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Abstract 

This study examined the effects of stimulus-feedback co-
occurrence on rule-based and information-integration 
category learning.  Rule-based categories are those for which 
a verbalizable rule is optimal.  Information-integration 
categories are those for which the optimal rule is non-
verbalizable.  Participants performed a rule-based or an 
information-integration task where the stimulus co-occurred 
with the feedback (Stimulus Present) or was removed prior to 
feedback presentation (Stimulus Absent). Previous research 
examining the neural substrates of rule-based and 
information-integration category learning suggests that 
stimulus-feedback co-occurrence should support rule-based 
learning, but should harm information-integration learning 
because it will increase the prevalence of rule use.  This 
prediction was confirmed in the current study.  Implications 
for theories of category learning are discussed.   

Keywords: Category learning; Feedback; Procedural 
Learning 

Introduction 
There is nearly unanimous agreement that category learning 
is mediated by multiple, distinct neural systems (e.g. Ashby, 
Alfonso-Reese, Turken, & Waldron, 1998). Even so, much 
is still unknown about the processing characteristics of each 
system. Two distinct neural systems have been the focus of 
much research and are thought to mediate different types of 
category-learning.  An explicit hypothesis-testing system is 
thought to mediate rule-based category learning, and relies 
on frontal brain regions and the head of the caudate nucleus.  
An implicit procedural-learning system is thought to 
mediate information-integration category learning, and 
relies on the body and tail of the caudate nucleus.  Rule-
based learning involves testing verbalizable rules in order 
find the rule that optimally separates stimuli into the 
categories.  Information-integration learning involves 
associating regions of perceptual space with actions that 
lead to reward (e.g. Maddox, Ing, & Bohil, 2004; Ashby, 
Ell, & Waldron,, 2003; Spiering and Ashby, 2008) The 
hypothesis testing system uses executive resources to 
construct and test verbalizable rules, whereas the procedural 
system uses dopamine-mediated reward learning to 
associate regions of the stimulus space with a response.   

Figure 1 shows stimuli from rule-based and information-
integration category structures.  The stimuli are sine-wave 
gratings (Gabor patches) that vary in their spatial frequency 
and spatial orientation.  Figure 1a shows a rule-based 
category structure.    Here the optimal rule is to classify 
stimuli with relatively low spatial frequency into one 
category and stimuli with relatively high spatial frequency 
into the other category.  In contrast, there is no verbalizable 
rule that can be employed to optimally distinguish the 
categories in the information-integration structure shown in 
Figure 1b.  Here the optimal rule may be verbalized as: ‘if 
the spatial orientation is greater than the spatial frequency, 
classify the stimuli into one category, but if the spatial 
orientation is less than the spatial frequency, classify the 
stimuli into the other category.’  However, this type of rule 
is difficult or impossible to implement to solve the task 
because the relative magnitude of each spatial dimension 
cannot be easily compared.  
 

b. a. 

 

 
 
 
Figure 1: (a) Plot of stimuli from the rule-based category 

structure. (b) Plot of stimuli from the information-
integration category structure. 

 
Previous research suggests that the hypothesis testing 

system relies on executive attention and is not vulnerable to 
manipulations of feedback delay (e.g. Zeithamova & 
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Maddox, 2006; Maddox Ashby, & Bohil, 2003 Maddox & 
Ing, 2005).  In contrast, the procedural system does not 
require executive attention, but requires a short feedback 
delay to optimize learning.     

The COmpetition between Verbal and Implicit Systems 
(COVIS, Ashby et al., 1998) model proposes that the 
hypothesis-testing system (i.e. verbal) competes with the 
procedural (i.e. implicit) system to determine which of these 
two systems governs responding on a given trial. Although 
both systems are thought to be active on each trial, there is 
an initial bias toward the hypothesis testing system.  Control 
is gradually passed to the procedural system if the responses 
it generates become more accurate.  If the hypothesis testing 
system is highly accurate then it may take longer for control 
to be passed to the procedural system.  One possibility 
(suggested in COVIS) is that the hypothesis-testing system 
acts as a type of gating mechanism for the procedural 
system.  When the hypothesis-testing system is performing 
well, it governs responding.  When the hypothesis-testing is 
performing poorly, control is passed to the procedural 
system.   

A general hypothesis that follows from COVIS is that 
conditions that enhance the hypothesis-testing system also 
harm the procedural system.  Maddox and colleagues 
recently showed that feedback properties that led to more 
accurate rule-based classification led to less accurate 
information-integration classification (Maddox, Love, 
Glass, & Filoteo, 2008).  They proposed that full feedback, 
as opposed to partial feedback, would lead to better 
performance on rule-based tasks, but worse performance on 
information integration tasks.  Participants performed either 
a rule-based or an information-integration task with either 
full or partial feedback.  In this experiment the stimuli were 
from one of four categories.  In the full feedback condition 
participants were told whether they were correct, and also 
what category the stimulus belonged to.  In the partial 
feedback condition participants were told whether they were 
correct, but were not told which category the stimulus 
belonged to.  They found that more information given 
during feedback led to better performance on rule-based 
tasks, but worse performance on information-integration 
tasks. 

Another factor that could increase the reliance on the 
hypothesis-testing system is stimulus-feedback co-
occurrence.  The hypothesis-testing system operates by 
testing verbalizable rules that can distinguish stimuli from 
each category.  When feedback is given the classifier must 
determine why the use of a given rule did or did not lead to 
a correct categorization of the stimulus.  If the stimulus is 
present during feedback then the hypothesis testing system 
can continue to test rules during feedback.  However, if the 
stimulus is removed prior to feedback then it should make 
rule-use more difficult.  The classifier must hold an image 
of the stimulus, as well as the verbalizable rule used during 
that trial in working memory in order to process the 
feedback.  Stimulus-feedback co-occurrence should make 

the hypothesis-testing system easier to use and more 
efficient.   

 An interesting prediction from this theory is that 
stimulus-feedback co-occurrence may lead to an increased 
reliance on the hypothesis-testing system.  This would come 
at the expense of the procedural system.  However, when 
the stimulus and the feedback do not co-occur the 
hypothesis-testing system may be abandoned sooner in 
favor of the procedural system.  Stimulus-feedback co-
occurrence may lead to better performance on rule-based 
tasks, but may actually harm performance on information-
integration tasks. 

In this paper we test the hypothesis that stimulus-feedback 
co-occurrence improves performance on rule-based tasks, 
but hinders performance on information-integration tasks.  
If the stimulus is present on the screen for the duration of 
the feedback presentation then this should enhance the 
hypothesis-testing system.  Having the stimulus present 
during feedback allows the participant to further examine 
the stimulus to determine why the rule they used to classify 
the stimulus did or did not work.  This should also reduce 
the working memory demands of the hypothesis-testing 
system because the properties of the stimulus and the rule-
used on that trial do not have to be recalled during feedback.  
However, when the stimulus is not present during feedback 
control may more rapidly shift from the hypothesis-testing 
system to the procedural system because the hypothesis 
testing system may have to work harder to recall the 
stimulus properties and the rule-used while processing the 
feedback.  This may reduce the amount of explicit rule use, 
and thus hurt performance on rule-based tasks but help 
performance on information-integration tasks.   

Experiment 

Method 
Eighty participants from the University of Texas community 
were given course credit or monetary compensation to 
participate in the experiment.  Participants were randomly 
assigned to one of four between-subjects conditions that 
consisted of the factorial combination of two category types 
(Rule-Based vs. Information-Integration) and two types of 
feedback presentation (Stimulus Present vs. Stimulus 
Absent).   

 
Stimuli 
The stimuli for the two category structures are plotted in 
Figure 1.  Stimuli were Gabor patches that varied in the 
frequency of the bars and their orientation relative to the 
computer screen.  
 
Procedure 
Participants performed five blocks of 80 trials.  On each trial 
a stimulus was presented on the screen and participants 
pressed a key to indicate which category they thought the 
stimulus belonged to.  Participants were given as long as 
they wished to make a response.  For the Stimulus Absent 
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condition the stimulus was removed from the screen 
immediately after a response was made.  Feedback was 
given 500ms after the response was made.  If the choice was 
correct then the word “Correct” appeared at the bottom of 
the screen.  If the choice was incorrect then the phrase “No, 
that was a 1 (or 2)” appeared at the bottom of the screen.  
Feedback was shown for 3500ms.  The screen then went 
blank and the next trial began.  The procedure was identical 
for the Stimulus Present condition except that the stimulus 
did not disappear after the response was made.  Instead, the 
stimulus stayed on the screen for the duration of the 
feedback presentation and was only removed upon the 
beginning of the next trial.   

Results 

Performance Measures 
Figure 2 shows the mean accuracy for each condition 
averaged across all blocks.  The data were subjected to a 2 
(Category Type) X 2 (Feedback Type) X 5 (Block) repeated 
measures ANOVA.  There was a significant effect of block 
F(4)=43.40, p<.001, 2=.36.  There was also a significant 
Category Type X Feedback Type interaction, 
F(1,76)=11.47, p<.01, 2=.13.  To examine the nature of the 
interaction we compared the performance of participants 
across the four conditions.    Participants in the Rule-Based 
Stimulus Present condition (M=.79) performed marginally 
better than participants in the Rule-Based Stimulus Absent 
Condition (M=.71), F(1,38)=3.32, p<.10, 2=.08.  In 
contrast, participants in the Information-Integration 
Stimulus Absent condition (M=.74) performed significantly 
better than participants in the Information-Integration 
Stimulus Present condition (M=.64), F(1,38)=10.30, p<.01, 
2=.21. 
    

Overall Accuracy for Each Condition 
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Figure 2: Proportion correct for each condition averaged 
across all blocks 

 
 

Model-Based Analyses 
The accuracy-based analyses support the proposal that 

having the stimulus present during feedback leads to better 
performance on rule-based tasks but worse performance on 

information-integration tasks.  Accuracy analyses are an 
informative measure of performance, but they provide no 
information regarding the specific strategies used to classify 
the stimuli into the categories.  To address this issue we 
applied decision bound models (Maddox, 1999; Maddox 
and Ashby, 1993) separately to the data from each 
participant on a block by block basis.  All of the analyses 
were performed at the individual-participant level because 
of concerns with modeling aggregate data (e.g., Estes, 1956; 
Maddox, 1999; Maddox & Estes, 2004; Smith & Minda, 
1998).   

Decision bound models assume that participants use a 
decision bound to separate stimuli into categories with 
stimuli on one side of the bound being classified into one 
category and stimuli on the other side of the bound being 
classified into the other category. The optimal decision 
bound in the Rule-Based condition is depicted by the 
vertical line in Figure 1a. Examples of sub-optimal 
strategies would be to shift the decision bound along the 
frequency dimension, or to place a decision bound along the 
orientation dimension.  The optimal decision bound in the 
Information-Integration condition is depicted by the 
diagonal line in Figure 1b. Sub-optimal strategies might 
include altering the slope or y-intercept of the optimal 
decision bound, or setting a decision bound on either the 
frequency or orientation dimension.   

Fits of the models will be useful in determining if 
stimulus presence during feedback leads to an optimal or 
suboptimal classification strategy.  For example, the low 
accuracy rates for participants in the Information-Integration 
Stimulus Present condition may be due to a use of 
suboptimal rule-based strategies.  Similarly, the lower 
accuracy rates for participants in the Stimulus Absent 
condition may be due to an inability to apply the optimal 
rule as a classification strategy.   

 
Rule-Based Models  
The optimal unidimensional frequency model assumes that 
the participant uses the optimal criterion along the spatial 
frequency dimension and applies the rule: “Respond ‘A’ if 
the spatial frequency is low and ‘B’ if it is high.” This 
model has one free parameter that represents the variance of 
internal (perceptual and criterial) noise, and was fit only to 
data from participants performing rule-based tasks. The 
generalized unidimensional frequency rule model assumes 
that the participant uses a criterion along the spatial 
frequency dimension, but allows the criterion value to be 
estimated from the data (2 free parameters total).  The 
generalized spatial orientation model assumes that the 
participant uses a criterion along the spatial orientation 
dimension, and allows the criterion value to be estimated 
from the data (2 free parameters total). These two models 
were fit to data from all participants. 

The conjunction models assume that the participant uses a 
conjunctive rule in which he or she makes separate 
decisions about the levels of the two dimensions and then 
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selects a response based on the outcome of these two 
decisions. Two conjunctive rules were examined:  

1. “Respond ‘A’ if spatial frequency is low and 
orientation is large, otherwise respond 
‘B,’” and  

2. “Respond ‘B’ if spatial frequency is high and 
orientation is small, otherwise respond 
‘A’.”  

Both rules partition the perceptual space into four regions. 
The first assigns one to Category A and three to Category B, 
and the second assigns three to Category A and one to 
Category B.  The conjunction models have three parameters 
(a criterion on each dimension, and an internal noise 
parameter).  The conjunction models were fit to data from 
all participants.  
 
Information-Integration Models 
The generalized linear classifier model (GLC) assumes that 
the decision bound between each pair of categories is linear. 
This produces an information-integration decision strategy 
because it requires linear integration of perceived frequency 
and orientation.  The GLC has three parameters: the slope 
and intercept of the linear bound, and an internal noise 
parameter.  The optimal GLC model assumes that the 
participant uses the linear bound that maximizes accuracy.   
This model has only one free parameter representing the 
internal noise.  The GLC was fit to all data, and the optimal 
GLC was fit only to data from Information-Integration 
participants. 
 
Random Responder Model 
Each participant’s data was also fit by a one-parameter 
random responder model that assumed a fixed probability 
(estimated by the model) of responding “A” for all the 
stimuli.   
 
Model Fitting Procedure 
Each model was fit separately to the data from each of the 
eight blocks of trials in sessions four and five for each 
participant.  The model parameters were estimated using 
maximum log-likelihood (Wickens, 1982), and the 
goodness-of-fit statistic used was AIC = -2lnL + 2k, where k 
is the number of free-parameters (Akaike, 1974).  The AIC 
statistic penalizes models with extra free parameters. The 
best fitting model is the model with the smallest AIC value. 
For each block for each participant in each session we 
determined which model provided the best fit to the data.   
 

Model Fitting Results 
Within each category structure we compared the proportion 
of participants in the Stimulus Present and Stimulus Absent 
conditions who were fit by models of the same form as the 
optimal model based on the category structure.  For 
participants in the Rule-Based condition this was either the 
optimal or generalized spatial frequency model.  For 
participants in the Information-Integration condition this 
was either the generalized or optimal linear classifier model.  

Figure 3 presents the proportion of participants in each 
condition who were fit best by the models that assumed use 
of the optimal strategy.  For participants performing rule-
based tasks a higher proportion of participants in the 
Stimulus Present condition were fit best by one of the 
optimal models in all five blocks (p=.03 by sign test, one 
tailed).  For participants performing information integration 
tasks a higher proportion of participants in the Stimulus 
Absent condition were fit best by one of the optimal models 
in four of the five blocks.   
 
a. 
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b. 

Proportion of II Participants Best Fit by Models That Assumed the 
Optimal Strategy
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Figure 3: (a) Proportion of Rule-Based participants fit best 

by either the optimal or generalized spatial frequency 
model. (b) Proportion of Information-Integration 

participants fit best by either the optimal or generalized 
linear classifier model.  

 
We performed binomial tests within each category 

structure for each block to compare the proportion of 
optimal model fits between the Stimulus Absent and 
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Stimulus Present conditions.  For participants performing 
rule-based tasks a significantly higher proportion of data 
sets from participants in the Stimulus Present condition 
were fit best by the optimal models in block 2 (p<.01), 
block 4 (p<.05), and block 5 (p<.05) than data from 
participants in the Stimulus Absent condition.  There was a 
marginally greater proportion of optimal model fits from 
data from participants in the Stimulus Present condition in 
block 3 (p<.10). 

For participants performing information-integration tasks 
a significantly higher proportion of data sets from 
participants in the Stimulus Absent condition were fit best 
by one of the optimal models in block 3, block 4, and block 
5 (all p<.01).     

Discussion 
Most theories of learning would predict that more 
information about the stimulus should lead to better 
learning.  Participants in our Stimulus Present condition 
were allowed to continue processing the stimulus during the 
entire feedback interval. We proposed that this enhances 
rule-based learning because specific rules could be applied 
to the stimulus when full knowledge of the stimulus’ 
category membership was available.  However, this 
enhanced rule-based processing could delay the passing of 
control over categorization from the hypothesis-testing 
system to the procedural system..  As a result, performance 
for participants in the Information-Integration Stimulus 
Present condition should be worse than for those in the 
Stimulus Absent condition.  Stimulus-feedback co-
occurrence should reduce the amount of working memory 
needed for the hypothesis-testing system to operate.  The 
participant does not have to hold stimulus information or the 
rule they implemented on that trial in working memory 
because the stimulus is present when feedback occurs.  This 
should enhance the hypothesis-testing system and delay the 
passing of control from the hypothesis-testing system to the 
procedural system.  When the stimulus and feedback do not 
co-occur the hypothesis-testing system should be at more of 
a disadvantage because stimulus information must be held 
in working memory.  This should speed the passing of 
control from the hypothesis-testing system to the procedural 
system, which should enhance information-integration 
classification accuracy.   

Our results offer strong support for our predictions.  For 
participants performing rule-based tasks those in the 
Stimulus Present condition were more accurate and a greater 
proportion of their data sets were fit best by models that 
assumed the use of the optimal strategy (i.e., a rule-based 
model).  However, for participants performing information-
integration tasks those in the Stimulus Absent condition had 
higher accuracy rates and a greater proportion of their data 
sets were fit best by models that assumed use of the optimal 
strategy (i.e., an information-integration model).   

The interaction between category type and stimulus 
presence during feedback offers more support for a 
multiple-systems view of perceptual category-learning.  

Specifically, there is abundant evidence for the two systems 
discussed here and first introduced by Ashby and colleagues 
(e.g. COVIS, Ashby et al., 1998).  An important component 
of the COVIS model is the competition between the two 
systems.  Both systems are thought to be active on each 
trial, but one system ‘wins’ the competition to govern 
responding.   

An interesting corollary to this theory is that conditions 
which detract from one system’s efficiency will enhance the 
other system’s efficiency. Similarly, conditions which 
enhance one system’s efficiency will detract from the other 
systems efficiency.   In the current work we proposed that 
stimulus-feedback co-occurrence would enhance the 
hypothesis-testing system and, in turn, detract from the 
procedural system.  The data strongly supported this 
prediction.  We also predicted that the absence of a 
stimulus-feedback co-occurrence would detract from the 
hypothesis-testing system, and enhance the procedural 
system.  This prediction was also strongly supported by the 
data. 

Other work on the dissociation between rule-based and 
information-integration classification offers similar support 
for the trade-off between the two systems.  Recent work in 
our labs has shown that certain motivational factors can 
enhance or detract from the hypothesis-testing system, and 
that the procedural system performs better or worse 
depending on the performance of the hypothesis-testing 
system.  Maddox, Baldwin, and Markman (2006) showed 
that the alignment of short-term and long-term goal states (a 
‘regulatory fit’) led to better rule-based accuracy, but worse 
information-integration accuracy.  This was presumably 
because a regulatory fit led to an increase in executive 
resources which enhanced the hypothesis-testing system at 
the expense of the procedural system.  Maddox et al. (2006) 
also showed that a misalignment of short-term and long-
term goals (a ‘regulatory mismatch’) led to better 
information-integration accuracy, but worse rule-based 
accuracy (see also Grimm, Markman, Maddox, & Baldwin, 
2008). 

Markman, Maddox, and Worthy (2006) examined the 
effects of social pressure on rule-based and information-
integration category-learning.  They found the pressure led 
to worse rule-based accuracy, but better information-
integration accuracy.  The mechanism was again the same.  
Pressure detracted from the hypothesis-testing system which 
helped the procedural system.  A lack of social pressure did 
not harm the hypothesis-testing system so control was not 
passed as quickly to the procedural system.  This improved 
rule-based accuracy, but led to worse information-
integration accuracy (see also Worthy, Markman, & 
Maddox, 2009). 

Finally, Decaro, Thomas, and Beilock (2007) showed that 
individual differences in working memory influence 
performance on rule-based and information-integration 
category learning tasks.  Individuals with high working 
memory capacity performed better on rule-based tasks than 
those with low working memory capacity.  However, 
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individuals with low working memory capacity performed 
better on information-integration tasks than those with high 
working memory capacity.  This also supports the view that 
enhancement of one system comes at the expense of the 
other system.  High-working memory capacity leads to an 
increased reliance on the hypothesis-testing system, which 
comes at the expense of the procedural system.  The reverse 
is true for individuals with low working memory capacity.   

This work offered strong support for a multiple systems 
view of category learning.  It also points out that there is a 
tradeoff between the hypothesis-testing and procedural 
systems.  More broadly, this work suggests a trade-off 
between explicit and implicit systems in a variety of 
situations besides categorization (e.g. Sloman, 1996).  It is 
probable that these two systems are operative, and 
competing against one another, whenever humans are 
performing an action or making a decision.  Future research 
on the trade-off between the two systems is important for 
fully understanding the complexities of human cognition 
and behavior. 
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