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Abstract

Time-accuracy functions are obtained by measuring the
accuracy of a subject’s responses at various levels of
stimulus presentation time. Unlike reaction time (RT)
measurements, which convey information about the entire
set of processes taking place between the onset of the
stimulus and the production of a response, time-accuracy
functions (TAFs) focus on a subset of those processes,
namely stimulus-limited processes. Stimulus-limited
processes are responsible for the extraction of the
perceptual information that is necessary for the elaboration
of a response. Post-stimulus processes take care of
selecting and executing the response based on the
information extracted by stimulus-limited processes. This
paper presents a method of analysis that allows us to (a)
extract estimates of the duration and variance of stimulus-
limited processes from individual TAFs and (b) combine
these estimates with RT data in order to induce the duration
and variance of post-stimulus processes. The method is
illustrated with data from a subitizing (speeded
enumeration) task.

Introduction

The relationship between speed and accuracy of responding
conveys information about the dynamics of mental
processing at a level of detail beyond the scope of reaction
time measurements (Wickelgren, 1977; Meyer, Irwin,
Osman & Kounios, 1988). Consider for instance the three
hypothetical speed-accuracy curves in Figure 1. Curves like
these represent the relationship between the time available to
the subject to deliberate a response and the average accuracy
of the responses in different experimental situations. In
most cases, accuracy starts out at a low (chance) level for
small values of time and then increases monotonically as
more time becomes available. In the asymptotic region,
accuracy no longer depends on time, but on factors such as
task difficulty, individual capacity, or amount of noise in the
stimuli (Norman and Bobrow, 1975).

Imagine that the three curves in Figure 1 are the true
speed-accuracy functions of three cognitive processes an
experimenter is trying to differentiate. The three curves
show some important differences. Performance in task A
increases gradually with time, whereas, in tasks B and C, it
changes dramatically from chance to asymptote within a few
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milliseconds. In addition, accuracy in tasks A and B reaches
a higher asymptote than it does in C.

What would the experimenter find by running a typical
RT task? By simply looking at the figure, it seems that all
three tasks take about the same amount of time to reach
asymptote. If subjects are instructed to emphasize accuracy,
it is likely that average RT of correct trials would be
somewhere around ¢ ms in all three cases, and therefore, no
significant differences among the tasks would be found.
Further analysis of the subject’s errors would probably
reveal a difference between task C and tasks A and B, but A
and B might still remain indistinguishable.

)

accuracy
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t1 time
Figure 1. Hypothetical time-accuracy functions

Speed-accuracy tradeoff research

How then can we assess the correspondence between speed
and accuracy in order to capture those differences that seem
to escape RT data? Several methods have been used in the
past to induce subjects to trade accuracy for speed
(Wickelgren, 1977): verbal instructions, differential reward
of speed and accuracy, external signals that indicate when a
response must be produced, etc. Speed-accuracy curves can
also be estimated by partitioning all the responses (correct or
incorrect) into uniform RT intervals and then computing the
percent of correct responses within each interval. The
strengths and limitations of each of these methods have been
discussed elsewhere (e.g. Wickelgren, 1977). In any case,
no matter what method is used, speed-accuracy designs treat
both speed and accuracy as dependent measures.
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Time-accuracy functions

A different way of dealing with speed-accuracy
dependencies involves measuring accuracy as a function of
the time during which the stimulus is directly available to
the subject (Lohman, 1986; Loftus, Duncan & Gehrig,
1992; Kliegl, Mayr & Krampe, 1994; Simon, Cabrera &
Kliegl, 1993). Kliegl and his colleagues refer to this
presentation time manipulation method as the "cognitive
psychophysics" approach for its resemblance to the general
psychophysical paradigm in which performance is analyzed
as a function of the available amount of some relevant
resource (Norman and Bobrow, 1975). Here the relevant
resource is the time during which the subject has access to
the perceptual information needed to produce a response, and
performance is the subject’s accuracy in that task.

The difference between this approach and more traditional
speed-accuracy research is more important than it may
initially appear. In time-accuracy research “presentation
time is under experimental control, whereas in speed-
accuracy tradeoff research response latency is a dependent
variable” (Kliegl, Mayr & Krampe, 1994, p. 136). This
contrast is not only methodological: it affects the kinds of
substantive inferences that can be drawn from the results.
Speed-accuracy tradeoff data, like RTs, convey information
about the entire sequence of processes taking place from the
onset of the stimulus until the production of the response.
In contrast, the shape of a time-accuracy function obtained
through the psycophysical method is only descriptive of a
subset of those processes, namely those subprocesses that
rely on the physical availability of the stimulus.

Stimulus-limited vs. post-stimulus processing

Like Salthouse (1981), we will refer to the processes that
require direct access to the stimulus as "stimulus-limited".
In addition, we will define "post-stimulus” processes as
those processes that rely on the result of stimulus-limited
processes and that, consequently, do not operate until
stimulus-limited processes end (spontaneously or otherwise).
We have suggested that the transition region of a time-
accuracy function reflects dynamic characteristics of
stimulus-limited processing. We also know that RTs
convey information about the entire set of processes
including both stimulus-limited and post-stimulus stages. If
we can somehow extract information from the TAFs in a
form that is directly comparable with RT information, we
could infer the properties of post-stimulus processing by
subtraction @ la Donders (1868) or through more
sophisticated deconvolution techniques (Smith, 1990).

For this stage decomposition to be possible, we must
assume that (a) the two stages are connected in series, (b) the
duration of each of the two stages is a random variable with
certain probability distribution, and (c) that the duration of
the two stages is statistically independent from each other.
These assumptions are common to most of the stage
decomposition techniques used in cognitive psychology
(Sternberg, 1969; Salthouse, 1981). Although the seriality
and independence assumptions have been the center of a great
deal of controversy (see Townsend & Ashby, 1983), there is
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a significant body of findings that has shown the concept of
processing stage to be useful in understanding human
cognition (Salthouse, 1981). Resolving this debate is
beyond the scope of this paper. Rather, we are making these
assumptions from a systems identification standpoint. The
usefulness of the assumptions will be indicated by the kinds
of empirical distinctions they ultimately lead to. As we will
show later (see also Simon & Cabrera, 1995) some of our
own data in the domain of subitizing indicates that the
stimulus-limited / post-stimulus distinction may capture
important conceptual differences.

Analysis of time-accuracy functions

Time-accuracy functions have been analyzed in the past by
fitting mathematical functions (typically negatively
accelerated exponential curves) to the data. The functions so
obtained are then compared with one another (between or
within subjects) in terms of either the parameters resulting
from the curve fitting procedure (Kliegl, Mayr & Krampe,
1994; Simon, Cabrera & Kliegl, 1993) or the predicted
presentation time for some prespecified level of accuracy
(Wickelgren, 1977; Lohman, 1986).

These parametric techniques have several limitations.
First, the choice of a particular mathematical model may be
hard to justify theoretically. More often than not, models
are justified in a post-hoc fashion based on goodness-of-fit
measures and not on a priori theoretical grounds (c.f.
Kliegl, Mayr and Krampe, 1994). Second, the resulting
parameters are difficult to interpret outside the specific
family of mathematical functions being considered, and
consequently, they can not be compared to RT data or even
to parameters from other mathematical functions.

How can we extract information about stimulus-limited
processing from a time-accuracy function (TAF) in a form
that can later be used in comparisons with RT data? There
are at least two main ways in which time-accuracy functions
can be interpreted (Wickelgren, 1977; Meyer et al., 1988).
One of them consists of assuming a decision process that
gradually and stochastically builds a response tendency
starting as soon as the stimulus is presented. When
presentation time is experimentally restricted, subjects are
forced to produce a premature response based on incomplete
information. This translates into the typical time-accuracy
patterns in which accuracy increases monotonically and
asymptotically with presentation time. Under this approach
then, TAFs represent diagrams of information (or response
activation) accumulation (e.g. McClelland, 1979).

The second interpretation (the one that will be adopted
here) assumes an underlying discrete, all-or-none process
with a randomly distributed termination time. In other
words, it assumes that there is a minimum amount of
presentation time 7 necessary for a stimulus to be processed
successfully, and that this amount of time is a random
variable with a certain distribution. If the presentation time
for a given trial ¢ is less than T, the stimulus can not be
processed, and a random response is produced. However, if ¢
is greater than 7, the stimulus can be processed successfully
and the accuracy of the response only depends on the
capacity limitations of the subject or the noise in the



stimuli. Saying that T is a random variable amounts to
saying that the exact duration of the underlying all-or-none
process is not fixed across trials. This means that any given
value of presentation time can be too short in some trials
and yet long enough in other trials --which will lead to
random performance in some trials and to asymptotic
performance in other trials.

The all-or-none interpretation of stimulus-limited
processes might initially seem counterintuitive. Even
though, based on the data alone, both interpretations are
equally valid (see Meyer et al., 1988), it can be argued that
some amount of partial information can be extracted even
when presentation time is too short for a fully confident
response to be possible. We have two reasons to assume
the all-or-none interpretation. The first reason is an
analytical one and will hopefully become clear in the next
section. The second reason is an empirical one: this
assumption leads to results that could be critical in
understanding the phenomenon of subitizing. Whether this
empirical advantage will generalize to other areas of
cognition or not, remains an open question.

Difference Time-Accuracy Functions

The analysis problem under this interpretation can be stated
as: “given A(r), the observed accuracy for each value of
presentation time [, obtain an estimate of F(r), the
cumulative probability distribution of the underlying random
variable T." Let us refer to the asymptotic level of A(t) as
Amax. and to the chance level as Argpg. Since F(r) =
P(1<T), the observed time-accuracy function A(f) will be
related to F(r) according to:

A(t)= F()Apax + [1- F(1)]A g (1

In other words the observed accuracy will depend on the
probability of  being above or below T, times the level of
accuracy reached in each case (Ayqy and Argnd.). Given A(r)
we can then obtain F(1) as

Alt)- A

2
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Once we have an estimate F(r) of the cumulative
probability distribution of the underlying T, it is
straightforward to derive 7" s probability density function f{r)

as the derivative of F(f), f(t)= dd( )

not have an analytical expression for F(r) but a set of
samples for different values of time F(1;). In this case, we
can obtain the probability function p(tj) through simple
subtraction:

p(t)= [t +%£)—F(t,- =

where At represents the size of the interval between
consecutive samples. The functions f{t) or p(t;) so obtained

. In practice, we may

At

7] (3
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will be referred to as Differential Time-Accuracy Functions
(DTAFs). Figure 2 shows the DTAF (marked as »-¢),
obtained from a hypothetical discrete logistic TAF (marked
as *- -¥),

By interpreting DTAFs as estimates of probability
distributions, we have access to the whole spectrum of
stochastic techniques normally used in analyzing RT
distributions (Townsend & Ashby, 1983). The most
immediate computations DTAFs can address are estimates of
central tendency and variance of stimulus-limited termination

time. For instance, we can obtain the mathematical
expectation or mean of T as
Hr =Y tip(t) @
and its variance as
a? -Z(t - ur)p(t;) &)
i - u{
e AR
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Figure 2. Logistic TAF and its corresponding DTAF.

The median of T is the point of intersection of F(f) with
the .5 constant line. Computing the median from the
DTAF is equivalent to using psychophysics’ typical 50%
criterion, which estimates the amount of resource necessary
to complete a task as the value of resource for which
performance reaches 50% of the asymptote. The mode of T
corresponds to the peak of f{r), which in turn corresponds to
the inflation point of F(¢). Although in the hypothetical
curve in Figure 1, mean, median and mode are the same, this
is not necessarily so for other distributions. The median and
the mode tend to be more robust to the presence of noise and
outliers in the data than the mean, but the mean offers two
important advantages: (a) it is the maximum-likelihood
estimate of T, and (b) stage duration means are additive under
the seriality and independence assumptions.

For DTAF analysis to be feasible, the original TAFs
must be monotonic and non-decreasing (otherwise, we could
obtain distributions with negative values of probability!)
What this constraint really means is that accuracy must
increase or remain constant as time increases. Fortunately,
this is the case with most tasks of interest in cognitive
science (Norman & Bobrow, 1975). In real situations, even



when monotonicity is to be expected, errors of measurement
may induce small violations. It is the experimenter's
responsibility to decide, based on theoretical grounds,
whether to consider these irregularities as random errors of
measurement or as reflection of some unexpected underlying
pattern. In the first case, the irregularities can be smoothed
out prior to further analysis through curve fitting,
convolution or any other method.

Post-stimulus processing

The most important advantage of the DTAF procedure is
that it produces results that are given in terms of process
duration or termination time. This has the key advantage of
allowing results from time-accuracy designs to be compared
and combined with duration estimates obtained through other
methods. In particular, they can be combined with RT data,
in order to estimate the time characteristics of post-stimulus
processes. Remember that we defined stimulus-limited and
post-stimulus processes as two independent and serial stages.
It can be shown (e.g. Townsend & Ashby, 1983) that the
distribution of the duration of the serial combination of two
independent stages can be obtained as the mathematical
convolution of the distributions of the two stages.
Furthermore, the mean duration of the combined process is
equal to the sum of the mean duration of the individual
stages, and so is the variance.

The additivity property of serial stages allows us to
interpret mean RT as the sum of the mean duration of
stimulus-limited processes plus the mean duration of post-
stimulus processes, and the same thing for the variances. In
other words, we can estimate the mean duration and variance
of post-stimulus processes as the difference between the
mean and variance of the observed RTs and the estimates of
mean and variance of stimulus-limited processes obtained
through DTAF analysis. The fact that the estimates of
mean and variance for the whole process are obtained very
differently than the mean and variance of the stimulus-
limited subprocesses does not preclude us from being able to
combine and compare them with one another because they
represent the same underlying construct: process duration.

Subitizing: A case study

To illustrate the whole procedure, we have selected some
data from one subject in one of the experiments we are
carrying out in our on-going research on subitizing (Simon,
Cabrera & Kliegl, 1993; Simon & Cabrera, 1995).
Subitizing refers to the ability of humans to identify the
numerosity of small sets of objects rapidly an accurately.
This phenomenon is important for its implications in the
understanding of visual attention (Trick & Pylyshyn, 1994)
as well as the development of basic numeric ability (Geary,
1995). According to Trick and Pylyshyn’s meta-analysis
(1994), enumerating 1 to 4 objects takes an average of 40 to
120 ms per item, whereas enumerating more than 5 objects
requires between 250 and 370 ms per item.

As we discuss elsewhere in this volume (Simon &
Cabrera, 1995), all the different attempts to explain the
phenomenon of subitizing split the process of number
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judgments into two separate stages, although they vary in
the nature of the subprocesses attributed to each of the
stages. Roughly speaking, the first stage would be
responsible for the perception and encoding of the stimulus
while the second stage would be responsible for response
choice and execution. Depending on the exact roles that are
attributed to each of the two stages we can make different
predictions about how the number of objects in a display
should affect the duration of each of the stages.
Unfortunately, the RT data that has been collected so far is
not powerful enough to assess the effect of numerosity on
each of the two processing stages.

Simon, Cabrera & Kliegl (1993) reported some results
from a time-accuracy study that showed a discontinuity
between small and large number of objects very similar to
the one found in RT studies. Our goal now is to assess the
effects of numerosity on stimulus-limited and post-stimulus
stages. Our preliminary results show that numerosity
mainly affects stimulus-limited processes within the
subitizing range but affects both stimulus-limited and post-
stimulus for larger numerosities (Simon & Cabrera, 1995).
Here is an illustration of how the method is actually applied.

Subjects are presented with a row of letters “0” in the
center of a computer screen for a period of time that is varied
from trial to trial. Subjects are asked to enumerate the
letters in the display and to produce a verbal response as fast
as they can that is timed by using a voice-activated relay.
Response times as well as accuracy of the responses are
recorded for every trial. Throughout the whole session,
subjects are presented with rows of 2 to 8 items at ten
different levels of presentation time 20 times each. Average
accuracy for each numerosity at each of the ten levels of
presentation time is used to build the TAFs (one per
numerosity). The ten levels of presentation time are not the
same for all numerosities. They are actually selected based
on pilot data so that accuracy ranges from chance at the
lowest presentation times to perfect at the largest. Figure 3
shows seven TAFs obtained from one subject for
numerosities 2 to 8 under presentation times varying overall
from 35 to 2500 ms. Each of these seven curves are our raw
A(t))’s.

Notice how almost every A(f;) shows some small
violations of monotonicity even though there is a clear
increasing trend of accuracy with time. There are several
methods to smooth out those irregularities from the raw
A(r))’s. These include exponential or logistic curve fitting
and kernel filtering techniques. To avoid having to make the
assumptions those techniques rely on, we opted for a very
simple algorithm that flattens out any irregular segment to
the average of the neighboring points (Cabrera, 1994).
These adjusted versions of the A(¢;)s are then rescaled
according to Equation 2 to obtain estimates of the F(;). In
the case of subitizing, most subjects reach perfect accuracy
provided enough presentation time, so we considered Amagx
= 1.0. Since our subjects were informed that numerosity
varied between 2 and 8, we assumed that Argpg = 1/7.
Figure 4 shows the effect of smoothing and rescaling one of
the raw TAFs.



From each F(r;) we compute a p(f;) (DTAF) by
subtraction of consecutive values of F(t;) (Eq. 3) and then
extract the mean and variance of stimulus-limited processes
from the resulting DTAFs (Eqs. 4 & 5). Figure 5 shows
the resulting means with their corresponding confidence
intervals (+oT) as a function of numerosity. By subtracting
these values from the means and variances of the RT data,
we obtain the means and variances of post-stimulus
processes (Figure 6). The data from this one subject
illustrate how numerosity affects stimulus-limited and post-
stimulus processes differently (see Simon & Cabrera, 1995,
for further details).

Conclusions

Reaction time data convey information about the entire set
of processes taking place from the onset of the stimulus
until the production of a response. The relationship between
accuracy of responses and the amount of time during which
the stimulus is physically available to the subject conveys
information about the subset of processes responsible for the
extraction of information from the stimulus, namely
stimulus-limited processes. By combining RT and time-
accuracy data we can then estimate some of the
characteristics of the remaining processes (post-stimulus
processes). We have shown how the stimulus-limited /

Accuracy

1000
Presentation Time (ms)

1500 2000 2500

Figure 3. Original TAFs for numerosities 2 to 8.

1400
1000 +
g
= b
é 500 :
0l !
2 4 6 8
Number of Items

Figure 5. Duration of stimulus-limited subprocesses
as a function of numerosity.

post-stimulus distinction can help us understand the nature
of cognitive processes at a level of detail that escapes more
traditional RT designs. In particular, it has helped us
identify the processing stages that are involved in the
estimation of numerosity, a problem with interesting
implications in visual attention and basic mathematical
ability (Simon & Cabrera, 1995).

One of the advantages of this method is the fact that it
does not rely on specific parametric assumptions about the
form of the data. Experimental manipulations often have
effects on the shape of TAFs, and these effects may make it
hard for a simple mathematical model to fit all the data
across conditions. In our earlier subitizing studies (Simon,
Cabrera & Kliegl, 1993) a two parameter exponential model
achieved very good fits for numerosities up to 5 but very
poor fits thereafter, which forced us to discard portions of
data that would otherwise be perfectly valid. DTAF analysis
does not make specific assumptions about the shape of the
data and can therefore be applied no matter what the shape of
the TAF is (with the only constraint of monotonicity).

A second strength of DTAF analysis is its applicability to
individual data. Several researchers (Siegler, 1987; Ashby,
Maddox & Lee, 1994) have emphasized the need to extract as
much information as possible at the individual level.
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Figure 4. Raw A(/;) (--*--) for 7 items and its corresponding
F(1}) (-0-) after smoothing and rescaling to the [0, 1] interval,
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Figure 6. Duration of post-stimulus subprocesses as a
function of numerosity.



As information theorists well know, any kind of data
manipulation can only eliminate information, or, at the very
best, keep it constant. If relevant information about
individual processing is filtered out through premature data
aggregation, it is unlikely that further analyses will be able
to recover it. At some point of course, aggregation is
necessary in order to generate meaningful conclusions from
the data. But it is crucial to devote as many resources as
possible to the early stages of analysis and to defer
aggregation across subjects to the final stages. The DTAF
method is particularly well suited for this.

Finally, the methodology presented here links TAF
paradigms with all the stochastic techniques that, in the
past, were exclusive to response latency data (Townsend &
Ashby, 1983). Here we saw how statistical estimates
obtained from TAF and RT distributions can be combined in
order to address questions about the internal structure of
cognitive processes. Convolutional analysis, statistical
dominance and other stochastic constructs are perfectly
applicable to DTAFs in the same way as they are used in the
context of RT distributions.

Wickelgren (1977) argued that theories of information
processing could no longer ignore speed-accuracy tradeoff
data, yet general theories of cognition still rely
fundamentally on response latencies to assess their capacity
to account for human performance (e.g. Newell, 1990).
Response latencies yield a single point of a speed-accuracy
or time-accuracy function. Many important processing
differences that are reflected in the patterns of dependency
between time and accuracy can not be detected by RT
designs. Speed-accuracy data in general, and time-accuracy
functions in particular, raise new challenges for cognitive
theorists and model builders.
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