UC Merced

Proceedings of the Annual Meeting of the Cognitive Science Society

Title

Sharing is not Needed: Modeling Animal Coordinated Hunting with Reinforcement Learning

Permalink

https://escholarship.org/uc/item/8v5781cd

Journal

Proceedings of the Annual Meeting of the Cognitive Science Society, 43(43)

Authors

Zhao, Minglu Tang, Ning Dahmani, Annya L. et al.

Publication Date

2021

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Sharing is not Needed: Modeling Animal Coordinated Hunting with Reinforcement Learning

Minglu Zhao

University of California - Los Angeles, Los Angeles, California, United States

Ning Tang

UCLA, Los Angeles, California, United States

Annya Dahmani

University of California - Los Angeles, Los Angeles, California, United States

Ross Perry

University of California - Los Angeles, Los Angeles, California, United States

Yixin Zhu

UCLA, Los Angeles, California, United States

Federico Rossano

University of California, San Diego, San Diego, California, United States

Tao Gao

University of California - Los Angeles, Los Angeles, California, United States

Abstract

Coordinated hunting is widely observed in animals, and sharing rewards is often considered a major incentive for this success. However, it is unclear what causal roles are played by this reward-sharing mechanism. In order to systematically examine the effects of sharing rewards in animal coordinated hunting, we conduct a suite of modeling experiments using a state-of-the-art multi-agent reinforcement learning algorithm. The models are trained and evaluated with a task that simulates real-world collective hunting. We manipulate four evolutionarily important variables: reward distribution, hunting party size, free-rider problems, and hunting difficulty. Our results indicate that individually rewarded predators outperform predators that share rewards, especially when the hunting is difficult, the group size is large, and the action cost is high. Moreover, predators with shared rewards suffer from the free-rider problem. We conclude that sharing reward is neither necessary nor sufficient for modeling animal coordinated hunting through reinforcement learning.