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BACKSCATTERING OF ELECTROMAGNETIC WAVE

*
_ FROM UNDERDENSE TURBULENT PLASMA

Yu-Yun Kuo
Lawrence Berkeley Laboratory

University of California
Berkeley, California 94720

September 23, 1971

ABSTRACT

Backscattering of electromagnetic waves from a homo-
geneous underdense turbulent slab plasma was studied in a trans-
port approximation of the multiple scattering regime. The
general feature of the multiple scattered signal is quite differ-
ent from that predicted by the Born approximatioﬁ. fhere'are two
parameters which characterize the properties of the scaﬁtered
signal. One is Ls’ the ratio of the slab thickness to the
scattering mean free path. The other is ¢, the ratio of the
scattering loss to the collisional absorption; When Ls <1, -
the cross section of the parallel polarization 0“ obtained in
the multiple scattering regime remains the same as that gained
from Born approximation. But in the region of LS 2 1, the

cross section o, in multiple scattering will level off while

H
that in the Born approximation goes up as a linear function of

L _ . The cross_section of the cross polarization ?l_ of a back-

S

ward écattered signal has the same feature as 3!%’ whereas GJ,
in the Born approximation is zero. The absolute magnitude of

o“ , and the relative ratio between o and ?l. all depend on

¥
i
i

the parameter €.

-

The calculation was applied to the ionospheric . auroral
phenomena. It was also found that the criteria for applying the
Born approximation up to the critical density does not depend

upon the electron density in the medium, but upon the parameter

L_.
s
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1. INTRODUCTION

In the literature, the problem of bistatic scattering'and
backscattering of electromagnetic waves from plasmas is usually
dealt with by means of the first Born approximation,l which
assumes (1) the incident wave at each point of the scattering
medium is the same, and (2) only single scattering needs to be
considered. The interference effect of the waves scattered from
different point sources is taken care of by the two-particle

correlation function Ug that the total cross section ¢ depends
on O_ as -
2
o(k) @ o o (k) ,

where k 1is the wave-vector difference between the incident wave
and the scattered wave, and p 1is the densi@y of the scattering
source. It is gquite obvious that when there is attenuation in
the medium due to, for instance, collision loss, or when the
scattering mean free path is small compared with the size of the
medium, the first Born approximation is not applicable.

Ruffine and de Wolf2 diséussed the problem in the second
Born approximation and estimated the cross-polarized scattered
power for cylindrical and spherical underdense plasmas. Calcula-
tions of higher orders are quite difficult. .

The other traditional approach is the phenomenological
transport equa.tion.3 The scalar transport equation has been
solved by the iteration method to the second order.h The cross-
polarization scatteriﬁg cross section found in this way needs to

7

be justified.

.

K. M. Watson5-7 bridged the two approaches by starting
from individual electron scattering to arrive at a vector trans-
port equation in the collective mltiple-scattering scheme. The
two polarizations of each wave were represented by a Stokes column
vector.8 When the transport equation is solved, the scattering
power of the parallel polarization, and that of the cross
polarization were found automatically.

In this work we will state Watson's aporoach and the
important assumption in the model very briefly in the first
chapter. The correlation function, which is the relevant part
in the transport equation, will be encountered in Chapter 2. The
next chapter explains the method which we have used to solve the.
vector transport equation. Avplication of multiple scattering
to slab geometry and the problem of the ionospheric aurora are
dealt with in Chapters 5 and ¢. Finally, we will discuss the
qQuestion raised recently about the validity of Born approximations

near the critical density.
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2. TRANSPORT EQUATION9 §

In the multiple écattering regime, the electric field
at a point »%i will be the sum of the incident field plus the

field of the waves scattered from all the electrons. We can

write this fundamental relation as the following:

N 2
BO) = B ) ) e () B ), (1)
B(f)=1 J=1

where QI(G) = e(1) Eg Exp(%%in-ga) is the incident field with
polarization €(1). The unit vectors gaﬁ(l) and gaB(E)» are

defined by choosing E in the z-direction so that R

~

: oy o e XE

e
o lﬁas X Z_l
(@)
eap(l) = () X By
where
o |2y - 2o
Wl AP

The quantity EaB(a’j) represents the component, along gaﬁ(j)
of the electric field of that wave scattered from an electron at

gB to the point Faor 'If satisfies the following relation

-
. 0
(i) = 6" £, (0,80) E(8)
& &
\ ‘ 0 .
YL L G Tilompe) By o(6,5) (3)
o(#p)=1 j=1
where
0 ikinRaB
G = ith = -
op Bp o 2o - 5|
and
£5(08,80) = 24 & (1)-6,,(3) (1)
with
N e2
fo = -~
me

In the above, fij(aﬁ,ac) is the Thomson scattering amplitude

. . ~ .
of electrons scattering a wave from direction = to p__.
150 “of3

Finally,
£3;(0B,80) = 1, gaﬁ(i)-g(l)

is the scattering of the incident wave by the electron at z
If we sequentially substitute the right-hand side into the left-

hand side of Eq. (4), we obtain the series

)
Ea) = = 'Y s e O r (e
E@) = Ba)+ ) z,% ). %ap(3) g £51(08,50) B (5)
‘ B(f)=1 {9=2
é} N 2
N s o T .0
+ A eaB(J) l .S £4;(08,p9) GBUO £;4(p0,00) E (o)
j=1 o(#p)=1 i=1 ~

+ eeo

.
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The first term represents the incident wavé, the second term the
once-scattered wave, the third term the twice-scattered wave,
ete.

What we acfually want fo calculate is the average power
of the field. The average of any quantity A(1,2,--°N) of N
particles is defined by

."
J

where PN is the N-particle distribution function. Convention-

() = [a@,z,--n) B(1,2,--on) &z &0,

ally,
Pg(ng) = Pl(l) Pl(Q)[l + g(lQ)] ’ - (5)

where g(12) is the two-particle correlation function. And

‘ PB’PH’...PN all can be written in similar form. In our problem,
it is convenient to separate the averaging process accofding to
the statistical correlation bétween the eiecfrons into a coherent

part and an incoherent part. The coherent wave Ec = QQ) is

(@) = Brla) + £, Z fPl(B) GaBO E.(B) d5ZB
B , ‘

? QO Sy &n ke
+ z £, )f P (B )Py (Bp) GaBl Gﬁlﬁg EI(BQ) d zBl d ZBE +
B1P2 ‘

- me) - [ @2 00) 70,05, ) ®

where we have denoted the average electron density by

pqa) =N Pl(é), which is justified when N >> 1. °

_8- -

In order to simplify the problem, we assume (1)
]l - n] << 1, where n is the refractive index; the plasma is
underdense, (2) the size of the plasma r, 1is much greater than

the wavelength“of the incident field, i.e., k >>» 1, so that

.. T
in's
the coherent scattering of waves only occurs in the forward

direction, (3) kin >> ly £n n|, the eikonal approximation of , h

wave propagation may be used. The coherent wave then satisfies

the following equation

2 2 2 ' .
G+ Ny @) @) = 05
2, Uy 2 I’a
7Z) = 1 +—=|f 7) + 7 a 7R
n (M\) k2 0 p(M,) e (/M) | R g(/""?’ )
2 1
[ 5)-RI/R ) L£,. (K ,8)1° (0)
explng (Z) (s - k5 P)RIR ) 16y, (ks 5)) f
j=1 ’
where
2
2 by wP
nl(”%!)=l+gfop%)=l-;§-

is the first-order approximation of nggé), ﬁ is a dummy vector
A
inside the correlation cell, and nCQ%) is independent of 5.

The solution of‘the coherent wave is

I Z B
; ma ;

. b
?c(a) =~ exp ll X k, n dsJ EI(ﬁ)

L in

where ‘/; .means the integral along the path parallel to the
k. o
in

N
incident direction kin'
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After we have the coherent part solved, let ﬁs éo back

" to Eq. (1). The total field can now be written as the following

N2
E(Ot) = ﬁc((X)'+ Z A

e () E.(G) .
fe B B°
B(fx)=1 j=1 . ;

The average powef of the field is

P@,0) = g (|e5@)]")

or

2
P,8) = P+ Yy é'gaal(i) & ep,(9)
51;52 i;j=l

Eo‘ﬁl(i) Eéag(j) >

X o (8)

where

@1° .

A C i~
Pc(oc,e) = Tﬂ'e./}%c

In other words,

% \
Pc(a,g) = g;,Eolg expl - X 2(Im n) k, ds| (?.g(li)g

in
Z
pz10]

- Flx¥ xp< x —\; G2y
£ .

where

. [3]
-10-
i ' 2 {’ i 4 3
@ C 2k, Im(n) = p"(2) J ass ,j a°R (2,R)
iny (2) (k;, Pk )R ié" A AN
xoe , a’;(f;jlckin‘P)) . (9)
j=1

We usually call £ +the scattering mean free path. The second
term in Eq. (8) corresponds to the incoherent part. It was
manipulated under the assumption of Rc << [, where Rc is the

correlation length between the electrons, giving us the following

approximation
%@’ ;%1
n(x) ds  ~~ [ n(x) ds + n(z,) ﬁa;’%'(,%oc' - %)
';%B /gB (lO)
when l_‘_;.a, ',%al ~0 (R,) and _Lz:a - z@' = Raﬁ =0 () .

Equation (lO) means we may consider that the electriq field of

a wave remains the same within each group of electrons of size

Rc. And the successive scattering occurs at the wave zone of each
of these groups. A more explicit expression for Rc << & may be

obtained from Eq. (9):

L —\2\ 7
R, % (e -2) )i
T = 0] T ——————;2 S << 1. (ll)

2
i V— EATIVLN A~
Pincon = /. c15zES e-eye(3) 88,0 (3) Byjlar)  (22)
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with
(B2 25 & \
P, .(a,p) = d (= - N¢:
13@p) = %, %, s\gggﬁl +;562) Fe) o) o(8:)
E'* (- b 3
apy 1) quze(J) » :
X &(B8s) , (13)
8 OLBl£32

where (..
>a8169

a, Bl’ and BQ.

is the average over all the particles except

We introduce the Stokes parameters for a wave I
propagated in direction p (we change «pf etec. to P, P):
. * -
E (1 1 o
,/ P( ) EP( ) \\\ / Pll\\ .,/'f Ill \
/ S e ) | \
H 2) R 2 3 : -P. ! iy
- | L e ;T2
P = = =i = H
E (1) E_(2) e | /
o o2 / RS TR \ Tio /j'
E_(2) E_ (1) / : \
 p( ) p( ) f/. , L\Pgl/ \\Igg/’
we obtain from Egs. (8), (12), and (13)
]z ' ds ’
kin £ [ % st
1&p) = Iye 6. A+ ¢ ds(z) exp| - Jf’” T
in’? }_g 6 5
v.f. ~ ~
X fan.  M(p,p,2) 1(2,0") . . (1b)
i ’
N ®eon o) )
where Io = (iIO)ij/ = (?0(1) EO(JX), and M is a L XU

matrix defined by

L3 .
.
~10-
~ o~ .. ~ A, ~ ~ . i A
(stlu(3,5" ) 113) = o (8-8,0)(E () e (AN (t)oe, (3)
R o p° D o’
with
in. (Z)k(p-p' )R
~oA~ _ 2 2 5 1 " A
og(P Plﬁ) = fO o {ﬁ) j’d % gg(%,B) e

The equivalent differential form of Eq. (1i4) is

A(p,X)  I(,X) A ; o
n ~ = M(p+p',X) I(F ,X) dn . (1)
. ~ MR red, o
ds LQ&) ' ' »

This is the familiar transport equation.

We want to point out here that Watson's derivation of
the transport equation (stated above) gives us definite informa—
tion about the dependence of the scattering mean free path ¢
on the properties of the scattering medium through Gg’ in
contrast to the "guessing” required in.the ordinary phenomenolog-

ical derivatiomn.
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3. CORRELATION FUNCTION FOR TURBULENT MEDIUM
The two-particle correlation, which is the most relevant

part in the transport equation, depends totally on the charac-

‘ﬁeristics of the medium. It thus serves two purposes. One is to
predict the power or polarization of the scattered wave for a
medium whose properties are known. The other one is to find out
the characteristic properties of a medium by looking at the
experimental data of the waves scattered from this medium.

An underdense turbulent plasma is one for which the plasma
frequency of the medium is much smaller than the incident wave

frequency. If the collisional‘frequencies Vin

10

and the neutrals are high enough so that |(dvn)/(dt)l < vy Vo

where Va is the medium velocity of the neutrals, the ions will
follow the neutrals. But electrons are usually following the
ions; so the correlation between the electrons in the medium is
just the same as that of the neutrals, which should obey the
ordinary turbulent fluid theory. Let us start from the diffusion

equation in fluid dynamics

Ligw- HW) =0, (16)

]

o is the number density of particles, }k is the velocity of the
medium, and !? is the ambipolar diffusion coefficient for
electrons and ions that are moving together in the medium. The
third term (49,§b) in Eq. (16) represents the flow of the
electrons caused by diffusion through the neutrals, while the
second term (ﬁp) is the flow caused by medium motion. If we

[

set p = p(x), o =(x"), then from Eq. (15) we may obtain
i i

between the ions

=1k -

o ., - . s C oy L
3t Sen”) "Q.‘{R'<.‘&‘“f" ) ',;gR'(}fm p) = &

EoN

i

We have simplified the problem by assuming a homogeneous medium
such that {pp') and {%pp‘) are functions of R = (ﬁ - ﬁ')
only, and {9 is a constant. Then the Kolmogoroff'sll
dimensional analysis argument'can be followed exactly, except
that the velocity variable is replaced by a conservative,
passive, additive quantity--density.12 In the following, we

% -
will derive the results claimed by Tatarskil/ in 197.1. ,

If we Fourier transform Eq. (17) into k-space, letting

i

1 [-< N 15;54 z
S(?&__) = W [ fee (R) e a’r

~

-

{-l “ i%;&

1 : L '». Y 3
I‘(lg,) = W | \ .?{R.[(ﬁl’l.‘pp ) - (\3 o p)](%)‘,z e d’R ,

o

[ o

we get

)

= ) .
5 s(gﬁ) + r(k) 25k s(_;ﬁ;?) . (18)

It is easily proved that f r(is) B = 0.2 mhat is to say,
P&E)-—the coupling between [ and p--transfers the (o' 7-stuff
between different k-spaces, but the total {pp’ )-stuff is
conserved. So there is a region in k-space, when ko < k K kd’
where SQ%) should be isotropic and depends only on two

parameters. One is X = «& ??(pp'), which corresponds to the

dissipation of {pp')-stuff by diffusion. The other one is the

rate of dissipation of the turbulent energy €, which 1is

directly related to the velocity of the turbulent medium My
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which in turn affects the transfer of the (pg')-stuff. The

upper and lower limits for the isotropic region are usually

defined by
1
ko >
-
A
1
L B

Qa
where ro is the size of the largest eddy in the medium,

generally the same order of magnitude as the size of the plasma,

and
1
SRDN ,
r [
d \ < °
Dimension-wise, letting .I. be length and t be time,
we have
ftz ' {tel
s = |- P) = 150,
L ] °‘L i
X1 = (BT (o)) = fiz
Ty . L’
Thus,
[s(x)) = [ulits) £(en) = [x](p’t]0e
. oy
3 I -
='ms9—} wa e,
: € '

Since S(k) only depends on X and €, there should be no

explicit dependence on é};-we obtain

-16-
11
a4 = == .,
5
Thus
gt
S(k) x k 5 when 'ko << k << kd . (19)

Looking at the last term of Eq. (18), we recall that the dissipa-
tion effects due to diffusion heavily dominate in the large-k

o) ' )

region because of the k“ dependence. Batchelorl” found that
. , )

S(k) ® exp(-k"/constant) when k >> k.. {20)

i.e., the eddies at large k diminish very fast.

M 4
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L. SOLUTION OF VECTOR TRANSPORT EQUATION
4.1, .Discfete Coordinate Method

The general way to solve the scalai t;ansporf equation is
either By spherical harmonic expansion or by the Gaussian

discrete-coordinate method. It was provedl) that the two methods

are equivalent for plane geometry. In other geometries, such

as cylindrical or spherical geometry, there will be a differential

term g% present in the transport equation, where 1 1is the
angle variable cos 6. Since numerical differentiation is rather
inaccurate generally, the discrete coordinate method is unlikely
to be superior to the spherical~harmonic method.

For the vectér transport equation, the case of constant
scattering function has been tried.l6 Our problem involves not
only a matrix concerning the polarization effect, but also a
scattering function Gg' Both of them depend on the direction
angles of the incoming direction ﬁ and the scattering direction
ﬁ'. It is too cumbersome to write every matrix element multi-
plied by Ug into an expansion of spherical harmonics. Not only
so, the multiplication of the matrix by the Stokes column vecpor
will complicate the calculatiog even more. It seemed to be
reasonable to go to the much simpler discrete-coordinates method,
vhich would give the same accuracy in the nth-order approxima-
tion as would the nth-order spherical-harmonic expansionli for
plane geometry.

The scattering matrix M' in the transport equation

d L.yn I~ N R S
g— I'(p) +5 I (p) = [ M (e, )I'(p') an_
S Z ~ A D .

is defined by

I

(st|u (p,5°)113) = o (B,5')[6. (s)e_ (1)Ie ()2, (3)]
g ' P D'

p D

In our problem, for the sake of convenience, we changed the basis

% h 2
E, By IlEl!
I
: 2
* ;
Ey Ep -z,
M * . - é i 5
R i
e .l L i
to
- o ]
; lEll g
, i
H 2 :
5 o (21)
' lQElE2 cos 5 é
L2E1E2 sin 6}
where & 1s the phase difference between El and E.»
. /.z:‘ """_,'-—
I = A-T'
iYY} ~
where
1 0 0 o]
|
0 1 0 0 }
A = 1 i
> °© ° 5 3|
1 H
0 0 5 -5 |
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The corresponding change in the matrix M is

o= AT

the elements in - M are listed in Table I. The angles (9_,¢)l,
(¢',8") are the direction angles for D gnd.Aﬁ’, respectively.
For a plé;; homogéneous plasma, we ﬁavé og(ﬁ-ﬁ')
depending only on (P - p'). We fransformed‘it into a Fourier
series |
0B -5) = Y o cos(ue"
N

-

We also separated the matrix elements in M into five by bk

submatrices according to the sine and cosine function of angle

(@' - 9); thus -

¥ - S— N cos(k(¢' - ¢)) + Os)\ sin(z\(gy

LR

N

R Rov— |

X [Mo(e:87) + 1 (8,07) cos(f' - ¢) + M 1(8,0") sin(g’ - 9)

- (6,07 cos(e(¢ - ¢) * qu(e o) sm@(¢ - 9)
(22)

where MO is that part of the matrix that has no debendence on
(¢ - ¢). Let the wave vector 'Egﬁ) be written as a summation

of the coherent wave and an incoherent wave

~ A ds\ R .
/}1‘(?) = %c +/$\‘(p) = NI"KO em(/},;. 7 , 8}2 ~ +ﬁ\;‘(p) o (55)
in - 3

in’

<)+ oy, s QU - 9.
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Substituting into the transport equation, we get

& up) 1 ud) - M(p,ﬁ I exp/[ ds\

Js ¥

e

S in

v

R D R A
) as,

We expand the column vector g(ﬁ) into a Fourier series
23) = } o (©) cos(m¢) * $on(0) sin(ng) . (2)

Replace every term in Eq. (24) by its Fourier series and integrate
over ¢'. We obtain for each integer m  the foilowing'equation

;d) (e)—g -[A %_s

§IO sin(m¢£5§

i
- ~ : Miem i k
, O A £ in
Q:B;Jrl/)§ [ =g rj(e,o)z o ]
& | : i ::
L_Msm(g)J v _ . Q%O cos(m¢k{
r iremw')%
' .
+ ££ [7%‘9,9' S | ‘d(cos 8') , (27
ZI i
P b i
bﬁsm(e ){
wherewr(Qk,¢k) _are the direction angles of the incident direction
k, and
in
.Mccm(g’@ ) Mcsm(g,gv)!
/}7‘?(9;9') = 1
~ ' 1
L}scm(g ,0') h«qssm(g’Q )s

is a 8 X 8 matrix with

=
-®

Ve
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M, (6,0') = M (8,07)
_' — = 2 Osm MO(Q’Q’)
2 ¢
< 1 ’
. + ) 'L(s(m J) " s<m+J)> Ho5(0.87)
J=1
. ’a
+ Co(ua) otaesP) %sa®®)
and
. %
M Sm(g,g') = M cm(g’g')
. %m MO(Q,Q')
. > .
NV
2 ey o)) Les(®:®")
J:
' _ [a] * .
+ @S(m-h]') cs(m-J))M'SJ( )e )—
* Denoting
< K
Hem(®)!
—— . !I by ,Sm(g)’
. 5‘Sm(9)§
and

» r£0 sin m¢£] ‘
46,8, o 5,00,

,%O cos m¢k‘

we obtain from Eq. (20) the modified transport equation

- TRORSRONSE LY f ?)H ©
; k

-
+ 8 e,0') £ (6) acos o) (@)
J
So far, we have separated the equation from the dependénce on ¢
and are left with © only. Now we are in the position to apply

the discrete-coordinates method in vhich the integral may be

changed to a summation

71(0,8')18,(0") dlcos &)~ J A TN (nyiy)+F ()
3=1
where i = cos 0, and uj's and Aj's are the divisions and
we}ghts of the quadrature summation formula.lT Among the various
methods, the values of the Gaussian formula are given in Table II.
Equation (27) is transformed into a system of linear differential

equations

, 2 £ (//’ ds
a0 - ton" [ D
~ kin
N
A L
i ® 1. )
+ 5 h“Aj V(g ,HJ) mm<”3) , f=le+oN . (28)
J=1 N

To solve the equations, let the inhomogeneous solution be

- ds
Bl em] \

and the homogeneous solution be gm(ui) ekr, where



" Z

r - Hd":? ' (29)

-0

under the assumption that the particle density depends only on
the z coordinate and that + = ¢(z).: The z-axis is taken to

be perpendicular to the slab. We then obtain

: -r/u . . kr .
5 - . kX7 . A
,ﬁm(“i) = hg) e f.Z_, Cxlﬁmx(“i) € ’

where kk's are the eigenvalues of the matrix

d

™~

I\)|:\a
4 -

~

=1

Ay 1
Aj ]’\)j’,(“iﬂlj) - (k + Z) 513 1 = 0. (KO)

[N
il

The 1 1is the identity matrix; the Ch's are constants which
need to be determined by boundary conditions.

*+ After we have solved the differential equations for each
integer m, the total intensity of the wave scattered in

direction (ui,¢i) is then

Lso8) = ) [8n(ey) cos(afy) + 5 (1)) sin(ng;)] :
m

a
foWirty Yisfx

/

'
.20 expk'jA
k.
in

We may substitute the intensity I calculated above from the

differential transport Eq. (15) back into the integral transport

=Dl -

Eq. {(1h). 1If ,&1 is theexact solution of (1'.), the two results
should be identical. This is one way to check the accuracy,of
our approximation. ‘
.2, Boundary Conditions

In the above calculation, we have separated the wave
into a coherent and an incoherent part {see Eq. (23)]. At the
surface exposed to the incident wavé, it is équivalent £o‘
separate the wave into a part‘%hat comes from outside directly
and a part which has undergone at least one scattering in the
medium. As far as the scattering wave is concerned, we may
consider this surface, as well.as any other surfaces bounding
the plasma, as a free surface. So both Mark"s18 and Marshak's
boundary conditions can be applied. .

For a free surface at x = O such that the medium

occupies the space x < 0, the boundary conditions are
@(0,n) = O for p > 0.

This constitutes an infinite number of conditions, which cannot
all be exactly satisfied in an approximation of finite order. 1in
the Nth-order approximation, if we take N odd, we can only
satisfy %—(N .+ 1) conditions. (The rest have to go with the
angles that ¢ < 0.) Mark's boundary conditions specify choésing

a set of definite uj's such that

3 . 1
‘p(O,uj) = 0 [j = 1,2,..o§(N + 1)1,

-~

One of his choices is to take uj's from the roots of the

Legendre polynomials PN+l such that

‘e

r



PN+l(uj) =. O

Marshak's boundary cdﬁditions‘specify choosing the set of
orthogonal Legendre polynomials PQJ_i(u) "so that we have
1 .
[ . 1
[o#(00) Pogy (1) = 0 {3 = 1,2, 5N+ 1)
+0
This includes the condition of conservation of the numbers of

photons

*(0,u) pdp = O

the total flux of photons entering the system is zero.

Although Marshak's boundary conditions are better in the
lower-order approximation, in the discrete-ccordinate method the
integral involves in his condition has to be replaced by a
summation. And the confusion in making the %(N + 1) choices of
angles “j in Mark's condition no longer exists in the discrete-

coordinate approximation. Thus we set the boundary conditions

— for plane geometry.by following Mark's rules. That is, at the

incident surface r =0

2 () = O, 0<u

i =15
at the other boundary surface of the slab r =D

) = O and O > Hy > -1,

This will give us 8N boundary conditions which will determine

the 8N ‘constants, e, 's.
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;. BACKSCATTERING FROM SLAB GEOMETRY

5.1, Modification of Transport Equation

When the transport equation

a ~ 1 ~ s ~ A' . -
5 L) +7 1) -+ Mlp,p')Ilp’) &
: . _, | 5

is solved, we in principle should get the intensity in all
directions ﬁ. But for backscattering there are some difficul-

ties. From the definitions in Egs. (2) and (%), we have
~ A ~ N . . ~A A i+j .
flJ(_pJ-Q) = fo € A(l)'e ,\(J) = f-l(q°p)(—l) . (jl)
5 -4 J

That is to say, for a given path in multiple scattering, if we
reverse the direction along the path, the scattering amplitude
of each scattering will have the interesting change given by
Eq. (31). The total interference effect of the two directions
along this path was shown in Ref. . If the wave solution from

the transport equation ,%l(—kin) is

and we let the true backscattered power ;(-ﬁin) be

(kin

)

Ef-kin) = éZ'%O

and define a matrix B as

. L _ D . o ;, ds
32( kin) = * /r m( kin’ﬁin).-,I.a.o(kin)exp (ra _}; ELT\ ds
Ji . Tk,

- ~

in in



then for

T =B+4T
we have
(1.1ri~7|st) = _(1j|T|s§) +% (-1)i+s (s3lar|it)

<« + (-1)9 (it|'AT|'sJ)}-, , (2)

which after being transformed into oui.representation [Eq. (21)]

are listed in Table IIT.

The medium we are considering is an underdense turbulent

plasma. Because collision frequencies between electrons and
neutrals are usuélly much higher than those between electrons
and ions, we may neglect the effect of ion;electron colligion,
and-conside;'only the absorption due to electron-neutral
collision;, plus the scattering loss. When the average collision

frequency Ve is small compared with the frequency' w ‘of the:
incident wave, we may approximate w by w + ivc in our
scattéring theory. As a result, there are a few changes in the

expressions of our defined parameters, the most obvious ones

being the Thomson scattering amplitude

-e2
fo 2 — oz
mc2 1l + ;%—:>
A}

and the .real part of the .square of the refractive index.
2
w N

n - 1 -
1 (me + ch)

=28~
The imaginary part of the refractive index, which in turn

defines the scattering mean free path £, now has an extra term

added to the original one related to the spectral function

[see Eq. (9)]. Let us denote the scattering part from now.on by
2t; the total scattering mean free path £ then satisfies the

following relation

5.2. Representation of Correlation Function
In order to make a reasonable choice of the correlation

function . g(R), we realize that it has to satisfy a few
19

requirements: I

(x) gR) - O as R - o,
g(r) . - :
(2) g2 preferably negative and finite to give a decreas-
P .
ing function.
In addition, from Chapter 3 we know that the Fourier transformed

finction- Ug(k) also has to satisfy the following conditions:

1 1. .1
= = 2(I_n) k = ==+ =,
g m in zt zc
where
1 2 3 in;k,, (B-D')§ c P
=0 ag, -| @R g(R) e - Z fj-i(pm')
t D' . j=1
2 2 A'Ay _]: A.A'
= o 1, dQﬁ' 0 (P;P )[2 1+ (p-p )2)]
~and
w2
L __p%
e (w2 + vcz)c

1
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= ‘ (1) Jg(k) (o o] k 2 ’ kO << k (\ kd;
kl

(2) Og(k) @ € . k > kd ;
€ (3) o,(k) finite as k -0,

!
LANE
1 ",t::‘)

—-. where k C k., ~ K - , and k1

(¢} d
s

common choice of correlation functions is the exponential

r
“a ~(x%/%)
function e and the Gaussian function e . The Fourier
jp.2 2.2 -a2k2
transformed functions are 1/{(a” + k~)" and e , respec-

tively. Neither of them satisfy the k_ll/3 law. Tatarskigo
suggested a model for the correlation function in terms of the
Hankel function '}5' of imaginary arguments that would satisfy
the requirements of g(R); but unfortunately theAFourier trans-

formed spectral function does not have an exponential range for

large k. Later Shkarofsky19 proposed an improved correlation
function .
, i1 ,
o 2 2y57 2 A 2 2\5
T [k (R™ + r 7)?] SR UG L
2
g(R) = T - (33)

(k7o) T’({}ﬂ[koro

EEY

ja— o<

The corresponding ﬁg(k) is

is constant. The most
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e :
p=lo 2 2% 72 g 22 3., 13/
(tegro ) g (624, )7] @[ro(k ) Irg ()
5 ‘
_ag(k) - res

2

<~ - ""
(kyro) A ﬁ;)i[koro]

Both of them satisfy all the requirements listed above. The

general feature of cg(k) is to be peaked at k = k.. When

0
- >l .
%—(:kd) >k > Ky, it goes like k (“+“); so by taking ¢ = <,
0 2 -
__k
k —ak_ll/B, when k > kd’ it decreases as e const.

In our work we adopted Shkarofsky's expfession and

3 . -2
&) = RS - 2. e °
chose in 8.73-10" rad/sec and kin 2.911 ¥ 10 "~ cm

The parameter r, was taken as 10 cm, which gave kd N lO-l =~k
(in scattering k will range from O to 2 kin)' The other
parameter ko should be wrs-l. But in general the size of the

plasﬁa is much greater than the wavelength k-l, so usually

k >> k,. This will cause Gg(k) to have a sharp peak at k

0
In our problem we need to Fourier analyze Og(k); the sharp peak
thus induces the convergence problem. To solve the difficulty,

we recall that in the transport eguation the scattering matrix

M may be divided into g = EE + gc according to the k-space,
which is either small or comparable to the incident wave_ vector
kinf The smalier k-space part corresponds to forward scattering.
The larger k-space, which is comparable to kin’ corresponds to

2
large angle and backscattering. It was pointed out by Watson"l

that if we define
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— = | M (0',0)-1(B) da,.
s ,/ p!

then

~

9 3 1 1 3 N iyl o
F ORI CEEPHOME j/ 16,556 @

We may say that the small k-space contributes nothing to the

1

transport phenomena. Thus we can approximately set ko ~ 5 kin

!
in our og(k) function. In this approximation, the k-vector,

which lies between ko =

nf =

1 .
kin and kd = ;5, still obeys the

-11 . 1 .
k /3 law, Jjust as ko =37 except that there is a constant
s
factor of difference. Since the strength of the turbulence is a

parameter that we have to set in front of og(k), we can easily

adopt the ko = % k approximation by multiplying the function by

a constant correction factor. The solution A& was checked, and

k. approximation was accurate to

it turned out that the k. = in

0=

| =

a few percent.
5.%. General Feature of the Scattered Signal
Now let us come to the general feature of the back-
scattering wave in slab geometry. In a homogeneous medium, the
scattering mean free path is constant. The essential parameters
that will change the characteristics of the scattered signal ére

5

LS and &, which are defined as follows:

vre
1]

N!l—'!ﬁ&l}—' e )

¢
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Where D 1is the slab thickness. We can recognize the signifi-
cance of the two parameters through the integral representation

of the transport equation

_fd_s | |
ks ! /// ’§>d5 é \\

~ in {
= I o) + ds(Z)expi - -—
/;’-(/?n(’\’p) 0 € ﬁ i)\ . (w) Xp 7 | /J -
in’ -p 'z |
AY
); ae_ M(p,0',%) L(X,p") - (1u)
pd N . A .

If we iterate the equation once, it becomes

f

] ds
’ —J[ T 7 - N
~ Kin o} 7 % as DN
»%DWBA(p) = 120 e 5, t+ ds(Z)exp| r‘ =
in -p PP e C
/l
//'l
X M(p,k. ).1. exp [ / ds (37)
in’/ w0 \\JA £ 57 '
. kin e

which is called the Distorted Wave Born Approximation (DWBA).
Noitce that only the coherent wave has been considered. Moreover,
when £ - », there is effectively no loss in the incident beam;
the Born Approximation (BA) then is valid. We will have for

a slab of thickness D

%BA(p) = Ipd. . *3
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The factor &— in the above equation takes care of the oblique
propagation o? the wave in the slab, in which case the pathway
in the p direction is 2- .

The general feature of the cross section of the parallel
polarization 0“ for multiple scattering (MS), DWBA, and BA
are plotted in Figs. 1 and 2 as a function of Ls‘ Figure 1 is

for backscattering, i.e., @ =nx - 6_-and @ = (set

k.
in

@, =0). Figure 2 is for bistatic scattering, © = x - 6,
k .

in kin
and ¢ = 0. In the region of Ls << 1 (equivalent to the case
of £ —>w for D f;nite), the three curves coincide. But in
the region of LS é 1, both DWBA and MS level off while BA goes
up as a straight line. The upper limit of LS for which BA
is valid may be obtained by the following argument.

A necessary condition for\BA to be valid is that the
angular deviation of the beam across the whole slab be much
smaller than the angle difference « between the incident beam

and the surface of the slab.22 The deviation of angle per unit

length can be defined as

6 ~ f@z cg(e)(l + cos® 9) dag -
Recalling that

1 2
7 - fdg(e)(l + cos” @) dag

and because in our problem cg(O) is a smooth function of ©,

we may say that the angular deviation is one radian when the

..51;- *

beam goes through the distance £. The condition a2 >> 92 is

equivalent to

2 R D s .
a > 7 = (sina)¢ = sina’ (29)

so in order to have BA valid,
2 .
LS < o sina .

In our calculation we have o ~ 20°; thus LS < b X 10-2, which.
is verified and can be seen in Figs. 3 and L.

Neglect of the scattering of the incoherenf wave in both
BA and DWBA causes changes in 0“ és well as in the cross
section of cross-polarization fl_ in MS. It is quite obvious
that the magnitude of the changes will depend on the parameter
¢ Dbecause £ 1is the ratio of the loss due to scattering to
that due to collision. When ¢ << 1, the collisioﬁ loss is
domin%gt and the contribution from the scattering of incoherent
wave is relatively small; thus the difference between MS and
DWBA will not be significant. But as £ increases, the differ-
ence will increase also. This particular phenomena can be seen
even more clearly.with ql: For backscattering, both BA and
DWBA have ql_= O for all & and all Ls' But in MS, 7L
depends strongly on &, as we see by comparing Figs. 3 and kL.
Notice that we have also plotted the curve for $ = 0. It is
interesting to see that ?l. in BA and DWBA are also zero in
this case. And the slope of ?lf¢ =0) on L, is different

from that of .Gl'(¢ = 0).
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The absolute variation of oli and ?l_ with £ are
plotted in Fig. . They are drawn according to four different

slab thicknesses D. The £ was varied by changing the collision
frequency Ve but keeping the strength of the turbulence

S%Zl constant. Thus when £ varies, the scattering mean free
path ¢ also varies. In the lowest curve, where LS <1l for
all ¢, Gl! remaing the same for all £, which is expected
because BA is valid here. Soreven though £ changes, it does
not affect the results at all. However, 0, varies a great deal
as & dincreases. This is because the cross polarization comes
from the scattering of incoherent waves; so it increases very
fast when the scaftering effect becomes significant compared
with the ¢ollision loss. When D increases upward, it graduwally
passes the region where BA is valid; we can see the variation of
both U|| and il when £ varies. .When we read thevtop two
sets of curves, -for the case of £ ~ lOfB, LS _is already 215
so both’ ?i_ andv.oi;~ keep the. same magnitude, .as we have
pointed out before.

We also varied the incident angle & of the beam with

respect to the surface of the slab (o = % - ©).. The relative
variation for o,, . and. ?l_ at both, § = O and @ = 5. are

H

plotted in Fig. * as & function of 4 =.sin Q. The next three., .

figures are drawn .for. different values of LS-T Whgn Lsﬂwllo-v,
MS and BA-coincides for parallel polarization crossvseqtion._cl!,
The variation of c"(¢ = ) should be as @ og(Ekin) g., whicﬁ
is a hyperbolic function of u. But for cH(;é = 0), it is a

. . 1
2_
bistatic scattering, and should vary as Og[Ekin(l - w97l

=ig
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The angle dependence of the spectral function Ug is quite
obviously shown by the curves. When Ls reaches lO_l, the
difference between MS and BA can be seen; when LS gets to -1,
the distinction between the two is rather striking.

Before we conclude this chapter, we want to emphasize
one point--that the correlation function we have used is just
one example that fits some peculiar properties of a turbulent
fluid plasma--so that we may compare our approximation with some
experiments. The general feature of the backscattering power
from the slab geometry actually is independent of whatever the
correlatipn function Ug is, because they only depend on the

) :
two parameters LS and €&, and not on Ug.
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(. APPLICATION TO IONOSPHERIC AURORA
The ionospheric polar aurora occurs at about 70° latitude
at a height around 110 km north hemisphere.- It has been found
that the backscattered radar signal is much enhancedfwhen the

3

aurora occurs. Farley2 in 1903 claimed that the aurora was
caused by ion-acoustic instability. Later, the experiments2h
showed that during the aurora, the disturbance seemed to transfer
from one k-vector to other k-vectors. There is possibly turbu-
lence in the medium.

When we look into possible causes of the turbulence, we
must remember thét there are particles precipitating from outer
space into the ionosphere, that there are winds blowing the medium
around, and that there also are electric and magnetic fields
present. We also remember that in the E-region the density25

of neutrals is lOll to lO15 per cmB, while the density of

the electrons and ions is th .to lO5 per cmB. The collisional
frequency between electrons and neutrals is lOLL to los/sec,
while that between electrons and ions is lO2 to 103/sec, The
collisions between the electrons and neutrals are apparently
very important. On the other ﬁand, the surrounding magnetic and
electric fields cannot be neglected either. Our tranéport
equation now serves the purpose of finding out by which mechanism
the radar signal is scattered, by comparing the experimental
results with the theoretical calculation of some particular
models we assumed. »

In order to find out whether the electrons will follow

the neutrals or not, we consider that the electrons usually

follow the ions, while the equatioh of motion for the ions in

_58_

quasi-equilibrium is

7 V.,
il .
9 @“ t)B s v (y m g (40)

where E and % are the external electric and magnetic fields;
el Ve A .

q., V.

m, are the charge, mean velocity, and mass of the
i i 2 bl b h

ions; v is the mean velocity of the neutrals; and Vin is

the collision frequency between ions and neutrals,

v~ 2.5 X 1077 v,

in oo (1)

1 "n

with p, as the density of the neutrals. If the ions will

follow the neutrals, we should have

,

A
ir ot <« 1
van
or

q. v, ‘

1 w1l
— Jud << j 5
mi (A]?\ * c }'m‘g\D ! Ivin ,Xn' * (L_)

=L A
During the aurora, E ~ 10 volt/cm;g” and assuming
vy, o~ vn << ¢, we may neglect the contribution from the B field
on the left-hand side of (42). Substituting Eq. (41) into {(42),

taking Py ™ 1015, we obtain
9 + 14
vn“ > b lolo(cm-sec)2 . (43)

So if the velocity of the neutrals is high enough that condition
(43) can be satisfied, the electrons will follow the neutrals.
It was claimedg‘ recently that it might be possibleé to

have turbulent fluid motion for the neutrals in the E-region.



-39- ~40-

In that case, some of our calculations done in the previous In order to find out whether the Born approximation is
chapters for the turbulent plasma are applicable, except that valid or not, we need to know the scattering mean free path £,
in the presence of ﬁagnetic field the scattering matrix for a so that we may make comparisons with the slab thickness of the
single electron becomes _ E-region. In the calculation of £, we derived the value for the

28
strength of turbulence from the measurments by Chesnut et al. ¢

N N
——£——g i ——A;—E 0 | at Homer, Alaska, in 1967. They used a 20-m parabolic antenna
1 - 1 -
to detect the backscattered power of the radio signal that was
bl . .
f = -eg -i ——A;—g -—;Lfs 0 s sent up to the E-region during the aurora. 8ix frequencies
me” 1 -2 - 1-"
; ranging from 50 MHz to 3000 MHz could be operated at the same
0 0. 1 time in the Homer radar. Three sets of data taken for four
Qg ~ frequencies 139 MHz, 398 MHz, 850 MHz, and 1210 MHz during
. A
where )\ = T . ne is the cyclotron frequency for the electron, ' ‘

different auroras are drawn in Fig. 10. For each aurora, we fix

and « 1is the incident wave frequency. In the backscattered .
the strength of turbulence by fitting the data of one particular

radar experiments, the radio frequencies are~higher than 108 Hz,
G . frequency. It was found that the collisional loss is the‘main
and 8y ~ 107-10' Hz. So A <<l and f ~ £, 1, just as we had

0 absorption. When we took £ ~ ZC, it turned out that among the

before. Thus we may use the transport equation derived earlier : :
four frequencies, only the larger two are in the region where BA

practically without any change. However, we have to notice - i
is valid. We took the slab thickness to be 40 Km and

that the isotropic correlation function used previously is not

r = 10 cm.29 The comparison between the experimental cross

. 0
applicable anymore because the magnetic field will bind the

section and the theoretical calculation in BA is shown.in
electrons around it by cyclotron resonance so that the diffusion
Fig. 10. .

coefficient of electrons perpendicular to the field will be much . '
The fitting for the larger two frequencies looks pretty

smaller than that parallel to the field. Before we solve the
: . good. But for the smaller two, there is quite a discrepancy.

transport equation, let us check if the Born approximation is
On one hand, .it is sort of expected, because multiple scattering
applicable in this problem. If it is applicable, the wave is !
: o causes levelling off of the cross section when BA is not
scattered only once. Whether the spectral function is isotropic ’
' - applicable. On the other hand, it is doubtful whether the multi-
or nonisotropic does not matter; after all, only o (2k, ) needs
€ mn ple scattering will lower the cross section to’ =~10dB from the

to be considered.

BA calculation because the Ls for the smaller two frequencies,
although it does not satisfy the L, << o sin al~b ¥ 10-2)
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)
requirement, is of the order of 10 7. From our experience in

calculation, there is some bending of MS from BA, but the dif-

ference between the two is quite smali for LS ~ 10—2. However,

W

there may be striking differences between the results of the
. isotropic spectral function and the anistotropic one, even though
the collisional loss dominates. First of all, we no longer can
employ the Fourier analysis method to separate the ¢-angle
dependence from the 6-angle dependence in our transporf equation,
Solving the whole transport equation of the anisotropic spectral
function was not easy at all. We thus will reserve our comments
on the cross section for the two smaller frequehcies until
further investigation is made.

If the turbulent fluid model is true--at least for the
frequencies 830 MHz and 1210 MHz it works fine--we need to explain
another important experimental result, which is described in the
following. 1In the experiments,28 it was found that during the
aurora the radar beam has to be almost perpendicular to the
magnetic field lines. If the beam direction is 3° to 5° away

from the perpendicular, the signal power drops down 10 to 20 dB.

This striking phenomenon is usually called the aspect sensitivity.

When we take the magnetic field into account, not only are

the diffusion cogfficients {%L and ﬁ}“ different, but also

)

the velocity components of the electrons Xl. and v.t are not

the same. It was found29 that
o=

. (Vn)_L Vg
f = e—m—————t
4 (vc2 + Qe2)2

“ *

-Loo
where (vq)” and (vnzL are the velocity components for neutral
particles. In the E-region, v, ~ 10° sec™ ana 2y 107 sec-l,
50
~ =2
vpoE (Vn)-LlO .

In the ionosphere, the neutrals are isotropic, so the magnitude
of u is always the same. But for electrons moving at angle . g

with respect to the B 1line, its magntidue will be
-

We) = ()0 vy )F

(& (sin 5)-10'%)2 + (v_ cos B)E]é
n n

i

v
I
100

in

e} : i
(sin” p + 10 cosa B)Y .

0
size of the smallest eddy beyond which Kolmogoroff's law is not

The parameter r,. in Og(k) is practically the characteristic

applicable. Let <+ be the characteristic time such that

We have found that ry ~ 10 cm29 when § = 90°; then

ro(g) - _Xiﬁl_.lo
v(90°)

when B = 85°, Ty turned out to be ~70 cm. Substituting these

values into the expression for Ug, we obtain

. -1
0g(akin)|ro=7(/cg(2kin)lro=10 ~ 107,
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thus providing one possible explanation for the aspect
sensitivity.
After going through the model of fluid turbulence, we

may very well assume that the interaction between charged
~particles and the effect of outside fields overrule the
collisional effect. If it is so, then the disturbance here is
plasma turbulence. That is to say, it is due to the nonlinear
effects between the particles and waves. We need té establish
the energy spectrum of the system first, which may give us some
information about the distribution of the electric field. Then
we could find out the correlation of particles through Maxwell's
equations. But the whole field of nonlinear effects in plasma
is still in thepioneer stage. We hopefully will solve the
problem in the near future to see if the plasma turbulence model

holds true in the aurora or not.

bk -

7. BORN APPROXIMATION CONTROVERSY NEAR CRITICAL DENSITY

Recently, several worksﬁo on backscattering from turbu-

\

lent plasma have been done. Whether or not the Born approxima-
tion is valid near the critical density becomes a point of much
interest. (Here we are talking about 2y of course; =, in

BA is not valid for any density.) From our previous analysis,

we have seen that the features of the scattered signal depend on

the two parameters Ls and £, Although our results were gained

from slab geometry, we would expect the same features in
cylindrical or rectangular geometry, which are the closest to
that used in the experiments mentioned above. Our argument is

that whether BA is valid or not does not depend on whether the

density is near the critical value or not, but depends on whether

under that circumstance the LS is larger or smaller than the
2
BA 1imit o sin ¢. We plotted in Fig. 11 a few curves at

o '
different slab thicknesses. When D ~ 107 cm, the LS for .
8 s,

L - - o
p =10 cm 5 to o =10 cm 5 are all less than o~ sin<1”

(a = 20°, & ~2 X lO8 cm-a). Thus the Born approximaticn

crit
should be valid. From our calculations, when ¢ approaches

-3
108 em ”, the curve of MS coincides with.BA. As D becomes

. fe - -2
5 X 10° cm, the L. for p = 10" em 7 to @ = 108 em

approach 1; thu; the bending_of' MS is shown quite clearly as

compared with BA. i
It is quite possible that in the measurements by

Granatstein et al.,5o in an experiment of contained flow-

) is only ~0.03%, the

. 2
discharge, even though [((50) M/ (e gyt

size of the plasma is about the same as the scattering mean free

path £ in that situation; so they found bending of 3, near
f

[



the critical density. While in the experimental measurements by
Guthart et al.Bo and Shkarofsky et al.--the former perférmed on
a potassium seeded oxyacetylene flame and the latter obtained

by a homodyne detection system--even though ¢ is approached,

crit
the relative strengths of the turbulence and the coliision
frequency in the medium have caused the size of the plasma to

be small compared with their £ so the Born approximation is

still valid.
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TABLE I. The Matric Elements of M
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cg[sin ® sin 8' + cos 6 cos €' cos(g' - 56)]2

crg[cos2 ) s_in2(¢' - $]

-Ug>cos e éin(¢'- ¢Stsin 6 sin ©'+ cos 6 cos 8' coé(¢'- #)]
cg[cos2 6! sin2(¢' - %]

cg[cosg(y!’ - 91

og[?os 8' sin[2(¢' - g)]]/?

2 o, cos 8' sin(g'- #)[sin 6 sin &'

+ cos © cos 6" cos (g' - #)]
- g, cos 6 sin [2(¢' - ¢)]
cg[éos 8 cos 6' cos(é(¢' - ¢)) + Sin‘é’sin o' cos(g' - )]

o ® @' + sin © sin ©' v
g[cos cos sin © sin cos (g #)1

My, = Mg, = My = M, = My = O.

TABLE IT. The Gaussian Divisions and Gaussian Weights.
= l : _
s By = +0.5773503 8 = &8, =. 1
=2 |J.ﬂ = 10-3599810 a,l = a._l = 0.6521’452 =~ .
=4 Myp = +0.8611363 a, = &, = 0.3478548

By = +0.2386192 a; = & = 0.4679139
_ 6 p_tz = ‘.‘:0.6612092‘- 8.2 = &_2 = 0.3607616

”¢§'=- +0.9324695 g = o5 = 0.17132h5

(n, = 0.1834346 a; = a_ = 0.3626838

=4 yp = #0.5255324 a, = aj, = 0.3137066
=8 | by = 20.7966665 a, = a = 0.2223810

ui‘h = "_'0.9602899 ah - a._h’ = 0.1012285
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FIGURE CAPTIONS
The parallel polarization cross section ‘o!!\ calculated
from the Born Approximation (BA), the Distorted Wave
Born Approximation (DWBA), and the Multiple Scattering

regime (MS) for backscattered signal at © = y - O

k.
in

and ¢ =x (¢, =0). L, is the ratio of the slab
in

thickness to the scattering mean free path.

Parallel polarization cross secfion J‘; for bistatic

scattered signal at © = 5 - 6 and ¢ = O,

k:‘Ln

Parallel polarization OH and cross polarization {L
for both backscattered signal (@ = n) and bistatic
scattered signal (¢ = 0) vs L,. We have ([, as the
scattering loss constant, ic the collisional absorption
constant, p +the electron density and {; - )/~ the
strength of the turbulence in the medium.

The ratio of the scattering loss to the collisional
absorption was set at 2.3 X lO—5 to compare the cross
sections with those shown in Fig. 3. The dotted lines
are from the Born approximation, the solid lines are
from the multiple scattering model.

Variation of the cross sections of the backscatterd
signal vs £, the ratio of the scattering loss to the
collisional absorption.

Tllustrate the dependence of the cross sections on the

incident angle o of the beam relative to the surface
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of the slab. The coordinates p is sin o, and -~
L ~ 1072,
S

‘ =

Similar to Fig. & except that Ls ~ 10 The Born
approximation fits well for all p's.

Comparing with Fig. 7, the difference between the Born
approximation and the multiple scattering starts to

show when Ls ~ lO_l.

The general feature of the curves are different from
thos shown in the previous fhree figures. For Ls ~ 1.4,
only the multiple scattering model is valid.

Comparison between the experimental measurements and

the theoretical calculations for ionospherical aurora

© at frequencies 139 MHz, 398 MHz, 850 MHz, and 1210 MHz.

To illustrate how the validity of the Born approximation

near the critical density does not depend on the

density p, but depends on LS;
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