written as:

T T N
Y - v.,C,
MAXIMIZE z Wt‘t ) _Yt + .Z i 3,K+l
Voo vj t=1 t=1 j=1




subject to the constraints?

N T
wX, + L w,e..,= & X i=1l,...,K
1 t it j=1 J % t=1 it

t =3

t

Now the dual form involves only K linear relétions in T+ N
bounded nommegative Variables. This formulation allows the ”bounded.
~ variables" algorithm proposed by Dantzig [1] to be used. This algorithm
‘differs from the standard simplex algorithm in that it contains one addi-
tional step. The constraints which impose bounds on fhe variables are
deleted from the constraints in the "bounded variables” tableau., Instead,
each time a new variable is to be includea in the basis, a check is made
to see if inclusion of the new variéblé will cause either the ﬁew variable
(if it is bounded), or some bounded variable already present in the basis,
to be forced against its upper:bound. Let us éstablish some notation
and formalize the bounded-variables algorithm. At any stage in the
simplex algorithm,_define:

¥ as the vector of shadow prices of the observations included

in the present basis

X as the vector (}it XZtI vee X3

Kt
A as the matrix of coefficients of the included basis activities
in the constraint tableau. Noteu—if the basis activities
are observations, A = (Xi ...X. ) where ij is rhe index of

1 '
the jth included observation




10~

RHS' as the right-hand side vector (
t

11t ¢

-1 . .
n as A Xt or in words, the expression for the tth observa-

| e

T T
X S OX, ... 2 X )

tion vector In terms of the basis activities,

In the general simplex algorithm subject to equality constraints,
in order to bring in an observation Xt at the level X, we must adjust

.Y by -An, since

Ay = RHS ==> A(y-An) + XXt = RHS.

In the bounded variables algorithm, A is set to that value which
- will force exactly one_éf the .bi 'eithér to 0. or to its upper bound of
2 if it is a bounded variable. However, if the ﬁew activity is also
bounded above at 2, we do not'bfiﬁg it into the basis, but instead trans-
form it, if a wvalue of A greater than 2 is néeded to force out a basis

activity. Examining the constraints, we see that ) is given by

>
il

MINIMUM (A , 2,, 2)

2)

where A, = MINIMUM [v;/n.]

ie {sign (Yi) = gsign (ni)}

>
H

MINEMUM [(2—Yi)/ﬂi]

ie {sign (Yi) # sign (ni) and Yi is bounded at 2}.

If Al is minimal, a basis activity goes to zero. If Kzr is

minimal, a basis activity 1s forced to its upper bound and removed by the
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transformation described below.. If 2 1s minimal, the newly introduced
observation reaches its upper bound without a change in the existing basis,
and is transformed. The following operations are applied whenever some

variable (i.e, the ch) is forced against its upper bound.

. : - *
Define a new variable Wy = 2 - vy
*. ) )
then set W, = 0 or equivalently Wy = 2
4 %
.an YQI“"YQJ
o 5 -
an Xil = = Xig i=1,...,K.
Also, the objective function censtant is incremented:
ST N T
' 'L Y] = I ¥ _-20y%
._ C\e=1 Y = T .
as well as the right-hand side of the éonstraints,
/T kT .
L X, = I X, -2.0ZX, i=1,...,K.
K¢=1 it =1 it it

After these operations, the activity WZ is absent from the
basis C (for its value is zero), but the problem has been traqsformed
S0 that.the original variable W is at its ﬁpper bound; These opera-
tions have the effect of removing the variable W from the basis. The
lev;lé of the variables in the basis are adjusted to réflect the trans-

formation of w,, and the simplex algorithm continues.

9,’
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I11. EXPLOITING THE LINEAR PROGRAMMING MODEL
FOR COMPUTATIONAL EFFICIENCY

Additional insight into the meaning and capabilities of the dual
form.of the linear programming model deveibped in the previous section
caﬁ be gained by perforﬁing some algebraic manipulations on the dual
objective function and constraints. Ignoring the inéquality parametery

constraints for the time being, the cbjective function

T T : S T
MAXIMIZE % w ¥ - % 'Y can be written as  MAXIMIZE L o(w -1 Y .
Lt t . t [
w t=1 L =] . o W =1
E ] . : . t - .
T T .
" The constraints I (wX )= ¥ X - for i=1,...K
b=1 t it t=1 1; :
T : _
can be written as T (w1 X =0 . : for i=1,...,K
- t it : .
t=1
' S : ‘K T o
and multiplying by b, and combining yields I b, I (w-1) X "= 0.
- ) i i ) i=1 i £=1 t it

Thérefote, the optimal solution also maximizes

(j"K T <
CweEDY -{ T b, T (w-1) X
1 t P S it

I 3

t

or rewritten

g
~~
Z

t
i
—
v
rt
i

L e ]

o
4
S

t
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Thus it is clear that at any solution, the shadow prices
{(the wt's) will equal two when the résidual'is positive, zero when
the residual is negative. ¥or those cases when the residual is
zero (these are-the~observations chosenras a basis) the shadow prices
are free to vary between zero and two. Whén parameter coﬁstraints
are'included, the form which is maximized becomes:

T K N

| N .
I DY -1 bX )+ I v, _

t=1 . i=3 t j=1 ] Cj,K"‘l o1 b C, . =0

i1
The vj are zero when the.constrainté_arE'not satisfied and may.Be
positive wheﬁ Fhe constfaints:arE'satisfied; The wt behave as in the
previous case. |

This interpretation of the dual can be exploited to hasten the
computation process when initial extraneéus esfimﬁtes of tﬁe paramétérs
are available. The résiduals for the regression model, relatiﬁe to any
initial estimat;s, can be caiculated and their sigﬁs used as initial
estimates of the signs Qf'the residuals iﬁ tEe final LAR'sélution._
Using thesé estimated.signs of the residuals for each obserﬁation, the

w_ can be initially set to the appropriate bounds. Thus, for each’

K ~ N .
observation t, if the residual y_ - % b.X. is positive, the trans-—
t 1X.Lt P
i=1 :

formation described at the end of Section II is carried out. This
initial step can save computation time relative to that required for
the linear programming toutine to hit each bound separately in its

standard search procedure.
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In a Monte Carlo application, successive feplications are
made without changes to the explanétory variables, Successive runs
can therefore be made with the entire constraint set from the pre-
vious run as a star?ing point. Only the objective function, involv-
ing the newly generated values of the dependent variable, need be
recalculated, Since the explanatory variables and constraints will
have been transformed during the bounded»vériables procedure in the
preceding replication, the newly constructed dependent variables'
must be comparably transformed. Each new obéervation of the depeﬁdenﬁ
variable is givemn a positive or negative sign as a coefficient in the
objective function an&rin the objective function constant according as
that observation was or waé not transforme& in the previous replication.

After this.initialization of.the new objective function the
"true values" tthose set.by the'experimenter) of the parémeters are
used as extraneous Initial estimates-of the parameters."The procedure
described at the end of Section IT is used to transform the bounded
variables in accordance with the sign of the residuals of the new set
of dependent variables relative to these true values. (These sigﬁs are
just the signs of the_simulated disturbandes, since the disturbances
are the resiauals relative to the true parameter values, with the
exception that the sign is changed whenever an observation appeared trans-
formed in the previous replication). Thus,an erfor variable is trans-
formed to the oppoesite bound whenever the sign of the newly simulated
disturbance differs from the sign of the previoﬁsly estimated residual,

These stratagems substantially reduce computation time.
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The dual linear programming structure also permits recursiﬁe
forecast evaluation to be accomﬁlished efficiently, since the "re-
estimation'" process only involves adding one observation. Ome new
activity, corresponding to the error in fiﬁting this new observation,
is added. Tﬁe_objective function and the constraint conditions are

also incremented by the new observation. TFor example, if we waht to

add the T + 1 observation, the following sums must be incremented.

T+1 - T
LY =% Y. +Y
=1 t =1 t T+1
T+1 T
L X, =L X. +X. _
b=1 it =1 it i,T4+1 i=1,...,K

With these two calculations performed, the next step is simply
to check to see if the previous base activities are still féasible
(ﬁow.over T + l observations),:and if they are not wé ﬁeed some econom-
ical way to constructing a feasible.gasis for the mnew problem. In order
.té égplain our prdcedu;e, let us return to the nétation of_Sectioh II.
from_the:fac; that:the previous basis is feasible, we.know that

-1 '

Ay = RHS. Therefore,letting n = A XT+1

A G+ AN+ (L= N Ky, = RHS + X
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where the right hand side of this equation is the new.right_hand side
after the addition of obsexrvation T + 1. Therefore we can bring in
the new observation at an activity level (1 - 1), if addition of An
forces out a basis activity. If no value of A<l fdrces out a basis
activity, the old basis remains feasible with the new observation.
added. To implement this we simply use a modification of the simplex
algorithm, seeking the value of 1 such that,

A= MINTMOM (A, )y, 1)

2’
where

)‘1 = MINIMUM (yi/ni)

i ¢ {sign QYi) = gsign (-ﬂi)P

AZ = minimum ( (2~Yi)fni)

i ¢ {sign CYi).é sign (—ni) and s is bounded at 2}

If Al or Aé is minimal, an included activity is removed as before
and the T + 1 observation is brought in at level (I - A). If 1 is min-
imal, the new observation can be brought in at level zero, i.e., the old
basis remains feasible over the T + 1 observatiomns.

The standard simplex routine can be used directly in this case of
adding a new observation. We attempt to introduce XT+1 into the extant

basis, with the changes that n is multiplied by -1, the new observation
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(if brought in) is brought in at level {1 - A) instead of A, and

the range in this case 6f Als 0 to 1,
Iv. GLOSSARY.OF VARIABLES

To give thé:user-full flexibility in utilizing the mény
features of this routine, all of the coﬁtrbl parameters and storage
arrays are ﬂefined and dimensioned below. |
Data Arrays:

(1) cC(204) - dependent variable

(2) A(20;204)-- explanatory vatiables
Parameter Conétraintsf |

{1) STRAIN (10, 21) —.maximum of 10 cbﬁstraints and 20 variables
Final and Intermediate Storage Arrays: | |

'(1). BHAT (20). - éstimated parameters

(2) TRANS(ZO&).f sien of(ikg b.X, -Yj> for each obéervétion t
N\ jog Lit
(3 3(20) - sum of explanatory variables over observations
&) E(ZO,ZO).— inverse of the.traﬁsposed matrix of cbefficients of the
| explanatory variables (or constraint coeffihients)
for the observation (or constraint) in the basis
(5) P(2D) - identical to BHAT

(6) X(20) - shadow prices of observations included in the basis
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(7)) PE(20) - if IFOPT = 0, PE is the estimate of the

(8)

(9)

(10)

@)

parameters when the optimum is first achieved.
This will differ from BHAT if there were com-
putationél errors built up during the iterative
.computation of E, 1If IFOPT =1, PE is an éxternal
'estimate.

JH(ZU)”— indices of coﬁétraints_which are not effective, ér
(for LAR) the indices of the observations or |
parameter constraints included in the basis.

KB(204) - KB(JH(I)) = I ... for recall purposes.

¥(21) ~7e§ﬁals E*A(;,JT) Wheré JT is the latest observation

to enter ﬁhe-basis. o

FORSAV -.forecasf error for requested lead time.

User Set Control Parameters:

1)

(2)

(3)
(&)
(5)

(6)

MODE - equals-l, 2, or 3 (see Section 1),

NOBS - number of observations to_bé fitted.

KVAR -~ number of explanatory variables.
NSTRAT - number of inequality ﬁarameter constraints.
IFBHAT:—'equals 1 if initial estimates of the parameters

are to be utilized; equals 0 otherwise.

INDHI - index of the last observation to be used in the

estimation period. 1In forecasting evaluation mode,
‘this is the terminator for the base period, after
which recursive estimation begins. Equals MAXLEN

in modes 1 and 2.
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(7) MAXLEN - index of the last observation to be used in the

regression (generally NOBS).

(8) IFOPT - equais 0 if inversion after the optimﬁm is desired;
equals 1 if not. .Inversion of the optimum is a
precaution to avoid numerical efronsbuilt up in the
iterative computation of E. We have found this to
be. unnecessary ‘in scientific computers.

(9) 1IPSUP -~ eqﬁals lrif output is to be supﬁressed; equals 0
otherwise,

(10) LEAD - number of periods lead'desireé for'fdrecast evalu~
ation in Mode 3.
(11)  NRET —.equals 1 if LAR routine is to retﬁrn to uéer;s program
after each estimation period in Mode 3. Equals 0 otherwise.
Internally'5§t Control Parameters: |
(1) INDLO - index of ‘the first obsefvétion to be included in the

problem, set to be + 1.

(2) KRTRAN - controls the retransformation of dependent and explana-
tory variables.

(3) OBJECT - sum.of debendént variables for observations 1in the
basis. | | |

(4) IFFAIL ;_equals 0 if the problem was feasible

- equals 1 if the problem was infeasible
- equals 2 if the problem had an infinite solution

- equals 4 if the algorithm did not terminate




(5)

(6)

(75

(8)

(9

(10)

(11)

(12)

=20~

NTRANS - number of bounds hit during the operation of the
program {(number of instances where the trans-—
formation procedure was carried out).

ITER - number of iterations taken (number of wvariables

brought into the basis).

NUMVR — number of inversions performed (an inversion is
performed after [KVAR/ 2 + 5] dterations).
“INVC - number of iterations performed since the last

inversion.
NUMPV ~ number of pivot?éteps performed (equals ITER plus
NUMVR times KVAR).

NPIV - number of pivot steps taken since the last inversion. -
NVER - maximum number of iterations allowed before an inversion
is performed. Currently set at (KVAR/2 + 5) * 10.

NCUT - maximum number of iterations allowed. Currently set at

{4 * KVAR } INDHI + NSTRAT + 13) *# 10, The routine will

terminate if this limit is exceeded.
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Y. EXAMPLES OF PROCEDURES FOR EACH MODE OF QPERATION

EXAMPLE (a) - SINGLE EQUATION -

To construct the data matrices and set the control parameters

to sclve a single regression pfoblem, the following Fortran program

would be needed.

PEOGRAM DRIMELINPUT,NUTPUT)

iﬂﬁHGMIUﬁTﬁlﬁlﬂﬁ,?U#}qu?O#)yﬂ(??i,TRﬂNST?Q@);5120120),Pi213;

1 x{?@;,DF(QG\.JH(?C),KH(?GQ},Y(??);BHAT(?GI,STRAI%(?I;lO]

P4 FNRESAY

COMMON TFARHAT, fFFﬁ[t, IFOPT, INDHI, INDLO, INVC, ITER, KRTRAN,

TOKVAR, MAXLFN, MONDE, MOBS, NPTV,

2 ONRGECT TIPS B L FADLNRET

NSTEAT, NTRANS, NUMPY, MUMYR,

READ 10, (C{n)yN=1 581
17 FORMAT(EFLI?.4)

nn 11 I=2,7

READ 19, (AH,’\I};N:E,AR)
11 CURTINUT

1} 17 N=1 46R

12 ﬂf‘g"‘"’:xoo

* NORS= INDHTI=MAX] Fy=£0
K NSTRAT=ZTFOPT=T1ERHAT=O
e MNIET =N
Lk [2811p=n
* KVARP=7
* MONE
® CALL LAR
STNe
FND

The printed output from this run would

appear as on the following page.
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ESTIMATEN COSFFICIFNTS aacans
W LDRGTLEC]
L1 EACR20 =01
0112307507
=, 138682601

-, 730NnRAT 02
D EOHRLAF=0)
0 TRG T2 HF 07

R-SQUARSD = W 7276

DHRRTMH-WATSON = 11,5182
MUMRER OF DRSERVATIONSG = £

SUM IF SQUARED RESINUALS = L T2iPelE+ 0]

STANNARD FRROR {IF THE REGRESSIUN = e 342BALEXCED
SUM OF ARSTLUTE VALUES 0OF RESIDUALS = a LATAFTE 42

EXAMPLE (b) - SINGLE.EQﬁATION“Wifﬁ‘éAﬁAMEiER COﬁSTRAINTS -

To solve a single regression problém with linear inequality
parameter constraints, the folloﬁing Foftran instructions should Be
used in place of the starred (*#) instructions in EXAMPLE (a). This
eiamplé is estimatiﬁg the same equation as in the previous case but

, . > ' >
with the following two parameter constraints: b, —0.10 and b, — b

4 5 3"

MNOBS= TNDHI=MAXLEN=A8
JFOPT=IFRHAT=D
NRET=7

IPSUP=0

KyAR=7

ind

MONE = 1
NSTRAT=2

MY 20 T=] 3 NSTRAT
D20 4=1,8
QTR»QI\&in I}':_)a’}

v’

STRATNTA,1)I =1 ,0
STRAIN(A,3)=C0,10
STRATNES,2)Y=1.0
STRAIN(Z,42)Y=-1,0

CaLL Law
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The printed output from this run would appear as below.

LEAST ARSOLUTE RESTOIALS ESTIMATES

ESTIMATED COEFFICIENTS sss00a
-2 BRLAR2E40L
~oD5428975-01

219920 TE-Q2
21000AOF 00

L15G3071~02
W QR ETAF=02
~a?37222F-01

CR-SQUARED = s5 352
BURRIN-TATS0ON =  1.4776
NUMRER 0F OASERVATINNSG = 70
SUM OF SOUARED RESINUALS = - o 12052 7E+07
STENDASD ERAOR TF TIF REGRESSTAN = SEAGEOBEFTY.
SUM OF ABSOLUTF VALUES DF RESINYALS = 0 208A9RE40D

EXAMPLE_(C) - MONTE CARLO APPLICATION -

The following set bf instructions illustrates the basic program
structure required to perform a Monte Carlo experiment with the LAR
routine. Note,that with IPSUP = 0 the complete printout of parameter
eétimates and statistics would be given for each equatioﬁ estimatedf

By setting IPSUP = 1, as in this example, the printout is guppressed,




DIMENSINN BRSTNARE( 2,4}, BETA(3I),F{3C),DUMMY (3()
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REGTIN= ,o":"%?%

SIGMA=SORT{S%,0}) .

CALL GOODRAN{RANVAR, T, BEGINSSIGMAY
NEED=4

NORS=TIN? )HI"WAXLF! A3

MESTRAT=IFOPT=0
NEFET=0

IFRHAT=]
[PSUP=1

KYAR=3

MODE=2

RETALL) =50

BETAL2)=0,04

BETAL3)=(,002

nn 14 I=1,NOBS

DUWMY(T)“%CTA{i)+€%FTﬁ€7}*A{2 TIYH(BETA{II=ALF, 1))
00 1000 N=1,NRFP ‘

CALL ERRGEN(F)
DO TS I=1,MNORS
CLTI=NUMMY CTY+F (T )
NG 17 K=1,KVAR

SAHATIKY=8ETA(K)

CALE LAR

22
1000

DO 22 K = 1.KVAR

RSTORE(K,N) = BHATIK)

CONTINUE _ '

PRINT 14, ({BSTARE(I,4)y1=133),J=1,4)
FORMAT (1HO y *PARAMETER ESTIMATES %4/ 44( 10X 3F 15,6,/ 1)

-

The printed butput from this run would appear as below.

PARAMETER FSTIMATES

&, 293435 SN3A3ETS L 006920
LCT9A79 L 012218 I 307619
by BI104ET + 026785 A LT3R T

3, 573430 » GATLRT 2 OTDR4
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LEAST ARSHLUTE RoSTRUALS ESTIMATES

SETIMATED COEFFICTIENTS saascao
993??515+01
213G TOFR-0Y
W LET2R2E-07

—a4BTTTRE~0]
A-SQUARED = W TUAR

NURRIN-WATSON = 1,2793

NUMBER OF DRSERAVATIONS = 40

5 0OF SQUHAREFD aESIDUALS =

STANDARD E£RRAR OF THE HEGRAESSIIN =

s 5TT262F+01

2 32106SE+00

SUM NF ABRSOLUTFE VALUES NF RESIDYALS = | s LAEANLT 402

CPARAMETER FSTIMATES FOR PERIND
WHILTEALELDT T L1392786E-01
FORFOAST FRRNR FOR A 2 PERIAND

PARAMETER ESTIMATES Fn% PERTND
0 563 T4L40F 4+ (01
FNRECAST EERNOR FOR A 3 PERION

PARAMETER FSTIMATES FIR PERIOD
0-:.2?61" ﬁ‘."'f;““:}‘i o??ﬁqz‘ztf‘:—gl

2 10R7NG35-01

FORECAST ERROR FOR A 3 PERICH

PARAMETER ESTIMATES FOR PERIQD -

2 VOGT2V2F+02 e 30132ER1F-71]
FIRFCAST CHRNOR FOR A 3 PERIDD

PARAMETER FSTIMATES FOR PERIND
2GR TE+O 211 R4RD4T-D1
FARFCAST ERPAR FOR A 3 PERIND

PARAMETER FSTIMATES FOR PFRION
LASTIACLTIE SN 5529964502

LEAD oo

1 { A0 NBSFRVATIONS }

W 1N22A33E-02 -, 4BTTT46F-01
L%AQ a8 a8 _-331{":{‘}345F"h!t
3 61 ARSCRVATIONS

W 104245 9E-02 2 H1A3F52F -1
LEAD sae ;B‘t\‘)?ngE‘*Dr‘
3 ( 62 ORSERVATIONS )

e 9TIEAPTE-0R -, T167T0BSE-C1
LEAN 2o STELEERTETDE
4 { 63 OBSERVATIONS 1
S BLLRLAFE~GY =, 2221 ORTL -G
LEAD aoo - A T4B8%820E400
5 { 6% DRSERVATIONS 3

~a&A2L1T3E-0
s BSATTIIREHCT

0 FZHO539E -0

6 (- A5 NBSERVATIAONS 1}

FARFAAST FQuOR FOR A 3 PERIND

PASAMETEE FSTIMATES FOR PERIAN
= ?!?/}v49{+l_}!

DARAMETER ESTIMATES FO PERIND

—, RANAIGIF~02

W CR2ZTEOE-02 -, 30033756 -01
LEA” oaa '0177010?{:"’“1
7 ( 66 MRSSRVATIONS )

296549 -03 -, LH2098TE~(L

) { 67 ORSERVATIONS )

s BTN GRS OE ] 2 1361890 ~GY

o TEA4ENRAGE-03  -,46328352F-01




LEAST ABSOLUTE RESTDUALS ESTIMATES
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TESTIMATED CREFFICIENTS ssssooe
252714 0F 401
a3 273372£-01
2 154673 0E-03

=, 463892F-0)

R—SQUAREN = 260072
DURRIN-NATSON = o 39559

NUMBER OF ORSEQYATIONS = A8

SUM OF SQUARED RESINUALS = o102235E+02
STANDARD ERROR OF THE REGRESSION =  ,399678F+00

SUM NF ABSOLUTE VALUﬂS NF RESIDUALS = 2 198155E+072

TNTAL FORECAST FRROR FOR A 3 PERINN LEAD aao 2 24613251F

EXAMPLE (e) - FORECAST EVALUATION WITH INTERACTION -

The following instructions illustrate the capability of the

user to interact with LAR during the recursive forecast evaluation

procedure  with NRET = 1, the LAR routine will return to the user's

program after each estimation period. At this time the user can re-
trieve and store any results desired from that estimation pericd and

then call the LAR routine for the next period of estimation.
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DIMENSION FORSTO(10}Y

i NORS=MAXLEN=48

INDHT =63 °
NSTRAT=1FOPT=TFRHAT=C
TPSyP=1
NRET=1
KVAR=4 -
LEAD=3
MDDE=3
L=0
13 CALL LAR
L=t+1 -
. FORSTO(L)=FORSAV
! TF{{ [NDHT¥UEADFL=T T L T MAXLENT GO 70 13
: PRINT 100, (FORSTOCI}.1=1,3)
160 . FORMAT({1HO,#FORECAST ERRORS oo%93F12.5)

The printed output from this run would appear as below.

LEAST ABSOLUTE RfsmeALs ESTIMATES

";qTIMATPn CQEFFICIFNTS 2909 Ge0
2H91359F 401 '
2152991E-01 - | o
» 1009 T0OF-02 ' . E ' ’
38c76t -03 : ' ' _ M

| R-SQUARED = 27212

 DURBIN-WATSON = 1.2277

£ e ebesscetam e e s

NUMBER OF NBSERVATINONS = 63
SUM NF SOUARED RESIDUALS = e 63562 1E+01
STANDARD ERROR NF THE REGRESSION = 0 333353F 400
SUM OF ARSNLUTF VALUES OF RESIDUALS = a151514F+02
" PARAMETFER FSTIMATES FOR PERIOD 1 { &3 OBSERVATIONS )
wAY9IIG9IT4NT L1629915E~01 o 1CNOTOLE~N2?  ~,53R6T57E-01 , |
FORFCAST E2ROR FAR A 3 PERIOD LEAD uee » 3341 RT2E+0C o
PARAMETER ESTIMATES Fnr PERYAD 2 6% OBSCREVATIONS ) _ =
05542 T43F 401 L,1351260E-01  o1045259F=02 =,4071591E=01 : t
FORFCAST ERRAOR-FOR A 3 PERIND LEAD eoao 2« 5339T1GE+DT
PARAMETER ESTIMATES FAR PERIOD 2 ( &5 NASERVATIAONS )
S125984E 401  ,93855635E8-02 L 1054A2TE-02 -,346967026-01

FORECAST [2ROR FOR A 3 PESIAD LEAD soe S 1512203801

CFORFCAST FRRORS 4. 033419 2513397 ~a 01512
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