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ABSTRACT  

This paper describes a residual stress measurement approach that determines a two-dimensional map of 

biaxial residual stress. The biaxial measurement is a combination of contour method and slitting 

measurements and a computation to determine the effects of out-of-plane stress on a thin slice. The 

measurement approach uses only mechanical stress release methods, which is advantageous for some 

measurement articles. The measurement approach is verified with a numerical experiment and validated 

with independent confirmation measurements. Biaxial mapping measurements are performed in a long 

aluminum bar (77.8 mm width, 51.2 mm thickness, and 304.8 mm length) that has residual stresses 

induced with quenching. The measured stresses are consisted with quench induced residual stress, 

having peak magnitude of 150 MPa and a distribution that is tensile toward the center of the bar and 

compressive around the boundary. The validating confirmation measurements showed good agreement 

with the biaxial map. An uncertainty assessment, performed for each step of the experimental procedure, 

shows that the overall combined uncertainty is low, maximum of 21 MPa for longitudinal stress and 

maximum of 6 MPa for transverse stress, indicating that the new biaxial mapping approach has excellent 

measurement precision.  

Keywords: Residual stress measurement, contour method, slitting, validation, quenching 
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1. INTRODUCTION 

Residual stress can play a role in many failure mechanisms. Fatigue [1, 2] and stress corrosion 

cracking [3-6] are particularly sensitive to the presence of tensile residual stresses. Residual stresses can 

be difficult to predict because they are often the result of complex manufacturing processes, which 

makes their measurement important for both understanding failure [7, 8] and for validation of 

computational models of stress inducing processes [9-14].  

Many methods exist for measuring residual stress, and all provide a limited portion of the stress 

tensor and have different limitations. For example, large samples or samples with difficult 

microstructure (e.g., texture, large grains, etc.) are difficult to measure with diffraction techniques [15]. 

Conversely, some mechanical stress relief methods can have difficulty measuring large magnitude 

residual stresses [16] especially when the stresses become large when a part is being sectioned [17, 18]. 

One mechanical stress relief method, the contour method, has been found to be especially useful since it 

inherently measures a map of residual stress over a cross-section. The contour method measures the 

change in stress when cutting a part in half (at the cut plane). Since the cut has created a free surface, the 

stress normal to the cut plane must be zero after the cut, so that the contour method completely 

determines the out-of-plane stress component that existed at the cut plane, prior to cutting. Pagliaro, 

Prime, et al. [19] further showed that the contour method also determines the change in stress for the in-

plane normal components of residual stress at the cut plane. Therefore, additional measurements of in-

plane stresses on the cut surface can be used to determine the original in-plane stresses. The first 

measurement of this type was performed in [19] and used x-ray diffraction to measure the remaining in-

plane stress at the contour cut plane (after the contour measurement). Our recent work has extended this 

methodology to use only mechanical stress release methods [20, 21], but that extension lacks validation. 
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This paper describes an approach for mechanical biaxial residual stress mapping and verifies the 

fundamental mechanics with a numerical experiment. The approach is then carried out on a quenched 

bar, and the residual stresses determined are validated with complementary measurements. 

2. METHODS 

Measurement approach 

The new measurement approach comprises multiple mechanical stress release measurements, in 

conjunction with superposition, to determine multiple stress components in the part at a single plane of 

interest. Each mechanical stress release measurement will change the part configuration (i.e., change the 

geometry of the part) and each configuration will be denoted with a capital letter (e.g., A, B, C). The 

residual stress tensor in each configuration, at the plane of interest, is indicated with a superscripted σ 

(e.g., σA). The biaxial stress mapping approach determines the out-of-plane stress, σzz, and one 

component of the in-plane stress, either σxx or σyy, at the plane of interest. 

The configuration changes comprising the new approach are shown in Fig. 1a and include cutting the 

part in half at the plane of interest (configuration A to B) and removing a thin slice (configuration B to 

C) adjacent to the plane of interest. Assumed coordinates are also shown in Fig. 1, with x and y lying in 

the plane of interest, and z along the length. Using superposition, the stress in configuration A can be 

found with 

σA(x, y, 0) = σi(x, y, 0) + σB(x, y, 0) = σi(x, y, 0) + σii(x, y, 0) + σC(x, y, 0) (1) 

where σ with a superscripted Roman numeral denoted the stress released by a change of configuration, 

defined as the stress in the current configuration subtracted from the stress in the prior configuration 

(e.g. σi = σA – σB). Although Eq. (1) applies at all spatial locations, our concern is only the plane of 

interest at z = 0. The contour method is used to determine σi, and this measurement completely 
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determines the out of plane component (σzz) of σA, since the plane of interest is a free surface in 

configuration B. The slitting method is used to determine one in-plane component of σC. 

As shown in Fig. 1b, sA can decomposed so that  

σA(x, y, 0) = σA(z) (x, y, 0) + σC(x, y, 0) (2) 

where sA(z) is the effect of the out-of-plane stress on the thin slice of configuration C, which can be 

determined using σzz found by the contour method. Furthermore, sA(z) is a theoretical construct that 

gives the change in stress that would occur in a thin slice, if the out-of-plane stress were removed; and it 

is the sum of σi and σii. Using Eq. (1) and (2), only σi and sC need to be measured to find σA, thus there 

is no need to directly measure σii. A locally smooth stress field is requited so that σC(x, y, 0) can be 

assumed equal to an average of σC(x, y, z) through the slice thickness, as would be measured with 

slitting.  

Numerical Verification 

As a first step, it is useful to verify the biaxial mapping approach using a numerical simulation. The 

goal of the simulation is to show that the original stress state, sA, is equal to the stress remaining in a 

thin slice, sC, and the effect of the out-of-plane stress on the slice, sA(z).  

The verification simulations comprise finite element analysis of three geometries, one for each 

configuration A, B, and C. The finite element computations used commercial finite element software 

[22]. A block was used for configuration A, with a cross-section of 50.8 mm × 76.2 mm and a length of 

144.4 mm, with rounded corners of 5 mm radius. The model was 72.2 mm long, using a symmetry 

boundary condition at the mid-length. The model assumed an elastic modulus of 71.7 GPa and a 

Poisson’s ratio of 0.33, which are typical of aluminum alloy. The mesh was highly refined with in-plane 

node spacing of 0.5 mm and a biased node spacing along the length, varying from 0.5 mm at the 
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symmetry plane to 4 mm at the free end of the block. The total number of eight-node brick elements 

used was around 800,000. The stress state in each configuration results from a bivariate uniaxial thermal 

strain field 

 

 

 

(3) 

with all other components of the thermal strain zero. Here the coordinate origin is at the lower left 

corner of the cross-section, with W the maximum dimension along x (76.2 mm), and H the maximum 

dimension along y (50.8 mm). The field is chosen to have a complex shape including discontinuities 

near the surface to rigorously test the measurement approach.  

To determine stress in configuration B, the symmetry boundary condition was removed from the 

configuration A model. To determine stress in configuration C, all elements farther than 5mm from the 

symmetry plane were removed, leaving a 5mm slice. Stress from these three models provides known 

values of sA, sB, and sC. 

To find sA(z), a similar model was used, having a length 2.5 mm, and a symmetry boundary 

condition at the mid-length. The in-plane mesh was the same as for configuration A, and there were five 

elements through the thickness, resulting in roughly 77,000 eight-node linear brick elements. The 

original longitudinal stress in the block, along the mid-length, was applied as a traction boundary 

condition to the slice model to find sA(z). To verify the mapping approach, sA will be compared to (sC + 

sA(z)), to verify Eq (2). 
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Validation 

Biaxial Mapping 

The experimental validation requires two sets of measurements; the first is the biaxial measurement 

itself and the second additional measurements to confirm those results. Measurements were done on an 

aluminum bar that was cut from 51.2 mm (2.02 in) thick, rolled 7050 aluminum plate to form a bar with 

a cross section 51.2 mm (2.02 in) thick by 77.8 mm (3.06 in) wide with a length of 304.8 mm (12 in), as 

shown in Fig. 2. The original plate was in the T7451 condition, being over-aged and stress relieved by 

stretching. The bar had an additional heat treatment performed to introduce a higher stress, that was 

representative of that used for the T74 temper [23]. The heat treatment consisted of solution heat 

treatment at 477 °C for 3 hours, immersion quenching in room temperature water with 16% 

polyalkylene glycol (Aqua-Quench 260), and a dual artificial age at 121 °C for 8 hours then 177 °C for 

8 hours.  

The biaxial mapping approach consists of a measurement of σzz with the contour method [24], 

removing three thin slices, each 5 mm thick, adjacent to contour measurement cutting plane, and 

measuring the remaining σxx in the slices with the slitting method [25].  

The theoretical underpinning of the contour method has been established earlier by Prime [26] and 

detailed experimental steps have been established by DeWald and Hill [27]; a brief summary of the 

experimental procedure is given here, which followed the practical advice in [24]. The specimen is cut 

in two using a wire electric discharge machine (EDM) along the plane of interest, at the mid-length of 

the bar (Fig. 2). Cutting is performed with the specimen rigidly clamped to the EDM frame. Following 

cutting, the profile of each of the two opposing cut faces is measured with a laser scanning profilometer 

to determine the surface height normal to the cut plane as a function of in-plane position. The surface 

height data are taken on a grid of points with spacing of 200 μm x 200 μm, so that there are roughly 
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96,000 data points for each surface. The two surface profiles are then averaged on a common grid, and 

the average is fit to a smooth bivariate Fourier series [28], where the number of coefficients in the 

surface is determined by the choice of the maximum fitting parameters (m, n) for the (x, y) spatial 

dimensions. A level of smoothing is determined by choosing the fitting parameters (m, n) during data 

reduction. 

The residual stress on the contour plane is found with a linear elastic finite element analysis that 

applies the negative of the smoothed surface profile as a displacement boundary condition on the cut 

plane. The finite element mesh used eight-node, linear displacement brick elements with node spacing of 

1 mm on the cut face, and node spacing normal to the cut face that increased with distance away from 

the cut, being 1 mm at the cut face and 5 mm at the end of the bar. The mesh was sufficiently refined 

such that when the node spacing is halved there is negligible change of stress. The model used an elastic 

modulus of 71.0 GPa and a Poisson’s ratio of 0.33.  

To find the remaining transverse stress in the three removed slices, slitting (also known as the crack 

compliance technique) was used. The theoretical underpinning of the slitting measurements has been 

given by Prime [29] and best experimental practices have been given by Hill [25]. Slitting measurements 

consisted of incrementally cutting through the sample (along y) using a wire EDM while measuring 

strain at the back face of the cut plane for each cut increment. The stress normal to the cut plane is then 

determined from measured strain vs. cut depth data using an elastic inverse, with smoothing of the stress 

profile provided by Tikhonov regularization [30]. The elastic inverse uses a compliance matrix that 

relates the strain that would be caused by an assumed set of basis functions for each cut depth. Details of 

the compliance matrix development are given in [31]. The compliance matrix development uses a finite 

element model of the part geometry with 2D bilinear plane strain elements and a stiffness correction 

scheme developed by Aydiner and Prime [32] to accurately reflect the finite thickness of the slice. 
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Since the goal of this work is to determine a map of the stress, multiple slitting measurements are 

needed, and were made in a set of three slices. The three slices, each 5 mm thick, were removed adjacent 

to the contour measurement plane by cutting with wire EDM at z = -5 mm, -10 mm, and -15 mm. The 

slitting measurements provided σxx(y) and were made at x locations symmetric about the midwidth, 

xm = 38.9 mm. Measurement locations in the first slice were at xm and at xm ± 10 mm; measurement 

locations in the second slice were at xm and at xm ± 15 mm; and, measurement locations in the third slice 

were at xm and at xm ± 20 mm.  

We assume that the stress near the plane of interest is invariant of z, so that the stresses determined 

in different slices can be collapsed onto a single measurement plane. Since we are performing multiple 

slitting measurements on each slice, the effect of previous slitting measurements on the current 

measurement is needed and is found with a supplemental stress analysis. A detailed description of the 

supplemental stress analysis is given in [33] and consists of applying the measured stress from a 

previous slitting measurement as a traction boundary condition at the prior measurement plane, in a 

finite element model of the part, and extracting the resulting stress at the current measurement site. The 

total stress, at a given plane is a superposition of the stress measured from slitting and the effect of any 

prior measurement, determined with a supplemental stress analysis. 

To find sA(z), the longitudinal stress field found with the contour method is applied as a traction 

boundary condition to both in-plane (x-y) faces of a finite element model of the thin slice used in the 

slitting measurements. The finite element mesh used eight-node, linear displacement brick (C3D8) 

elements with node spacing of 1 mm on the cut face, and five elements through the thickness. The 

material behavior was elastic, using the properties stated earlier.  
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Biaxial Mapping Uncertainty  

An uncertainty estimate for each step of the biaxial measurement provides an assessment of the 

robustness of the measurement approach, to check that the cumulative uncertainty doesn’t become 

unreasonably large. The uncertainty for the contour method is found using the approach described in 

[34], which accounts for two uncertainty sources that are present in every contour measurement, the 

uncertainty associated with noise in the displacement profiles, called the displacement error, and the 

uncertainty associated with selecting an analytical form to smooth the displacement profile, called the 

model error. The model error definition takes the standard deviation of the stresses determined from five 

different levels smoothing 

 
(4) 

where Umodel.(m,n)(x, y) is the model error as function of in-plane position and s(m,n)(x, y) is the contour 

stress, both for a choice of fitting parameters, and std is the standard deviation operator.  

The displacement error is found using a Monte Carlo approach. Uncertainty in the displacement field 

is estimated to be 3 µm, which is superposed as normally distributed noise with the measured 

displacement field. After noise is added to the data, standard contour data processing is performed. The 

standard deviation of five contour measurements with “noisy” data is taken as the displacement error for 

a chosen set of fitting parameters (m, n). Additional “noisy” simulations were performed to confirm the 

displacement error converged with five simulations. The two error sources are combined using  

 (5) 

where Ucontour,(m,n)(x, y) is the total uncertainty of the contour measurement, Umodel,(m,n)(x, y) is the model 

error, and Udisp,(m,n)(x, y) is the displacement error all for a given set of smoothing parameters (m, n) and 

Umodel,(m,n) (x, y) = std(σ (m,n) (x, y),σ (m+1,n) (x, y),σ (m,n+1)(x, y),σ (m−1,n) (x, y),σ (m,n−1)(x, y))

Ucontour,(m,n) (x, y) = Umodel,(m,n)
2 (x, y)+Udisp,(m,n)

2 (x, y)



 10 

as functions of in-plane spatial position (x, y). Since the contour measurement is the only contributor to 

the out of plane stress, the uncertainty in σzz for the original configuration is given by the contour 

uncertainty (i.e., Uzz(x, y) = Ucontour,(m,n)(x, y)).  

The uncertainty analysis for slitting measurements followed the procedure given in [35]. Since 

regularized unit pulses were used as the basis functions, only the random uncertainty term described in 

[35] was used, and was taken as the maximum of either the misfit between measured strain and fitted 

strain, or 2 µe. The uncertainty in the corrections for prior slitting measurements was estimated using a 

Monte Carlo approach. The prior stresses were assumed to have normally distributed noise, 

corresponding to their uncertainty. The error was then taken as the standard deviation of the results of 

five such Monte Carlo simulations. The total uncertainty was found using 

 (6) 

where UC(x, y) is the uncertainty in σC, Uslitting(x, y) is the uncertainty from the slitting measurements, 

and Ucorrection(x, y) is the uncertainty in the corrections that accounted for the prior slitting measurement.  

The uncertainty in sA(z), UA(z)(x, y), was also found using Monte Carlo. The uncertainty was 

estimated by taking the standard deviation of the results of sA(z) when the underlying longitudinal stress 

had normally distributed noise with a standard deviation corresponding to the uncertainty in σzz.  

The two uncertainty sources for the transverse stress (those relating to sC and sA(z)) are combined 

using  

 (7) 

where Uxx(x, y) is the total uncertainty in σxx as a function of in-plane spatial position (x, y).  

UC (x, y) = Uslitting
2 (x, y)+Ucorrection

2 (x, y)

Uxx (x, y) = UC
2 (x, y)+UA(z)

2 (x, y)
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Confirmation Measurements 

Confirmation measurements are required to validate the biaxial mapping approach. To do so, σxx is 

measured at specific planes using the contour method on configuration B, the half-length bar. Three 

contour measurements are made at planes V1, V2A, and V2B shown in Fig. 2. The first validation 

measurement, at plane V1, is made at x = 38.9 mm and the second and third measurements are made at x 

= 19.45 mm (plane V2A) and 58.35 mm (plane V2B). The first validation measurement aligns with 

measurements from the biaxial map, but the second and third measurements are not exactly aligned with 

the measurement locations from the biaxial map (i.e., slitting measurements were offset in x by 0.55 

mm). The transverse stress from the biaxial mapping result will be interpolated from nearby data to 

evaluate stresses at the same positions. Since the stress in the bar was induced with quenching, it is 

expected that the stress should be constant along the length of the bar, except near the ends.  

The confirmation measurements and uncertainty estimation followed the methods for contour 

measurement described above. The effect of the measurement at plane V1 on stress at planes V2A and 

V2B was accounted for using superposition. The confirmation contour measurements are cut along the z 

direction, and determine σxx(y, z) at a set of points with approximately 1 mm in-plane spacing. Since the 

stress is due to quenching, it is expected to be invariant with z, except near the ends of the half-length 

bar (at z =  -152 mm and 0 mm) where σxx would be affected by the free surface condition. To compare 

the results of the confirmation contour measurements with results from the biaxial mapping, we report 

σxx(y) as an average of results at the set of z-positions farther than one thickness from the free end of the 

half-length bar (i.e., for -100 ≤ z ≤ -52), rather than reporting results for an arbitrarily chosen value of z. 

At a given value of y, the uncertainty of the confirmation measurement is taken to be the standard 

deviation of the values from which the average was determined; at nearly all locations, this uncertainty 

exceeded the underlying contour method uncertainty.  
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3. RESULTS 

Numerical Verification 

The numerical verification results are shown in Fig. 3. The results confirm that sA is the sum of sC 

and sA(z). Line plots of the results along the horizontal direction at the mid-vertical dimension can be 

seen in Fig. 4. As the results show, the sum of sC and sA(z) equals sA, but interestingly sC and sA(z) have 

significantly different magnitudes for sxx and syy. The contribution of sC to szz is nearly zero as 

expected, since the slice is thin, except in a small region where the stress field is discontinuous. For sxx 

and syy, sC and sA(z) are both a major contributors to the total.  

Validation 

Biaxial Mapping 

The raw surface profiles from the contour measurement can be seen in Fig. 5. The surface profiles 

from each side of the cut show similar distributions, which indicate good clamping during cutting. The 

fitting parameters for the contour measurement selected during data processing are (m, n) = (1, 1). The 

average and fit surface profiles have shapes similar to the measured surface profiles. Line plots of the 

surface profile data (Fig. 6) show that the fit surface appropriately represents the underlying data.  
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The longitudinal stress and uncertainty can be seen in Fig. 7. The stress has a paraboloid distribution 

with compressive stresses along the exterior (minimum of -153 MPa) and tensile stresses toward the 

center (maximum of 157 MPa), as would be expected in a quenched bar [36]. The uncertainty is low 

away from the cross section boundaries (mostly below 8 MPa) with a maximum uncertainty at the top 

and bottom edges of 21 MPa at a 68% confidence interval. 

The measured strain for the slitting measurement at x = 18.9 mm is shown in Fig. 8a, and the 

calculated stress is shown in Fig. 8b. The stress profile is roughly parabolic, as would be expected from 

a rapid quench. The strain data and stress results at other planes resemble those at x = 18.9 mm.  

The transverse stress and uncertainty from the biaxial map can be seen in Fig. 9. The stresses 

remaining in the slice, sC, have compressive stresses along the exterior (minimum of -90 MPa) and 

tensile stresses toward the center (maximum of 55 MPa). The uncertainty is low, with most points below 

4 MPa and a maximum of 8 MPa. The effect of the longitudinal stress, sA(z), has a paraboloid 

distribution, with compressive stresses along the exterior (minimum of -70 MPa) and tensile stresses 

toward the center (maximum of 33 MPa). The uncertainty is also very low, with most points below 

1 MPa and a maximum near the top and bottom edges at 6 MPa. The total transverse stress also has a 

paraboloid distribution, with compressive stresses along the exterior (minimum of -160 MPa) and tensile 

stresses toward the center (maximum of 90 MPa), which is expected for quenched samples. Line plots of 

the two contributions to the total transverse stress at a horizontal position of 18.9 mm can be seen in Fig. 

10 (same spatial position as the plot shown in Fig. 8). The plot shows that both contributions are 

significant parts of the total.  

Confirmation Measurements 

The results of the three confirmation measurements and their uncertainties can be seen in Fig. 11. 

The fitting parameters for the contour measurement at x = 38.9 mm, 19.45 mm, and 58.35 have (m, n) = 
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(2, 1), (3, 1), and (3, 1), respectively. The results for the first confirmation measurement at x = 38.9 mm 

shows a roughly parabolic distribution through thickness (away from the edges), with compressive 

stresses along the exterior (minimum of -160 MPa) and tensile stresses toward the center (maximum of 

75 MPa). The uncertainty for this measurement has a roughly similar distribution as that found in the 

contour measurement used for the biaxial map. The uncertainty is largest at the edges (25 MPa), but is 

fairly low over most of the interior (below 10 MPa). The stress for the two secondary confirmation 

measurements at horizontal positions of 19.45 mm and 58.35 mm have essentially the same measured 

stress as each other and both have very similar distributions to the measurement at x = 38.9 mm, but 

with lower magnitudes (minimum of -100 MPa and maximum of 55 MPa). The uncertainty of both 

measurements is also very similar to each other, with very low uncertainty in the interior (under 2 MPa), 

with maximums at the top and bottom edges of 9 MPa.  

The comparison of the transverse stress from the biaxial map and from the confirmation 

measurements can be seen in Fig. 12. The results show that the confirmation measurements agree well 

with the biaxial mapping at all three intersecting planes. The comparison at x = 38.9 mm has the largest 

disagreement of the three, with a maximum difference of 25 MPa near y = 50 mm. However, at most 

points, the error bars from the two different measurement techniques are close to one another, so 

differences in technique are not statistically significant. Overall, there is excellent agreement between 

the two methods, validating the biaxial mapping approach. 

4. DISCUSSION 

One point of concern in developing the biaxial mapping approach is that the superposition of 

multiple measurements could result in poor precision. However, we have found that not to be the case. 

The uncertainty in the transverse stress (of the biaxial map) is low, under 10 MPa, in large part because 

slitting has excellent precision [35, 37]. To contrast, the longitudinal stress, which consisted of a single 
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contour measurement, had somewhat larger uncertainties, up to 20 MPa. The 20 MPa uncertainty found 

in the contour measurement will affect the uncertainty in σxxA(z), but to smaller degree because the effect 

of the longitudinal stress on the axial stress in the thin slice is always smaller than the longitudinal stress 

itself. The uncertainty found here compares favorably with uncertainties typical of other residual stress 

measurement techniques [38]. 

The new biaxial mapping method has some advantages over other established residual stress 

measurement techniques. For example, biaxial mapping measurements in welded components have been 

shown to be especially useful [20, 39, 40]. In welds, the primary advantage derives from the use of 

mechanical stress release, which is largely unaffected by the microstructural issues commonly present in 

welds that very often complicate diffraction based measurements. Furthermore, the use of slitting brings 

the excellent precision offered by that technique, as compared to somewhat poorer precision of other 

methods that could be used for mapping stress in the thin slice [41].  

Another issue that is relevant for biaxial mapping is the optimal selection of slitting measurement 

locations. If measurements in the slice are too close to one another, the precision of the measurement 

decreases. A recent study has addressed this topic [33] and found the minimum distance between slitting 

planes for good measurement precision is 0.2 times the part thickness. 

5. SUMMARY 

A biaxial residual stress mapping approach using mechanical stress release methods was described. 

The measurement consists of decomposing the initial residual stress into the stress remaining in a thin 

slice and the effect of the longitudinal stress on that slice. The longitudinal stress is found using the 

contour method. The effect of the longitudinal stress on a thin slice is found using a finite element 

computation. The transverse stress remaining in the slice is found using several slitting measurements. 

Numerical simulations were performed to verify the measurement concept. 
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Physical experiments were performed to find a biaxial map of longitudinal and transverse stress in a 

quenched aluminum bar. Both the longitudinal and transverse stresses were found to have a paraboloid 

distribution, with tensile stress in the center of the cross-section and compressive stress along the edges, 

which agrees with the residual stress field typical of quenching. The minimum and maximum of the 

longitudinal stresses are -153 and 157 MPa and of the transverse stress are -160 and 90 MPa. The 

uncertainty in the longitudinal stress was found to be low over most of the interior, under 8 MPa, with 

higher uncertainty toward the edges, with a maximum of 21 MPa. The uncertainty for the transverse 

stress had several contributing error sources, but is very low, with maximum uncertainty of 6 MPa.  

The results of the biaxial mapping measurement were compared to confirmation measurements of 

the transverse stress at three planes. The good agreement with the confirmation measurements validates 

the biaxial mapping approach. 
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FIGURES 

 

 

 

(a) (b) 

Fig. 1 – Stress decomposition diagrams. (a) The original stresses (σA, all stress components, at the 
plane of interest) are equal to the stress release from cutting the part in half (σi), the stress released 

when removing a thin slice (σii), and the stress remaining in the slice (σC). (b) The original stress 
(σA) is equal to the stress remaining in a thin slice (σC) plus the effect of total longitudinal stress on 

the thin slice (σA(z)) 

 

 
Fig. 2 – Dimensioned diagram of the measurement article with the location of measurement planes 
(W=77.8 mm, H=51.2 mm, and L=304.8 mm). The biaxial measurement plane is at z = 0 mm and 

the three confirmation measurements (V1, V2A and V2B) are at x = 38.9 mm, 19.45 mm, and 58.35 
mm. Three slices were removed adjacent to the plane of interest by cutting at z = -5 mm (S1), -10 

mm (S2), and -15 mm (S3). Each slice has a slitting measurement at the mid-width of the slice and at 
±10 mm (S1), ±15 mm (S2), and ±20 mm (S3) from the mid-width.  
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Fig. 3 – Contour plots of the initial stress (sA) (top row), the effect of the longitudinal stress in the 

slice (sA(z)) (second row), the stress remaining in the slice (sC) (third row), and the sum of sA(z) and 
sC (bottom row) for each stress component 
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(a) Longitudinal, σzz (b) Short Transverse, σyy 

 
(c) Long Transverse, σxx 

Fig. 4 –Line plots comparing the contribution of the stresses remaining in the slice (sC), the effect of 
the longitudinal stress in the slice (sA(z)), and their sum, to the original stress (sA) for (a) 

longitudinal stress, (b) short transverse stress, and (c) long transverse stress 
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(a) (b) 

  
(c) (d) 

Fig. 5 – Measured surface displacement from the contour method measurement. (a) Surface “1”, (b) 
surface “2”, (c) averaged surface, and (d) fitted surface 

 

 

 

(a) (b) 
Fig. 6 – Measured surface displacements along the (a) horizontal direction at mid-vertical 

dimension and (b) vertical direction at mid-horizontal dimension. Note: the data from surface 1 is 
offset by 30 μm and the data from surface 2 is offset by -30 μm, so that the average and fit are also 

visible on the same plot 
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(a) (b) 
Fig. 7 – Measured longitudinal (a) stress and (b) uncertainty (68% confidence interval) 

 

  

(a) (b) 
Fig. 8 – (a) Measured strain and (b) calculated stress for the slitting measurement at x = 18.9 mm 
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 9 – Long transverse stress: (a) remaining in slice, (b) effect of longitudinal stress on the thin 
slice, and (c) total, with (d) through (f) showing corresponding uncertainty, at a 68% confidence 

interval  

 
Fig. 10 – Stress and uncertainty of the two contributions to the transverse stress measurement and 

the total (σA), at a horizontal position of 18.9 mm. Uncertainty is shown as dotted lines 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 11 – Measured transverse stress and uncertainty (68% confidence interval) at x = 38.9mm ((a) 
and (b)); x = 18.9mm ((c) and (d)); and x = 58.9mm ((e) and (f)) 
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(a) 

  

(b) (c) 
Fig. 12 –Line plots comparing the biaxial measurement of the transverse stress and the confirmation 

measurement at x = (a) 38.9 mm, (b) 19.9 mm, and (c) 58.9 mm 
 

0 10 20 30 40 50
ï���

ï���

ï��

0

50

100

y (mm)

St
re

ss
, ѫ

xx
 (M

Pa
)

 

 

x=38.9 mm

Biaxial Measurement
Confirmation Measurement

0 10 20 30 40 50
ï���

ï���

ï��

0

50

100

y (mm)

St
re

ss
, ѫ

xx
 (M

Pa
)

 

 

x=19.9 mm

Biaxial Measurement
Confirmation Measurement

0 10 20 30 40 50
ï���

ï���

ï��

0

50

100

y (mm)

St
re

ss
, ѫ

xx
 (M

Pa
)

 

 

x=58.9 mm

Biaxial Measurement
Confirmation Measurement




