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1. Abstract 

West Nile virus is a vector-borne disease that is transmitted to humans from 
mosquitoes. It is the mosquito-borne disease that causes the most human cases in California. 
As humans burn fossil fuels, greenhouse gases are emitted. As anthropogenic greenhouse gas 
emissions cause climate change, California will experience warmer temperatures and 
infrequent but heavy rainfall (Pathak et al. 2018; Hayhoe et al. 2004). This climatic shift is 
ideal for mosquitoes, leading to increased mosquito abundance, more blood meals, faster 
virus replication rates and transmission, shortened incubation time between mosquitoes 
acquiring the infection and becoming infectious, and increased breeding sites (Paz 2015). 
These factors lead to facilitated transmission to humans and thus an increased risk in human 
outbreaks. As a result, it is important to observe past and present relationships between 
climate factors and West Nile virus human cases in order to prevent human cases in the 
future, where climate change impacts will become more severe. Many current California 
policies about preventative strategies against West Nile virus do not consider the influence 
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of climate change on West Nile virus. In order to be best prepared in future years, it seems 
necessary to include policy that recognizes West Nile virus prevention in the context of 
climate change.  

An interactive vulnerability map was produced in order to observe which climate and 
socioeconomic factors contributed to West Nile virus human cases at the county-level in 
California. Climate factors, including average daily temperature (ºC), the number of days in a 
given week where the high temperature is 30ºC or below and the low is 14ºC or above, the 
weekly total of daily rainfall in millimeters, and the total number of rainy days in a given week 
in which rainfall exceeds 1 millimeter, were analyzed for relevant mosquito periods, which 
were the mosquito incubation period, the mosquito lifespan period, and the mosquito 
population growth period. Climate projection data, including maximum temperature and 
precipitation, from the Can-ESM2 climate model for RCP 8.5 was also collected up to the year 
2100. Furthermore, socioeconomic factors, such as race and ethnicity, age, low birth weight, 
education linguistic isolation, poverty, and unemployment were observed to evaluate their 
association with human cases of West Nile virus. The census factors that are elevated in 
counties that also have high numbers of human cases include the Hispanic population 
percentage, the African American population percentage, the low birth weight percentage, 
the low education percentage, and the linguistic isolation percentage. This initiates an 
important discussion about unreported or under-reported cases of West Nile virus in 
California. 

The interactive vulnerability map includes the selection of the type of factor as well 
as the year of interest by using drop-down menus. Moreover, an automated playthrough 
animation can be viewed for the selected variable. This map may be useful for the general 
public, policymakers, and researchers. The public can identify if they live in an at-risk county 
and implement preventative strategies if so. Policymakers can identify which groups of 
individuals are most at-risk of contracting West Nile virus, and they can support policies that 
involve co-benefits of climate change mitigation, including the reduction of vector-borne 
disease outbreaks in the future. Lastly, researchers may use this map in order to further their 
research projects as well as to include other vector-borne diseases to the map that are also 
affected by climate change.  

Interactive tools, such as this vulnerability map, have the potential to aid California 
become better prepared for future vector-borne disease outbreaks as well as to further the 
discussion about the health benefits of mitigating climate change. 
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2. Introduction 
2.1 From Uganda to California: The History of West Nile Virus & its 
Consequences 

In 1937, the first reported case of West Nile virus was identified in the West Nile district 
of Uganda (Roehrig 2013). West Nile virus is a vector-borne disease, which means that it is 
transmitted by living organisms, specifically mosquitoes, that are infected by a virus (USGCRP 
2016). It is caused by an arbovirus, which is a single-stranded RNA virus from the encephalitic 
Flavivirus genus (“West Nile Virus” 2017). For the following decades, West Nile virus caused small 
outbreaks throughout Africa and the Middle East (Bin et al. 2001). This included outbreaks in 
Egypt and Israel in the 1950’s (Sejvar 2003). West Nile virus was subsequently spread by 
migratory birds to France in 1962 and South Africa in 1974 (Reiter 2010; Sejvar 2003). In 1994 
and 1996, the virus caused outbreaks in Algeria and Romania, respectively, which were brought 
about by bird migration (Sambri et al. 2013). As West Nile virus was beginning to spread through 
Europe, the first North American case of West Nile virus occurred in New York in 1999. Though 
the mechanism by which the virus spread to the United States is unknown, possibilities include 
the movement of infected people, migratory birds, or the presence of infected mosquitoes on an 
aircraft or ship (Roehrig 2013; Rappole et al. 2000; Gyure 2009).  

Within four years, West Nile virus augmented its geographic range from the East Coast to 
the West Coast (Sejvar 2003). In July of 2003, West Nile virus was first isolated in Imperial County, 
California from a pool of Cx. Tarsalis mosquitoes (W. Reisen et al. 2004). The mechanism by which 
the virus spread from the East coast to the West coast is also unknown; however, the timing of 
the California outbreak may provide insight as to which factors influenced this dispersal. First, 
the rise in West Nile virus transmission coincided with the timing of post-nesting movements by 
passerine bird species (W. Reisen et al. 2004). Second, within the month prior to the initial 
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outbreak, temperatures were above average and there were multiple rainfall events associated 
with the southwestern monsoon (W. Reisen et al. 2004). Counter-cyclonic flow around a strong, 
high pressure system over the state of Nevada enhanced the typical monsoonal flow, with 
particularly strong advection of moist air from the deep tropics into Southern California. These 
climate conditions are known to increase mosquito abundance. Third, it is possible that West Nile 
virus dispersed due to commerce via one of the East-West highways. A truck transporting goods 
may have enclosed infected mosquitoes, leading to their presence in California once they left the 
trucks (W. Reisen et al. 2004).  

2.2 Medical Impacts of West Nile Virus 
Since the virus’s arrival in the United States, a total of 46,086 human cases were reported 

from 1999 to 2016 (“West Nile Virus” 2016). West Nile virus causes a range of effects on humans 
from an asymptomatic infection to severe symptoms, including encephalitis and meningitis. 
Approximately 80% of individuals who contract West Nile virus are asymptomatic, while almost 
20% develop flu-like symptoms, such as fever, headache, body aches and pains, vomiting, 
diarrhea, or a rash (“West Nile Virus” 2017). Furthermore, about 0.67% of individuals who 
contract West Nile virus will develop very severe, neuroinvasive symptoms, including 
encephalitis, which is the inflammation of the brain, meningitis, which is the inflammation of the 
membranes that surround the brain and spinal cord, and acute flaccid paralysis, which is the 
onset of limb weakness (DeBiasi and Tyler 2006). These neuroinvasive symptoms occur following 
the viral penetration of the blood brain barrier; the neurons, especially those in the brainstem, 
deep nuclei, and anterior horn of the spinal cord, are directly invaded by the virus (DeBiasi and 
Tyler 2006). Specific groups of people are more susceptible to the viral penetration of the blood 
brain barrier and thus neuroinvasive symptoms of West Nile virus, including the elderly and 
immune-deficient individuals (Montgomery and Murray 2015). It has been shown that it takes 
most individuals with non-neuroinvasive West Nile virus approximately a year to fully recover 
(Loeb et al. 2008); however, it takes more time for neuroinvasive cases to make a full recovery 
to normal mental and physical conditions. In addition, individuals that had additional health 
issues at the time of West Nile virus onset were also found to take more time to recover (Loeb et 
al. 2008). 

From census data collected from 2003 through 2016, a total of 3,389 cases of 
neuroinvasive West Nile virus were detected in California, and a total of 246 Californians have 
died directly due to this disease (“West Nile Virus” 2017). Thus, West Nile virus is one of the most 
impactful vector-borne diseases and the most severe mosquito-borne disease in California.  

2.3 Ecological and Climate Factors Behind West Nile Virus Transmission 
Specific factors, particularly ecological and climate factors, allow West Nile virus to 

propagate more effectively. Mosquito species, the primary vectors that transmit this virus, are 
capable of spreading the virus to other species, including humans, birds, horses, and other 
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mammals (Paz 2015). Birds and mosquitoes cyclically infect one another as mosquitoes bite 
infected birds and subsequently transmit the disease to the next bird they bite (Bernard et al. 
2001). This viral amplification cycle often begins in the spring and ends in the fall (Petersen and 
Marfin 2002). Typically, if the environmental factors influencing West Nile virus, such as climate 
as well as host and vector presence, are ideal, an increased number of mosquitoes that also bite 
humans will be infected in summer (Petersen and Marfin 2002). This poses a larger risk of 
infection to humans in the late summer months. Both horses and humans are dead end hosts, 
which means that neither species is capable of transmitting this disease amongst its own species 
or other species, thus ending the transmission cycle (Colpitts et al. 2012). The transmission cycle 
of this virus is shown in Figure 1.  

 

Figure 1: The West Nile virus transmission cycle  (“California West Nile Virus Website” 2018). 

 

Specific mosquito and bird species are more affected by West Nile virus than others. 
Within California, there are approximately ten known species of mosquito vectors that transmit 
West Nile virus, with its primary vector being the mosquito genus Culex (Cx.); the mosquito 
genera Ochlerotatus, Aedes, and Culiseta transmit the virus as well, although to a lesser extent 
than the Cx. mosquitoes in California (Goddard et al. 2002). The Cx. tarsalis species is the 
dominant West Nile virus vector in rural agricultural systems, while Cx. pipiens compex species 
are the primary vector in urban areas (Goddard et al. 2002; Barker, Eldridge, and Reisen 2010). 
Moreover, West Nile virus especially impacts bird species within the Corvidae family (Wheeler et 
al. 2009). Birds with the highest risk of West Nile virus infection in California include the American 
Crow, the House Finch, the Black-crowned Night-Heron, the Western Scrub-Jay, and the Yellow-
billed Magpie (Wheeler et al. 2009). 

The relationship between bird and mosquito infection can be indicative of future human 
cases. Dead birds that are positively tested for West Nile are correlated with previously identified, 
positively tested mosquito samples (Mostashari et al. 2003). Furthermore, human infection and 
death due to West Nile virus are correlated to these previously detected dead birds. This makes 
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dead bird surveillance an effective early warning system for West Nile virus infections in humans 
(Guptill et al. 2003; Mostashari et al. 2003). Thus, it is critical to identify the timing of transmission 
among bird and mosquito species that leads to human infection.  

There are three critical periods related to mosquitoes that occur prior to human cases 
that are important to observe in the context of human infection. In a human case of West Nile 
virus, the incubation period, which is the timing between the infection by mosquito and the 
clinical appearance of the illness, for that individual is approximately one week (Petersen and 
Marfin 2002). Prior to the time when the mosquito is capable of transmitting West Nile virus, the 
mosquito incubation period lasts approximately two weeks (W. K. Reisen, Fang, and Martinez 
2005). The period in which the mosquito that will become infected is born and develops occurs 
four to twelve weeks prior to the human case. Finally, the period during which the mosquito 
population is breeding and growing occurs thirteen weeks before the human case and lasts one 
full year. During each of these periods, which are depicted in Figure 2 below, specific factors may 
contribute to ideal mosquito population growth, mosquito survival, and accelerating the 
mosquito incubation time. These factors may be indicative or an increased or decreased risk of 
human infections.  

 

Figure 2: Timeline of relevant mosquito periods prior to human case. 

 

West Nile virus is particularly affected by climate, and as climate change impacts are 
exacerbated over time, the risk of West Nile virus outbreaks may increase in specific regions. 
Climate factors can influence bird and mosquito dispersal, population, mosquito biting rates, 
incubation time, and survival rates as well as viral replication, amplification, and transmission (W. 
Reisen et al. 2004; Paz 2015). These climate factors include temperature, precipitation, humidity, 
wind, and changes in the seasonal cycle of temperature.  

Temperature, a significant climate driver, impacts West Nile virus transmission (Crimmins 
et al. 2016). The temperature range for West Nile virus transmission from mosquitoes to humans 
is from 14-30 ºC (William K Reisen, Fang, and Martinez 2006). Increased temperatures may cause 
mosquito populations to grow, accelerate their life cycle, have more blood meals, increase the 
virus replication rate and virus transmission, and shorten the incubation time between acquiring 
the infection and becoming infectious in mosquito populations (Paz 2015; Crimmins et al. 2016). 
With the exception of high temperatures above the transmission threshold, the effects of 
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increased temperature on mosquito populations have shown an increased trend in human 
disease risk (Crimmins et al. 2016). Temperatures will increase over time due to climate change, 
and its influence of West Nile virus will consequentially have more profound effects (Paz 2015). 
These higher average temperatures may also lead to the northward expansion of West Nile virus 
(Harrigan et al. 2014).  

Drought conditions, long dry periods with infrequent rainfall events, have led to increased 
West Nile virus outbreaks, as standing water attracts mosquitoes and birds and increases their 
proximity to one another (Paz 2015; Morin and Comrie 2013). In cases of flooding, mosquito 
populations may immediately decrease; however, over time, mosquito populations may rise and 
disease outbreaks in humans may increase (Paz 2015). Climate change due to human emissions 
has been shown to increase the likelihood of high-temperature, low-precipitation conditions in 
the western United States, which increases West Nile virus incidence (Diffenbaugh, Swain, and 
Touma 2015). 

Neither relative humidity nor wind patterns are as robust of West Nile virus predictors as 
air temperature or precipitation; however the average maximum relative humidity is associated 
with vector population dynamics and morbidity in humans (Paz 2015). Furthermore, wind 
patterns may cause West Nile virus to spread by wind-blown mosquitoes, and bird migrations 
may shift (Paz 2015).  

Mosquito populations are greatly affected by the seasonal cycle of temperature. As 
mentioned earlier, mosquitoes infect humans and other species in the late spring, summer, and 
early fall months. Beginning around the middle or end of October, female Cx. mosquitoes begin 
to overwinter, meaning they enter a dormant period, as the temperatures drop consistently to 
10ºC or below (Nelms et al. 2013). The overwintering of these mosquitoes involves a 
developmental pause until the beginning of spring around the month of March, although the 
mosquitoes may continue to be infected with West Nile virus through the overwintering period 
(Nelms et al. 2013).  

Climate change also has an effect on the seasonality of West Nile virus vectors. A decrease 
in abundance of mosquito populations and an increase in immature mortality during the hottest 
period in summer have been observed in arid habitats (Morin and Comrie 2013). When 
temperatures exceed the 14-30ºC temperature range, immature survival of mosquito larvae 
decreases (Ciota et al. 2014). Thus, a higher abundance of mosquitoes may be observed over the 
summer and beginning of fall as average temperatures increase due to climate change, though a 
decrease in mosquito abundance during the hottest peak of summer would occur. The highest 
abundance of mosquitoes would also shift later in the season than in current conditions, as 
optimal warm temperatures will occur later in the fall. The presence of mosquito populations 
extending into both the early spring and end of fall seasons has been witnessed due to increased 
temperatures as well as late summer and fall precipitation (Morin and Comrie 2013). If winters 
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become milder or shorter due to climate change, this will aid mosquitoes to survive and remain 
abundant, as it is difficult for them to survive longer, colder winters (Crimmins et al. 2016). 

Climate change is already leading to shifts in these climatic factors, and it is possible that 
the transmission dynamics of West Nile virus will drastically change over time. Thus, it is 
important to study these effects in order to prevent further human cases of West Nile virus. 

2.4 Capstone Project Motivation 
Certain individuals are currently more vulnerable to contracting West Nile virus, and they 

will possibly be more severely affected in the future than the general public given climate change 
impacts. Generally, individuals who are most at-risk of West Nile virus infections are the elderly, 
individuals with compromised immune systems, individuals who spend time outdoors, and 
individuals who live in close proximity to stagnant water (Montgomery and Murray 2015). It is 
crucial to identify these populations and to locate which counties in California are more 
susceptible to West Nile virus. 

The question posed and discussed by Dr. Marm Kilpatrick is one that is fundamentally 
important to answer, particularly for the state of California:  

Are the worst West Nile virus epidemics… behind us? West Nile virus epidemics peaked 
in many states the year after it arrived with fewer human cases having been observed 
subsequently. This reduction in West Nile virus disease has led to reduced research focus 
and less funding from public health agencies for West Nile virus, and more recently, less 
testing for West Nile virus by health care providers… If West Nile virus transmission is 
regulated by climate, then severe epidemics could recur, especially if they are facilitated 
by climate change (Kilpatrick 2011). 

It is critical to investigate the effects of climate on West Nile virus in the state of California. 
Unlike other states, West Nile virus did not peak the year after it was identified in California; 
rather, it seems as though a large outbreak has occurred every two to three years after the first 
case of West Nile virus in 2003. This is shown in Figure 1. It is possible that climate change may 
intensify these larger outbreaks, as the effects of climate change have been seen as favorable to 
increase the abundance of mosquitoes and thus the increased risk of transmission to humans.  
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Figure 3: Reported Cases of West Nile Virus in California from 2003 to 2017 (“California West Nile 
Virus Website” 2018). 

 

The effects of a changing climate must be studied in order to answer the following 
questions: Are climate factors affecting this outbreak cycle? Which counties in California are most 
affected by the relationship between climate and West Nile virus? Will these outbreaks be 
exacerbated in the future?  

This project involves the creation of an interactive vulnerability map in order to 
summarize the role of key climate features in determining West Nile virus risk at the county-level 
in California. West Nile virus, climate, and census data were assessed in order to discern 
vulnerable populations. These data were analyzed to identify which factors have the most 
significant impact on human cases presently and in the future, and those impacts were visually 
represented in an interactive map interface. By identifying key climate features that put people 
at risk of contracting West Nile virus, and identifying which areas are at most risk, policies may 
be suggested and then implemented in order to best prevent further cases of the disease.  

Although scientific experts warn of the impact climate change may have on West Nile 
virus, especially in the future, many prevention policies in California do not consider or strategize 
about how to minimize this imminent threat from climate change. In order to be fully prepared 
for future dangers, California policies should include measures about how to prepare and prevent 
future outbreaks in the face of climate change. Given the possibility of increased human risk with 
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the warming of temperature and increased prospect of drought with climate change in future 
years, this map has the possibility of instigating awareness amongst individuals, such as the 
general public, policymakers, and researchers, about vulnerable populations and at-risk counties 
in California as well as the importance of mitigating climate change in order to decrease the 
threat of vector-borne disease outbreaks in the future.  

 

3. Data and Methods 

First, a literature review was conducted in order to better understand West Nile virus 
transmission, the relationship between West Nile virus vectors and climate factors, and the 
impacts of West Nile virus on human populations in California. Publicly-available weekly data on 
human cases of West Nile virus, sentinel chickens testing positive for West Nile virus, mosquito 
samples testing positive for West Nile virus, and dead birds testing positive for West Nile virus 
from years 2006 to 2017 were collected from the California Department of Public Health West 
Nile Virus website (“California West Nile Virus Website” 2018). From these data, initial maps were 
created for each of these variables (i.e., human cases, sentinel chickens, etc.) for the specified 
range of years. This allowed for better visualization of which counties have had the most reported 
infections and which years caused the most impact. 

Publicly-available daily weather data from the Parameter-elevation Regressions on 
Independent Slope Models (PRISM) Climate Group at Oregon State University’s website were 
processed and used as well (“Prism Climate Group” 2018). This daily, county-level data was 
aggregated into weekly county-level summary statistics in order to match the West Nile virus 
data. The following summary climate statistics (hereafter, “climate factors) were used: Average 
daily temperature (ºC), the number of days in a given week where the high temperature is 30ºC 
or below and the low is 14ºC or above, the weekly total of daily rainfall in millimeters, and the 
total number of rainy days in a given week in which rainfall exceeds 1 millimeter. Weather data 
processing was carried out using the statistical software, R (R Core Team 2014). These climate 
factors were chosen in order to conduct an exploratory analysis to observe which factors were 
most likely to influence the risk of West Nile virus human infections.  

These four climate factors were analyzed during the mosquito incubation period, the 
mosquito lifespan period, and the mosquito population growth period (Figure 1). These periods 
were defined as occurring prior to the week with the maximum number of human cases within a 
given county for a specified year. Based on relevant literature (see Introduction), the mosquito 
incubation period occurs on average 2 to 3 weeks prior to the week with the maximum human 
cases, the mosquito lifespan period occurs on average 4 to 12 weeks prior to the week with the 
maximum human cases, and the mosquito population growth period on-average occurs 13 to 65 
weeks prior to the maximum human cases, which is a total of a one-year period. These three 
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mosquito periods were identified for each of the 58 counties for the years 2006 to 2017. The 
average, the maximum, the minimum, and the standard deviation of these four climate factors 
during each of the three mosquito periods were calculated for individual counties from 2006 to 
2017. These 48 climate factors were mapped for each year within the range. These climate 
factors were also averaged over the 12-year period (see Appendix for Figures 12-23). While the 
climate factors for each individual year are not included in this report, the climate factors 
averaged over the 12-year period are included; these averaged climate factor maps were used 
as diagnostic plots to guide the final analysis and to observe which factors were associated with 
increased human cases. 

Publicly-available census data was also collected from the 2014 California Communities 
Environmental Health Screening Tool, which is made available by the Office of Environmental 
Health Hazard Assessment (OEHHA). The following socioeconomic factors at the county-level 
were collected: Race and ethnicity percentages, age percentage (percent of the population under 
the age of 10 and over the age of 65), low birth weight percentage, education percentage 
(percent of the population over 25 with less than a high school education), linguistic isolation 
percentage (percent of households in which no one 14 and over speaks English “very well” or 
speaks English only), poverty percentage (percent of the population that is living below two times 
the federal poverty level), and unemployed percentage (percent of the population over the age 
of 16 that is unemployed and eligible for the labor force). These census factors were selected in 
order to explore which social and economic factors may be able to determine increased West 
Nile virus human cases.  

After the data collection process, a principal component analysis (PCA), a multivariate 
data analysis technique, was used to simplify the high-dimensional data, which included both 
climate and socioeconomic data (Wold, Esbensen, and Geladi 1987). A PCA jointly simplifies 
complex data into fewer dimensions while retaining crucial trends and information from the data 
(Lever, Krzywinski, and Altman 2017). By using a PCA, contrasting climate and census factors can 
be compared to one another. Variables called principal components are computed by the PCA, 
which are then used as the axes upon which the data will be projected (Abdi and Williams 2010). 
The principal components maximize the variance within the data, where the first principal 
component (PC1) is indicative of the direction with the most variation of the data (Abdi and 
Williams 2010). The subsequent principal components represent the direction of the next most 
variation in the data and must be orthogonal to its previous component (Abdi and Williams 2010). 
PC1 was selected as the PC to analyze, as it best describes the data and its variation. The influence 
of each climate and census factor on PC1 can be scored as an eigenvector value, which was found 
using the data analysis carried out using the statistical software, STATA (StataCorp 2017). When 
the factor’s score is large in either the positive or negative direction, then the factor has a large 
influence on the PC1 and is significant. If the score is close or equal to zero, then the factor has 



 15 

minimal influence on PC1 and is insignificant. [Explain why the analysis is useful; ex: in summary, 
factors contributing substantial variation in West Nile virus case incidence can be identified in 
this way] 

Three vulnerability indexes were built based on the PC1 eigenvector values as well as the 
corresponding climate and census factors. These indexes allowed for counties to be directly 
compared to each other based on the vulnerability indexes and factors. The three vulnerability 
indexes were found by calculating the total sum of the products of each factor’s PC1 eigenvector 
value and the value of the factor averaged over the 12-year period for each county. First, the 
“climate index” was calculated based on the maximum and standard deviation of the four climate 
factors for each of the three relevant mosquito periods. Second, a “census index” was calculated 
based on the all of the selected census factors. Third, a “climate and census index” was calculated 
based on both the maximum and standard deviation of the four climate factors for each of the 
three relevant mosquito periods as well as the selected census factors. and census. It is important 
to note that these indexes highlight factors with principal component scores that are large in 
either the positive or negative direction. These indexes were mapped as well. 

Projection data from the Cal-Adapt website were used in order to observe changes in 
temperature and precipitation at the county-level in the future (“LOCA Downscaled Climate 
Projections” 2018). Annual averages of maximum temperature and average precipitation from 
2006 to 2099 for each county were downloaded. One future scenario was used for these climate 
projections, which was RCP 8.5. RCP 8.5 includes a future where both population growth and 
greenhouse gas emissions continue to increase, where radiative forcing will increase to 8.5 Watts 
per meter squared by the year 2100 (Hayhoe et al. 2017; van Vuuren et al. 2011). This scenario 
can be seen in Figure 4 below. By observing shifts in temperature and precipitation using this 
extreme-case RCP scenario, a climate change signal that affects West Nile virus may be identified. 
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Figure 4: Representative Concentration Pathways (RCP) scenarios from years 2000 to 2100. RCP 
8.5 is represented in blue. Figure retrieved from (“Scenario Process for AR5,” n.d.). 

 

From this data, an interactive map was assembled. The objective for the interactive 
component of the vulnerability map was for different groups of individuals, such as the general 
public, policymakers, and researchers, to be able to easily use to map, to be able to compare 
different factors amongst each other, and to make meaningful connections with this map. 
Aspects of various available interactive maps were examined, such as the “Yale Climate Opinion 
Maps” as well as those presented in articles including the New York Time’s “A Peek Into Netflix 
Queues” and Bloomberg’s “Climate Change Dilemma for Coastal America: How Much Flooding is 
Too Much?” (Howe et al. 2015; Bloch et al. 2010; Flavelle and Levitt 2017). Outlines for this 
interactive vulnerability map were map and compared using tools including informational 
popups, a sliding bar for years, selected factor filter, various drop-down menus, and animated 
demonstrations of change in selected factor over time. Preferred color bins for legends that 
would aid in visualizing differences within and between the surveillance, climate, census, and 
index datasets and that would be visible to individuals who are colorblind were chosen by using 
the Color Brewer website (Brewer et al. 2013). 

 

4. Results 

4.1 Descriptive Maps 
A map of California with labeled counties is included in the Appendix (Figure 5). From 

2006 to 2017, the counties with the highest total number of human cases were Los Angeles, 
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Orange, and Kern (Figure 6). Los Angeles county had a significantly higher than average number 
of human cases for the years 2008, 2009, 2011, 2012, 2013, 2015, and 2016. Orange county had 
a significantly higher than average number of human cases for 2008 as well as 2014. Kern county 
had a significantly higher than average number of human cases for years 2006, 2007, 2009, and 
2010. The counties that are typically higher with respect to human cases are located in Southern 
California, with the exception of Imperial county, and the southern Central Valley around Fresno. 
The exception to this trend occurred in 2006, where Butte and Yolo counties in Northern 
California were higher than average. Human cases were lower in most of Northern California and 
Eastern California counties.  

The highest human case years within the 2006-2017 period, in decreasing order, include 
2014, 2015, and 2017 (Figure 11). The counties that had the highest maximum number of human 
cases within the span of a week over the 2006-2017 period include Los Angeles and Orange. 
Above-average counties with a high maximum number of human cases include most counties in 
Southern California and the Central Valley, while Northern and Eastern California counties have 
lower-than-average maximum number of human cases. Within the 2006-2017 period, the years 
with the highest human fatalities, in decreasing order, were 2015, 2017, and 2014 (“California 
West Nile Virus Website” 2018). 

The counties with the highest total count of dead birds include Sacramento, Los Angeles, 
and Santa Clara (Figure 7). Sacramento county had a significantly higher than average number of 
dead bird cases for the years 2007, 2011, and 2012. The years in which Los Angeles had a higher 
than average number of dead bird cases include 2007, 2009, 2011, and 2012. Santa Clara had a 
significantly higher than average number of dead bird cases for 2006, 2014, and 2015. The 
counties that are typically higher with respect to dead bird cases are located in Southern 
California, with the exception of Imperial county, and the counties surrounding Sacramento 
county. Counties that are lower than average include Northern and Eastern California, along with 
the central coastline counties. The highest dead bird case years within the 2006-2017 period, in 
decreasing order, include 2008, 2014, and 2012.  

The counties with the highest total count of mosquito samples include Los Angeles, 
Sacramento, and Kern (Figure 8). Los Angeles had a significantly higher than average number of 
mosquito samples for the years 2008, 2011, 2013, 2014, 2016, and 2017. The years in which 
Sacramento had a higher than average number of mosquito samples include 2007, 2008, 2010, 
2011, 2013, 2014, and 2016. Kern had a significantly higher than average number of mosquito 
samples for 2006, 2007, 2009, 2010, and 2011. The counties that are higher with respect to 
mosquito samples are located in the northern region of Southern California, including Kern, 
Riverside, and Los Angeles, the southern region of the Central Valley, including Tulare and Fresno, 
and the Sacramento region. The highest mosquito sample years within the 2006-2017 period, in 
decreasing order, include 2016, 2017, and 2015. 
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The counties with the highest total count of positive sentinel chickens within the period 
of 2006-2017 include Los Angeles, Kern, and Riverside (Figure 9). Los Angeles had a significantly 
higher than average number of positive sentinel chickens for the years 2008, 2011, 2012, 2013, 
and 2015. Kern had a significantly higher than average number of positive sentinel chickens for 
the years 2006, 2010, 2011, and 2012. The years in which Riverside had a higher than average 
number of mosquito samples include 2008 and 2010. The counties that have higher counts of 
positive sentinel chickens include Butte county and its surrounding counties, Tulare county and 
its surrounding counties, and Southern California counties, including Kern, Los Angeles, San 
Bernardino, and Riverside. In comparison, counties in Northern and Eastern California, the 
northern Central Valley, and the entire Californian coastline excluding Los Angeles have lower 
than average counts of positive sentinel chickens. The highest positive sentinel chicken years 
within the 2006-2017 period, in decreasing order, include 2006, 2008, and 2012. 

The counties with the highest average incidence proportion of human cases within the 
period of 2006-2017 include Glenn, Butte, and Colusa (Figure 10). Glenn had a significantly higher 
than average incidence proportion for the years 2006, 2008, 2010, 2012, 2013, 2015, and 2016. 
Butte had a significantly higher than average incidence proportion for the year of 2008. Colusa 
had a significantly higher than average incidence proportion for 2008 and 2012. The counties that 
have a higher incidence proportion include Butte and its surrounding counties as well as Fresno 
and its surrounding counties. In contrast, the counties along a majority of the California coastline, 
Northern and Eastern California, and the Southern counties of San Diego and Imperial had lower 
than average incidence proportions. The highest incidence proportion years, in decreasing order, 
include 2006, 2015, and 2014.  

4.2 Climate Maps  
 The weekly average temperature in Celsius, the count of favorable temperature days, the 
precipitation sum in millimeters, and the count of days where precipitation is greater than 1 
millimeter were calculated for each of the three periods. The mean, maximum, minimum, and 
standard deviation were found for these four variables. The maps of these variables averaged 
over 2006 to 2017 for the three mosquito periods are included in the Appendix. Counties without 
human cases are colored white as “no data.” 

The maps of the mosquito period mean, maximum, minimum, and standard deviation of 
weekly average temperature were very similar amongst the incubation, lifetime, and population 
growth periods (Figures 12, 16, and 20 for incubation period, lifetime period, and population 
growth periods, respectively). The main difference among these all-year maps are the Northern 
counties, including Siskiyou and Modoc counties, which are above average for the standard 
deviation maps but below average for the mean, maximum, and minimum maps. Most of the 
above-average counties reside in Southern California, including San Bernardino, Riverside, 
Imperial, and Inyo counties, and certain counties in the Butte county region. In contrast, some of 
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the below average counties include the Central California coastline as well as some of the 
Northern counties.  

The maps of the mosquito period mean, maximum, minimum, and standard deviation of 
favorable temperature count were also similar amongst the incubation, lifetime, and population 
growth periods (Figures 13, 17, and 21 for incubation period, lifetime period, and population 
growth periods, respectively). There were two significant differences between the maps: Both 
Alameda and Orange counties are above average for the minimum favorable temperature count 
for the incubation and lifetime periods, while the population growth period does not include any 
above-average counties for the minimum favorable temperature count. Furthermore, the 
incubation period maps also have more below-average counties, such as Imperial county and 
more counties along the Western coast while San Francisco county was above average. Most 
counties in Southern California as well as Placer, Nevada, Alameda, and Santa Clara counties are 
above average for favorable temperature count, while some Northern, Eastern, and Western 
coastal counties were below average.   

The maps of the mosquito period mean, maximum, minimum, and standard deviation of 
precipitation sum contrasted among the different mosquito periods (Figures 14, 18, and 22 for 
incubation period, lifetime period, and population growth periods, respectively). Within the 
mean, maximum, and standard deviation precipitation sum maps for the incubation period, the 
three above-average counties included San Francisco, Santa Clara, and Amador. Meanwhile, 
Santa Barbara and Solano counties were above average for the minimum of precipitation sum 
during the incubation period. During the lifetime period, Santa Cruz and Amador counties 
remained above average for the mean, maximum, and standard deviation of precipitation sum, 
while Northern counties showed higher precipitation sums and Southern counties had lower 
precipitation sums. Modoc and Siskiyou counties were above average for the minimum of 
precipitation sum for the lifespan period. For the mean, maximum, and standard deviation of 
precipitation sum maps for the population growth period, the Southern counties were below-
average, while Northern counties, such as Butte, were above-average.  

The maps of the mosquito period mean, maximum, minimum, and standard deviation of 
precipitation count also contrasted among the different mosquito periods (Figures 15, 19, and 23 
for incubation period, lifetime period, and population growth periods, respectively). A clear trend 
in county regions cannot be identified for either the incubation period or the lifespan period, 
although some of the Southern counties, such as Inyo, were higher than average, while many 
Northern counties were either close to the average or below average; the Amador county area 
region was overall above-average. In contrast, the maps for the precipitation count for the 
population growth period resembled the maps for the precipitation count for the lifespan period; 
Southern counties are significantly below-average, while northern counties are significantly 
above-average. This indicates that in the population growth period, Northern counties have more 
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precipitation days and a larger precipitation sum, while Southern counties have less precipitation 
days and a smaller precipitation sum.  

Overall, it seems that there is a positive correlation between temperature factors and 
human cases and a negative correlation between rainfall factors and human cases. The favorable 
temperature count maps show this positive correlation with human cases more so than the 
average temperature maps do. Similarly, the rainfall day count maps show this negative 
correlation with human cases more so than the precipitation sum maps do. The climate factors 
in both the lifespan period and the population growth period also seem to be more indicative of 
human cases than climate factors in the incubation period.  

4.3 Census and Index Maps  
 Census factor maps are shown in Figures 24, 25, and 26, while the index map is shown in 
Figure 27. The census factor maps that most resemble the human case maps include the Hispanic 
population percentage, the African American population percentage, the low birth weight 
percentage, the low education percentage, and the linguistic isolation percentage. The poverty 
percentage and the unemployment percentage include some similarities with the human case 
map, particularly the above-average counts in the Fresno county area. The average number of 
individuals within the county population is very similar to the human case maps. In comparison, 
the climate factor maps that resemble the human case maps the least include the white 
population percentage, Native American population percentage, the Asian American percentage, 
the other ethnicity population percentage, and the age above 65 and below 10 population 
percentage. 

 The index maps are shown in Figure 27. The census index map resembles the human case 
maps, while the climate index as well as the climate and census index maps do not resemble the 
human case maps at all. The census index is higher than average for Los Angeles, Orange, San 
Diego counties. Both the climate index as well as the climate and census index are below-average 
in Southern California counties, and they do not have significantly higher than average counties. 
It seems as though the climate components, particularly the precipitation factors, have a larger 
impact on the climate and census index than the census components. The precipitation factors 
had a larger influence on the climate index, as the climate index map has many similarities to the 
precipitation sum and precipitation sum maps; the Southern counties are lower than average 
while the Northern counties are higher than average. 

4.4 Projection Maps  

The climate projection maps from the CanESM2 model using RCP 8.5 can be seen in 
Figures 28, 29, and 30. The rate of change over the time period 2006 to 2100 were calculated for 
both maximum temperature as well as precipitation.  
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The counties of Orange, Ventura, Santa Barbara, Kern, San Luis Obispo, and Tulare were 
the counties with the slowest rates of change for maximum temperature from 2006 to 2100. In 
contrast, the counties of Trinity, Siskiyou, Modoc, and Lassen were the counties with the fastest 
rates of change for maximum temperature over this time period. There is a clear distinction 
between Northern and Southern California, where Northern California counties have faster rates 
of change for maximum temperature, while Southern California counties have slower rates of 
change. 

The only county that has a significantly slower rate of change for precipitation is Imperial 
county, while the counties with significantly higher rates of change for maximum temperature 
were Sonoma, Santa Cruz, Sierra, Nevada, Alpine, and Tuolomne.  

The annual maximum temperature projection over the years shows that there is an 
overall warming across all of California. With RCP 8.5, counties such as Imperial, Riverside, and 
San Bernardino will exceed the ideal mosquito temperature range of 14-30ºC, while northern 
counties will remain within the upper boundary of the ideal temperature range. There is a 
noticeable gradient, where maximum temperature increases in the southward direction. In 
comparison, the northern counties have heavier precipitation over time than southern counties. 
There is an overall increase in precipitation within most counties across California. There is also 
a noticeable gradient, where precipitation decreases in the southward direction. 

4.5 Interactive Vulnerability Map 

 The components of the interactive vulnerability map are depicted in Figures 31, 32, and 
33. The data type may be selected by using a drop-down menu, which includes surveillance or 
climate factor by year, climate projection by year, average climate projection data, index data, 
and census data. From this selection, the data variable may then be chosen from a drop-down 
menu, which includes the specific surveillance factors, climate factors associated with mosquito 
periods, climate projection factors, climate projection factors averaged over the decades from 
2020 to 2100, the three indexes, and the census factors. When applicable, the year for the chosen 
data variable may be selected, and an automated playthrough animation of the time period can 
be selected for the chosen variable. Furthermore, a desired county may be clicked on, which 
allows for a pop-up to appear with a plot of the selected data variable over the relevant time 
period for that county.  

 

5. Discussion 
5.1 Interpretation of Results 
It is clear from the maps that the counties with high human cases are most likely related 

to high dead bird, mosquito samples, and sentinel chicken counts. The incubation period climate 
factors were not indicative of human cases; however, the climate factors in the lifespan and 



 22 

population growth periods are more indicative of human cases. During the lifespan period, 
counties with increased temperature count also have increased human cases, while counties with 
lower precipitation sum also have increased human cases. This relationship is more apparent 
amongst the temperature count and precipitation sum factors; however, a positive relationship 
can be observed between human cases and average temperature, while a negative relationship 
can be observed between human cases and precipitation count. These relationships become 
more evident in the population growth period. These associations were further justified using 
Poisson regression models, which showed the negative association between human cases and 
precipitation and the positive association between human cases and temperature.  

The Hispanic population percentage, the African American population percentage, the 
low birth weight percentage, the low education percentage, and the linguistic isolation 
percentage were the census factors that are positively associated with human cases. The 
relationships between human cases and races are particularly interesting, as a majority of 
individuals who are reported with West Nile virus diseases cases are white. From 1999 to 2008, 
out of 11,288 United States patients with available race data, 95% of patients were white (Lindsey 
et al. 2010). This calls into question the number of cases that go unreported, and if specific groups 
of individuals are more vulnerable to remain unreported than others. It is possible that specific 
groups may be under-reported due to factors including linguistic barriers, poverty, or not having 
the knowledge that they should go to the hospital when having specific symptoms. This was seen 
in a study which compared the effects of West Nile virus on Hispanic agricultural workers in Kern 
and Coachella Valley. Coachella Valley is closer to Mexico, and it is possible that Hispanic 
agricultural workers who are uninsured may travel to Mexico, as the cost to treat is lower there 
than within the United States. This study recognized an ethnic segregation between individuals 
who may seek treatment and be tested by physicians and those who may not seek this aid due 
to the cost or may not be tested by physicians (W K Reisen et al. 2009). These groups may be less 
under-reported if doctors are trained to test for West Nile virus if associated symptoms are 
present. 

The census index as well as the census and climate index were shown to not be adequate 
indicators to identify counties with a higher risk of human cases. It seems that precipitation 
factors had a significant influence when performing the Principal Component Analysis in both the 
climate index as well as the climate and census index. This may be the reason why Southern 
counties in these maps have below-average index values, while Northern counties have above-
average index values. The census index was a more robust indicator of increased West Nile virus 
risk in comparison to both the climate index as well as the census and climate index. The census 
index had above-average index values in Southern counties that also had increased human cases; 
in addition, the census index also had below-average index values in Northern counties that also 
had minimal human cases. 
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The climate projections show an increase in both maximum temperature and 
precipitation over time, with higher maximum temperatures in Southern California and higher 
precipitation in Northern California. It is important to acknowledge that RCP 8.5 was used for 
these projections, which is considered the highest emissions pathway. Using RCP 8.5 and the Can-
ESM2 model, by 2100, much of the Southern California and parts of Central California would 
exceed the maximum temperature threshold for ideal mosquito survivability and West Nile virus 
transmission. Northern counties become warmer as well, and their maximum temperature shifts 
to the upper bounds of the ideal mosquito temperature range. Thus, it a northward shift of West 
Nile virus may be possible in the future, and a northward movement in North America has been 
observed in the past two decades (Paz 2015).  

5.2 Preventative and Adaptation Policy Measures 
 In order to prevent further cases of West Nile virus that may be exacerbated by climate 
change as well as to prepare the public for a potential increased risk of disease, policy measures 
must be implemented. Surveillance methods are currently in place in order to isolate and identify 
West Nile virus in non-human species within specific areas before they infect humans. These 
surveillance methods affect the decision of whether or not more serious measures should be 
implemented in order to eradicate West Nile virus, including techniques to control mosquito 
populations. Educating the public on how to best prepare against West Nile virus through a 
variety of means can lead to a reduction of disease cases. It is important to compare the costs 
and benefits of each of these preventative and adaptive policy measures to the consequences of 
West Nile virus cases that are left unmanaged.   

5.2.1 Surveillance Methods 
 There are several surveillance methods in place in California, including mosquito vectors, 
avian hosts, and sentinel chickens (Healy et al. 2014). Equine and human infection testing were 
also used as surveillance methods, although these are no longer considered sensitive indicators 
of vector activity (Brown 2017). Equine infections are not used as a sensitive indicator because 
horses, donkeys, and mules become more immune to the virus over time than other species 
(Brown 2017). Furthermore, human infections are also unused as a sensitive indicator, as so many 
individuals who are infected are asymptomatic or require a few weeks before the symptoms 
become apparent (Brown 2017); thus, they are not exemplary indicators that could be used to 
plan and implement emergency control plans.  
 Both mosquito abundance as well as mosquito infections can be used as surveillance 
methods. These methods are measured by collecting mosquito samples from high mosquito 
density pools, and these collection sites are registered by county level agencies on the California 
Vectorborne Disease Surveillance System (CalSurv) website (Smith and Brown 2018). Both 
samples of immature and adult mosquitoes are collected for this measure. Mosquito infections 
can also aid in detecting virus activity, where adult mosquitoes are tested for West Nile virus (E. 
Brown 2017). Mosquito infections are tested for in the early season, including spring and early 
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summer, and it has been shown to be one of the most efficient methods to detect West Nile virus 
(Brown 2017; Healy et al. 2014). Both of these measures, mosquito abundance and infections in 
mosquitoes, have been used as inputs in prospective models that forecast future human cases, 
which was done for the state of South Dakota (Davis et al. 2017). Furthermore, the estimated 
weekly cost for mosquito traps is approximately $72 per week (Healy et al. 2014). 
 Dead birds can be collected and tested for West Nile virus. The California Department of 
Public Health has encouraged the public to submit reports online regarding where and when they 
have seen dead or sick birds as a means to detect West Nile virus (“California West Nile Virus 
Website” 2007). These dead birds are then tested to see if they died from the virus (E. Brown, 
2017). The estimated weekly cost for collecting and testing dead birds is approximately $65 per 
week (Healy et al. 2014). A specific limitation to dead bird sampling is that it is unknown whether 
or not the birds died from the virus itself or from other causes. Furthermore, selection bias is 
present when testing these birds, as they are not all equally detected and reported by the general 
public. 
 Finally, state and local agencies collaborate in order to place flocks of chickens in locations 
where mosquito density is known to be high or where virus activity has been recently present (E. 
Brown, 2017). The sites used for these sentinel chickens are also registered by county level 
agencies on the CalSurv website (Smith and Brown 2018). These previously unexposed chicken 
flocks of 6-10 chickens are tested every two weeks by the California Department of Public Health 
for West Nile virus (E. Brown 2017). If chicken seroconversion is present, then the chicken has 
developed antibodies in order to fight off the virus. The estimated weekly cost for chicken flocks 
is approximately $111 per week, which is the most expensive of the three surveillance methods 
(Healy et al. 2014). 

It is necessary to have surveillance methods in place in order to prevent widespread 
transmission to humans. The efficiency and cost of the three major West Nile virus surveillance 
methods, which are mosquito samples, dead bird testing, and sentinel chicken flocks, have been 
analyzed. The mosquito trappings and publicly-reported dead birds were reported to detect West 
Nile virus earlier than the serological monitoring of sentinel chickens by two and five weeks, 
respectively (Healy et al. 2014). Publicly-reported dead birds were found to be the most cost-
effective surveillance method of the three (Healy et al. 2014). Sentinel chickens detected more 
positive West Nile virus results in the later season, while mosquitoes detected more positive 
West Nile virus results in the early season (Healy et al. 2014). Sentinel chicken flocks could be 
reduced from flocks of ten to flocks of six or seven without reducing surveillance sensitivity (Healy 
et al. 2014). The most cost-effective surveillance monitoring would be to use a combination of 
these three methods: Mosquito testing in the early season, reduced sentinel chicken flocks in the 
late season, and dead bird detections used throughout the entire season (Healy et al. 2014). 
 When these surveillance methods detect increased virus activity, mosquito control 
methods are often implemented.  
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5.2.2 Controlling Mosquito Larvae and Adult Populations  
When mosquitoes are known to be infected with West Nile virus in specific areas, various 

methods to control the mosquito populations may be implemented. Mosquito control is proven 
to be the only method that can currently protect populations from West Nile virus (E. Brown 
2017). These methods are implemented by mosquito control agencies as well as county health 
departments (E. Brown, 2017). Two specific types of mosquito control methods can be 
implemented, which are larval control and adult control.  

Mosquito larval control methods are the more utilized option, as larvae are densely 
concentrated in aquatic habitats and more easily reduced (“Best Management Practices for 
Mosquito Control in California” 2012; Brown 2017). Larval control uses environmental 
management, biological control, and chemical control in order to reduce larvae (E. Brown, 2017). 
Environmental management involves multiple factors. Source elimination removes possible 
mosquito habitats in urbanized areas, which includes eliminating pools of stagnant water, filling 
ditches that could hold stagnant water with sediments, and covering structures or containers 
that could hold water (“Best Management Practices…” 2012). Both source reduction and 
maintenance attempt to eliminate the time that water is left standing in ecosystems, which 
include reducing vegetation growth in wetlands, digging ditches in order to maintain water 
circulation, creating drainage ditches to limit flooding, and removing debris from stormwater 
channels (“Best Management Practices…” 2012). Biological controls involve the use of predators, 
parasites, and pathogens to limit the abundance of mosquito larvae (Brown 2017). The most 
frequently used biological control by local mosquito control agencies is the mosquitofish, which 
are highly effective at consuming mosquito larvae in areas such as ponds and wetlands (“Best 
Management Practices…” 2012). Certain microbes have been used as well as surface films, 
although these have been shown to have negative effects on other aquatic insect species (E. 
Brown 2017). Finally, larvicides may be implemented, which include bio-rational products, 
surface films, insect growth regulators, and chemical products, all of which must be approved by 
the California Department of Public Health for use (“Best Management Practices…” 2012). Bio-
rational products use natural toxins that are found in certain bacteria, surface films use mineral 
oils or alcohol-derived films on the water surface to prevent larvae from breathing, insect growth 
regulators affect the physiological development of larvae, and chemical pesticides can be used 
to control larvae populations, although they are rarely implemented (“Best Management 
Practices…” 2012).  

Adult mosquito controls are implemented when larvae control is not possible or when 
immediate action on the reduction of mosquito populations must be done (E. Brown 2017). Adult 
controls are made up of ultralow volumes of chemicals including organophosphates, pyrethroids, 
and pyrethrins, which are applied on the ground or by aircraft (E. Brown 2017). These pesticides 
cost millions of dollars in California; for reference, $9.4 million were spent to purchase pesticides 
between 2005 and 2007, which does not include the cost of applying these pesticides on the 
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ground or by aircraft (Howard et al. 2010). Though negative effects from these adulticides are 
rare, individuals should limit their exposure to these ultralow volume applications by staying 
indoors while they are being conducted (“Best Management Practices…” 2012). The schedule for 
adulticide application is provided online by county level vector control agencies (“Best 
Management Practices…” 2012). 

The final component for preventative policy measures is public education, which can 
reduce the abundance of mosquitoes as well as reduce potential human cases through specific 
practices. 

5.2.3 Public Education and Outreach 
 Educating the public about personal protection against West Nile virus as well as 
techniques to reduce mosquito abundance around their homes and areas where they work 
contribute to a decrease in human disease cases and reduce mosquito populations.  
 Individuals are taught to minimize standing water, as this is where mosquitoes lay eggs 
and larvae develop. The general public can learn to discard containers that can store standing 
water, such as tires, buckets, and cans, empty unused pools, and unclog rain gutters (E. Brown 
2017). Farmers can be taught about effective irrigation practices that limit standing water, while 
wetland managers and rangers can work with local mosquito control agencies to limit flooding 
and allow for proper water circulation (E. Brown 2017). 
 Furthermore, the public can be educated to change certain habits or to develop new 
habits in order to limit their exposure to infected mosquitoes. Mosquito repellents containing 
DEET can be used and can be taught how to correctly wear (Schwarzenegger, Belshé, and Horton 
2008). These repellents should be used over clothing, not underneath clothing, and they should 
be used sparingly on direct skin contact (Schwarzenegger, Belshé, and Horton 2008). Repellents 
that have ingredients such as lemon eucalyptus oil and picaridin can also be used, although these 
repellents must be applied more often than those containing DEET (Schwarzenegger, Belshé, and 
Horton 2008). 
 Individuals who spend time outdoors can learn to limit their outdoor time when mosquito 
biting levels are high, which are predominantly during the hours of dusk as well as dawn (E. Brown 
2017). Long-sleeved clothing can also be worn outdoors as this may reduce the possibility of 
being bitten by infected mosquitoes (E. Brown 2017). Individuals can also repair screens, 
windows, and doors in their houses to prevent mosquitoes from coming inside their homes 
(“West Nile Virus” 2017). Furthermore, physicians and veterinarians can learn to be observant 
for West Nile virus symptoms and to request lab tests as a means to enhance clinical surveillance 
(E. Brown 2017).  
 The predominant method of outreach for public awareness is through the California 
Department of Public Health’s West Nile virus website as well as county level public health and 
vector control program websites. The statewide “Fight the Bite!” campaign also increases public 
awareness through billboards, its website, fliers on the West Nile virus at ranger stations and 
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trailheads, and child-friendly games (“California West Nile Virus Website” 2018). Most individuals 
are aware of West Nile virus, but many do not exercise protective behaviors (Fox et al. 2006). It 
seems that more rigorous campaigns may be used in the future in order to make individuals 
aware of the severity of West Nile virus and to make individuals exercise the protective behaviors 
mentioned above (Fox et al. 2006). This mapping tool is a promising means to communicate to 
the public through an interactive and engaging way. 

5.3 Comparison to Related Mapping Tools & Next Steps 
 Quite a few interactive maps involving climate and health exist for air pollution and 
extreme heat; however, fewer exist for vector-borne diseases in the context of climate change. 
The Natural Resources Defense Council website includes a “Infectious Disease Vulnerability 1995-
2005” tab for human cases of Dengue fever at the state-level in the United States (Knowlton 
2015). The Companion Vector-Borne Diseases website includes a world map with a variety of 
vector-borne diseases, including which vectors and comments are relevant to the selected region 
(“Occurrence Maps” 2017). West Nile virus is not included in this Companion Vector-Borne 
Diseases map. The California Survey Research Services includes California maps of a few vector-
borne diseases, including West Nile virus, for the locations of mosquito pools, sentinel chickens, 
and dead birds (“California Surveillance Gateway Maps” 2018). The exact dates can be selected 
from 2003 to 2018, which leads to these factors being projected onto the map. The Centers for 
Disease Control and Prevention includes a map of the United States at the county-level for many 
vector-borne diseases, including West Nile virus, including human, mosquito, bird, sentinel 
animal, and veterinary cases from years 2003 to 2017 (“ArboNET Disease Maps” 2018).  
 A minimal number of states acknowledge climate factors that can impacts the 
transmission of West Nile virus. The Arizona Department of Health Services conducted two 
reports that include climate impacts and projections of West Nile virus as well as a vulnerability 
assessment in the Southwestern United States, such as the states of Arizona, California, Colorado, 
Nevada, New Mexico, and Utah (Roach, Brown, Clark, et al. 2017; Roach, Brown, Wilder, et al. 
2017). Other states do not include reports as thorough as Arizona’s; Texas is the only state that 
expresses that a key limitation in its West Nile virus guide was the lack of climate data analysis in 
the context of the virus (“West Nile Virus Public Health Preparedness, Surveillance, and Response 
Guide” 2015). 
 Some of the next steps for this interactive map include the addition of relevant bird 
periods as well as the inclusion of other social determinants. Bird periods, including breeding, 
lifetime, and virus infection and incubation, occur at different times than the relevant mosquito 
periods. It may be interesting to include the climate factors that occurred during these bird 
periods prior to human cases in order to identify whether or not these factors may be indicative 
of future human cases. Furthermore, additional sociodemographic determinants may be studied 
in order to identify their correlation with human cases of West Nile virus. This may include 
identifying the relationship between factors such as population density, homeless population 



 28 

percentage, medically-underserved population percentage, and land use classification with West 
Nile virus infections. It will be crucial to identify underreported populations; if physicians can 
learn to include West Nile virus as a possibility when patients come in with relevant symptoms, 
then these populations can be correctly identified. These populations can then be educated on 
how to prevent future infections. Furthermore, mosquito species that are present within 
California counties can be identified to see which species more effectively infect humans. By 
including these factors, a more wholesome map of West Nile virus and its relationship with 
climate and social determinants may be assembled. This map may help supplement public 
outreach efforts and provide a range of data that can be used to further investigate how West 
Nile virus transmission may shift. 
 

6. Conclusion 

The implementation and integration of public health policies that address the influence 
of climate change will be necessary in order to prevent future possible West Nile virus outbreaks 
in California. West Nile virus epidemics peaked in multiple states after the initial outbreak in the 
United States, and there has been a small number of human cases in those states since (Kilpatrick 
2011). Because of this trend, less funding on West Nile virus from public health agencies has been 
available, which has led to a decreased research focus on the disease and less clinical testing in 
hospitals (Kilpatrick 2011). California has witnessed multiple, severe outbreaks since 2003, 
particularly in the years 2005, 2014, and 2015. Climate change will bring increased average 
temperatures and shifts in precipitation, which have the potential to increase the risk of future 
West Nile virus outbreaks. It is important to be prepared for possible future outbreaks by 
conducting further research investigations on these influential climatic factors and by 
implementing policies that protect vulnerable populations.  

This interactive vulnerability map will allow the public, policymakers, and researchers to 
understand crucial aspects of West Nile virus. The public can identify whether or not they live in 
an at-risk county, learn more about the virus as well as the effects of climate change on the virus, 
and apply preventative strategies in order to minimize their risk of infection. Policymakers can 
understand the gravity of the virus, realize the need to identify groups of individuals who are 
underreported with the disease, and advocate for the co-benefits of climate change mitigation 
policies that will limit the impact of vector-borne diseases. Researchers may also use this map in 
order to further their own research projects and to include other vector-borne diseases that are 
impacted by climate factors.  

Tools must be created to measure the impact of climate change on vector-borne diseases, 
as these may reduce detrimental health effects. Mitigating climate change means protecting the 
health of all populations, including those at risk of diseases such as West Nile virus. The emerging 
shift in attention on climate and health has the potential to instigate widespread social change if 
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effectively communicated to the public. By actualizing climate and health work that can be 
meaningful to a range of individuals like this interactive map, California will be better prepared 
for future human cases and West Nile virus epidemics, more capable of reducing the future risk 
of infection, and more effective at communicating the importance of mitigating climate change.  
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8. Appendices 

Note:  

The color legend for the descriptive, climate, census, index, and projection maps are as follows: 
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8.1 Descriptive Maps 
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8.2 Climate Averages (2006-2017) during Mosquito Incubation Period Maps  
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8.3 Climate Averages (2006-2017) during Mosquito Lifetime Period Maps  

 



 47 

 



 48 

 



 49 

 

 

8.4 Climate Averages (2006-2017) during Mosquito Population Growth Period 
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8.5 Census Maps 
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8.6 Index Maps 
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8.7 Projection Maps 
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8.8 Aspects of the Interactive Vulnerability Map 

 
 

 
Figure 31: A view of the interactive vulnerability map webpage. In this image, the human cases for the year 
2006 was selected to view. The data type, the year, and the data variable can be selected. Furthermore, the 
time period can be animated. 
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a. b. 

c. 

Figure 32: Detailed view of the 
various features that can be 
selected.  
The data type can be selected 
from a drop-down menu, which 
are categorized as surveillance 
or climate factor by year, climate 
projection by year, average 
climate projection data, index 
data, and census data (a).  
The year for the given data type 
can be selected from a drop-
down menu, and an automated 
playthrough animation of the 
time period can be selected for 
the given variable (b).  
The data variable can be 
selected from a drop-down 
menu based on which data type 
was previously chosen (c).  
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Figure 33: A view of the interactive vulnerability map’s pop-up feature. When a data variable with a relevant 
time period is selected, a desired county may be clicked directly on the California map, and a pop-up plot of 
the selected variable over time for the given county appears. In this example, the selected variable is Sentinel 
Chicken Count, and Kern county has been clicked upon the colored map. 




