
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Algorithms for Reference Assisted Genome and Transcriptome Assemblies

Permalink
https://escholarship.org/uc/item/8v56k19t

Author
Bao, Ergude

Publication Date
2014

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8v56k19t
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Algorithms for Reference Assisted Genome and Transcriptome Assemblies

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ergude Bao

June 2014

Dissertation Committee:

Professor Thomas Girke, Chairperson
Professor Tao Jiang
Professor Stefano Lonardi
Professor Marek Chrobak

Copyright by
Ergude Bao

2014

The Dissertation of Ergude Bao is approved:

Chairperson

University of California, Riverside

Acknowledgments

First of all, I thank my advisors Thomas Girke and Tao Jiang, my previous advisor Weisheng

Li at the Beijing Jiaotong University, and my previous group leader Dongrui Fan at the

Institute of Computing Technology, Chinese Academy of Sciences. I have really learned a

lot about how to perform good research with your tireless help over the years.

Second, I thank the School of Software Engineering at the Beijing Jiaotong Uni-

versity, who gave me the opportunity to start my academy career as an associate professor.

I will prove that we both made a good choice.

Finally, I thank all my friends around the world for their continuous support. I

thank my labmates who always helped me and gave me a lot of suggestions during my

research. I thank the people from the churches in Riverside for all their encouragement and

help, especially when I just arrived at Riverside in 2009. I thank everyone in my family

who keep taking care of every aspect of my life. I lover you all.

iv

To my mom Min Wang and in memory of my grandma Chunfang Li.

v

ABSTRACT OF THE DISSERTATION

Algorithms for Reference Assisted Genome and Transcriptome Assemblies

by

Ergude Bao

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, June 2014

Professor Thomas Girke, Chairperson

De novo genome and transcriptome assemblies of next generation sequences (NGS) are

important for many genomics applications of unsequenced organisms. Both assembly types

present many challenges owing to (i) the large amount of data to process, (ii) sequencing

errors and (iii) the complexity of transcriptomes and genomes. The latter is a result of

alternative splice events, variable and incomplete representations of transcripts in RNA-

Seq libraries, while repetitive regions in genomes complicate their assembly. Usually, de

novo assemblies result in thousands of short and incomplete transcripts (transfrags) or

genomic sequences (contigs or scaffolds) while requiring a large amount of processing time

and memory. However, with decreasing NGS costs reference genomes of many species

have become available recently that can be used to guide and improve de novo assemblies.

Here, we introduce two reference assisted algorithms BRANCH and AlignGraph. BRANCH

improves transcriptome assemblies guided by genomic contigs from the same species or

reference genes from a closely related species. AlignGraph improves genome assemblies

with help provided by a closely related reference genome. In addition, we introduce the

short read clustering algorithm SEED that is useful as a preprocessing tool in de novo

vi

assemblies by reducing their time and memory requirements.

SEED joins sequences into clusters that can differ by up to three mismatches and

three overhanging residues from their virtual center. It is based on a modified spaced

seed method, called block spaced seeds. Its clustering component operates on the hash

tables by first identifying virtual center sequences and then finding all their neighboring

sequences that meet the similarity parameters. SEED can cluster 100 million short read

sequences in <4 h with a linear time and memory performance. When using SEED as a

preprocessing tool on genome/transcriptome assembly data, it was able to reduce the time

and memory requirements of the Velvet/Oasis assembler, for the datasets used in this study,

by 60-85% and 21-41%, respectively. In addition, the assemblies contained longer contigs

than non-preprocessed data as indicated by 12-27% larger N50 values. Compared to other

clustering tools, SEED showed the best performance in generating clusters of NGS data

similar to true cluster results with a 2- to 10-fold better time performance. While most of

SEED’s utilities fall into the preprocessing area of NGS data, our tests also demonstrate its

efficiency as stand-alone tool for discovering clusters of small RNA sequences in NGS data

from unsequenced organisms.

BRANCH’s input includes assembled RNA reads, genomic sequences (e.g. contigs)

and the RNA reads themselves. It uses a customized version of BLAT to align the transfrags

and RNA reads to the genomic sequences. After identifying exons from the alignments,

it defines a directed acyclic graph and maps the transfrags to paths on the graph. It

then joins and extends the transfrags by applying an algorithm that solves a combinatorial

optimization problem, called the Minimum weight Minimum Path Cover with given Paths.

vii

In performance tests on real data from Caenorhabditis elegans and Saccharomyces cerevisiae,

assisted by genomic contigs from the same species, BRANCH improved the sensitivity

and precision of transfrags generated by Velvet/Oases or Trinity by 5.1-56.7% and 0.3-

10.5%, respectively. These improvements added 3.8-74.1% complete transcripts and 3.8-

8.3% proteins to the initial assembly. Similar improvements were achieved when guiding the

BRANCH processing of a transcriptome assembly from a more complex organism (mouse)

with genomic sequences from a related species (rat).

AlignGraph is an algorithm for extending and joining de novo assembled contigs

or scaffolds guided by closely related reference genomes. It aligns paired-end (PE) reads

and pre-assembled contigs or scaffolds to a close reference. From the obtained alignments,

it builds a novel data structure, called the paired-end multi-positional de Bruijn graph. The

incorporated positional information from the alignments and PE reads allows us to extend

the initial assemblies, while avoiding incorrect extensions and early terminations. In our

performance tests, AlignGraph was able to substantially improve the contigs and scaffolds

from several assemblers. For instance, 28.7-62.3% of the contigs of Arabidopsis thaliana

and human could be extended, resulting in improvements of common assembly metrics,

such as an increase of the N50 of the extendable contigs by 89.9-94.5% and 80.3-165.8%,

respectively. In another test, AlignGraph was able to improve the assembly of a published

genome (Arabidopsis strain Landsberg) by increasing the N50 of its extendable scaffolds by

86.6%. These results demonstrate AlignGraph’s efficiency in improving genome assemblies

by taking advantage of closely related references.

viii

Contents

List of Figures xi

List of Tables xvi

1 Introduction 1
1.1 Next Generation Sequencing . 1
1.2 Genome Assembly Algorithms . 2

1.2.1 De Novo Genome Assembly Algorithms 2
1.2.2 Reference-Based Genome Assembly Algorithms 6

1.3 Transcriptome Assembly Algorithms . 7
1.3.1 De Novo Transcriptome Assembly Algorithms 7
1.3.2 Reference-Based Transcriptome Assembly Algorithms 8
1.3.3 Comparison between De Novo and Reference-Based Transcriptome

Assembly Algorithms . 9
1.4 Problems and Opportunities . 9

1.4.1 Completeness of Genome and Transcriptome Assemblies 9
1.4.2 Run Time and Memory Performance 12

1.5 Organization of Dissertation . 13

2 SEED Algorithm 14
2.1 Introduction . 14
2.2 Methods . 16

2.2.1 Overview of the Algorithm . 16
2.2.2 Indexing and Hash Tables . 17
2.2.3 Design of Block Spaced Seed Set . 19
2.2.4 Clustering . 21
2.2.5 Incorporating Base Calling Quality Values 22
2.2.6 SEED System Design . 23

2.3 Evaluation . 24
2.3.1 Test Results with Simulated Data 24
2.3.2 Test Results with Real Data . 26

ix

3 BRANCH Algorithm 38
3.1 Introduction . 38
3.2 Methods . 39

3.2.1 Overview of the Algorithm . 39
3.2.2 Alignment Steps . 40
3.2.3 Exon Detection Algorithm . 44
3.2.4 Transfrag Extension Algorithm . 47
3.2.5 Implementation and Performance . 50

3.3 Evaluation . 50
3.3.1 Test Results with Simulated Data 50
3.3.2 Test Results with Real Data . 54

4 AlignGraph Algorithm 64
4.1 Introduction . 64
4.2 Methods . 66

4.2.1 AlignGraph Algorithm . 66
4.2.2 Software Implementation . 78

4.3 Evaluation . 78
4.3.1 Experimental Design . 78
4.3.2 Results . 84

5 Conclusions and Future Work 89
5.1 Conclusions . 89
5.2 Future Work . 91

A Supplementary Materials for Chapter 2 102

B Supplementary Materials for Chapter 3 108

x

List of Figures

2.1 Cumulative contig sizes of genome assemblies. The plot compares the cu-
mulative contig size distribution of the Velvet assembly results presented in
Table 2.2a (for details see table legend). In this plot, the N50 value is the
contig size (Y-axis) at 50% of the assembly coverage (X-axis). 34

3.1 Input, processing steps and output of BRANCH. RNA reads are assembled
with existing assembly software to de novo transfrags. BRANCH maps the
RNA reads to the transfrags, and the transfrags and the remaining RNA
reads to the genomic sequences. The latter are usually custom assembled
contigs or gene sequences from a related organism. Guided by the result-
ing read pileups, BRANCH identifies existing and novel exons and splice
junctions, and uses this information to extend the initial transfrags. 41

xi

3.2 (Continued from previous page) Illustration of important features of BRANCH
algorithm. (a) A sample pileup is shown containing paired-end (PE) RNA
reads, preassembled transfrags (t1 to t3) and one contig with exons A to G.
Reads of good quality are indicated in blue and low quality reads in grey.
PE pairs and spliced read fragments are connected with thin black and green
lines, respectively. The red bars (B, C, D, F and G) in the contig are the
exons identified by BRANCH based on the alignment of the preassembled
transfrags against the contig. The blue bars (A and E) in the contig are
two additional exons identified by BRANCH based on spliced and PE reads
aligning with both contig regions covered by transfrags and those not covered
by transfrags. Those exons (here A and E) are often missed by de novo tran-
scriptome assemblers due to insufficient read coverage and/or sequence errors.
The sequencing gap g in exon A could be closed with PE reads in rectangle
Z, because their insert size obtained from the alignment against the contig,
agrees with the expected insert size of the library. Another situation where
BRANCH improves transcriptome assemblies is given on the right side of the
diagram. Here the exon region FG, corresponding to transfrag t3, is subdi-
vided by an internal splice site i1/i2 into two exons. This is supported by a
minimum number of splice junction reads with gaps (rectangle Y) spanning
contig positions i1 and i3. The coverage cov(i3) is the number of junction
reads overlapping with base position i3, here reads in rectangles X and Y ; the
downstream junction coverage djc(i3) is the number of junction reads over-
lapping with base positions i1 and i3 in rectangle Y where i1 + 1 < i3; and
the connectivity con(i2, i3) between positions i2 and i3 is the number of reads
overlapping with bases i2 and i3 in rectangle X where i2 < i3. (b) A junc-
tion graph has been constructed from the alignment. In this graph, exons are
nodes and edges are connections among them that are weighted based on the
read support from the spliced alignments. Source and sink nodes are added
at the beginning (S) and the end (T) of the graph, respectively. The paths
corresponding to the de novo transfrags are marked in red: B → D, C → D
and F → G. (c) The Transfrag Extension Algorithm collapses these paths
to path nodes BD, CD and FG. The resulting Minimum weight Minimum
Path Cover with given Paths (MMPCP) in the original graph (b) includes
the paths indicated by round arrows: S → A → BD → E → G → T and
S → CD → E → FG → T . Each of them corresponds to an extended
transfrag. 43

3.3 Sensitivity tests on simulated data. Sensitivity measures of Velvet/Oases
(VO), Velvet/Oases with BRANCH post-processing (VOB), Trinity (T) and
Trinity with BRANCH post-processing (TB) are plotted for (a) variable con-
tig lengths, (b) sequence error rates in contigs, (c) relative coverages of the
reference genome by contigs, (d) number of RNA reads, and (e) base call
error rates in RNA reads. The invariable parameter settings include 10 kbp
contig length, 1% sequence errors in contigs, 80% contig coverage, 50 million
paired-end RNA reads, and 1% base call error rate in RNA reads. 55

xii

3.4 Transcript length coverage. The number of reference transcripts of the C.
elegans data set is plotted that aligned with the transfrags over increasing
overlap thresholds from ≥ 10% to ≥ 90%. The acronyms assigned to the
different methods in the legend are defined in the first column of Table 3.1. 59

3.5 Sensitivity performance for variable expression quantiles of C. elegans data.
The number of assembled transcripts (x-axis) are plotted across different
expression levels (y-axis). The acronyms assigned to the different methods
in the legend are defined in the first column of Table 3.1. 59

4.1 Overview of the AlignGraph algorithm. The outline on the top (A) shows
AlignGraph in the context of common genome assembly workflows, and the
one on the bottom (B) illustrates its three main processing steps. (A) In step
1, the PE reads from a target genome are assembled by a de novo assembler
into contigs (here c1, c2 and c3). Subsequently (step 2), the contigs can be
extended (blue) and joined by AlignGraph (e1 and e2). (B) The workflow
of AlignGraph consists of three main steps. (i) The PE reads are aligned to
the reference genome and to the contigs, and the contigs are also aligned to
the reference genome. (ii) The PE multi-positional de Bruijn graph is built
from the alignment results, where the red and blue subpaths correspond to
the aligned contigs and sequences from PE reads, respectively. (iii) The
extended and/or joined contigs (here e1 and e2) are generated by traversing
the graph. 67

xiii

4.2 (Continued from previous page) Advantages of the PE multi-positional de
Bruijn graph compared to the positional de Bruijn graph. In the target
genome given on the top A and A′, C and C ′, E and E′, G and G′ are repeti-
tive regions. Each PE read of length 2 × 4 bp is sequenced with one pair from
region ABCDA′C ′ and the other from the corresponding position of region
EFGHE′G′ (the pair from EFGHE′G′ is omitted for simplicity). In com-
parison to the target genome, the reference genome has a repeat-free region
ABC similar to ABCDA′C ′ and a region EFGHE′ similar to EFGHE′G′.
The reads from region ABCDA′C ′ are assembled with a de novo assembler
into a contig starting from CDA′C ′, but regions A and B are not assembled
due to low sequencing depth, repeats or other problems. When aligning the
contig to the reference genome, the repetitive regions C and C ′ are both
aligned to C in the reference genome and the insertion D is assigned to
the end of the reference. In (A) reads are aligned directly to the reference
genome to build the initial positional de Bruijn graph; and in (B)-(D) the
reads are aligned to the pre-assembled contigs and then aligned to the refer-
ence to build first the extended positional de Bruijn graph and then the PE
multi-positional de Bruijn graph. (A) The initial positional de Bruijn graph
is built here with 3-mers. Some reads cannot be aligned to the reference
genome due to sequence differences in the target genome as indicated here
by 3-mers with -1 as alignment position. The repetitive regions A and A′ (or
C and C ′) are collapsed into one path in red in the graph. (B) The initial
positional de Bruijn graph is constructed with help from the read-to-contig
alignment information. The read-to-reference genome alignment information
yields a more complete positional de Bruijn graph, but the repetitive regions
A and A′ (or C and C ′) are still collapsed resulting in branch points. (C)
An extended positional de Bruijn graph is built by incorporating into each
3-mer the read alignment position to the contig. As a result of this operation,
the repetitive regions C and C ′ can be distinguished into two paths where
the 3-mers have different alignment positions in the contig, but A and A′ are
still collapsed. (D) The PE multi-positional de Bruijn graph is constructed
by incorporating into each 3-mer their PE read alignment positions to the
reference genome (the right 3 bases and its alignment position to the contig
is omitted here). With this information the repeats A and A′ can be distin-
guished into two paths as the 3-mers have different PE alignment positions in
the reference genome. The final graph contains only one single path allowing
to output an extended contig corresponding to the region ABCDA′C ′ in the
target genome. 77

xiv

A-1 Data structure of the SEED algorithm. The top figure illustrates the general
data structure. On the left are the hash tables. Each hash table corresponds
to one spaced seed and consists of buckets. Each bucket corresponds to a
word of w bases and has two parts: (i) a header and (ii) an array of pointers
the header points to. All the array pointers reference the sequence space on
the right. The bopttom figure gives a specific example for 6 sequences with
seeds {110, 101, 011} (i.e., l = 3, k = 1 and w = 2). There are three hash
tables each corresponds to one spaced seed, and 42 = 16 buckets in each
hash table. Most of the buckets only have headers but not arrays of pointers,
because the number of associated sequences is very small. 104

A-2 Prediction-performance plot. The FPRs are plotted against the TPRs for the
clustering methods: SEED (green), UCLUST with and without its optimal
mode (blue), and SSAKE (red). The ”true” clusters from the alignment-
based method were used as reference to compute the data points for this plot.
For each test method the results for the four ChIP-Seq samples are provided
separately (SRR038848-SRR038851). The minimum similarity required to
the true clusters was set to x = 0.5. Note, the results for two UCLUST
modes overplot each other because they are almost identical. 105

xv

List of Tables

2.1 Clustering with different methods. The clustering results for four ChIP-Seq
samples (a-d) are shown for the true clusters (alignment based method),
SEED, SSAKE, and UCLUST with and without its optimal mode. The
”true” cluster data were used as references to compute the Jaccard index in
the fourth column. 29

2.2 Assembly tests. The assembly results with Velvet/Oases are shown for (a)
the genome resequencing data set from Rhodobacter sphaeroides and (b) the
transcriptome RNA-Seq data set from Arabidopsis thaliana. The table com-
pares row-wise the results for the following preprocessing steps of the raw
sequences: no preprocessing, preprocessing with SEED, random sampling of
the same number of reads obtained with SEED. The parameters used for
SEED were ≤ 3 mismatches, ≤ 3 overhanging ends and QV mode disabled.
The corresponding cluster size distributions for the genome assembly in part
(a) are given in Figure 2.1. 33

2.3 miRNA profiling with SEED. The table gives for the four small RNA samples
from Hsieh et al. (2009) the number of sequences in each data set, the number
of clusters obtained by SEED with ≥10 members, the relative number of
miRNAs covered by these clusters, and the Pearson correlation coefficients
for the published read counts and the ones obtained by SEED. 37

xvi

3.1 Performance on real data. Assembly results of RNA-Seq data from (a) C.
elegans, (b) S. cerevisiae and (c) M. musculus are given for the transcriptome
de novo assemblers Velvet/Oases and Trinity. The splice variant assembler
Cufflinks was included in one case where its required input was available.
The resulting transfrags were post-processed with BRANCH (e.g. referred
to as Trinty+BRANCH) using under (a) custom assembled genome contigs1

or known gene sequences2 from C. elegans, and under (c) the gene sequences
from the rat genome3. The latter evaluates BRANCH’s performance for a
case where a closely related guide genome sequence is available. The sam-
ple from S. cerevisiae (b) uses custom assembled contigs along with strand-
specific RNA-Seq data from the same organism. The other two cases con-
tained non-strand specific RNA samples. The acronyms introduced in the
first column serve as sample labels in Figures 3.3-3.5. The performance cri-
teria considered in the remaining columns are described in sections 3.1.2 and
3.2.1. 58

4.1 Problems the PE multi-positional de Bruijn graph solves in comparison to
the conventional de Bruijn graph. 71

4.2 Performance Evaluation of AlignGraph. (a) Genomic PE reads from A.
thaliana were assembled with Velvet and ABySS. The resulting contigs were
extended with AlignGraph using as reference the genome sequence from A.
lyrata. (b-d) The subsequent panels contain assembly results for the hu-
man chromosome 14 sample from the GAGE project where the chimpanzee
genome served as reference. (b) Contig assembly results are given for the de
novo assemblers ALLPATHS-LG, ALLPATHS-LGc (in cheat mode), SOAP-
denovo, MaSuRCA, CABOG and Bambus2. (c) Scaffolded assembly results
are given for SOAPdenovo, MaSuRCA, CABOG and Bambus2. The results
are organized row-wise as follows: the number of initial contigs obtained
by each de novo assembler1, the ‘extendable’ subset of the initial contigs
that AlignGraph was able to improve2, and the extension results obtained
with AlignGraph3. The additional columns give the number of contigs4, N50
values5, the number of covered bases6, the average7 and maximum8 length of
the contigs, the number of misassemblies per million base pairs (MPMB)9,
and the average identity among the true contigs and the target genome10.
More details on these performance criteria are provided in 4.3.1(E). 80

4.3 Performance with reference genomes of variable similarity. The tests were
performed on the human chromosome 14 sample where the listed primate
genomes served as reference. The results include the percentage values of
alignable reads1, extendable contigs relative to the initial set2 and improve-
ments of the N50 values relative to the extendable contigs3. Due to space lim-
itations, the latter two rows contain averaged percentage values for the five
assemblers ALLPATHS-LG, SOAPdenovo, MaSuRCA, CABOG and Bam-
bus2. 88

xvii

4.4 Improvements to Published Genome. The published scaffolds from Lands-
berg erecta were extended with AlignGraph using the A. thaliana genome as
reference. The rows and columns are arranged the same way as in Table 4.2,
but several columns are missing here, because it is not possible to compute
the corresponding performance measures in a meaningful manner without
having access to a ‘true’ target genome sequence. In addition, we report here
the total number of bases in the contigs1. 88

A-1 Weights and numbers of block spaced seeds and memory usages of headers
for various read lengths. 105

A-2 The set of block spaced seeds used in the experiments. Each string of 1’s and
0’s is a block spaced seed. 106

A-3 Performance tests of SEED on simulated data. The default parameters are:
107 read sequences of length 40 bp, 1000 true clusters with 10,000 mem-
bers each, ≤ 3 mismatches, ≤ 3 overhanging bases, QV1 = 0, QV2 = 558.
Variations of these parameters are indicated in each subtable. The last two
columns give the number of clusters containing at least 50% and 90% of
their original members, respectively. The FPR for each result is provided in
parentheses. 107

B-1 Population sizes used for mRNA read sampling. The proportions of tran-
scripts are listed falling into variable ranges of expression levels. The latter
are given in reads per kb of exon model per million reads (RPKM). 109

B-2 Assemblies of simulated data with variable contig lengths. Performance re-
sults for different contig lengths are shown for Velvet/Oases, Velvet/Oases
with BRANCH post-processing (referred to as Velvet/Oases+BRANCH),
Trinity, and Trinity with BRANCH post-processing (referred to as Trin-
ity+BRANCH). The invariable parameter settings include: 1% contig se-
quencing errors, 80% contig coverage, 50 million paired-end RNA reads, and
1% RNA read base call errors. The corresponding sensitivity plot is given in
Figure 3.3a. 110

B-3 Assemblies of simulated data with variable contig base error rates. The invari-
able parameter settings include: 10 kbp contig length, 80% contig coverage,
50 million paired-end RNA reads, and 1% RNA read base call errors. The
corresponding sensitivity plot is given in Figure 3.3b. 111

B-4 Assemblies of simulated data with variable genome coverage by contigs. See
legend of Table S-2 and S-3 for details. The corresponding sensitivity plot is
given in Figure 3.3c. 112

B-5 Assemblies of simulated data with variable numbers of RNA reads. See legend
of Table S-2 and S-3 for details. The corresponding sensitivity plot is given
in Figure 3.3d. 113

B-6 Assemblies of simulated data with variable RNA read base call error rates.
See legend of Table S-2 and S-3 for details. The corresponding sensitivity
plot is given in Figure 3.3e. 114

xviii

Chapter 1

Introduction

1.1 Next Generation Sequencing

Next Generation Sequencing (NGS) emerged in 2005 and is improving with a very fast pace.

Widely used NGS platforms include Illumina, Roche 454 and SOLiD. Although each plat-

form has its own distinct characteristics, the basic work flows are similar (Shendure and Ji,

2008). The first step of the NGS method is to break DNA into shorter template fragments.

After ligating adaptors, the fragments are immobilized on a flow cell and then amplified

via a bridge Polymerase Chain Reaction (PCR) step to so called clusters. All clusters on a

flow cell are sequenced simultaneously using a reversible fluorescence terminator approach.

The NGS technology can also sequence transcriptomes after converting RNA to DNA via

a reverse transcriptase. However, it is usually harder to generate high-quality RNA reads

than DNA reads because of severe abundance differences and secondary structures in mR-

NAs. Compared with Sanger sequencing, NGS is much faster and less expensive, but the

1

reads are often shorter and of lower quality. Assembling DNA or RNA reads to genomes

or transcriptomes, respectively, is one of the most challenging problems in bioinformat-

ics. The following introduces the algorithms commonly used for genome and transcriptome

assemblies. Subsequently, unsolved problems and opportunities of the assembly field are

discussed.

1.2 Genome Assembly Algorithms

The most challenging aspects of genome assemblies are limited read quality and repeti-

tive regions in genome sequences. Read quality is affected by sequencing errors and lowly

sequenced genomic regions (or sequencing gaps). Low read quality can result in false posi-

tive and incomplete contigs, respectively. Repetitive sequence regions can cause ambiguity

in the assembly limiting contig lengths. Most genome assembly algorithms are de novo

methods. A much smaller number of algorithms incorporates information from genomes of

closely related species. The de novo algorithms can be further classified into three major

types of algorithms: overlap-then-extend, string graph and de Bruijn graph algorithms. The

following introduces these different types of algorithms in more detail.

1.2.1 De Novo Genome Assembly Algorithms

(A) Overlap-then-extend Algorithm. The assemblers using the overlap-then-extend ap-

proach were developed in the early stages of the NGS technologies. Their basic idea is to

iteratively extend a contig if the coverage and the number of overlapping bases are both

above a minimum threshold. This operation is repeated until no more reads can be joined.

2

The algorithm is relatively straightforward to implement, but it has two major drawbacks:

(i) extensions are often terminated when the process transitions from a repetitive to a

non-repetitive region, and (ii) the time performance of this approach is not sufficient for

processing tens of millions of reads even when using relatively efficient suffix tree based

read indexing methods. The first assembler using this approach was SSAKE (Warren et al.,

2007a). VCAKE is an improved variant allowing mismatches in the extension steps to

account for base call errors (Jeck et al., 2007), while SHARCGS uses several read quality

filtering steps to improve the precision of the contigs (Dohm et al., 2007).

(B) String Graph-based Algorithm. Kececioglu and Myers (1995) were the first to propose

a string graph-based algorithm for Sanger read assembly, and Myers (2005) applied the idea

to NGS data. A string graph is a directed graph where each vertex represents a read, and

one vertex u is connected to another vertex v if the suffix of at least x bases of u is the same

as the prefix of v. To construct a string graph, an important pre-process is to find all the

overlaps between each read pair. After the initial graph layout is generated, the graph is

simplified by reducing transitive edges, and then the copy number of each edge is computed

to infer how many times each edge should be traversed. Finally, the algorithm finds the

minimum cost flow from the copy number weighted graph and the obtained flow corresponds

to the target genome. The advantage of the algorithm is its memory efficiency. However,

a major limitation is its compute time for finding the overlaps of each read pair even with

recent improvements from Rasmussen et al. (2006) or the adoption of the FM-index to this

problem (Simpson and Durbin, 2010; Ferragina and Manzini, 2000; Li and Durbin, 2009a).

Edena and SGA are two assembly software tools based on this approach (Hernandez et al.,

3

2008; Simpson and Durbin, 2012).

(C) De Bruijn Graph-based Algorithm. Initially, Idury and Waterman (1995) introduced

the de Bruijn graph algorithm for Sanger read assembly. Pevzner et al. (2001) extended this

idea by incorporating error correction techniques and paired-end read support, and Chaisson

and Pevzner (2008) applied it to NGS data. A de Bruijn graph is a directed graph. Two

connected vertices u and v represent k + 1 bases where u represents the first k bases and

v the second k bases (called k-mer). To construct a de Bruijn graph, l − k + 1 connected

vertices are constructed from each read of length l and two vertices from different reads

are joined if they have the same k-mers. Ideally, a traversal of the de Bruijn graph would

cover all the bases of a genome in sequential order, and thus reconstruct its entire sequence.

In comparison to the overlap graph-based NGS assembly algorithms, the de Bruijn graph

approach has two major advantages making it the preferred method for most NGS assembly

tools. First, it avoids the time-consuming computation step to find overlaps between each

read pair. Second, it can easily process reads of variable lengths. A disadvantage is its

relatively large memory footprint requiring high performance compute environments for

assembling larger genomes.

Software examples using the de Bruijn graph include Velvet (Zerbino and Birney,

2008a), ABySS (Simpson et al., 2009), ALLPATHS (Butler et al., 2008; Gnerre et al., 2011),

SOAPdenovo (Li et al., 2010; Luo et al., 2012), MaSuRCA (Zimin et al., 2013), CABOG

(Miller et al., 2008) and Euler-SR (Chaisson and Pevzner, 2008). Euler-SR was the first

release of this type of assemblers, while Velvet and ALLPATHS contain several modifications

and improvements (Miller et al., 2010). Each vertex of the de Bruijn graph built by Velvet

4

is not a single k-mer, but a set of continuous k-mers. This design helps preserving k-mer

connections contained in the reads. ALLPATHS-LG, an improved version of ALLPATHS

(Gnerre et al., 2011), is optimized for using two PE read sets with different insert lengths.

One library with insert length I >> 2l and the other with insert length I < 2l where l is

the read length. ALLPATHS-LG fills in the gaps between the first library’s read pairs with

the second library, and then assembles the extended reads. For single library assemblies,

several performance comparisons among different assemblers have been published (e.g. Lin

et al., 2011; Zhang et al., 2011). These publications conclude that each assembler has its

own data-dependent advantages and disadvantages with respect to sensitivity, precision,

run time and memory usage. However, for multiple libraries, the comparison results from

the GAGE project (Salzberg et al., 2012) show that ALLPATHS-LG and SOAPdenovo are

currently one of the best performing genome assemblers.

More recent theoretical advances in this area include IDBA (Peng et al., 2010), the

paired-end de Bruijn graph (Medvedev et al., 2011) and the positional de Bruijn graph (Ro-

nen et al., 2012). IDBA is an improved iterative algorithm which constructs the de Bruijn

graph by iterating over all k-mer lengths. During this process the algorithm efficiently cor-

rects errors, closes gaps in the graph and generates longer contigs. The paired-end de Bruijn

graph is constructed from PE reads where each k-mer contains k bases from the left read

plus k corresponding bases from the right read of a pair. With this additional information,

two k-mers from repetitive regions can often be distinguished, and thus branches in the

de Bruijn graph can be reduced. At this point, there is no published software available

using the paired-end de Bruijn graph. The main reason for this may be its dependency on

5

the strand information of the reads relative to the target genome. The latter is not easily

obtainable in pure de novo assembly applications that lack an alignment step against a

reference. Currently, the positional de Bruijn graph, as implemented in the SEQuel soft-

ware, is not directly used as a de novo assembler. Instead it is used as a downstream contig

refinement method. The positional de Bruijn graph is built from the read alignments to the

contigs with each k-mer containing k bases plus the corresponding mapping position of the

alignment. Similar to the paired-end de Bruijn graph, branches can be reduced with the

additional positional information.

1.2.2 Reference-Based Genome Assembly Algorithms

Previous work on reference-guided assemblies include the AMOScmp software (Pop et al.,

2004a), an add-on tool for the ARACHNE assembler (Gnerre et al., 2009) and a custom

workflow based on existing software tools (e.g. Schneeberger et al., 2011). The first two

have been designed primarily for Sanger read assembly, while the latter has been used for

NGS assembly. The method from Gnerre et al. (2009) was able to substantially improve

the quality of genome assemblies of complex organisms. It also has been successfully used

for assembling Sanger reads from 29 mammalian genomes (Lindblad-Toh et al., 2011). This

heuristic algorithm aligns both pre-assembled de novo contigs and Sanger reads to a ref-

erence genome, extends and joins the contigs or scaffolds with the reads. The pipeline

approach from Schneeberger et al. (2011) was developed to assemble four strains of Ara-

bidopsis thaliana from paired-end Illumina reads using a local assembly approach of reads

aligning to the reference and those that could not be aligned with a combination of de novo

6

assemblers. The merged and error-corrected contigs were then further assembled into su-

percontigs using a scaffolding software. Currently, the authors provide no software to easily

rerun their assembly pipeline on other data sets.

1.3 Transcriptome Assembly Algorithms

A major challenge in transcriptome assemblies are splice variants containing different com-

binations of exons encoded by each gene in a genome. Thus, an assembly algorithm has

to find the correct combination of exons contained in each transcript. Similar to genome

assemblies, transcriptome assemblies are affected by poor read quality, while uneven read

coverage for different transcripts makes it hard to use the coverage information to correct

sequencing errors. There are two types of transcriptome assembly algorithms: de novo

algorithms and reference-based algorithms. The two types of algorithms differ in many

aspects. The de Bruijn graph is the major choice for the de novo algorithms while the

string graph is more convenient for reference-based algorithms since the overlaps between

each read pair can be easily obtained by aligning the reads to the reference. The following

discusses the two types of algorithms. It is important to note that the reference genome

for the reference-based genome assembly approach is from a closely related species, whereas

reference assisted transcriptome assemblies utilize the genome from the same species.

1.3.1 De Novo Transcriptome Assembly Algorithms

Most de novo transcriptome assembly algorithms are based on the de Bruijn graph. Unlike

genome assembly algorithms, these algorithms pre-assemble the reads into intermediate

7

contigs, cluster the contigs and then build a de Bruijn graph for each cluster. The contigs

in the same cluster are expected from the same gene sharing bases of sufficient length, so the

de Bruijn graph built from a cluster is much simpler than in genome assemblies. The graph

contains branches, but unlike in genome assemblies, most of the branches come from splice

variant events. Both paired-end read information and coverage difference among paths can

be used to resolve the branches to generate transfrags. Representative assemblers in this

category include Trinity (Grabherr et al., 2011), Oases (Schulz et al., 2012), Trans-ABySS

(Robertson et al., 2010), SOAPdenovo-Trans (Xie et al., 2013) and T-IDBA (Peng et al.,

2011). While all of them share the same algorithmic foundation, Trans-ABySS and Oases

assemble transfrags with different sizes of k-mers and then merge the different transfrag

sets. This multiple k-mer approach can improve the sensitivity of assemblies.

1.3.2 Reference-Based Transcriptome Assembly Algorithms

The algorithms in this category mainly include Cufflinks (Trapnell et al., 2010), Scripture

(Guttman et al., 2010), IsoInfer (Feng et al., 2011) and IsoLasso (Li et al., 2011). Cufflinks

first builds a string graph (referred to as overlap graph) by aligning the reads to the ref-

erence genome and then finding the overlaps among the reads. It then weights the edges

of the graph with the aligned reads and finds the minimum weight minimum path cover

representing the transcripts. Scripture builds a connectivity graph where each node repre-

sents a base and each directed edge is placed from one node to another if the corresponding

bases are covered by two continuous read bases. It then finds and outputs all the possible

paths from the connectivity graph. IsoInfer subdivides the discovered exons into segments

8

and minimizes the observed and predicted expression levels in all the segments with a least

squares objective function. IsoLasso is an updated version of IsoInfer by adding an L1 norm

penalty term to the least squares objective function in order to achieve better assembly re-

sults. In summary, Cufflinks seeks the minimum set of transcripts corresponding to the

reads. IsoInfer minimizes the discrepancy between the observed and predicted expression

levels, while IsoLasso minimizes both. Scripture lacks an optimization step which negatively

impacts its performance.

1.3.3 Comparison between De Novo and Reference-Based Transcriptome

Assembly Algorithms

The reference-based algorithms are generally more sensitive than the de novo algorithms

while the de novo algorithms do not require a reference genome. The reference-based

algorithms are affected by errors in the reference genome and false read alignments, while

de novo algorithms require much higher sequencing depth and memory resources.

1.4 Problems and Opportunities

1.4.1 Completeness of Genome and Transcriptome Assemblies

As discussed above, sequencing errors and sequence gaps affect both genome and transcrip-

tome assemblies, while transcriptome assemblers cannot easily take advantage of the read

coverage information to correct sequencing errors due to abundance differences of tran-

scripts. Besides this, genome assemblies are challenging mainly due to repetitive regions

in genomes, and the main challenge in transcriptome assemblies are splicing events leading

9

to populations of highly similar transcript variants. As a result, even the most advanced

genome and transcriptome assemblers usually fail to assemble complete genomes or tran-

scriptomes. Nevertheless, many opportunities have been evolving from NGS technologies in

the assembly field. Two important observations are: (i) the cost of DNA-Seq is decreasing

exponentially and (ii) the number of completely sequenced organisms is also increasing very

fast. These developments lead to the following opportunities for genome and transcriptome

assemblies.

(A) Opportunities for Genome Assemblies. For genome assemblies, we may refer to a

closely related species which has been fully sequenced and published. Combining both

de novo assembly and alignment-based approaches presents a powerful alternative when a

closely related reference genome sequence is available, but its genetic differences relative to

the target genome are too pronounced to resolve them with an alignment approach alone

(Schneeberger et al., 2011; Phillippy et al., 2008; Schatz et al., 2013). In this case, one can

first assemble the reads into contigs and then align them together with the reads to the

reference. The much longer contigs facilitate the identification of complex rearrangements,

while the read alignments are useful for detecting smaller variations in regions that are not

covered by contigs. Due to the rapidly increasing number of reference genomes becoming

available for most organism groups, this reference-assisted assembly approach will soon

become the default option for many genome sequencing projects. Compared to de novo

assemblies, reference-assisted assemblies have many advantages. First, the alignments of

the contigs and reads against the close reference provide valuable proximity information

that can be used to extend contigs with additional reads and to join contigs even if they

10

overlap only by a few nucleotides. Second, the proximity information in the alignments can

also be used to orient and order contigs along the reference to build a scaffold map of the

entire assembly. Third, the alignment map can be used to evaluate the quality of contigs

and pinpoint potential mis-assemblies.

(B) Opportunities for Transcriptome Assemblies. For transcriptome assemblies, we may

either refer to a closely related species or assemble the DNA reads from the same species

to contigs and use the contigs to improve transcriptome assemblies. This hybrid approach

of guiding transcriptome assemblies with preliminary genomic sequencing information is a

practical and cost effective possibility since one can sequence nowadays a genomic sample

of a 1 GB genome of interest at 20-50 coverage with the read output from only 1-2 flow

cell lanes of a modern NGS instrument. Technically, the collection and sequencing of a

genomic sample is also very straightforward, and stability issues or abundance variations

of sequences are less a concern with genomic DNA than RNA. Alternatively, the genome

contigs can be substituted by an existing genome sequence from a related species with high

enough DNA sequence identity (usually > 90− 95%) to the RNA-Seq sample. This option

eliminates the need for generating the genomic contig data set. The genomic sequences pro-

vide an additional backbone of evidence for improving de novo transcriptome assemblies by

minimizing their typical errors and limitations, such as incomplete transfrags (e.g. missing

exons), fragmented transfrags, chimeric transfrags due to low read coverage and base calling

errors. When aligning the transfrags and RNA-Seq reads against given genomic contigs, one

can extend and correct many of these fragmented or incomplete transfrags. For instance,

two transfrags aligned next to each other on the same contig can be joined if a sufficient

11

number of RNA reads can be aligned to support this merge. Similarly, a transfrag can be

extended if the RNA read coverage along the corresponding region of the genomic sequences

indicates a truncated transcript sequence. Because genomic contigs also contain errors, it

is important to allow in this process only those transfrag modifications that are supported

by high-quality alignments.

1.4.2 Run Time and Memory Performance

The data volumes generated by NGS technologies have been growing at a pace that has

now begun to greatly challenge the data processing and storage capacities of modern com-

pute systems (Medini et al., 2008). Only four years ago, NGS technologies like Illumina’s

reversible terminator method or ABI’s ligation approach created approximately 1 billion

bases of DNA sequence information per instrument run which has now increased to over

300 billion bases per run with even shorter turnaround times (Holt and Jones, 2008). Pro-

cessing and storing the large amounts of data produced by these technologies is a major

challenge for modern genome research. Thus, it is important to develop methods that can

improve the efficiency of the analysis workflows for NGS data. To mention just a few,

these include algorithms for processing the data more time and space efficiently (Langmead

et al., 2009a; Li and Durbin, 2009b; Li et al., 2009) as well as data reduction approaches

that aim to retain only the scientifically relevant and non-redundant information from NGS

projects rather than everything (Leinonen et al., 2010). For example, in genome resequenc-

ing projects one can greatly reduce the data set sizes by storing only genetic variations,

while removing the bulk of the sequence information that only confirms what is already

12

known (Fritz et al., 2011). Similarly, in quantitative NGS experiments for profiling pools

of mRNAs, small RNAs or protein-DNA interactions one can convert the data to much

less storage intensive tag counts at an early stage of the analysis workflow. Solutions that

prevent or greatly minimize information loss are always preferred. However, with the cur-

rent growth rates of NGS data many of them may soon become impractical, especially

when the data sizes become the main time and financial bottleneck for conducting scientific

experiments in the NGS field.

1.5 Organization of Dissertation

The proposal first introduces three algorithms designed to address the challenges discussed

above. First, SEED (section 2; Bao et al., 2011) improves the time and memory perfor-

mance of genome and transcriptome assemblies. Second, BRANCH (section 3; Bao et al.,

2013) takes genomic contigs or a closely related reference genome to boost transcriptome

assemblies. Third, AlignGraph (section 4; to appear) extends and joins contigs or scaf-

folds by reassembling them with help provided by a reference genome of a closely related

species. Finally, a conclusion section proposes improvements and future advancements of

these algorithms.

13

Chapter 2

SEED Algorithm

2.1 Introduction

This study introduces a new algorithm capable of clustering NGS sets in size ranges of

several hundred million entries using a modified spaced seed method (Ma et al., 2002; Lin

et al., 2008). This method, hereafter referred to as SEED, efficiently joins sequences into

clusters with user-definable similarity parameters ranging from 0 to 3 mismatches and over-

hanging ends with up to 3 nucleotides in length. These mismatch features are important

to make the method less sensitive to base call errors, imprecise molecular cleavage events

or inaccurate adaptor trimming. The main utilities of SEED are the identification, enu-

meration and removal of redundant sequences in NGS data. In its current implementation,

SEED is designed to function as a short read clustering tool with controllable mismatch

parameters, but not as an error corrector like FreClu (Qu et al., 2009). There are several

practical applications of this clustering approach. First, the method can be used to reduce

14

the complexity in NGS data by collapsing redundant reads to a single center sequence along

with its frequency information. While this data reduction step results only in a minor in-

formation loss, it can greatly improve the run time, memory requirements, and quality of

genome and transcriptome assemblies. Second, it can be used to determine the sequence

diversity in quantitative NGS profiling data sets, such as RNA-Seq and ChIP-Seq, by enu-

merating very similar reads. The resulting numbers of unique versus redundant reads can

be an important parameter for identifying technical problems in these data sets (e.g. low

reproducibility due to bias in PCR amplification steps). Third, the method can be applied

to discover clusters of microRNAs (miRNAs) directly from NGS data without the require-

ment of mapping the reads to a reference genome which is particularly important when

working with unsequenced organisms (Montgomery et al., 2008; Johnson et al., 2009).

While in the past decade there has been extensive research on sequence family

clustering for handling data sets in the range of hundreds of thousand entries (e.g. Li

and Godzik, 2006), there has been very limited development of methods for clustering the

much larger sequence volumes from NGS experiments with hundreds of millions of entries.

The short list of tools capable of clustering data sizes in the range of at least several

million sequences includes UCLUST and FreClu (Edgar, 2010; Qu et al., 2009). Most

other clustering tools in this area are designed to solve problems related to EST analysis,

such as pre-clustering of ESTs to facilitate their downstream assemblies (Rao et al., 2010;

Hazelhurst et al., 2008; Huang and Madan, 1999; Picardi et al., 2009).

In the following, we first describe the theory behind the SEED clustering algo-

rithm as well as the design of its software implementation. We then illustrate and discuss

15

its time, memory and accuracy performance by using both simulated and real NGS data

sets. The real data sets were specifically chosen to evaluate the algorithm’s efficiency for

several application areas, including complexity reduction of RNA-Seq profiling experiments

in the absence of a reference, prediction of mature miRNAs, and transcriptome and genome

assemblies.

2.2 Methods

2.2.1 Overview of the Algorithm

To cluster NGS by similarity, SEED indexes the reads by using the open hashing technique

and a special class of spaced seeds (Lin et al., 2008), called block spaced seed. Once the reads

are stored in hash tables, SEED clusters them by first creating a virtual center sequence for

each cluster and then finding all the reads that are within a certain similarity threshold to

the center sequence. The following is a short overview of the algorithm. More details are

provided in the next subsections.

A. Indexing

1. Initialize the indexing if the longest and the shortest read sequences do not differ by

more than five bases in length.

2. Use the first seed in a chosen set of block spaced seeds to hash the sequences into a

hash table.

3. Repeat step A.2 with each block spaced seed of the set and store their results in

separate hash tables.

16

B. Clustering

1. Select an arbitrary sequence, identify for it all sequences within twice the mismatch

threshold and compute their virtual center sequence.

2. Find for the virtual center sequence all sequences with the allowed number of over-

hanging bases and mismatches. Then remove these sequences from the hash tables.

3. Repeat steps B.1 to B.2 until the hash tables are empty.

2.2.2 Indexing and Hash Tables

Spaced seeds were introduced by Ma et al. (2002) as a time efficient method for sequence

similarity searching. Several NGS alignment tools are based on this method. These include

Eland (Cox, unpubl.), MAQ (Li et al., 2008), SeqMap (Jiang and Wong, 2008) and ZOOM

(Lin et al., 2008). The general framework of spaced seeds can be summarized as follows.

A spaced seed of length l is a binary string of l bits. When the seed is used in matching

a query string of length l with another string, the bit 1 demands a match while the bit

0 tolerates a mismatch. Such a seed can also be conveniently used to index sequences of

length l in hashing. For example, the spaced seed ’01110’ will file the sequences ’CAAAG’

and ’TAAAA’ into the same bucket, as well as all other five-mers with an ’AAA’ in the

middle. The weight w of a spaced seed is its number of 1’s. It directly affects the size of the

hash tables in the above indexing scheme, and thus memory usage. The parameter k is

usually a predefined value, and the size of a set of spaced seeds is denoted as c. The details

of designing a set of spaced seeds with full search sensitivity for given values of l, w, k will

be discussed in Section 2.2.4.

17

The hash table data structure used in SEED is shown in Figure A-1. Each hash

table corresponds to a spaced seed, and each bucket in it corresponds to a word of w bases.

A bucket consists of a header and a dynamically allocated array of pointers. The header

points to an array, and each pointer in the array references a sequence. During the clustering

process, a tag will be assigned to the pointers where the sequences have been assigned to

clusters to indicate their removal from the hash tables. In addition, there is an array of

unsigned integers (not shown in Figure A-1) for storing the number of pointers in each

bucket. Suppose that n is the total number of sequences. The memory usage s in bytes B

on a 64-bit machine can be estimated as follows:

s = 3× 4w+1c+ 4nc+ (d l
4
e+ 1)n (2.1)

In Figure A-1, from left to right, the headers take 4w × c × 8B = 2 × 4w+1cB memory,

where 8B is the memory required for a pointer on a 64-bit machine in a straightforward

implementation. However, integer offsets can be used instead of real pointers to reduce the

memory footprint of a pointer to 4B. The c hash tables take n× c× 4B = 4ncB memory.

The memory requirement for storing the sequences themselves is n × d l4eB = nd l4eB and

nB for the tags. In addition, the array for storing the number of items in each bucket

takes 4w × c × 4B = 4w+1cB memory. Combined together, the total memory required is

3× 4w+1c+ 4nc+ d l4enB. For example, if there are 1 million sequences of 36 bps, w = 12

and c = 10, then the memory requirement totals: s = 3×412+1×10+4×1M×10+(d36
4 e+

1)× 1MB = 1970MB.

18

2.2.3 Design of Block Spaced Seed Set

While other spaced seeds methods are more common, especially in the NGS alignment field,

we have chosen block spaced seeds for NGS clustering, because they are conceptually simple

and easy to optimize.

Definition 1. A block spaced seed is a binary string consisting of a sequence of blocks of

equal length, where each block contains either all 0’s or all 1’s.

The seed sets used by various short read alignment tools are usually heuristic de-

signs. With the exception of ZOOM, they provide suboptimal solutions, but with good

performance in practice. Typically, their seed sets are often the outcome of manual opti-

mization procedures for a given read length and number of mismatches. In contrast to this,

an optimal set of block spaced seeds for a given read length and number of mismatches can

be automatically identified with Algorithm 1 (see below). Note that such an optimal set

of block spaced seeds typically represents a suboptimal solution for general spaced seeds.

We first state a theorem upper bounding the size of an optimal block spaced seed set. The

proof of the theorem and the analysis of Algorithm 1 are both available in the Appendix

section.

Theorem 1. For any given l, w, k, there exists a set of block spaced seeds with length l and

weight w that guarantees full search sensitivity with respect to k mismatches if and only

if k ≤ l
gcd(l,w) −

w
gcd(l,w) , where gcd(l, w) denotes the greatest common divisor of l and w.

Moreover, for any k ≤ l
gcd(l,w)−

w
gcd(l,w) ,

(w
gcd(l,w)

+k

k

)
block spaced seeds of length l and weight

w would suffice to guarantee full search sensitivity with respect to k mismatches.

19

Algorithm 1 BestSeedSet(l, k)
m =∞
for w = 13 to 11 do

if k ≤ l
gcd(l,w)

− w
gcd(l,w)

then

c =
(w

gcd(l,w)
+k

k

)
if m > 2× 4w+1c then
m = 2× 4w+1c
w0 = w
c0 = c

end if
end if

end for
generate block spaced seed set
return w0 and c0

Although it is desirable to maximize w in order to be time efficient, the memory

complexity given in Equation (1) suggests that we should minimize w (and c) in order

to be memory efficient. Therefore, we should seek a balance between time and space.

Table A-1 shows the memory usages (headers only), seed weights and numbers of seeds

required for several read lengths ranging from 25 to 35, where the seed weights and numbers

of seeds for each read length are calculated using Algorithm 1 and the memory usages

calculated using Equation (1) with similarity threshold k = 3. Clearly, if a set of block

spaced seeds guarantees full sensitivity for read sequences of length l, then it also guarantees

full sensitivity for sequences of length more than l. Moreover, we can always pad spaced

seeds with 0’s so they have the same length as the reads. Thus, for a specific pair of weight

w and number c, the length l listed in the table should be regarded as the minimum read

length that w and c support. Since a row with a small l, large w, small c, and small memory

usage s is desirable, we choose the row with l = 30, w = 12, c = 10, and s = 1.25 GB in our

experiments (where the reads are 36 bps long, up to three overhanging bases are allowed

on each side and up to three mismatches are tolerated). Table A-2 lists the 10 block spaced

seeds used in our experiments.

20

2.2.4 Clustering

The actual sequence clustering component of SEED is an iterative process consisting of

three major steps. First, an arbitrary sequence x is selected and hashed using each block

spaced seed to locate c buckets. The sequences in the c buckets with at most fk mismatches

to the sequence x are identified by a simple Hamming distance calculation, where k is the

maximum number of mismatches allowed in a cluster, and f is set to be 2 as a factor

of k. The consensus of the resulting sequence set is computed to obtain a virtual center

sequence. Second, the virtual center sequence is hashed using each block spaced seed, and

the sequences from all the resultant buckets are retrieved. A cluster is formed to include all

the sequences with ≤ k mismatches to the virtual center sequence. The clustered sequences

are removed from the hash tables. Third, to also include sequences that largely overlap

with x but with overhanging ends, the virtual center sequence is shifted (actually, rotated)

to the left and to the right within the maximum allowed shift distance (predefined value

from 0-3). For each shifted center sequence, all sequences in the hash tables are added to

the cluster that are within k mismatches to the center and then they are also deleted from

the hash tables. The above steps are repeated until all sequences have been assigned to

clusters and deleted from the hash tables.

Our choice of f = 2 in the initial clustering (step one) is based on the following

considerations. Given a cluster of sequences with≤ k mismatches to its center, an arbitrarily

selected sequence in the cluster has ≤ 2k mismatches to any sequence in the set. With this

setting the method can collect all sequences belonging to a cluster even if the randomly

chosen seed sequence is far away from the true center of a cluster. The final virtual center

21

sequence - generated from this candidate set - will then provide a reasonable approximation

of the true center.

After the clustering, each sequence will be part of a cluster with one or more

members. The final results are stored in two cluster result files. One tabular file lists the

complete set of reads with their corresponding cluster identifiers. The second file is the

clustered FASTQ file containing for each cluster only its center sequence along with the

corresponding quality scores (see below).

2.2.5 Incorporating Base Calling Quality Values

NGS data contain base calling quality information usually in the form of Phred scores

(Cock et al., 2010). To incorporate this quality information into the clustering process, the

SEED algorithm allows the user to specify two optional quality value (QV) constraints. The

first constraint QV1 specifies when a mismatch should be ignored. That is, a mismatch is

ignored if and only if the sum of the Phred scores of the two mismatching bases is lower than

the specified QV1 threshold value. The second constraint QV2 specifies when mismatches

should be regarded as critical difference in clustering. That is, two sequences are joined in a

cluster only if the sum of the Phred scores of all their mismatching bases is below the QV 2

threshold value. Therefore, 0 ≤ QV 1 ≤ 93 × 2 and 0 ≤ QV 2 ≤ 93 × 6 in this paper since

our similarity threshold allows at most 3 mismatches (Cock et al., 2010). Note that using

SEED with the QV information results in a larger memory footprint, because the Phred

scores of all sequences need to be read into memory. Since filtering the sequences by quality

prior to the clustering may be often an attractive alternative, QV is an optional parameter

22

in the SEED program.

2.2.6 SEED System Design

(A) General Features. SEED has been implemented in C++ as a standalone cross-platform

tool for Linux, OS X and Windows operating systems. It expects sequences formatted in

standard FASTQ format. It can be run in the three modes ordinary, fast and short. The

ordinary mode uses block spaced seeds of weight 12 as listed in Table A-2 and supports read

sequences of length 36-100 bps. The fast mode uses block spaced seeds of weight 13 and

supports sequences of length 58-100 bps. The short mode uses block spaced seeds of weight

6 and supports sequences as short as 21 bps. The fast mode provides the fastest processing

time, but requires long sequences and slightly more memory than the ordinary mode. The

short mode is suitable for small data sets of short sequences like miRNA sequences, but it

is slower than the ordinary mode. The default setting is the ordinary mode.

(B) Performance Optimization. To optimize the time and memory performance of SEED,

we have implemented the following features.

Memory Performance

• Each base stored in memory corresponds to two bits.

• Only one copy of each sequence is stored in memory, while the hash tables store

pointers to all duplicates.

• The pointers are integer offsets, requiring 4 bytes each instead of 8 bytes on a 64-bit

machine.

23

Time Performance

• A garbage collection is performed in short intervals to prevent long chaining events.

Pointers to already processed sequences that have been assigned to clusters are dis-

carded.

• A different set of block spaced seeds of weight 13 is used in the fast mode for sequences

of lengths longer than 58 bps. The 1’s in the spaced seeds are positioned as close to the

3′ ends as possible. The latter results in more evenly distributed sequences in the hash

table and reduces the bucket sizes. This is important because the read quality near

the 3′ end is usually lower, which could be the cause of mismatches among sequences

belonging to the same cluster.

2.3 Evaluation

2.3.1 Test Results with Simulated Data

To test the performance of SEED, we generated 1000 random center sequences. For each of

these, we randomly generated sequences with mismatches and overhanging ends, so that the

number of center sequences was the number of true clusters. The main objectives of these

tests were to determine how well SEED clusters the sequences with respect to the number

of clusters, and the number of falsely assigned members in them compared to the true

clusters. In the following, the latter aspect is referred to as the false positive ratio (FPR),

which is the number false positive members divided by the size of a cluster averaged for all

clusters in a set. In addition, the same tests were used to empirically determine the time

24

and memory performance of the algorithm. In each test we changed only one parameter

while keeping the remaining parameters constant. The results of these tests are presented in

Tables A-3a to A-3g. They include tests for the number of sequences, the sequence length,

the number of true clusters, the number of mismatches, the number of overhanging ends

and the QV1/QV2 constraints, respectively. The QV mode of the program was only used

for the corresponding tests in Tables A-3f to A-3g.

The time to cluster with SEED 10-100 million sequences of 40 bp in length in-

creases linearly from 24 to 233 minutes, respectively (Table A-3a). For the same data set,

the memory footprint increases only sub-linearly from 2.6 to 8.0 GB. When clustering se-

quence sets of increasing lengths, then the time also increases linearly, while the memory

usage shows no change (Table A-3b). With increasing numbers of true clusters the time

requirement also changes sub-linearly and the memory usage stays almost constant (Table

A-3c). The number of clusters with at least 5,000-10,000 members assembled by SEED

is consistently smaller than the number of true clusters in the test data sets (Tables A-

3a to A-3g). However, the FPR in the cluster sets is almost exclusively 0. This means

that SEED tends to split true clusters into smaller ones, but without contaminating them

with false positive members from other clusters. This behavior is extremely important for

many practical applications, because false cluster assignments would result in information

loss, while splitting the clusters into smaller ones will not remove any important sequences.

For instance, in assembly projects removing redundant sequences will help to reduce the

memory requirements, but when the clusters are contaminated with false positives then the

clustering will remove many sequences that may be important for an optimal assembly. Due

25

to the more incremental similarity transitions among clusters in real data sets, one would

expect there higher FPRs than with simulated data. This can be seen in the subsequent

tests on real data sets. However, the FPRs on real data sets are still impressively low (see

section 3.2).

More mismatches require extra memory for bucket allocation, but the compute

time decreases due to shorter chains (Table A-3d). The number of clusters shows the same

trend, because the similarity threshold decreases with the number of mismatches allowing

more sequences to be assigned to clusters. For similar reasons, the memory requirements

shown in Table A-3e grow with increasing numbers of overhanging residues. However,

the time requirements are increasing in this case, because the relative differences among

the sequences dominate the clustering time. Also, the number of large clusters decreases,

because more shifts tend to reduce the cluster sizes.

When running SEED in the quality aware QV mode (see Tables A-3f and A-3g)

then the quality scores need to be imported into the clustering process, which increases its

memory footprint by about 15%. The time requirements decrease with increasing threshold

values of QV constraints, because greater threshold values tend to assign more sequences to

clusters in each pass. In case of QV1, the number of large clusters increases, because more

sequences can be assigned to clusters for greater QV1 values.

2.3.2 Test Results with Real Data

(A) Data Sets and Experimental Design. The performance and utility spectrum of SEED

for real data was tested on four different types of NGS data that were downloaded form

26

NCBI’s Sequence Read Archive (SRA). In all cases the sequence data were based on Illu-

mina’s NGS technology. They included experiments from the following application areas:

genome resequencing (sample SRX016064 from Rhodobacter sphaeroides), ChIP-Seq (sam-

ples SRR038848-SRR038851 from Arabidopsis thaliana; Kaufmann et al., 2010), RNA-Seq

(samples SRR064165-SRR0641 from Arabidopsis thaliana; Jiao and Meyerowitz, 2010), and

small RNA-Seq (samples SRR032112-SRR032115 from Arabidopsis thaliana; Hsieh et al.,

2009). The ChIP-Seq data set was used to compare SEED with other clustering meth-

ods. Both the genome resequencing and the RNA-Seq data sets were used to evaluate the

utility of SEED for de novo genome and transcriptome assembly projects with respect to

improvements of the memory footprints and the contig sizes of the final results. Another

test included a small RNA data set for evaluating SEED’s efficacy in identifying clusters of

mature miRNA sequences in the absence of a reference genome.

In most test experiments the NGS data sets were clustered with SEED. Subse-

quently, the resulting center sequences were used as input data sets for the downstream

analysis steps that are commonly used in different application fields, such as assembly and

genome/transcriptome alignment steps. The final results were then compared to results

obtained without SEED preprocessing.

(B) Cluster Quality Tests. To evaluate how well SEED clusters NGS data, we designed

test experiments with real data sets where we benchmarked its performance against the

“true” clusters obtained from genome alignment results. For comparison purposes, we also

included the clustering software UCLUST and the assembly tool SSAKE in these tests

(Warren et al., 2007b; Edgar, 2010). The former was chosen as a software representative

27

with utilities similar to SEED’s. In contrast to this, the typical use case of assembly tools

is different, but when they are run on short reads with very stringent overlap criteria then

they can fulfill in parts the utility requirements of an NGS clustering tool. Among the many

assembly tools available, SSAKE was chosen here because its output format provides the

read positions in the contigs which simplified the downstream post-processing of the results.

As test data, we used the four ChIP-Seq sets from Arabidopsis thaliana. These samples were

selected because ChIP-Seq data contain highly variable enrichments of read pileups (peaks)

along the chromosomes which is a relatively realistic and also challenging situation when

testing the performance of a NGS clustering tool. The true clusters for these data sets were

obtained by aligning the reads with Bowtie against the Arabidopsis reference genome while

allowing up to three mismatches in the alignments. Subsequently, all aligned sequences that

completely overlapped with other sequences in the pileup were assigned to clusters with two

or more members. Sequences with no or only partial overlaps to other reads were assigned

to singlet clusters. The resulting data set is referred to as the ”true” cluster set, because it

resembles an almost ideal benchmark result of high quality. To obtain meaningful results

for the other tools, we used for them comparable parameters. SEED clustering was run with

up to three mismatches, but no overlapping ends to match the constraints of the alignment-

based reference cluster set. For UCLUST we used comparable parameters by setting the

identity parameter to l−k
l . Similarly, SSAKE was run with settings that were optimized to

obtain only clusters of almost identical sequences. Most importantly, its parameter for the

number of matched positions was set to l − k.

Table 2.1 gives an overview of the clustering results obtained by the different

28

Table 2.1: Clustering with different methods. The clustering results for four ChIP-Seq
samples (a-d) are shown for the true clusters (alignment based method), SEED, SSAKE,
and UCLUST with and without its optimal mode. The ”true” cluster data were used as
references to compute the Jaccard index in the fourth column.

Method # clusters
clusters

identical with
true ones

Jaccard index Time Memory in GB

(a) SRR038848 (4,962,666 reads aligned)
True 1,106,780
SEED 973,627 632,209 0.96 00:06:12 2.3
UCLUST 977,904 618,101 0.92 01:28:54 0.4
UCLUSTo 976,871 622,028 0.92 01:44:25 0.4
SSAKE 1,431,122 650,596 0.86 00:20:09 3.0

(b) SRR038849 (2,435,754 reads aligned)
True 973,673
SEED 880,920 512,270 0.97 00:04:02 2.2
UCLUST 873,784 500,982 0.94 00:36:23 0.4
UCLUSTo 873,135 502,654 0.94 00:42:43 0.4
SSAKE 1,070,654 515,574 0.91 00:13:56 2.3

(c) SRR038850 (5,386,160 reads aligned)
True 3,365,685
SEED 3,151,149 664,359 0.95 00:09:47 2.8
UCLUST 3,086,836 669,243 0.88 04:13:09 1.4
UCLUSTo 3,084,657 674,211 0.88 07:12:52 1.4
SSAKE 3,814,607 599,858 0.86 00:51:38 6.9

(d) SRR038851 (3,148,061 reads aligned)
True 2,182,354
SEED 2,038,577 287,903 0.94 00:06:28 2.5
UCLUST 2,096,534 297,756 0.84 01:37:47 0.9
UCLUSTo 2,094,080 300,539 0.85 01:45:00 0.9
SSAKE 2,540,359 214,013 0.77 00:34:10 4.6

methods. Compared to the other methods, SEED has at least a 3- to 10-fold better time

performance than the other two methods, but its memory requirements are not as low as

UCLUST’s. With respect to the cluster qualities, SEED performs consistently better than

the other methods by showing the highest Jaccard index values relative to the true clusters.

The Jaccard index is a commonly used similarity measure for comparing clustering results,

where values close to 0 indicate low similarities and values closer to 1 higher similarities

among the evaluated cluster sets. In addition, we used the clustering results presented in

Table 2.1 to compare the prediction performance of SEED with the other methods. For

29

this, we plotted in Figure A-2 the false positive rates (FPR) against the true positive rates

(TPR). The FPR is defined as FP
FP+TN and the TPR as TP

TP+FN . The individual variables

were determined by finding in the results those clusters that show a minimum similarity

x to the true clusters. TP is the number of sequences in each cluster contributing to the

similarities; FP is the number of sequences in the clusters that do not contribute to the

similarities; TN is the number of sequences not in the clusters which should not contribute to

the similarities; FN is the number of sequences not in the clusters which should contribute

to the similarities. In the resulting graph (Figure A-2), SEED shows the best performance

by having consistently the highest TPR values and in most cases lower FPR values as

well. The better sensitivity and specificity of SEED is most likely linked to its virtual

center sequence for guiding the clustering process. This approach provides relative accurate

approximations of the true cluster centers. In this regard UCLUST is less conservative

by centering its clusters around a single seed sequence. In addition, SEED is optimized

to cluster very similar NGS reads with variable arrangements of mismatch positions. In

contrast to this, UCLUST is optimized for detecting a wider range of sequence similarities

based on common word matches in its initial search step. This approach is more likely to

miss certain high similarity matches that fall below the word size limit of the algorithm.

However, the latter feature appears to be less critical, because even when UCLUST is used

in its optimal mode, where it does not dependent on common word matches (see rows with

UCLUSTo in Table 2.1), the performance of SEED is still better.

One concern with the seed algorithm could be that its clustering results may vary

depending on which read is chosen first in the random selection process to initialize the

30

formation of the virtual center sequence of a cluster. To address this, we also performed

tests on the four ChIP-Seq data sets from Arabidopsis thaliana where we varied the factor

f to compute the virtual center sequence as well as the order of reads (data not shown).

The quality of the resulting cluster sets was evaluated again with the Jaccard index. With

increasing values of f from 1 to 4 the Jaccard index showed only minor differences (< 0.01)

for the four data sets. We set f = 2 as the default value in all of our experiments, since

it gave one of the best results in our tests and it is also a reasonable choice based on the

discussion in Section 2.5. Similarly, changing the orders of reads resulted in insignificant

changes of the Jaccard index (< 0.01). These tests indicate a relatively stable performance

of SEED with respect to these parameter changes.

(C) Assemblies Assisted with SEED. Assemblies rank among the most challenging com-

putational problems in the NGS field (Birney, 2011). Partially, this is because they tend

to be an iterative and time consuming improvement process with highly variable outcomes

for different data sets (Miller et al., 2010). Moreover, their memory requirements and ex-

ecution times are often so extensive that larger data sets can only be assembled on high

performance compute systems with considerable CPU and memory resources. To improve

this, we tested SEED for upstream processing prior to assembly and then analyzed the time

and memory requirements of the assembly step, as well as the qualities of the resulting

contigs. The assembly components of these tests were performed with Velvet which is one

of the most widely used assembly tools for NGS data (Zerbino and Birney, 2008b; Schmidt

et al., 2009). To run the assemblies with optimized parameters, the Velvet Optimiser tool

was used. The genome assemblies were performed with Velvet only, and the transcriptome

31

assemblies included both Velvet and its transcriptome-specific Oases component. All soft-

ware tools were run on a single CPU core (64-bit 2.4GHz Xeon Quad Core Harpertown) to

allow fair comparisons of their time and memory usages.

Genome Assembly

Table 2.2 and Figure 2.1 summarize the assembly results for the genome resequencing data

set from Rhodobacter sphaeroides with Velvet. These tests were performed with and without

SEED preprocessing. A random set was included for comparison, where we assembled

the same number of sequences as obtained in the preprocessing step with SEED, but by

randomly selecting the reads from the raw data set. Compared to the non-preprocessed

data set, the assembly time and memory requirements in the SEED data set are greatly

reduced by 84.8% and 41.2%, respectively (Table 2.2a). With respect to the quality of the

assembly results, several commonly used quality measures improved in the SEED data set

compared to the non-preprocessed data set: the number of contigs decreased by 14.0%, the

mean length of the contigs increased by 16.8% and the N50 value increased by 26.5%. The

latter is the contig length where 50% of the entire assembly is contained in contigs of at

least this value. In contrast to this, the corresponding measures in the data set generated

by random sampling show the opposite trend. A more detailed overview of the cluster size

distributions in the three result sets is given in Figure 2.1. In this plot, the SEED data set

shows in comparison to the other tests the highest cumulative contig sizes.

Transcriptome Assembly

To also test whether SEED preprocessing could provide improvements for assemblies of

transcriptomes, we performed similar tests with the chosen RNA-Seq data set from Ara-

32

T
ab

le
2.

2:
A

ss
em

b
ly

te
st

s.
T

h
e

a
ss

em
b

ly
re

su
lt

s
w

it
h

V
el

ve
t/

O
as

es
ar

e
sh

ow
n

fo
r

(a
)

th
e

ge
n
om

e
re

se
q
u

en
ci

n
g

d
at

a
se

t
fr

om
R

h
od

o
ba

ct
er

sp
h
a
er

o
id

es
a
n

d
(b

)
th

e
tr

an
sc

ri
p

to
m

e
R

N
A

-S
eq

d
at

a
se

t
fr

om
A

ra
bi

d
o
p
si

s
th

a
li

a
n

a
.

T
h

e
ta

b
le

co
m

p
ar

es
ro

w
-w

is
e

th
e

re
su

lt
s

fo
r

th
e

fo
ll

ow
in

g
p

re
p

ro
ce

ss
in

g
st

ep
s

of
th

e
ra

w
se

q
u

en
ce

s:
n

o
p

re
p

ro
ce

ss
in

g,
p

re
p

ro
ce

ss
in

g
w

it
h

S
E

E
D

,
ra

n
d

o
m

sa
m

p
li

n
g

of
th

e
sa

m
e

n
u

m
b

er
of

re
ad

s
ob

ta
in

ed
w

it
h

S
E

E
D

.
T

h
e

p
ar

am
et

er
s

u
se

d
fo

r
S

E
E

D
w

er
e
≤

3
m

is
m

at
ch

es
,

≤
3

ov
er

h
a
n

gi
n

g
en

d
s

an
d

Q
V

m
o
d

e
d

is
ab

le
d

.
T

h
e

co
rr

es
p

on
d

in
g

cl
u

st
er

si
ze

d
is

tr
ib

u
ti

on
s

fo
r

th
e

ge
n

om
e

as
se

m
b

ly
in

p
ar

t
(a

)
ar

e
gi

ve
n

in
F

ig
u

re
2.

1.

P
re

p
ro

ce
ss

in
g

#
se

q
u

en
ce

s
to

a
ss

em
b

le
(R

ea
d

le
n

g
th

)
#

co
n
ti

g
s

N
5
0

M
ea

n
le

n
g
th

o
f

co
n
ti

g
s

M
em

o
ry

fo
r

a
ss

em
b

ly
T

im
e

fo
r

a
ss

em
b

ly
M

em
o
ry

fo
r

cl
u

st
er

in
g

T
im

e
fo

r
cl

u
st

er
in

g

(a
)

G
en

o
m

e
A

ss
em

bl
y

N
o
n

e
5
1
,4

4
8
,6

9
4

(3
6
b

p
)

2
,2

3
0

5
,1

4
3

2
,0

3
9

9
.7

G
B

0
7
:5

3
:5

4
-

-
S

E
E

D
1
0
,6

4
4
,8

1
3

(3
6
b

p
)

1
,9

1
8

6
,5

0
4

2
,3

8
2

5
.7

G
B

0
1
:1

1
:5

9
4
.1

G
B

0
3
:4

1
:2

9
R

a
n

d
o
m

sa
m

p
li
n

g
1
0
,6

4
4
,8

1
3

(3
6
b

p
)

2
,9

2
4

3
,8

5
5

1
,5

3
1

2
.5

G
B

0
1
:1

2
:2

5
-

-

(b
)

T
ra

n
sc

ri
p

to
m

e
A

ss
em

bl
y

N
o
n

e
7
2
,2

9
5
,2

1
1

(3
7
b

p
)

2
1
,0

1
4

4
5
2

3
3
8

2
8

G
B

1
5
:0

8
:3

6
-

-
S

E
E

D
2
9
,8

4
1
,2

2
2

(3
7
b

p
)

1
2
,9

8
8

5
0
7

3
9
1

2
2

G
B

0
5
:5

9
:3

3
8
.7

G
B

0
4
:0

9
:5

1
R

a
n

d
o
m

sa
m

p
li
n

g
2
9
,8

4
1
,2

2
2

(3
7
b

p
)

1
2
,8

6
8

3
9
6

3
1
5

1
2

G
B

0
5
:5

7
:0

9
-

-

33

Cumulative Length of Contigs

Percentage of Assembly Covered by Contigs of Size >=Y

C
on

tig
 S

iz
e

[b
p]

10000

20000

30000

40000

50000

●

●

●●

●
●
●
●●●

●●●

●

●●
●●●
●●●

●

●●
●●●●

●

●●●●●
●●●
●
●●●

●

●

●

●

●●
●●
●

●

●●●●

●
●●

●●
●●●●●●●

●●●
●

●●●●●●●
●●●

20 40 60 80 100

Samples

● NONE: N50=5143

● RANDOM: N50=3855

● SEED: N50=6504

Figure 2.1: Cumulative contig sizes of genome assemblies. The plot compares the cumulative
contig size distribution of the Velvet assembly results presented in Table 2.2a (for details see
table legend). In this plot, the N50 value is the contig size (Y-axis) at 50% of the assembly
coverage (X-axis).

bidopsis thaliana. When using SEED, both the time and memory requirements decreased

by 60.4% and 21.4%, respectively. In addition, the mean contig length and the N50 value

could be increased by 15.7% and 12.2%, respectively.

The above results on genome and transcriptome data clearly indicate that SEED prepro-

cessing can improve the performance of downstream sequence assemblies using Velvet with

respect to compute time, memory usage and quality parameters of the final contigs. Time

and memory improvements are the main advantages here, whereas quality enhancements

of the final results are likely to vary depending on the specific challenges presented by dif-

ferent sequence types. Investigating which data sets are particularly affected by this and

34

how SEED exactly improves the quality of assemblies (e.g. error correction), goes beyond

the scope of this study. When assembling transcriptome data, SEED clustering will help

to reduce the extreme redundancies of very abundant mRNA species in these data sets,

while maintaining the important information relevant for many RNA-Seq applications. On

the other hand, when assembling genomes with highly repetitive sequences, then it will

be often necessary to perform SEED preprocessing with very stringent mismatch settings

(e.g. k ≤ 1), because higher numbers of mismatches in SEED clustering may eliminate

information critical to achieve an optimal assembly of highly similar genomic regions.

(D) Discovery and Profiling of miRNAs with SEED. To explore the potential utility of

SEED for identifying and profiling mature miRNA clusters in unsequenced organisms, we

performed the following tests. First, we clustered with SEED the raw sequences from four

different NGS samples from a recently published small RNA profiling study in Arabidopsis

thaliana (Hsieh et al., 2009). In this study the authors determined by NGS the expression

profiles of 180 miRNAs from root and shoot tissues both grown in the presence and absence

of phosphate (Pi). Subsequently, we identified for all miRNAs profiled in the published study

the corresponding center sequences in the SEED clustering results. In this association step,

the center and mature miRNA sequences had to fully overlap and show not more than one

mismatch. Finally, we compared the sequence counts (expression profiles) for each of the

miRNAs in the published data set with the size of the corresponding SEED clusters (Table

2.3). Considering only clusters with at least 10 sequences, 76.1-89.4% of the miRNAs in

the published data set could be associated with SEED clusters. The likelihood of finding

this many overlaps just by chance is very low (random sampling test p < 10−5). On

35

average, these clusters contain 20-48% more sequences than clusters obtained by a simple

counting approach of absolutely identical reads (data not shown). The Pearson correlation

coefficients (PCC) for the sequence counts for each miRNA in the published data set and the

corresponding SEED clusters are for all four samples relatively high (PCC: 0.82-0.91). This

high correlation, and the high coverage of known miRNAs detected by these tests, illustrate

SEED’s utility for identifying in unsequenced genomes candidate clusters of mature miRNA

sequences and obtaining for them relatively reliable expression data. A challenge in real

data sets without a reference genome will be the identification of the correct miRNA clusters

among the much larger pool of unrelated clusters (third column in Table 2.3). This can

be largely overcome by sequence similarity searching. Here one can identify clusters with

similarities to known miRNAs, which are often evolutionary conserved. In addition, one can

easily eliminate by similarity searching against reference databases the typical contaminants

in small RNA data sets, such as ribosomal RNAs or transposons.

36

Table 2.3: miRNA profiling with SEED. The table gives for the four small RNA samples
from Hsieh et al. (2009) the number of sequences in each data set, the number of clusters
obtained by SEED with ≥10 members, the relative number of miRNAs covered by these
clusters, and the Pearson correlation coefficients for the published read counts and the ones
obtained by SEED.

Samples # Sequences # Clusters miRNAs identified PCC
(size ≥10) (all samples 96%)

SRR032112 (Root -Pi) 5,142,120 37,315 76.1% 0.91
SRR032113 (Root +Pi) 4,919,514 38,193 83.3% 0.89
SRR032114 (Shoot -Pi) 4,862,947 46,776 89.4% 0.82
SRR032115 (Shoot +Pi) 5,003,481 43,176 86.6% 0.87

37

Chapter 3

BRANCH Algorithm

3.1 Introduction

This study proposes a new method, named BRANCH, for improving the completeness of

de novo transcriptome assemblies by making use of partial or complete genomic sequence

information from the same or closely related species. It involves the initial de novo assembly

of the RNA-Seq reads to transfrags and DNA reads to genomic contigs using existing NGS

assembly software for both types of data. For instance, the genomic reads can be assem-

bled with Velvet (Zerbino and Birney, 2008a), ABySS (Simpson et al., 2009), ALLPATHS

(Butler et al., 2008), SOAPdenovo (Li et al., 2010; Luo et al., 2012) or IDBA (Peng et al.,

2010), while the RNA reads can be assembled with de novo transcriptome assemblers like

Velvet/Oases (Zerbino and Birney, 2008a; Schulz et al., 2012), Trinity (Grabherr et al.,

2011), Trans-ABySS (Robertson et al., 2010), SOAPdenovo-Trans (Xie et al., 2013) or T-

IDBA (Peng et al., 2011). In a downstream transcriptome assembly enhancement step, the

38

genomic contig information is used to identify novel exons, extend incomplete transfrags

and join fragmented ones using the BRANCH algorithm introduced in this study.

BRANCH contains features that intersect in parts with reference-based splice vari-

ant assembly tools (sometimes referred to as ab initio assemblers; Trapnell et al., 2010;

Guttman et al., 2010; Feng et al., 2010; Li et al., 2011), such as the identification of splice

variants from RNA sequence alignments against a reference. What makes BRANCH dis-

tinct from these tools is that it is designed to maximize the number and completeness of

exons contained in preassembled transfrags guided by partial or complete genome sequences

from the same or a closely related organism. It does this even for sequence regions with

low RNA read coverage. This functionality is novel and relevant for de novo transcriptome

assembly projects of unsequenced or only partially sequenced genomes, because the addi-

tional exonic sequence information will contribute to the functional annotatability of the

coding regions of RNA sequences in downstream protein similarity searches.

3.2 Methods

3.2.1 Overview of the Algorithm

BRANCH consists of two major components: Exon Detection and Transfrag Extension.

The Exon Detection component aligns the RNA reads against the preassembled de novo

transfrags, and then it aligns both the transfrags and the remaining reads (that failed to

align) against preassembled genomic contigs or a closely related genome using a modified

version of the BLAT alignment program (see the discussion below; Kent, 2002). Subse-

39

quently, it identifies exons and splice junctions in the read pileups against the contigs.

Pileup regions meeting certain minimum length and read coverage requirements are con-

sidered exons, and low coverage regions between them are introns if they are spanned by

gapped alignments and splice junction signals. In addition to the exons contained in the

initial transfrags, this step identifies novel candidate exons that are often missed in de

novo transcriptome assemblies, mainly due to uneven RNA read coverage. Guided by the

additional DNA sequence information, BRANCH is designed to resolve those low cover-

age regions very efficiently. The Transfrag Extension component builds a weighted directed

acyclic graph (DAG) where the nodes represent the detected exons and the edges splice junc-

tions, while recording the paths through the graph corresponding to each transfrag. The

weight of an edge is determined by the read density supporting the connectivity between

the nodes. It then extends the recorded paths (i.e. transfrags) by finding the minimum

number of paths with the minimum total weight that cover all recorded paths as well as

the remaining nodes (i.e. the novel exons), resulting in extended transfrags.

The following describes the BRANCH algorithm in more details. Section 2.2 in-

troduces the BLAT-based alignment method, and Sections 2.3 and 2.4 describe BRANCH’s

exon detection and transfrag extension algorithms, respectively. Some illustrations of the

algorithms are given in Figures 3.1 and 3.2.

3.2.2 Alignment Steps

An important preprocessor for our method is an alignment tool that can accurately align

short RNA reads as well as much longer transfrags against genomic contigs while inserting

40

BRANCH

Map reads to transfrags

Map transfrags and remaining reads to

contigs or related genome

Identify exons and splice junctions

Extend transfrags

Transfrags

Extended

transfrags

DNA contigs or

related genome

RNA

reads

Figure 3.1: Input, processing steps and output of BRANCH. RNA reads are assembled
with existing assembly software to de novo transfrags. BRANCH maps the RNA reads to
the transfrags, and the transfrags and the remaining RNA reads to the genomic sequences.
The latter are usually custom assembled contigs or gene sequences from a related organism.
Guided by the resulting read pileups, BRANCH identifies existing and novel exons and
splice junctions, and uses this information to extend the initial transfrags.

gaps at exon-intron junctions. Several alignment tools are available for mapping short

RNA reads with gaps and limited numbers of mismatches against genome sequences. These

include TopHat (Trapnell et al., 2009; Langmead et al., 2009b), GMAP (Wu and Watanabe,

2005), SpliceMap (Au et al., 2010) and MapSplice (Wang et al., 2010). For aligning longer

transfrag sequences, software tools designed for generating long gapped alignments, such as

BLAT, are more suitable than short read aligners. Hence, the current implementation of

BRANCH uses a modified version of BLAT that we have optimized to align both types of

RNA sequences with acceptable run time, sensitivity, and error tolerance against genomic

contigs. These changes to the BLAT executable are similar to those introduced by Grant

et al. (2011), but they have been customized for our specific needs of aligning long and short

41

A
B

C
D

E
F

A

S

B

C

D
E

F

T

A

S

C
D

E
T

B
D

R
ea

d
s

T
ra

n
sf

ra
g

s

C
o

n
ti

g

a b
c

G

G

F
G

G

co
n
(i

2
,i

3
)

i 1
i 2

i 3

co
v

(i
3
)

t 1
t 2

t 3

X

Y

g

Z

d
jc

(i
3
)

=

co
n

(i
1
,i

3
)

42

F
ig

u
re

3.
2:

(C
on

ti
n
u

ed
fr

om
p

re
v
io

u
s

p
a
ge

)
Il

lu
st

ra
ti

on
of

im
p

or
ta

n
t

fe
at

u
re

s
of

B
R

A
N

C
H

al
go

ri
th

m
.

(a
)

A
sa

m
p

le
p

il
eu

p
is

sh
ow

n
co

n
ta

in
in

g
p

ai
re

d
-e

n
d

(P
E

)
R

N
A

re
ad

s,
p

re
as

se
m

b
le

d
tr

an
sf

ra
gs

(t
1

to
t 3

)
an

d
on

e
co

n
ti

g
w

it
h

ex
on

s
A

to
G

.
R

ea
d

s
of

go
o
d

q
u

a
li

ty
ar

e
in

d
ic

a
te

d
in

b
lu

e
an

d
lo

w
q
u

al
it

y
re

ad
s

in
gr

ey
.

P
E

p
ai

rs
an

d
sp

li
ce

d
re

ad
fr

ag
m

en
ts

ar
e

co
n

n
ec

te
d

w
it

h
th

in
b

la
ck

an
d

g
re

en
li

n
es

,
re

sp
ec

ti
ve

ly
.

T
h

e
re

d
b

ar
s

(B
,
C

,
D

,
F

an
d
G

)
in

th
e

co
n
ti

g
ar

e
th

e
ex

on
s

id
en

ti
fi

ed
b
y

B
R

A
N

C
H

b
as

ed
o
n

th
e

al
ig

n
m

en
t

of
th

e
p

re
as

se
m

b
le

d
tr

an
sf

ra
gs

ag
ai

n
st

th
e

co
n
ti

g.
T

h
e

b
lu

e
b

ar
s

(A
an

d
E

)
in

th
e

co
n
ti

g
ar

e
tw

o
ad

d
it

io
n

al
ex

on
s

id
en

ti
fi

ed
b
y

B
R

A
N

C
H

b
as

ed
on

sp
li
ce

d
an

d
P

E
re

ad
s

al
ig

n
in

g
w

it
h

b
ot

h
co

n
ti

g
re

gi
on

s
co

ve
re

d
b
y

tr
an

sf
ra

gs
an

d
th

o
se

n
ot

co
ve

re
d

b
y

tr
an

sf
ra

gs
.

T
h

os
e

ex
on

s
(h

er
e
A

an
d
E

)
ar

e
of

te
n

m
is

se
d

b
y

d
e

n
o
vo

tr
an

sc
ri

p
to

m
e

as
se

m
b

le
rs

d
u

e
to

in
su

ffi
ci

en
t

re
ad

co
v
er

ag
e

a
n

d
/o

r
se

q
u
en

ce
er

ro
rs

.
T

h
e

se
q
u

en
ci

n
g

ga
p
g

in
ex

on
A

co
u

ld
b

e
cl

os
ed

w
it

h
P

E
re

ad
s

in
re

ct
an

gl
e

Z
,

b
ec

a
u

se
th

ei
r

in
se

rt
si

ze
o
b

ta
in

ed
fr

om
th

e
al

ig
n

m
en

t
ag

ai
n

st
th

e
co

n
ti

g,
ag

re
es

w
it

h
th

e
ex

p
ec

te
d

in
se

rt
si

ze
of

th
e

li
b

ra
ry

.
A

n
ot

h
er

si
tu

a
ti

o
n

w
h

er
e

B
R

A
N

C
H

im
p
ro

ve
s

tr
an

sc
ri

p
to

m
e

as
se

m
b

li
es

is
gi

ve
n

on
th

e
ri

gh
t

si
d

e
of

th
e

d
ia

gr
am

.
H

er
e

th
e

ex
on

re
gi

on
F
G

,
co

rr
es

p
on

d
in

g
to

tr
an

sf
ra

g
t 3

,
is

su
b

d
iv

id
ed

b
y

an
in

te
rn

al
sp

li
ce

si
te
i 1
/i

2
in

to
tw

o
ex

on
s.

T
h

is
is

su
p

p
or

te
d

b
y

a
m

in
im

u
m

n
u

m
b

er
of

sp
li
ce

ju
n

ct
io

n
re

ad
s

w
it

h
ga

p
s

(r
ec

ta
n

gl
e
Y

)
sp

an
n

in
g

co
n
ti

g
p

os
it

io
n

s
i 1

an
d
i 3

.
T

h
e

co
ve

ra
ge

co
v
(i

3
)

is
th

e
n
u

m
b

er
of

ju
n

ct
io

n
re

ad
s

ov
er

la
p

p
in

g
w

it
h

b
as

e
p

os
it

io
n
i 3

,
h

er
e

re
ad

s
in

re
ct

an
gl

es
X

an
d
Y

;
th

e
d

ow
n

st
re

am
ju

n
ct

io
n

co
ve

ra
g
e

d
jc

(i
3
)

is
th

e
n
u

m
b

er
of

ju
n

ct
io

n
re

ad
s

ov
er

la
p

p
in

g
w

it
h

b
as

e
p

os
it

io
n

s
i 1

an
d
i 3

in
re

ct
an

gl
e
Y

w
h

er
e
i 1

+
1
<
i 3

;
an

d
th

e
co

n
n

ec
ti

v
it

y
co

n
(i

2
,i

3
)

b
et

w
ee

n
p

os
it

io
n

s
i 2

an
d
i 3

is
th

e
n
u

m
b

er
of

re
ad

s
ov

er
la

p
p

in
g

w
it

h
b

as
es
i 2

an
d
i 3

in
re

ct
an

gl
e
X

w
h

er
e
i 2
<
i 3

.
(b

)
A

ju
n

ct
io

n
gr

ap
h

h
as

b
ee

n
co

n
st

ru
ct

ed
fr

om
th

e
al

ig
n

m
en

t.
In

th
is

gr
ap

h
,

ex
on

s
ar

e
n

o
d

es
an

d
ed

ge
s

ar
e

co
n

n
ec

ti
o
n

s
am

on
g

th
em

th
a
t

a
re

w
ei

g
h
te

d
b

as
ed

on
th

e
re

ad
su

p
p

or
t

fr
om

th
e

sp
li

ce
d

al
ig

n
m

en
ts

.
S

ou
rc

e
an

d
si

n
k

n
o
d

es
ar

e
a
d

d
ed

at
th

e
b

eg
in

n
in

g
(S

)
an

d
th

e
en

d
(T

)
of

th
e

gr
ap

h
,

re
sp

ec
ti

ve
ly

.
T

h
e

p
at

h
s

co
rr

es
p

on
d

in
g

to
th

e
d
e

n
o
vo

tr
an

sf
ra

gs
ar

e
m

ar
ke

d
in

re
d

:
B
→
D

,
C
→
D

a
n

d
F
→
G

.
(c

)
T

h
e

T
ra

n
sf

ra
g

E
xt

en
si

o
n

A
lg

or
it

h
m

co
ll

ap
se

s
th

es
e

p
at

h
s

to
p

at
h

n
o
d

es
B
D

,
C
D

a
n

d
F
G

.
T

h
e

re
su

lt
in

g
M

in
im

u
m

w
ei

gh
t

M
in

im
u

m
P

at
h

C
ov

er
w

it
h

gi
ve

n
P

at
h

s
(M

M
P

C
P

)
in

th
e

or
ig

in
al

gr
ap

h
(b

)
in

cl
u

d
es

th
e

p
a
th

s
in

d
ic

at
ed

b
y

ro
u

n
d

ar
ro

w
s:
S
→

A
→

B
D
→

E
→

G
→

T
an

d
S
→

C
D
→

E
→

F
G
→

T
.

E
ac

h
of

th
em

co
rr

es
p

o
n

d
s

to
a
n

ex
te

n
d

ed
tr

an
sf

ra
g.

43

sequences. They include early filtration of candidate alignments to minimize execution time,

disk space, and support for handling paired-end read data. In addition, the boundaries of

identified introns are screened for the presence of canonical (GT-AG) and non-canonical

(e.g. GC-AG, AT-AC) splice sites. This information is used to optimize the exon-intron

junctions obtained from the alignment results.

3.2.3 Exon Detection Algorithm

The Exon Detection (ED) Algorithm identifies exons and splice junctions. It uses the

modified BLAT software described in the previous section to first align the RNA reads

(single or paired-end) against the transfrags, and then the transfrags as well as all the

remaining reads (not mapped in previous step) against the contigs or a related genome

reference. The latter read pool contains RNA reads derived from exon sequences missing

in the transfrag sequences, while others may have failed to align due to base calling errors.

After aligning the transfrags and reads to the contigs, the ED Algorithm identifies exons

and splice junctions guided by the coverage information obtained from the alignment result.

Regions with a minimum RNA read coverage b and a minimum width a are considered exons.

Both a and b are user definable parameters. In future upgrades of BRANCH these thresholds

will be optimized for the user dynamically to minimize false positive exon predictions due

to contaminations with unspliced pre-mRNAs and other sources of noise in the data. After

identifying candidate exons, the algorithm locates splice junctions between them based on

the gap positions in the tranfrag sequences and/or RNA junction reads aligned against

the contig sequences. Alternative splice sites within exons are identified in areas where

44

a minimum number of junction reads share the same gap that spans across one or more

exon regions. Figure 3.2a illustrates these steps with an example. The outcome of the ED

Algorithm are additional exonic sequences not contained in the initial transfrag sequences.

This includes extensions of incomplete exons and the identification of novel exons (complete

or partial) along with their connections. The detailed steps of the ED Algorithm and its

pseudo code are given below.

Step 1 is the alignment of the RNA reads, transfrags and contigs as described above.

Step 2 identifies an exon region based on the alignment, where we denote the coverage of a

contig position i by cov(i). In Figure 3.2a, the coverage of junction base i3 is the number of

junction reads overlapping with it in rectangles X and Y . The reads in rectangle X align

over their full length against the transfrag t3 and the contig, whereas the reads in rectangle

Y align completely only against the contig. Both read sets overlap with position i3. The

algorithm computes the coverage for each contig base, and identifies any contig region, with

start and end positions [l, r], as an exon range, if the width of the contig region satisfies

r−l+1 ≥ a and the average coverage of the contig region satisfies
∑

l≤i≤r
cov(i)

(r−l+1) ≥ b, where

a and b are the minimum width and the minimum coverage requirements, respectively. In

certain cases the newly identified exon regions may be fragmented in areas with very low or

no RNA read coverage. Suppose a novel exon range [l, r] contains sufficient read coverage

in subranges [l, i] and [j, r] (i < j), but subrange (i, j) has zero coverage. In such a case two

partial exons [l, i] and [j, r] will be identified instead of the complete exon [l, r]. Such gaps

can be closed, if there is a sufficient number of PE reads spanning [l, i] and [j, r], and the

mapping distances of the read pairs agree with the approximate insert length of the library.

45

An example of such a case is given in Figure 3.2a, where the coverage gap g divides exon

A into two parts, but it can be closed with the PE read support shown in rectangle Z. To

minimize the risk of incorporating introns, this type of gap closures are only performed if

the mapping distances of the read pairs agree with the approximate insert length of the

RNA-Seq library. Alternatively, the user can specify this parameter.

Step 3 identifies alternative splice junction sites within exons. Here, we define the upstream

and the downstream junction coverage. The upstream junction coverage at contig position

i, denoted as ujc(i), is the number of reads having bases at positions j and j + 1 aligned at

contig positions i and k > i+ 1, respectively. Similarly, the downstream junction coverage

at contig position i, denoted as djc(i), is the number of reads having bases at positions j−1

and j aligned at contig positions k < i−1 and i, respectively. For example, the downstream

junction coverage at base i3, djc(i3), is the number of junction reads in rectangle Y of Figure

3.2a covering i3. The aligned junction reads overlap with bases i1 and i3, where i1 + 1 < i3.

The algorithm records the upstream and downstream junction coverages for each contig

base, and then splits such a region [l, r] at contig positions i and i+ 1(l ≤ i < i+ 1 ≤ r), if

the upstream junction coverage at i satisfies ujc(i) ≥ c or the downstream junction coverage

at i + 1 satisfies djc(i + 1) ≥ c, where c is the minimum upstream/downstream junction

coverage requirement to split exon regions.

Step 4 determines which exons are joined based on their connectivity in the alignment result.

The connectivity between the last base of an exon and the first base of a downstream exon

at contig positions i and j > i, denoted as con(i, j), is the number of reads having bases at

positions k and k + 1 aligned at contig positions i and j. In Figure 3.2a, the connectivity

46

between i2 and i3 is the number of reads in rectangle X with matching bases at positions i2

and i3. The algorithm computes the connectivity for each pair of exons and identifies two

exons at positions [l1, r1] and [l2, r2](r1 < l2) as a junction, if the connectivity of the pair of

boundary bases at r1 and l2 satisfies con(r1, l2) ≥ d, where d is the minimum connectivity

requirement to connect two exons.

3.2.4 Transfrag Extension Algorithm

The Transfrag Extension (TE) Algorithm extends and often joins de novo transfrags based

on the additional exon sequences and splice junctions identified in the previous Exon Detec-

tion step. For this it identifies the connections best supported by the data and then joins

the corresponding sequence fragments accordingly. The final output is extended transfrag

sequences, as well as novel transfrags. For example, if the connectivity data obtained in

the previous step indicate that a newly identified exon ε is connected with an existing exon

ε′, and ε′ appears in two separate transfrags t and t′, then the algorithm has to decide if

ε is connected with t and/or t′. A similar but not identical problem is solved by the Cuf-

flinks algorithm for identifying transcript variants in RNA-Seq data (Trapnell et al., 2010).

Thus, our algorithm adopts certain components of this method, while others are specific to

BRANCH’s main application addressing the transfrag extension problem.

(A) Mathematical Formulations

Definition 2. A junction graph is a DAG, where each node represents an exon and each

edge represents a splice junction.

Based on the exons and splice junctions identified by the ED Algorithm, BRANCH

47

Algorithm 2 Exon Detection: ED(R, T , C)

1: Align reads R to de novo transfrags T with BLAT, and then align T and the unaligned reads Rn to contigs C
2: Record the coverage for each base at contig position i, and identify each region [l, r] in a contig, where r− l+1 ≥ a

and
∑

l≤i≤r
cov(i)

(r−l+1)
≥ b

3: Record the upstream and downstream junction coverages for each base at contig position i, split a region [l, r] at
bases i and i+ 1(l ≤ i < i+ 1 ≤ r), if ujc(i) ≥ c or djc(i+ 1) ≥ c, and identify the resulting regions as exons

4: Record the connectivity for each pair of bases at contig positions i and j > i, and identify the splice junction of
each exon pair [l1, r1] and [l2, r2](r1 < l2), if con(r1, l2) ≥ d

builds a junction graph G where each node v represents an exon ε and the connecting edges

are splice junctions among exons. Two nodes v and v′ are connected by an edge e(v, v′) if

their corresponding exons ε and ε′ are junction exons. Similar to the approach chosen by

Trapnell et al. (2010), the graph is weighted based on the percent-spliced-in value introduced

by Wang et al. (2008). The latter expresses the density of the RNA reads supporting

a transcript relative to the density of all the RNA reads mapping to the corresponding

genomic region of the transcript. The percent-spliced-in value for any exon ε (and thus

node v in the junction graph) is defined by:

ψε =
number of compatible reads overlapping with exon ε

number of reads overlappling with exon ε× length of exon ε
. (1)

In the above formula, the overlap and compatibility of an aligned RNA read γ and an exon ε

are defined as follows. Read γ and exon ε overlap if and only if their start coordinates l(γ)

and l(ε) and end coordinates r(γ) and r(ε) in the reference genome satisfy l(γ) ≤ l(ε) and

r(γ) ≥ l(ε), or l(ε) ≤ l(γ) and r(ε) ≥ l(γ). Overlapped read γ and exon ε are compatible if

and only if any gap [i(γ), j(γ)] in the alignment of γ does not overlap with the exon ε. The

value for any exon pair ε and ε′ (and thus edge e(v, v′)) is defined as the absolute difference

of their weights with amplification:

w(ε, ε′) = −log(1− |ψε − ψ′ε|) (2)

48

The smaller w is, the more likely that the ε and ε′ are from the same transcript.

Clearly, each given transfrag corresponds to a path in G. These are called given

paths. Since we are interested in extending the transfrags by possibly merging them and

adding more novel exons, we formulate the transfrag extension problem in BRANCH as a

combinatorial optimization problem called the Minimum weight Minimum Path Cover with

given Paths (MMPCP) problem. An MMPCP is a smallest set of paths with the minimum

weight in the junction graph G that contains all the given paths P as subpaths and cover

all the nodes of V . Here, we seek the smallest number of paths because we would like to

maximize the length of each extended transfrag. The minimum total weight requirement

guarantees that any two exons ε and ε′ in each extended transfrag are from the same true

transcript.

(B) Outline of the TE Algorithm. Our idea to find an MMPCP is to build a new junction

graph G′ from G by (1) converting each given path p ∈ P to a node v(p) and (2) maintaining

the connection between any two nodes v and v′ /∈ p through a subpath of p by introducing

an edge e(v, v′). The new node v(p) will be referred to as path node and the new edge e(v, v′)

as path edge. To keep the two graphs equivalent, the total weight of a given path will be

added to each in-edge of the corresponding path node, and the path edges will be weighted

using the total weights of the corresponding subpaths. This conversion is illustrated in

Figure 3.2b and 3.2c. Then we invoke a Combinatorial Optimization (CO) Algorithm for

solving the Minimum weight Minimum Path Cover (MMPC) problem in the new graph G′

(see Appendix). If P ′ is the resulting MMPC for G′ from the CO Algorithm, the paths in

P ′, or the transfrags they represent, may not be fully extended. To address this, we can

49

iterate the above process for solving the MMPCP problem by recording P ′ as new given

paths and extending them recursively, until they cannot be extended anymore. The TE

Algorithm is more formally outlined in the following pseudocode. The final output of the

TE Algorithm consists of transfrags that have been extended with exonic sequences from

the Exon Detection step, as well as some novel transfrags.

3.2.5 Implementation and Performance

BRANCH has been implemented in C++ with the LEMON library (Dezso et al., 2011)

for Linux operating systems. The modified BLAT executable is distributed along with

BRANCH. The expected input includes RNA reads (single or paired-end), assembled trans-

frags, and genomic contigs or gene sequences from a closely related species. Most of

BRANCH’s execution time is spent on the initial alignment with BLAT ranging from 0.1-

0.5 hours per million reads. The subsequent steps are more memory than CPU intensive

for storing the genomic contigs (0.1 GB RAM per million nucleotides). Both the execution

time and memory usage of BRANCH are approximately linear in the number of RNA-Seq

reads and size of the genomic contigs, respectively.

3.3 Evaluation

3.3.1 Test Results with Simulated Data

(A) Background. The performance of BRANCH was tested with real and simulated

data. The main objective of these experiments was to assess the efficiency of BRANCH for

improving the representation of full-length transcripts in de novo transcriptome assemblies,

50

Algorithm 3 Transfrag Extension: TE(G, P)

Assign weights to the edges of G using Equation (2)
for each given path p ∈ P do

Convert p to path node v(p) and add the total weight of p to each in-edge of v(p)
for any pair of nodes v and v′ /∈ p do

if there is a path p′ /∈ P from v to q ∈ subpath(p) and then to v′ then
Introduce a path edge e(v, v′)
Weight e(v, v′)

end if
end for
Delete p from G

end for
{G is converted to G′}
P ′ ← CO(G′)
if P ′ = P then

return the resultant MMPCP P ′

else
return TE(G′, P ′)

end if

but also its splice variant resolution, error tolerance, and robustness with respect to variable

degrees of incomplete representation of transcript and genomic sequences. While tests on

real data provide more reliable results for the performance of an algorithm, simulated data

were included here because they allow a more systematic evaluation of a wide variety of data

properties than this would be possible with real data only. To mimic in these tests real data

as much as possible and minimize bias toward any method, all sequences were randomly

sampled from a real genome, meaning they were only partially synthetic. The results on

real data sets are given in the next section. In the tests with simulated data, we varied the

number of RNA reads, the average length of the contigs, the relative genome coverage by the

contigs, and the base call error rates in both the RNA reads and the contigs. Benchmarking

BRANCH’s main utility - the enhancement of transcriptome assemblies guided by genomic

sequences - against other tools is currently not easily possible due to the lack of software

designed for this purpose. However, a very informative performance measure is to determine

how well BRANCH can improve de novo assembled transfrags with respect to their full-

51

length and gene coverage in a genome. For this we compared the final results generated by

BRANCH with the initial de novo transfrags that we generated in the tests on simulated

data with the Velvet/Oases and Trinity transcriptome assemblers. Velvet/Oases and Trinity

were chosen here among other software options (e.g. Trans-ABySS, SOAPdenovo-Trans),

because of their good sensitivity and precision performance (Zhao et al., 2011).

(B) Data Sets and Tests. The simulated test data sets were randomly sampled from the

genome and transcriptome sequences of C. elegans provided by Ensembl’s FTP site. From

the genome sequence we sampled three types of contig sets and from the transcriptome two

types of RNA-Seq sets as follows: (1) contigs of variable length of 1, 10, 50 and 100 kbp;

(2) contigs with variable coverage of the C. elegans genome of 40, 60, 80 and 100%; (3)

contigs with variable sequence error rates of 0, 1, 2 and 3% by substituting bases at random

positions; (4) different numbers (10, 30, 50 and 70 million) of paired-end RNA reads of 2x

100 bp length and 200-300 bp insert length while maintaining an abundance distribution

among the reference transcripts that is typical for RNA-Seq samples (see Table B-1); and

(5) RNA reads with variable error rates of 0, 1, 2 and 3%. The simulated RNA-Seq sets

were assembled to transfrags using Velvet/Oases with its parameter optimization script and

Trinity with its default parameter settings.

To be consistent with recent studies on de novo RNA assemblies, we define in our

tests sensitivity and precision in a similar manner. Sensitivity is the number of reference

transcripts which could be aligned, here with BLAT, to a transfrag with ≥95% identity over

≥80% of the transcript’s length and ≥95% of the transfrag’s length (Martin and Wang,

2011). Additionally, test results with variable length coverage values are given in section

52

3.2.3 and Figure 3.4. Precision is defined as the percentage of transfrags which could be

aligned to a reference transcript with ≥95% identity over ≥95% of the transfrag’s length,

but without a minimum length coverage requirement for the transcript (Zhao et al., 2011;

Schulz et al., 2012; Robertson et al., 2010). Moreover, we compare among the different

assembly methods the following performance parameters: numbers of covered transcripts,

complete transcripts and completely represented exonic regions of genes. For the latter two

we also require ≥95% identity and ≥95% length coverage of the reference and the transfrag.

(C) Results. Figure 3.3 and Tables B-2 to B-6 give the test results for the simulated

data sets for variable contig lengths, contig sequence error rates, contig coverages, numbers

of RNA reads, and RNA read base call error rates, respectively. All other parameters are

constant settings, which are specified in the legends. Compared to the input transfrags gen-

erated by Velvet/Oases and Trinity, BRANCH post-processing improves their sensitivity

and precision substantially by 2.3-19.9% and 1.7-15.7%, respectively. The relative sensi-

tivity improvements by BRANCH for both assemblers are about two fold higher when the

coverage of the genome by contigs is raised from 40% to 100% (Figure 3.3c and Table B-4),

whereas increasing sequence error rates from 0-3% in the contigs have a less pronounced im-

pact by reducing the relative sensitivity improvements in the most extreme cases by 20-34%

(Figure 3.3b and Table B-3). Because BRANCH also identifies novel transfrags, the initial

number of transfrags increases as expected (in these tests by 6.7-72.6%). The 487-5,394

transfrag extension events recorded in the BRANCH results lead to 0.2-9.0% more com-

pletely assembled transcripts increasing the number of completely assembled exonic regions

of genes by 0.1-7.6%. The latter improvements are less pronounced due to the more strin-

53

gent full-length criteria applied in these cases. Most importantly, the transfrags processed

by BRANCH have a 6.0-18.5% higher coverage of the total number of exons annotated in

the C. elegans genome than the initial transfrag sets. These results indicate that BRANCH

improves the chosen quality parameters of transcriptome assemblies relatively effectively

over the range of test variables evaluated in these experiments.

3.3.2 Test Results with Real Data

(A) Experimental Design. The performance of BRANCH on real data was tested with

published Illumina NGS samples available in NCBI’s Sequence Read Archive (SRA). To

generate meaningful test results, it was important to choose here NGS data meeting to-

day’s standards for efficient RNA-Seq transcriptome assemblies with respect to read length

(>50bp) and paired-end read information. BRANCH’s performance on the two main types

of genomic guide sequences was evaluated by including in one set of tests custom genomic

contigs assembled from NGS reads of the same organism as the RNA reads, and in another

case existing genome sequence from a closely related organism (Table 3.1). The influence

of the completeness of the genomic sequence information on the performance of BRANCH,

was tested by comparing the results guided by assembled contigs with those from complete

gene sequences.

Two data sets were chosen from diverse multicellular eukaryotic organisms (C. ele-

gans and mouse) to account for splice variants and variable degrees of sequence complexity,

and a third one was from a unicellular eukaryotic organism (S. cerevisiae) with a densely

organized genome and rare alternative splicing. To evaluate the impact of directional in-

54

0

20
00

40
00

1
10

50
10

0
C

on
tig

 L
en

gt
hs

 (
K

ilo
 B

as
e

P
ai

rs
)

Sensitivity (N Reference Transcripts)

(a
)

0

20
00

40
00

0
1

2
3

C
on

tig
 E

rr
or

 R
at

e
(P

er
ce

nt
)

(b
)

0

20
00

40
00

40
60

80
10

0
C

on
tig

 C
ov

er
ag

e
(P

er
ce

nt
)

(c
)

0

20
00

40
00

10
30

50
70

R
N

A
 R

ea
d

N
um

be
r

(M
ill

io
n)

(d
)

0

20
00

40
00

0
1

2
3

R
N

A
 E

rr
or

 R
at

e
(P

er
ce

nt
)

(e
)

V
O

V
O

B
T T

B

F
ig

u
re

3.
3:

S
en

si
ti

v
it

y
te

st
s

on
si

m
u
la

te
d

d
at

a.
S

en
si

ti
v
it

y
m

ea
su

re
s

of
V

el
v
et

/O
as

es
(V

O
),

V
el

ve
t/

O
as

es
w

it
h

B
R

A
N

C
H

p
os

t-
p

ro
ce

ss
in

g
(V

O
B

),
T

ri
n

it
y

(T
)

a
n

d
T

ri
n

it
y

w
it

h
B

R
A

N
C

H
p

os
t-

p
ro

ce
ss

in
g

(T
B

)
ar

e
p

lo
tt

ed
fo

r
(a

)
va

ri
ab

le
co

n
ti

g
le

n
gt

h
s,

(b
)

se
q
u

en
ce

er
ro

r
ra

te
s

in
co

n
ti

g
s,

(c
)

re
la

ti
ve

co
ve

ra
ge

s
of

th
e

re
fe

re
n

ce
ge

n
om

e
b
y

co
n
ti

gs
,

(d
)

n
u

m
b

er
of

R
N

A
re

ad
s,

an
d

(e
)

b
a
se

ca
ll

er
ro

r
ra

te
s

in
R

N
A

re
ad

s.
T

h
e

in
va

ri
ab

le
p

ar
am

et
er

se
tt

in
gs

in
cl

u
d

e
10

k
b

p
co

n
ti

g
le

n
gt

h
,

1%
se

q
u

en
ce

er
ro

rs
in

co
n
ti

gs
,

8
0%

co
n
ti

g
co

ve
ra

g
e,

5
0

m
il

li
o
n

p
ai

re
d

-e
n

d
R

N
A

re
ad

s,
an

d
1%

b
as

e
ca

ll
er

ro
r

ra
te

in
R

N
A

re
ad

s.

55

formation in the RNA reads, we used in two cases non-strand-specific RNA-Seq samples

and in another case a strand-specific sample. The RNA reads from all sample sets were

assembled with Velvet/Oases and Trinity (Grabherr et al., 2011; Zhao et al., 2011). In case

of Trinity the default parameter settings recommended by its developers were used. DNA

reads were assembled to contigs with Velvet using the VelvetOptimiser tool for parameter

optimization. To also compare against an alignment-based splice variant assembler, we in-

cluded Cufflinks, which is a fundamentally different method compared to the above de novo

assemblers. Cufflinks was only included in the test case with the known genome sequences

as guide reference, because it was the only situation where the minimal input data types,

required for this method, were available. The splice junction information was obtained

by aligning the RNA reads with Tophat (Version 2) against the genomic sequences. Both

Tophat and Cufflinks were run with their default parameter settings.

The results obtained from the different tests were used to compute similar quality

parameters (Table 3.1) as in the previous section assessing among other properties the

full-length and splice variant resolution of the transfrags. To also evaluate the functional

annotatability of the assembled transcripts before and after processing them with BRANCH,

they were used as queries in BLASTX searches (E-value cutoff 10−9) against the protein

databases of the corresponding organisms. The obtained results were queried for nearly

complete protein matches requiring ≥95% identity on the protein sequence level.

(B) Datasets. The first NGS sample set is from C. elegans. Its genomic read set contained

57 million 2x 55-76 bp long paired-end reads (accessions: SRR066623, SRR066625; Weber

et al. 2010) and its RNA-Seq set contained 72 million 2x 100 bp paired-end reads (accession:

56

SRR316929; Hillier et al. 2009). The second sample set is from mouse (Mus musculus)

with 34 million 2x 76 bp paired-end RNA-Seq reads (accessions: SRR290901, SRR290902;

unpublished). The gene sequences from rat (Rattus norvegicus) were used in this case as

genomic guide sequence to test BRANCH’s performance for a situation where a related

genome sequence is available. The third sample set is from S. cerevisiae with 4 million 2x

76 bp long paired-end genomic reads (accessions: SRR527545, SRR527546; unpublished),

and 10 million 2x 76 bp strand-specific paired-end RNA-Seq reads (accession: SRR059177;

Levin et al. 2010).

(C) Assemblies Assisted with Custom Genome Contigs. The performance test results

for the C. elegans data are given in Table 3.1a. In comparison to the initial transfrags

assembled by Velvet/Oases, BRANCH shows a 6.3% and 10.5% improved sensitivity and

precision performance, respectively, when guided by the 88,175 genome contigs assembled for

this experiment representing 90.4% of its genome. To evaluate the sensitivity performance

over a wider threshold range of transcript length coverage values, Figure 3.4 compares

among the different assembly methods the number of reference transcripts from C. elegans

that aligned with the transfrags over increasing minimum overlap values from 10 − 90%.

BRANCH exhibits here a consistent improvement compared to the other methods over the

full range of overlap thresholds. When comparing the sensitivity performance among the

different methods for variable expression levels (see Figure 3.5) then BRANCH shows the

greatest improvements for weaker expressed transcripts. This is in agreement with its design

feature for improving the assembly of transfrags with low read coverages.

With respect to the other performance parameters recorded in Table 3.1, BRANCH

57

T
ab

le
3
.1

:
P

er
fo

rm
a
n

ce
o
n

re
al

d
at

a
.

A
ss

em
b

ly
re

su
lt

s
of

R
N

A
-S

eq
d

at
a

fr
om

(a
)

C
.

el
eg

a
n

s,
(b

)
S

.
ce

re
vi

si
a
e

an
d

(c
)

M
.

m
u

sc
u

lu
s

a
re

gi
ve

n
fo

r
th

e
tr

a
n

sc
ri

p
to

m
e

d
e

n
o
vo

as
se

m
b

le
rs

V
el

ve
t/

O
as

es
an

d
T

ri
n

it
y.

T
h

e
sp

li
ce

va
ri

an
t

as
se

m
b

le
r

C
u

ffl
in

k
s

w
a
s

in
cl

u
d

ed
in

on
e

ca
se

w
h

er
e

it
s

re
q
u

ir
ed

in
p

u
t

w
as

av
ai

la
b

le
.

T
h

e
re

su
lt

in
g

tr
an

sf
ra

gs
w

er
e

p
os

t-
p

ro
ce

ss
ed

w
it

h
B

R
A

N
C

H
(e

.g
.

re
fe

rr
ed

to
as

T
ri

n
ty

+
B

R
A

N
C

H
)

u
si

n
g

u
n

d
er

(a
)

cu
st

om
as

se
m

b
le

d
ge

n
om

e
co

n
ti

gs
1

or
k
n

ow
n

ge
n

e
se

q
u

en
ce

s2
fr

om
C

.
el

eg
a
n

s,
a
n

d
u

n
d

er
(c

)
th

e
ge

n
e

se
q
u

en
ce

s
fr

om
th

e
ra

t
ge

n
om

e3
.

T
h

e
la

tt
er

ev
al

u
at

es
B

R
A

N
C

H
’s

p
er

fo
rm

an
ce

fo
r

a
ca

se
w

h
er

e
a

cl
o
se

ly
re

la
te

d
g
u

id
e

g
en

om
e

se
q
u

en
ce

is
av

ai
la

b
le

.
T

h
e

sa
m

p
le

fr
om

S
.

ce
re

vi
si

a
e

(b
)

u
se

s
cu

st
om

as
se

m
b

le
d

co
n
ti

gs
al

on
g

w
it

h
st

ra
n

d
-s

p
ec

ifi
c

R
N

A
-S

eq
d

a
ta

fr
om

th
e

sa
m

e
or

ga
n

is
m

.
T

h
e

ot
h

er
tw

o
ca

se
s

co
n
ta

in
ed

n
on

-s
tr

an
d

sp
ec

ifi
c

R
N

A
sa

m
p

le
s.

T
h

e
ac

ro
n
y
m

s
in

tr
o
d

u
ce

d
in

th
e

fi
rs

t
co

lu
m

n
se

rv
e

as
sa

m
p

le
la

b
el

s
in

F
ig

u
re

s
3.

3-
3.

5.
T

h
e

p
er

fo
rm

an
ce

cr
it

er
ia

co
n

si
d

er
ed

in
th

e
re

m
ai

n
in

g
co

lu
m

n
s

ar
e

d
es

cr
ib

ed
in

se
ct

io
n

s
3.

1.
2

an
d

3.
2.

1.

M
et

h
o
d

S
en

si
ti

v
it

y
P

re
ci

si
o
n

N
T

ra
n

sf
.

N
C

o
m

p
.

N
C

o
m

p
.

N
C

o
v
.

N
E

x
o
n

s
N

E
x
te

n
.

N
P

ro
t.

tr
a
n

sc
ri

p
ts

g
en

es
tr

a
n

sc
ri

p
ts

(a
)

T
ra

n
sc

ri
p

to
m

e
A

ss
em

bl
y

o
f

C
.

el
eg

a
n

s
(B

R
A

N
C

H
G

u
id

ed
by

G
en

o
m

ic
S

eq
u

en
ce

s
fr

o
m

C
.

el
eg

a
n

s)
V

el
v
et

/
O

a
se

s
(V

O
)

5
,0

1
5

3
2
.8

%
5
5
,0

8
3

3
,2

4
8

2
,9

8
6

3
,8

4
4

9
6
,0

7
8

-
3
,8

3
9

V
el

v
et

/
O

a
se

s+
B

R
A

N
C

H
(V

O
B

)1
5
,3

3
2

4
3
.3

%
6
2
,2

0
1

3
,4

4
6

3
,1

5
9

4
,1

8
7

1
0
7
,4

6
7

5
,7

2
6

4
,6

8
3

V
el

v
et

/
O

a
se

s+
B

R
A

N
C

H
g

(V
O

B
g
)2

6
,6

0
2

4
2
.3

%
5
6
,3

6
9

4
,4

1
9

3
,9

7
3

4
,8

2
5

1
0
7
,8

7
6

7
,6

9
6

4
,8

1
1

T
ri

n
it

y
(T

)
5
,0

4
8

3
9
.4

%
3
2
,0

8
3

3
,7

0
8

3
,4

1
6

4
,1

5
2

1
1
6
,1

2
8

-
4
,8

6
6

T
ri

n
it

y
+

B
R

A
N

C
H

(T
B

)1
5
,3

0
3

4
3
.3

%
5
1
,9

9
7

3
,8

4
8

3
,5

3
9

4
,3

6
0

1
2
1
,4

8
4

5
,3

2
0

5
,7

0
6

T
ri

n
it

y
+

B
R

A
N

C
H

g
(T

B
g
)2

6
,3

0
9

4
2
.3

%
4
9
,1

9
7

4
,5

0
0

4
,0

8
0

4
,8

5
2

1
2
2
,3

4
5

6
,8

7
7

5
,8

9
2

C
u

ffl
in

k
sg

(C
g
)

2
5
,1

4
7

4
7
.7

%
1
4
,6

8
5

3
,3

0
0

3
,0

7
3

3
,4

3
6

1
1
4
,0

2
9

-
2
,9

9
7

(b
)

S
tr

a
n

d
-S

pe
ci

fi
c

T
ra

n
sc

ri
p

to
m

e
A

ss
em

bl
y

o
f

S
.

ce
re

vi
si

a
e

(B
R

A
N

C
H

G
u

id
ed

by
G

en
o

m
ic

S
eq

u
en

ce
s

fr
o

m
S

.
ce

re
vi

si
a

e)
V

el
v
et

/
O

a
se

s
(V

O
)

2
8
2

3
8
.6

%
7
5
,0

5
3

5
4

5
4

1
3
2

1
,2

1
1

-
9
2
6

V
el

v
et

/
O

a
se

s+
B

R
A

N
C

H
(V

O
B

)4
4
4
2

3
9
.8

%
8
0
,8

3
1

9
4

9
4

2
1
2

1
,8

7
5

9
,5

1
4

1
,2

3
9

T
ri

n
it

y
(T

)
3
1
5

4
1
.0

%
1
1
,4

5
1

1
4
6

1
4
6

2
0
1

4
,3

7
5

-
1
,9

5
7

T
ri

n
it

y
+

B
R

A
N

C
H

(T
B

)4
4
1
2

4
1
.3

%
1
3
,3

9
4

2
0
6

2
0
6

2
6
1

4
,4

9
8

2
,3

2
2

2
,1

1
9

(c
)

T
ra

n
sc

ri
p

to
m

e
A

ss
em

bl
y

o
f

M
o

u
se

(B
R

A
N

C
H

G
u

id
ed

by
G

en
o

m
ic

S
eq

u
en

ce
s

fr
o

m
R

a
t)

V
el

v
et

/
O

a
se

s
(V

O
)

7
,1

0
3

2
3
.4

%
4
4
7
,6

8
9

2
,9

2
2

2
,3

3
1

5
,2

3
0

1
2
3
,0

7
0

-
1
2
,2

6
0

V
el

v
et

/
O

a
se

s+
B

R
A

N
C

H
(V

O
B

)3
7
,4

1
7

2
4
.5

%
5
1
8
,3

6
0

3
,0

7
3

2
,4

7
8

5
,5

9
5

1
2
3
,9

3
9

3
,3

2
5

1
2
,7

4
7

T
ri

n
it

y
(T

)
4
,5

9
3

2
5
.4

%
1
4
3
,7

5
7

1
,9

7
1

1
,6

2
1

3
,1

7
7

1
0
0
,4

5
3

-
8
,6

7
6

T
ri

n
it

y
+

B
R

A
N

C
H

(T
B

)3
4
,9

1
6

2
7
.2

%
1
8
7
,4

7
8

2
,1

2
8

1
,7

7
6

3
,5

0
1

1
0
1
,9

6
4

1
,2

9
5

9
,2

1
7

58

0

5000

10000

10 30 50 70 90
Transcript Length Coverage (Percent)

N
 R

ef
er

en
ce

 T
ra

ns
cr

ip
ts

VO

VOB

VOBg

T

TB

TBg

Cg

Figure 3.4: Transcript length coverage. The number of reference transcripts of the C. elegans
data set is plotted that aligned with the transfrags over increasing overlap thresholds from
≥ 10% to ≥ 90%. The acronyms assigned to the different methods in the legend are defined
in the first column of Table 3.1.

200

400

600

5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100
Expression Quantiles

S
en

si
tiv

ity
 (

N
 R

ef
er

en
ce

 T
ra

ns
cr

ip
ts

)

VO

VOB

VOBg

T

TB

TBg

Cg

Figure 3.5: Sensitivity performance for variable expression quantiles of C. elegans data.
The number of assembled transcripts (x-axis) are plotted across different expression levels
(y-axis). The acronyms assigned to the different methods in the legend are defined in the
first column of Table 3.1.

59

also increases the number of complete transcripts, complete genes, covered transcripts and

exons annotated in the C. elegans genome by 6.1%, 5.8%, 8.9% and 11.9%, respectively.

When using the transfrags in translated BLASTX searches against the C. elegans protein

database, the BRANCH results show a remarkable increase (22.0%) of the number of com-

plete protein sequences encoded in the assembled transcript set. In Table 3.1, the number of

nearly complete protein sequences is usually larger than the number of complete transcripts,

because the latter also contain untranslated 5’ and 3’ regions that make the full-length cut-

off criteria (≥95% sequence identity over ≥95% of the reference length) more stringent for

transcripts than for proteins. BRANCH processing extends 5,726 transfrags from the initial

assembly and it identifies many novel transfrags resulting in a 12.9% increase of the total

transfrag pool. When the same tests are performed using Trinity instead of Velvet/Oases as

RNA-Seq de novo assembler, then BRANCH shows a 5.1% and 3.9% improved sensitivity

and precision, and it increases the number of complete transcripts, complete genes, covered

transcripts, exons and nearly complete proteins by 3.8%, 3.6%, 5.0%, 4.6% and 17.3%, re-

spectively. Overall these improvements are the result of 5,320 transfrag extension events

generated by BRANCH. As expected, when the gene sequences instead of assembled contigs

are provided, the transfrags processed by BRANCH show additional improvements com-

pared to the ones obtained from Velvet/Oases. With a total of 7,696 transfrag extension

events obtained by BRANCH, the sensitivity improves by 31.6%, the precision by 9.5%,

and the number of complete and covered transcripts by 36.1% and 25.5%, respectively. In

addition, the number of complete proteins increases by 25.3%. For Trinity the same tests

result in similar improvements by BRANCH: the sensitivity, precision, number of complete

60

transcripts, number of covered transcripts, and the number of complete proteins improve

by 25.0%, 2.9%, 21.4%, 16.9%, 21.1%, respectively.

In the test case with known reference genes, BRANCH also outperforms Cufflinks

in sensitivity by 22.6-28.3%, but shows a slightly lower precision (5.4%). For the remain-

ing test parameters BRANCH’s performance is consistently superior over Cufflinks’. In

addition, Cufflinks is unable to produce even nearly as good results (data not shown) in

the tests with the other types of genomic guide sequences, BRANCH has been specifically

designed for, including custom contigs and genomic sequences from related genomes. The

main reasons for these performance difference are as follows. First, Cufflinks has been

designed for a different use case, which is the prediction of splice variants for completed

genomes, preferentially with well defined gene/exon boundary annotations. Second, due to

its transfrag input, BRANCH’s performance greatly depends on the quality of the upstream

de novo assemblies. If those were of poor quality then Cufflinks’ ranking in this comparison

could change. Third, BRANCH has been optimized to extend transfrags in sequences re-

gions with very low RNA read coverage (Figure 3.5). Despite those utility differences, the

performance results presented here demonstrate that it is currently not possible to replace

BRANCH’s main functionality with a reference-based splice variant assembly tool, even

when an “idealized” reference gene set is available as in the Cufflinks result given in Table

3.1a.

(D) Assemblies with Strand-Specific RNA-Seq Data and Custom Genome Contigs. Table

3.1b gives the results for S. cerevisiae where strand-specific RNA-Seq data was used along

with 1,360 custom assembled guide contigs representing 92.4% of this genome. With this

61

data set, BRANCH improves the sensitivity and precision of the transfrags generated by Vel-

vet/Oases by 56.7% and 1.2%, and those from Trinity by 30.8% and 0.3%, respectively. At

the same time the numbers of complete transcripts, complete genes, covered transcripts and

proteins annotated in the S. cerevisiae genome increase with BRANCH relative to the input

data from both de novo assemblers by 41.1-74.1%, 41.1-74.1%, 29.9-60.6% and 8.3-33.8%,

respectively. In general, the improvements achieved by BRANCH are more pronounced for

the Velvet/Oases input, because Trinity performs better on this data set, leaving less room

for improvements. Nonetheless, the results for both de novo assemblers demonstrate that

BRANCH post-processing can lead to considerable improvements of transfrags generated

from strand-specific RNA-Seq data. This is even the case for a unicellular eukaryotic organ-

ism like S. cerevisiae where the risk of assembling chimeric transfrags is elevated compared

to the other organisms chosen in Table 3.1, mainly due to the much higher gene density and

frequency of overlapping genes in its genome. Because chimeric events negatively impact the

precision performance, a metric BRANCH improves, their frequency is likely to be lower

in the transfrags post-processed by BRANCH than the ones from the upstream de novo

assemblers. It is important to point out here that the current version of BRANCH does not

detect or correct chimeric transfrags generated by the de novo assemblers. However, future

improvements to our software will include such a feature.

(E) Assemblies Assisted with a Related Genome. The sequenc-ing and assembly of a

genomic guide sequence can be avoided if a genome from a closely related organism is avail-

able, which is an important use case of BRANCH. Table 3.1c gives the test results for such

a situation where the genes from rat served as guide sequence for improving the assembly

62

of RNA-Seq data from mouse. In this data set the sensitivity and precision improves with

BRANCH post-processing for Velvet/Oases by 4.4% and 1.1%, and for Trinity by 7.0%

and 1.8%, respectively. The other test parameters also show noticeable improvements. The

numbers of complete transcripts, complete genes, covered transcripts and proteins anno-

tated in the mouse genome increase by 5.2-8.0%, 6.3-9.6%, 7.0-10.2% and 4.0-6.2%, respec-

tively. Overall the improvements with a closely related genome are slightly less pronounced

than with guide contigs from the same organism. This is expected since heterologous se-

quences represent a more challenging situation where it is important to perform the read

and transfrag mapping against the related genome sequences with stringent enough mapping

parameters in order to minimize the formation of false positive extension and fusion events

of transfrags. When relaxing these parameters one can increase the number of extension

events, but often this will result in a decreased precision.

In summary, the above test results demonstrate BRANCH’s efficiency in improving

the representation of full-length transcripts in de novo assemblies by taking advantage of

genomic guide sequence information from the same or a closely related organism.

63

Chapter 4

AlignGraph Algorithm

4.1 Introduction

Previous studies on reference-assisted assemblies include the AMOScmp software (Pop et al.,

2004b), an add-on tool for the ARACHNE assembler (Gnerre et al., 2009), and custom

workflows largely based on existing assembly software (e.g. Schneeberger et al., 2011). The

first two were designed primarily for Sanger reads, while the latter has been used for NGS

genome assembly. Downstream of the primary assembly, scaffolding algorithms, such as

RACA (Kim et al., 2013), can be used that order and orient pre-assembled contigs to a

connection map by incorporating additional sequence information from mate pair or paired-

end (PE) reads and/or from closely related genomes (Pop et al., 2004c; Boetzer et al., 2011;

Dayarian et al., 2010; Gao et al., 2011; Salmela et al., 2011; Gritsenko et al., 2012). The

resulting scaffolds contain often gaps, which are unresolved sequence areas between the

original contigs. Dedicated gap filling algorithms can be used to partially fill these gaps

64

(Boetzer and Pirovano, 2012; Luo et al., 2012; Tsai et al., 2010). More recently, components

of reference-based strategies have also been incorporated into some of the de novo assembly

suites themselves such as the cheat mode option of ALLPATHS-LG (Gnerre et al., 2011)

and IDBA-hybrid (unpublished).

This study proposes a novel algorithm, called AlignGraph, for improving the

lengths and completeness of contigs or scaffolds by reassembling them with help provided

by a reference genome of a closely related organism. In contrast to existing reference-

assisted methods, AlignGraph is a secondary assembly algorithm that loads the alignment

information of PE reads and pre-assembled contigs/scaffolds against the reference into a

novel assembly graph, called the PE multi-positional de Bruijn graph, that we specifically

designed for facilitating secondary assemblies. By traversing this graph, the contigs or scaf-

folds of the primary assembly can be extended and joined. AlignGraph differs from most

scaffolding algorithms by extending contigs exclusively with resolved rather than unresolved

bases (Ns), and by acting either upstream and/or downstream of them.

AlignGraph’s functionalities are unique by solving several challenges in improving

assembly results. As a de Bruijn graph-based method it solves limitations typical for many

heuristic extension methods that are often used in the de novo assembly area (Warren et al.,

2007a; Jeck et al., 2007; Dohm et al., 2007). For instance, if there are multiple solutions

for how to extend a contig, then finding the correct one can be challenging with most

heuristic methods. Those ambiguous solutions, which correspond to branched paths in the

de Bruijn graph, are usually caused by repetitive sequences in genomes, and frequently

lead to early terminations of the contig extension process. The de Bruijn graph method

65

is often more efficient than heuristic methods in finding the correct solution here, because

the contextual information, required for resolving these ambiguities, is maintained in the

graph (Zerbino and Birney, 2008a; Chaisson and Pevzner, 2008). This issue is not as

pronounced in assemblies with much longer Sanger reads, as those are much more likely to

span non-repetitive regions with repetitive regions in between (Gnerre et al., 2009). Thus,

it is particularly important to address this problem in assemblies with short reads. In

comparison to the conventional de Bruijn graph, our PE multi-positional de Bruijn graph

has several additional advantages. First, many branched paths can be eliminated directly

in the graph with help of the additional PE read and alignment information. This simplifies

the identification of correct paths. Second, many false positive paths, caused by sequencing

errors, can be eliminated by correcting erroneous reads with correct reads that align to the

same position in the reference genome. Third, guided by the alignment information to the

reference genome, the PE multi-positional de Bruijn graph is less affected by regionally low

read coverage that often gives rise to incomplete paths in the conventional de Bruijn graph.

As a result, many incorrect extensions and early terminations can be avoided.

4.2 Methods

4.2.1 AlignGraph Algorithm

This section describes the AlignGraph algorithm. Its workflow can be divided into the

following three major steps. Figure 4.1B illustrates these steps with an example.

(i) Alignment Maps. The PE reads are aligned against both the pre-assembled contigs

and the close reference genome; and the contigs are aligned against the reference.

66

... ...

...

...

...

...

...

...

c1 c2 c3

c1

c2 c3

e1 e2... ...

c1

c2

c3

e1

Reads Contigs

...

...

...

...

(1) De novo

assembler

e2

(B)

... ...

(2) AlignGraph

Genome-Contigs-

PE Reads

PE multi-positional de

Bruijn graph

Extended/joined

contigs

(i)

(ii)

(iii)

(A)

c1 c2 c3

(2) AlignGraph

Extended/joined contigs

...

...

c1

c2 c3

Figure 4.1: Overview of the AlignGraph algorithm. The outline on the top (A) shows
AlignGraph in the context of common genome assembly workflows, and the one on the
bottom (B) illustrates its three main processing steps. (A) In step 1, the PE reads from
a target genome are assembled by a de novo assembler into contigs (here c1, c2 and c3).
Subsequently (step 2), the contigs can be extended (blue) and joined by AlignGraph (e1

and e2). (B) The workflow of AlignGraph consists of three main steps. (i) The PE reads are
aligned to the reference genome and to the contigs, and the contigs are also aligned to the
reference genome. (ii) The PE multi-positional de Bruijn graph is built from the alignment
results, where the red and blue subpaths correspond to the aligned contigs and sequences
from PE reads, respectively. (iii) The extended and/or joined contigs (here e1 and e2) are
generated by traversing the graph.

(ii) Contig Reassembly. The alignment mapping results are used to construct a positional

variant of the de Bruijn graph, called the PE multi-positional de Bruijn graph.

(iii) Graph Traversal. The resulting graph is edited and traversed to obtain extended

contigs.

Throughout the text, the source genome of the PE reads and the pre-assembled contigs

is referred to as the target genome, whereas the genome of the closely related species for

guiding the contig improvement steps is referred to as the reference genome. For simplicity,

the following description of AlignGraph refers mostly to contigs, but it also applies to

scaffolds containing a limited amount gaps.

67

Prerequisites. Prior to the above steps, the user is expected to generate genomic PE

reads for the target genome of interest and to assemble them with a de novo NGS genome

assembler. Since most genome assemblers perform better with PE than single end data,

AlignGraph also depends on this sequence type. A major advantage of AlignGraph is

its design to work with most genome assemblers, but the quality of the initial de novo

assembled contigs is expected to impact the final results (see 4.3.2). For optimal results,

it is also important to follow the recommendations of the chosen de novo assembler with

respect to insert length of the sequencing library, minimum coverage of the target genome

with PE reads and other recommendations. If scaffolds are inputted, it is usually beneficial

to fill them with a gap filling algorithm prior to processing them with AlignGraph (e.g.

Boetzer and Pirovano, 2012). Another requirement for AlignGraph is the availability of

a closely related reference genome sequence. Nearly complete reference genomes of high

quality will yield the best results, but partially sequenced genomes can be used as well.

(i) Alignment Maps. In the initial preprocessing step of AlignGraph, the PE reads, used

for the de novo assembly in the Prerequisite section, are aligned to the contigs and to the

reference genome, and the contigs are also aligned to the reference genome. Aligning the

reads to the contigs simplifies their alignments to the reference by guiding them with the

much longer contigs as backbone (see below). Generating reliable alignments among the PE

reads and the contigs is relatively straightforward, because both are from the same genetic

background, thus requiring a low level of variant tolerance in the alignments. Aligning the

contigs to the reference genome demands a higher level of variant tolerance. However, due

to the relatively large length of the contigs, their alignments to the reference can also be

68

generated reliably, as long as the evolutionary distance between the target and reference

genome is not too large. The current implementation of AlignGraph uses Bowtie2 and

BLAT for these two alignment steps, respectively (Langmead and Salzberg, 2012; Kent,

2002). In contrast to this, aligning the relatively short PE reads to the reference genome is

a much more challenging task, due to the difficulty of generating reliable short alignments

containing larger numbers of mismatches and gaps. This problem does not apply to the

reads aligning to the contigs since their alignment positions to the reference genome can

be inferred from the more robust contig alignments. For the PE read to reference genome

alignment, it is important to choose a highly variant tolerant short read aligner that is able

to reliably align most of the short reads to their true source locations in the reference genome

while minimizing the number of false positive read placements. Clearly, the latter would

negatively impact the precision performance of AlignGraph by leading to chimeric joins

in the downstream contig extension steps. Although a wide range of short read aligners

has been developed over the past years (Li and Homer, 2010), none of them has been

specifically designed or optimized for aligning short reads against reference genomes with

sequence differences more pronounced than those observed among genomes within the same

species. To minimize the above challenges, we have chosen for this critical step the highly

tunable Bowtie2 aligner with parameter settings that we optimized for aligning PE reads

from a target genome to a reference genome sharing variable degrees of sequence similarity.

The use of PE read alignments in this step is also important, because the additional sequence

information, provided by the second read in a PE, increases the specificity of the alignment

process compared to single end reads, and thus reduces the number of false read placements.

69

To account for rearrangements among the two genomes, we use for the alignments of the

PE reads against the reference genome more relaxed insert length variation settings than

in the alignments against the contigs.

(ii) Contig Reassembly with PE Multi-positional de Bruijn Graph. The core functionality

of AlignGraph is the extension of the contigs by re-assembling them using the alignment

results obtained in the previous step. To achieve this efficiently, we build from the align-

ment maps a variant of the de Bruijn graph, here called the paired-end multi-positional de

Bruijn graph. This method combines the PE de Bruijn graph (Medvedev et al., 2011) and

the positional de Bruijn graph (Ronen et al., 2012) where we incorporate both PE read

information and alignment positions into the graph (Pevzner et al., 2001). The former was

designed to generate more complete contigs in de novo assemblies, and the latter to correct

contig errors in secondary assemblies. Our approach solves several problems in improving

assembly results that we briefly discussed in the Introduction (see also Table 4.1). The

following describes our modified de Bruijn graph in more details, where we first introduce

important concepts of conventional de Bruijn graph-based assembly methods.

Background

The most widely used method for genome assemblies from short reads is the de Bruijn graph

method (Pevzner et al., 2001). A de Bruijn graph is a directed graph: two connected nodes

represent k + 1 bases where the first node represents the first k bases and the second node

the second k bases (called k-mer). To construct a de Bruijn graph, l − k + 1 connected

nodes are constructed from each read of length l and two nodes from different reads are

joined if they share the same k-mers. In theory, the graph contains a walk representing

70

Table 4.1: Problems the PE multi-positional de Bruijn graph solves in comparison to the
conventional de Bruijn graph.

Problem Consequence Solution

Repeat sequences Branched paths Distinguishes paths for repetitive
regions by incorporating PE read
and alignment position information

Sequencing errors False positive paths Corrects paths from erroneous
reads with correct reads aligned
to the same position

Low sequencing Incomplete paths Builds paths from reads in low
depth coverage areas supported by

reference

the full sequence of the genome if traversed properly. However, this walk is hard to obtain

in practice because of false positive, incomplete and branched connections in the graph

that are caused by errors in the reads and repeats in the genome. The false positive and

incomplete paths are due to false positive k-mers with sequencing errors and missing k-

mers from regions of low sequencing depth, respectively. The branched paths are caused

by joins of k-mers from repetitive regions. Several variations of the de Bruijn graph have

been proposed to solve these limitations, especially the branched paths, while preserving

all of its genome information (Medvedev et al., 2011; Ronen et al., 2012; Peng et al., 2010).

The paired-end de Bruijn graph (Medvedev et al., 2011) is built from PE reads, where each

k-mer contains k bases from the left pair plus its corresponding k bases from the right pair.

In contrast to this, the positional de Bruijn graph (Ronen et al., 2012) incorporates read

alignment information by including in each k-mer the k bases plus its alignment position.

With the additional information assigned to the k-mers, k-mers from repetitive regions can

often be distinguished, and thus the number of branches in the graph can be reduced. In

addition, because the positional de Bruijn graph is built from read alignments, false positive

71

and incomplete paths can be largely avoided. We emphasize that the PE de Bruijn graph

requires the left pair forward-strand read and the right pair reverse-strand read or vice

versa, but it is difficult to know their orientation. This problem can be resolved if the PE

de Bruijn graph is built from aligned reads, where their orientation can be obtained from

the alignments.

PE Multi-positional de Bruijn Graph

We derive the paired-end multi-positional de Bruijn graph as a combination of the PE de

Bruijn graph and the positional de Bruijn graph. Each k-mer of the PE multi-positional de

Bruijn graph is composed of three left/right element pairs: the k bases of each the left and

the right read pair (called left or right k bases), the alignment position of each the left and

the right k bases to the contigs, and the alignment position of each the left and the right k

bases to the reference genome. Two k-mers can be joined if they have similar k bases and

close alignment positions within the constraints defined in the formulas below. Formally,

let s be the k bases from the left read pair and s′ the corresponding k bases from the right

read pair, then the k-mer of PE multi-positional de Bruijn graph is a 6-tuple (s, s′, c, g,

c′, g′), where c is the alignment position of s to the contigs, g is the alignment position of

s to the reference genome, c′ is the alignment position of s′ to the contigs, and g′ is the

alignment position of s′ to the reference genome. Two k-mers (si, s
′
i, ci, gi, c

′
i, g
′
i) and (sj ,

72

s′j , cj , gj , c
′
j , g
′
j) can be joined if constrains (1)-(6) are met:

mismatch(si, sj) < δ (4.1)

mismatch(s′i, s
′
j) < δ (4.2)

|ci − cj | < ε or ci = −1 or cj = −1 (4.3)

|gi − gj | < ε (4.4)

|c′i − c′j | < ε+ 2D or c′i = −1 or c′j = −1 (4.5)

|g′i − g′j | < ε+ 2D (4.6)

where δ and ε are small numbers with the default values 5 and 25, respectively, and D

is the variability of the insert length I of the PE reads. The variability D is equal to

max{Iu − I, I − Il} where Iu and Il are the upper and lower limits of I, respectively. The

variables in the above formulas are explained below.

δ: To join two k-mers and tolerate sequencing errors, we allow a small number of mis-

matches δ between si and sj and between s′i and s′j in (1) and (2), respectively.

ε: We allow a small shift ε between each pair of alignment positions in (3)-(6), because

the same k bases si and sj (or s′i and s′j) from different reads may align to different

but close positions in the contigs or genome as discussed in Ronen et al. (2012).

2D: We allow a shift 2D of s′i and s′j ’s alignment positions to the contigs in (5) and to the

reference genome in (6). The maximum and minimum alignment distances between

a read pair are I − l + D and I − l − D, respectively, where l is the read length,

assuming the same read length for both members in a pair. Thus, the maximum

73

alignment distance of two right reads with left reads aligned at the same position is

(I − l + D) − (I − l −D) = 2D. This distance is equal to the distance between any

two k-mers from the same position in the right read pairs, so the maximum distance

between s′i and s′j will be 2D.

−1: si and sj (or s′i and s′j) can be joined if one or both of them are aligned directly to

the reference genome rather than guided by the de novo contigs. In those cases, we

assign -1 as alignment position to the contigs. This is important because we allow

contig extensions only if the alignable and unalignable bases to contigs can be joined.

It is important to guarantee that each k-mer corresponding to an insertion of a read align-

ment has a position in the reference genome. To achieve this, we append the inserted k-mer

to the end of the genome sequence. In our implementation of the PE multi-positional de

Bruijn graph, we first iteratively load sections of the reference genome into memory. Then

we perform the following operation. We test for each k-mer in each aligned read at genome

position g, if there is already a k-mer at g and whether the new k-mer can be joined with

it. If so then we join the two k-mers; otherwise we attach the new k-mer to position g.

The connection between two k-mers is recorded by using pointers and the read coverage for

each k-mer is stored along with it. Figure 4.2 illustrates the main advantages of the PE

multi-positional de Bruijn graph compared to the positional de Bruijn graph with several

examples (see also Table 4.1). This includes the contig-guided PE read alignment against

the reference genome resulting in a larger number of alignable reads, and thus a more com-

plete de Bruijn graph (Figure 4.2B); as well as the reduction of branched paths in the graph

by distinguishing reads from different repetitive regions (Figures 4.2C and 4.2D). For space

74

reasons, the advantages over the conventional de Bruijn graph in reducing false positive and

incomplete paths are not shown. The PE multi-positional de Bruijn graph can converge to

the positional de Bruijn graph by relaxing the above constraints (2), (3), (5) and (6). In our

tests, the former shows usually an up to 5% better performance than the latter with respect

to several sensitivity measures (see below for definitions). This improvement is consider-

able because the number of branches that are only resolvable by the PE multi-positional de

Bruijn graph is usually not very large.

(iii) Graph Traversal Returns Extended Contigs. To remove errors, the de Bruijn graph

needs to be edited prior to its traversal. The three major types of errors are tips, bubbles

and erroneous connections (Zerbino and Birney, 2008a; Chaisson and Pevzner, 2008; Peng

et al., 2010). Most of them are caused by errors in the reads. A tip is a short path with a

dead end, while a bubble consists of two short paths sharing the same start and end nodes.

Most of the tips and bubbles can be corrected by joining k-mers with < δ mismatches.

The remaining errors can be removed by applying a coverage cut-off filter similar to the

strategies employed by most de novo assemblers. Due to the additional information encoded

in the modified de Bruijn graph, one can use here a relatively small coverage threshold.

After these error removal steps, the PE multi-positional de Bruijn graph is traversed, using

a breadth-first strategy, to generate the final contigs. Each traversal stops at a branch

position and an extended contig is returned. After returning the extended contigs, the

remaining unextended contigs (identical with initial de novo contigs) are provided to the

user in a separate file. Finally, contigs with sufficient PE read connections and a path

between them can be joined. Occasionally, those connections can be missed by the above

75

… (CGTG, 112) (GTGT, 113) (TGTT, 114) (GTTA, 115) (TTAT, 116) (TATA, 117) (ATAC, 118) (TACA, -1)

(ACAA, -1) (CAAC, -1) (AACG, -1) (ACGT, -1) (GTGA, -1) (TGAT, -1) (GATA, -1) …

CGTG

CGTG ATAC …… TAGT GACA TAGT …

ATAC

… CGTG ATAC CGTG … TAGT GACA TAGT …

A C A’ E G E’

A B E G E’

A’

C

112 212

(A)

Positional

de Bruijn

graph

Target

genome

Reference

genome

Contig

ATAC

C’

GACA

G’

ATAC

C’

TT

C

AA

D H

H

GG

GG

AA

D

(C)

Multi-

positional

de Bruijn

graph

0

CGT, 6, 112 GTG, 7, 113

TGA, 8, 114 GAT, 9, 115 ATA, 10, 118 TAC, 11, 119

ATA, 0, 118TAC, 1, 119ACA, 2, 120CAA, 3, 121AAC, 4, 912ACG, 5, 913

TT

B

CC

F

CC

F

… (CGTG, 6, 112) (GTGT, -1, 113) (TGTT, -1, 114) (GTTA, -1, 115) (TTAT, -1, 116) (TATA, -1, 117)

(ATAC, 0, 118) (TACA, 1, 119) (ACAA, 2, 120) (CAAC, 3, 121) (AACG, 4, 912) (ACGT, 5, 913)

(GTGA, 7, 113) (TGAT, 8, 114) (GATA, 9, 115) (ATAC, 10, 118) …

TGT, -1, 114 GTT, -1, 115 TTA, -1, 116 TAT, -1, 117

(D)

PE multi-

positional

de Bruijn

graph

CGT, 112 GTG, 113 TGT, 114 GTT, 115 TTA, 116 TAT, 117

CGT, 6, 112, 212 GTG, 7, 113, 213

TGA, 8, 114, 214

GAT, 9, 115, 215ATA, 10, 118, 218TAC, 11, 119, 219

ATA, 0, 118, 218TAC, 1, 119, 219ACA, 2, 120, 220CAA, 3, 121, 221

AAC, 4, 912, 222 ACG, 5, 913, 223

… (CGTG, 6, 112, 212) (GTGT, -1, 113, 213) (TGTT, -1, 114, 214) (GTTA, -1, 115, 215) (TTAT, -1, 116, 216)

(TATA, -1, 117, 217) (ATAC, 0, 118, 218) (TACA, 1, 119, 219) (ACAA, 2, 120, 220) (CAAC, 3, 121, 221)

(AACG, 4, 912, 222) (ACGT, 5, 913, 223) (CGTG, 6, 112, 224) (GTGA, 7, 113, 213) (TGAT, 8, 114, 214)

 (GATA, 9, 115, 215) (ATAC, 10, 118, 218) …

TGT, -1, 114, 214 GTT, -1, 115, 215 TTA, -1, 116, 216

TAT, -1, 117, 217

CGT, 6, 112, 224 GTG, 7, 113, 213

…

ATA, 118TAC, 119

… (CGTG, 112) (GTGT, 113) (TGTT, 114) (GTTA, 115) (TTAT, 116) (TATA, 117) (ATAC, 118) (TACA, 119)

(ACAA, 120) (CAAC, 121) (AACG, 912) (ACGT, 913) (GTGA, 113) (TGAT, 114) (GATA, 115) …
(B)

Positional

de Bruijn

graph using

contig to

guide read

alignment
CGT, 112 GTG, 113 TGT, 114 GTT, 115 TTA, 116 TAT, 117

ATA, 118TAC, 119

912

ACA, 120CAA, 121AAC, 912ACG, 913

TGA, 114 GAT, 115

... ...

... ...

......

... ...

76

Figure 4.2: (Continued from previous page) Advantages of the PE multi-positional de Bruijn
graph compared to the positional de Bruijn graph. In the target genome given on the
top A and A′, C and C ′, E and E′, G and G′ are repetitive regions. Each PE read of
length 2 × 4 bp is sequenced with one pair from region ABCDA′C ′ and the other from
the corresponding position of region EFGHE′G′ (the pair from EFGHE′G′ is omitted
for simplicity). In comparison to the target genome, the reference genome has a repeat-
free region ABC similar to ABCDA′C ′ and a region EFGHE′ similar to EFGHE′G′.
The reads from region ABCDA′C ′ are assembled with a de novo assembler into a contig
starting from CDA′C ′, but regions A and B are not assembled due to low sequencing
depth, repeats or other problems. When aligning the contig to the reference genome, the
repetitive regions C and C ′ are both aligned to C in the reference genome and the insertion
D is assigned to the end of the reference. In (A) reads are aligned directly to the reference
genome to build the initial positional de Bruijn graph; and in (B)-(D) the reads are aligned
to the pre-assembled contigs and then aligned to the reference to build first the extended
positional de Bruijn graph and then the PE multi-positional de Bruijn graph. (A) The
initial positional de Bruijn graph is built here with 3-mers. Some reads cannot be aligned
to the reference genome due to sequence differences in the target genome as indicated here
by 3-mers with -1 as alignment position. The repetitive regions A and A′ (or C and C ′) are
collapsed into one path in red in the graph. (B) The initial positional de Bruijn graph is
constructed with help from the read-to-contig alignment information. The read-to-reference
genome alignment information yields a more complete positional de Bruijn graph, but the
repetitive regions A and A′ (or C and C ′) are still collapsed resulting in branch points. (C)
An extended positional de Bruijn graph is built by incorporating into each 3-mer the read
alignment position to the contig. As a result of this operation, the repetitive regions C and
C ′ can be distinguished into two paths where the 3-mers have different alignment positions
in the contig, but A and A′ are still collapsed. (D) The PE multi-positional de Bruijn
graph is constructed by incorporating into each 3-mer their PE read alignment positions to
the reference genome (the right 3 bases and its alignment position to the contig is omitted
here). With this information the repeats A and A′ can be distinguished into two paths as
the 3-mers have different PE alignment positions in the reference genome. The final graph
contains only one single path allowing to output an extended contig corresponding to the
region ABCDA′C ′ in the target genome.

77

filtering step because of too low read coverage in local areas of the connecting path.

4.2.2 Software Implementation

AlignGraph is implemented in C++ for Linux operating systems. Its required input includes

the PE reads, the pre-assembled de novo contigs, and the reference genome. Its output

includes the extended contigs as well as the remaining non-extended contigs. AlignGraph

runs the alignment steps with BLAT and Bowtie2 automatically, but both need to be

installed on the system. AlignGraph’s run time is currently 23-57 minutes per million

aligned reads. In the performance tests of this study the memory usage was 36-50 GB, and

it stays below 100 GB even for entire mammalian genomes. These requirements are much

more moderate than those of most de novo assemblers (Luo et al., 2012).

4.3 Evaluation

4.3.1 Experimental Design

Background. To evaluate AlignGraph’s efficiency in improving genome assemblies, we

performed a series of systematic performance tests. For this, we downloaded publicly avail-

able assemblies and/or assembled genomic PE read sets from organisms of variable genome

complexity with seven widely used de novo assemblers, extended the resulting contigs with

AlignGraph, and then evaluated the improvements with a set of standard metrics for com-

paring assembly results (Table 4.2). In these tests it was important to choose the NGS

read samples from organisms where the genome sequence of both the target genome and a

close reference genome are known. This way one can evaluate the completeness and correct-

78

ness of the results against a true result rather than one that is unknown or only partially

known. To also assure the improvements obtained by AlignGraph are not simply the result

of insufficient optimizations of the upstream de novo assembly, we included pre-assembled

contig and scaffold sets that are widely accepted by the community as benchmark data sets

for evaluating assembly software. Today’s requirements for assembling genomes from NGS

were met by choosing read samples with ≥75bp and paired-end read information. In total

we performed assembly tests on the following three sample sets.

(A) A. thaliana Sample. The first sample set was from the model organism A. thaliana,

which is a flowering plant with a compact genome of 130Mb in size. The PE read set chosen

for this test is from a genomic Illumina NGS library with a read length of 2 × 75 bp. As

de novo assemblers, we included in this test Velvet and ABySS, which we chose here as

software representatives performing well on single library data, and because of their good

sensitivity and precision performance (Lin et al., 2011). The VelvetOptimiser tool was used

to optimize the parameter settings for the Velvet assembly. ABySS was run with the same

k-mer length as Velvet, while the remaining parameters were set to their defaults. To extend

the preassembled contigs with AlignGraph, we used the publicly available genome sequence

from the related A. lyrata species as reference (Table 4.2a). The latter was chosen because

it constitutes a more challenging reference genome for testing AlignGraph’s performance in

improving genome assemblies than the references used in the other tests below. This is the

case for the following reasons (Hu et al., 2011): A. lyrata and A. thaliana diverged over

10 million years ago; their genomes differ by many regional rearrangements; the sequence

similarity in the common regions of their genomes is only 80%; and the A. lyrata genome

79

T
ab

le
4
.2

:
P

er
fo

rm
a
n

ce
E

va
lu

a
ti

o
n

of
A

li
gn

G
ra

p
h

.
(a

)
G

en
om

ic
P

E
re

ad
s

fr
om

A
.

th
a
li

a
n

a
w

er
e

as
se

m
b

le
d

w
it

h
V

el
ve

t
an

d
A

B
y
S

S
.

T
h

e
re

su
lt

in
g

co
n
ti

g
s

w
er

e
ex

te
n

d
ed

w
it

h
A

li
gn

G
ra

p
h

u
si

n
g

as
re

fe
re

n
ce

th
e

ge
n

om
e

se
q
u

en
ce

fr
om

A
.

ly
ra

ta
.

(b
-d

)
T

h
e

su
b

se
q
u

en
t

p
a
n

el
s

co
n
ta

in
as

se
m

b
ly

re
su

lt
s

fo
r

th
e

h
u

m
an

ch
ro

m
os

om
e

14
sa

m
p

le
fr

om
th

e
G

A
G

E
p

ro
je

ct
w

h
er

e
th

e
ch

im
p

an
ze

e
ge

n
om

e
se

rv
ed

a
s

re
fe

re
n

ce
.

(b
)

C
on

ti
g

as
se

m
b

ly
re

su
lt

s
ar

e
gi

v
en

fo
r

th
e

d
e

n
o
vo

as
se

m
b

le
rs

A
L

L
P

A
T

H
S

-L
G

,
A

L
L

P
A

T
H

S
-L

G
c

(i
n

ch
ea

t
m

o
d

e)
,

S
O

A
P

d
en

ov
o,

M
aS

u
R

C
A

,
C

A
B

O
G

an
d

B
am

b
u

s2
.

(c
)

S
ca

ff
ol

d
ed

as
se

m
b

ly
re

su
lt

s
ar

e
gi

ve
n

fo
r

S
O

A
P

d
en

ov
o,

M
a
S

u
R

C
A

,
C

A
B

O
G

an
d

B
am

b
u

s2
.

T
h

e
re

su
lt

s
ar

e
or

ga
n

iz
ed

ro
w

-w
is

e
as

fo
ll

ow
s:

th
e

n
u

m
b

er
of

in
it

ia
l

co
n
ti

gs
o
b

ta
in

ed
b
y

ea
ch

d
e

n
o
vo

as
se

m
b

le
r1

,
th

e
‘e

x
te

n
d

ab
le

’
su

b
se

t
of

th
e

in
it

ia
l

co
n
ti

gs
th

at
A

li
gn

G
ra

p
h

w
as

ab
le

to
im

p
ro

ve
2
,

an
d

th
e

ex
te

n
si

on
re

su
lt

s
o
b

ta
in

ed
w

it
h

A
li

gn
G

ra
p

h
3
.

T
h

e
ad

d
it

io
n

al
co

lu
m

n
s

gi
ve

th
e

n
u

m
b

er
of

co
n
ti

gs
4
,

N
50

va
lu

es
5
,

th
e

n
u

m
b

er
of

co
v
er

ed
b

a
se

s6
,

th
e

av
er

ag
e7

an
d

m
ax

im
u

m
8

le
n

gt
h

of
th

e
co

n
ti

gs
,

th
e

n
u

m
b

er
of

m
is

as
se

m
b

li
es

p
er

m
il

li
on

b
a
se

p
ai

rs
(M

P
M

B
)9

,
a
n

d
th

e
av

er
ag

e
id

en
ti

ty
am

on
g

th
e

tr
u

e
co

n
ti

gs
an

d
th

e
ta

rg
et

ge
n

om
e1

0
.

M
or

e
d

et
ai

ls
on

th
es

e
p

er
fo

rm
an

ce
cr

it
er

ia
ar

e
p

ro
v
id

ed
in

4.
3.

1(
E

).

U
p

st
re

a
m

C
o
n
ti

g
se

t
N

C
o
n
ti

g
s4

N
5
0
5

N
C

o
v
er

ed
A

v
er

a
g
e

M
a
x
im

u
m

M
P

M
B

9
A

v
er

a
g
e

a
ss

em
b

le
r

b
a
se

s
6

le
n

g
th

7
le

n
g
th

8
id

en
ti

ty
1
0

(a
)

C
o

n
ti

gs
o

f
A

.
th

a
li

a
n

a
ge

n
o

m
e

V
el

v
et

A
ll
1

3
0
,0

3
7

3
,5

1
5

8
2
,8

4
4
,4

1
7

2
,6

6
8

2
7
,7

9
2

2
2
.2

9
5
.2

%
E

x
te

n
d

a
b

le
2

8
,6

1
5

4
,1

4
8

2
8
,0

0
7
,4

5
1

3
,2

6
2

2
7
,3

9
8

0
.3

9
7
.6

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h
3

5
,7

5
1

7
,8

7
6

3
2
,4

6
7
,1

1
0

5
,5

2
1

4
9
,7

6
8

1
.6

9
4
.8

%

A
B

y
S

S
A

ll
3
0
,9

7
2

2
,5

5
9

6
9
,4

3
2
,6

6
7

2
,2

0
6

2
9
,7

6
0

1
3
.4

9
7
.2

%
E

x
te

n
d

a
b

le
1
1
,6

9
3

2
,8

2
0

2
8
,8

8
5
,2

1
2

2
,4

5
4

1
6
,3

4
3

0
.5

9
8
.7

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

8
,4

2
7

5
,4

8
4

3
5
,8

5
9
,7

8
6

4
,1

5
1

2
5
,3

2
1

1
.1

9
5
.8

%

80

(C
on

ti
n
u

ed
fr

om
p

re
v
io

u
s

p
ag

e)

(b
)

C
o

n
ti

gs
o

f
H

u
m

a
n

ch
ro

m
o

so
m

e
1

4
A

L
L

P
A

T
H

S
-L

G
A

ll
4
,3

8
3

3
8
,5

9
0

8
3
,8

4
9
,3

9
7

1
9
,2

0
1

2
4
0
,7

6
4

0
.3

9
8
.9

%
E

x
te

n
d

a
b

le
1
,6

7
4

3
9
,8

5
1

3
5
,7

4
6
,0

9
5

2
0
,8

0
6

2
0
0
,4

9
5

0
.1

9
8
.9

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

7
8
5

7
1
,8

4
7

3
6
,4

4
1
,0

0
1

4
5
,3

5
8

3
0
5
,8

8
0

0
.0

9
7
.5

%
A

L
L

P
A

T
H

S
-L

G
c

A
ll

3
,8

5
6

4
3
,8

5
6

8
3
,8

6
0
,9

3
9

2
1
,8

1
8

2
7
5
,4

4
6

0
.2

9
9
.3

%
E

x
te

n
d

a
b

le
1
,2

9
6

4
5
,7

1
9

3
1
,4

5
7
,2

0
1

2
4
,3

4
6

2
7
5
,4

4
6

0
.1

9
9
.5

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

6
0
8

8
6
,6

1
3

3
4
,6

1
4
,4

6
5

5
4
,4

0
6

2
9
4
,6

1
5

0
.0

9
6
.9

%
S

O
A

P
d

en
o
v
o

A
ll

1
0
,8

6
5

1
6
,8

5
5

8
0
,1

3
5
,9

4
1

7
,6

2
3

1
4
7
,4

9
4

5
.9

9
4
.9

%
E

x
te

n
d

a
b

le
5
,6

1
3

1
7
,4

1
2

4
5
,2

4
6
,0

7
7

8
,2

2
3

1
4
1
,9

8
1

0
.9

9
6
.4

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

3
,4

6
9

3
2
,8

8
1

5
2
,8

6
1
,6

4
0

1
5
,2

7
1

2
1
9
,8

4
1

0
.5

9
5
.0

%
M

a
S

u
R

C
A

A
ll

1
9
,0

3
4

5
,7

6
7

7
5
,4

9
7
,3

0
2

3
,8

0
2

5
3
,8

3
7

1
3
.9

9
8
.9

%
E

x
te

n
d

a
b

le
9
,2

4
1

6
,0

4
7

3
8
,8

4
2
,5

1
7

4
,1

9
9

5
1
,2

4
9

0
.2

9
9
.2

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

5
,6

6
5

1
1
,5

9
0

4
3
,9

3
0
,1

8
4

7
,6

6
6

6
6
,7

5
8

0
.4

9
8
.1

%
C

A
B

O
G

A
ll

3
,1

1
8

4
6
,5

2
3

8
4
,9

8
9
,1

9
0

2
7
,4

0
1

2
9
6
,8

8
8

0
.3

9
7
.3

%
E

x
te

n
d

a
b

le
1
,6

9
2

4
5
,6

6
9

4
6
,4

9
9
,7

6
3

2
7
,0

8
9

2
9
6
,8

8
8

0
.0

9
8
.7

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

7
0
1

1
0
1
,9

0
7

5
0
,5

2
7
,6

0
5

7
0
,3

6
2

4
4
3
,9

5
2

0
.1

9
7
.6

%
B

a
m

b
u

s2
A

ll
1
1
,2

1
9

8
,3

7
8

6
4
,0

1
1
,0

7
2

5
,7

6
4

4
4
9
,4

4
9

3
.1

8
9
.9

%
E

x
te

n
d

a
b

le
6
,9

9
5

7
,5

2
1

3
7
,8

5
7
,9

8
9

5
,4

3
9

6
2
,7

9
8

0
.3

9
7
.6

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

2
,7

2
2

1
9
,9

8
9

3
9
,1

4
7
,3

5
7

1
4
,1

7
6

8
6
,1

5
4

0
.5

9
6
.5

%

(c
)

S
ca

ff
o

ld
s

o
f

H
u

m
a

n
ch

ro
m

o
so

m
e

1
4

S
O

A
P

d
en

o
v
o

A
ll

3
,9

0
2

3
9
1
,6

9
3

8
5
,4

1
7
,2

4
8

2
4
,3

9
7

1
,8

5
2
,1

5
2

1
.0

8
2
.9

%
E

x
te

n
d

a
b

le
9
0
1

3
8
7
,3

0
9

4
0
,2

9
6
,0

3
5

4
7
,5

2
6

1
,0

1
9
,6

5
9

0
.1

8
4
.5

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

7
6
7

5
4
4
,2

0
9

4
7
,8

2
3
,2

7
9

6
3
,5

2
5

2
,2

4
6
,6

3
8

0
.1

8
1
.0

%
M

a
S

u
R

C
A

A
ll

7
2
1

5
8
0
,8

2
2

6
5
,4

3
3
,3

0
5

6
3
,8

7
6

2
,9

4
3
,9

6
6

1
.3

5
7
.2

%
E

x
te

n
d

a
b

le
1
0
1

2
8
9
,7

0
3

5
,5

5
4
,7

8
1

5
2
,8

2
0

1
,5

1
6
,8

0
4

0
.0

8
1
.9

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

7
8

3
1
6
,9

4
6

6
,9

8
6
,2

2
4

8
6
,5

5
2

1
,5

7
3
,7

4
1

0
.0

8
3
.4

%
C

A
B

O
G

A
ll

4
7
1

3
8
7
,8

7
6

8
1
,1

6
3
,6

8
8

1
7
6
,5

9
0

1
,9

4
4
,4

7
5

0
.1

9
1
.9

%
E

x
te

n
d

a
b

le
1
4
6

3
5
8
,6

8
8

2
9
,3

7
2
,0

3
3

2
0
0
,5

3
9

1
,9

0
5
,5

2
9

0
.0

9
8
.2

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

6
7

9
0
6
,4

0
7

3
3
,7

0
8
,9

2
5

4
8
1
,7

1
2

2
,0

5
1
,5

0
3

0
.0

9
4
.1

%
B

a
m

b
u

s2
A

ll
5
6
9

3
1
9
,3

3
4

6
4
,3

7
8
,6

9
3

1
1
6
,5

8
2

1
,4

7
7
,8

4
7

0
.1

7
7
.4

%
E

x
te

n
d

a
b

le
6
6

2
7
2
,4

3
6

6
,9

4
9
,3

3
8

1
1
9
,8

5
8

6
4
1
,4

6
3

0
.0

9
2
.0

%
E

x
te

n
d

a
b

le
+

A
li
g
n

G
ra

p
h

8
0

3
7
7
,9

0
5

8
,9

6
3
,1

3
2

1
1
4
,8

5
2

8
1
2
,3

5
3

0
.1

8
5
.4

%

81

sequence is still incomplete and fragmented into many scaffolds.

(B) Human Sample from GAGE. The second sample set is from the community project

GAGE (Genome Assembly Gold-standard Evaluations), from which we selected the sample

for the human chromosome 14 (Salzberg et al., 2012). Its Illumina sequences consist of PE

reads with a length of 76-101 bp from three different libraries. We downloaded the pre-

assembled contig sets provided by the GAGE project for the five assemblers that ranked

highest in the benchmark tests by Salzberg et al. (2012) in assemblies from multiple genome

libraries with variable insert lengths. Those included ALLPATHS-LG, SOAPdenovo, Ma-

SuRCA, CABOG and Bambus2. As reference sequence for guiding AlignGraph, we used the

chimpanzee genome. For ALLPATH-LG in its cheat mode, we reassembled the contigs our-

selves, because this assembler exhibits a better sensitivity and precision performance when

providing a closely related reference genome. Here it was important to compare the per-

formance of ALLPATHS-LG with AlignGraph when both are guided by the same reference

genome.

In addition to contigs, we evaluated AlignGraph’s performance in improving the

scaffold sets provided by the GAGE project for the same human sample set. Prior to their

reassembly with AlignGraph, we reduced the number of unresolved sequence regions (gaps

filled with ambiguous N bases) in the scaffolds by applying the GapFiller algorithm, which

is currently one of the most efficient gap filling methods (Boetzer and Pirovano, 2012).

To also evaluate the influence of the similarity shared among the reference and

target genomes on AlignGraph’s performance, we included tests with four reference genomes

of variable similarity to the human genome. The reference genomes chosen for this test

82

were from gorilla, orangutan, gibbon and macaque. The genome sequence from gibbon

was the only one that is still incomplete containing scaffolds rather than fully assembled

chromosomes.

(C) Published Genome. In addition to the tests above, we were interested in evaluating to

what extent AlignGraph can improve the genome sequence generated with another reference

assisted assembly approach. For this test, we chose the published genome sequence from

Landsberg erecta (Ler -1; Schneeberger et al., 2011). The latter is a strain of A. thaliana

which is too diverged from the known references to resolve its genome sequence with a

simple resequencing approach. Thus, Schneeberger et al. (2011) assembled its genome with

a reference-assisted pipeline approach that included ALLPATHS-LG and several refinement

steps.

(D) Data Sources. The genome sequences used in the above tests were downloaded from

the following community sites: A. thaliana from TAIR, A. lyrata from JGI, Landsberg

erecta from 1001 Genomes, human and other primates from Ensembl. From the GAGE

site, we downloaded the PE read sets, and the pre-assembled contigs and scaffolds for the

human chromosome 14 sample (Salzberg et al., 2012). The PE read sets from A. thaliana

and Landsberg erecta were downloaded from NCBI’s Sequence Read Archive (SRA) and

the 1001 Genome site, respectively. The A. thaliana read set contained 32 million 2 × 75

bp PE reads (accession: SRR073127), the human read set contained 62 million 2 × 76-101

bp PE reads, and the Ler -1 read set contained 73 million 2 × 40-101 bp PE reads.

(E) Performance Measurements. Most of the performance measures used by this study are

83

adapted from the GAGE project (Salzberg et al., 2012). To evaluate the completeness of the

contigs, we aligned them to the target genome with BLAT. If a contig could not be aligned

as a single global alignment, it was split according to the local alignment results into the

smallest possible number of sub-contigs. The resulting contigs are called true contigs. The

precision measures include the number of misassemblies per million base pairs (MPMB) and

the average identity between contigs and target genome. Misassemblies caused by misjoin

errors result in chimeric contigs. Their number can be calculated as the number of splits

necessary to obtain the true contigs. Thus, MPMB = m
L × 106, where m is the numbers of

misassemblies, and L is the cumulative length of the contigs. The average identity between

true contigs and the target genome is calculated as
∑

n ti×li∑
n li

where ti is the identity for contig

i and li is the length of contig i (0 < i ≤ n). In this formula, the identity ti of the true

contigs i is calculated as the number of aligned bases over the length of the alignment. The

sensitivity measures include the N50 value and the number of covered bases. The former

is the contig size at 50% of the total number of contig bases, and the latter is the total

number of genome bases covered by the contigs. Two additional measures are the average

length and maximum length of the true contigs. In all tests, we considered only contigs

with a length of at least 1000 bp, but used the entire set (including the shorter ones) in

AlignGraph’s extension steps.

4.3.2 Results

(A) Extension of A. thaliana Contigs. The performance test results for the A. thaliana

data set are given in Table 4.2a. In comparison to the initial contig sets assembled by Velvet

84

or ABySS, AlignGraph extends 28.7-37.8% of them when guided by the A. lyrata genome

as reference. The resulting set of extended contigs contains 27.9-33.2% less sequences, be-

cause AlignGraph has joined many of the initial contigs. This leads to improvements of

the N50, the number of covered bases, average contig length and maximum contig length

for the extendable contig set by 89.9-94.5%, 15.9-24.1%, 69.3-69.2% and 54.9-81.6%, re-

spectively. These improvements are accompanied only by minor increases of MPMB errors.

The MPMB values of the extendable and extended contigs are usually much lower than

for the complete set, because of their pre-filtered nature that improves their quality. As

expected the average identity also drops slightly (2.8-2.9%), because with increased length

of the assembled sequences, internal sequence variations accumulate and complicate the

alignment of the extended contigs against the target genome. A similar trend can be seen

in the results below for the much longer scaffolds where the average identity is always lower

for all of the tested assemblers (Table 4.2c). For all three sample sets (4.3.2(A)-4.3.2(D)),

the AlignGraph results contain a comparable number of sequence variations to the target

genomes as the results of de novo assemblers (data not shown). This indicates a high

sequence quality of the reassembled contigs.

(B) Extension of Human Contigs and Scaffolds from GAGE. The test results for the human

chromosome 14 contigs are given in Table 4.2b. Of the contigs assembled by ALLPATHS-

LG, 38.2% can be extended and the extension result contains 53.1% less contigs due to

the joins generated by AlignGraph. These improvements are more pronounced than in the

above experiment with A. lyrata as reference, because the genomes of human and chim-

panzee share a much higher sequence similarity than the genomes of A. thaliana and A.

85

lyrata. The N50, the number of covered bases, average contig length and maximum con-

tig length for the extendable contig set consistently improve by 80.3%, 1.9%, 118.0% and

52.6%, respectively. Similar results could be obtained with the other de novo assemblers

SOAPdenovo, MaSuRCA, CABOG and Bambus2. After AlignGraph processing their ex-

tendable contigs improved for the same four evaluation metrics by 88.8-165.8%, 3.4-16.8%,

82.6-160.6% and 30.3-54.8%, respectively. If ALLPATHS-LG is run in its cheat mode by

guiding it with the same reference genome as AlignGraph, then both the sensitivity and pre-

cision measures of the ALLPATHS-LGc contigs improve compared to the assembly without

a reference. Nevertheless, AlignGraph is still able to extend 33.6% of the ALLPATHS-LGc

contigs and the extension results contain 53.1% less contigs, while the four evaluation met-

rics improve by 89.4%, 10.0%, 123.5% and 7.0%, respectively. These improvements indicate

that the reference-assisted approach used by AlignGraph is more efficient than the one from

ALLPATHS-LG in its cheat mode at the contig assembly stage.

AlignGraph’s performance results on the scaffolds from the same human chromo-

some 14 dataset are given in Table 4.2c. The scaffold sets from SOAPdenovo, MaSuRCA,

CABOG and Bambus2 contain much smaller numbers of sequences than their correspond-

ing contig sets. Nevertheless, AlignGraph is able to extend 11.6-31.0% of them and improve

the N50 value and the number of covered bases by 9.4-152.7% and 14.8-29.0%, respectively.

The extension results for the scaffold set of Bambus2 contain a slightly larger number of

sequences (14) than the extendable set. The reason for this is that many of them are very

short and AlignGraph extends them often to scaffolds with a length above the 1000 bp re-

quirement, thus increasing the number of reported scaffolds (see Section 3.1.5). This trend

86

also explains the slightly lower average length of the extended scaffold set from Bambus2.

(C) Influence of Similarity of Reference Genome. To assess AlignGraph’s performance

with reference genomes of variable similarity to the target genome, we post-processed the

de novo assemblies of the human data set with AlignGraph using as reference the genome

sequences from five different primates. The columns in Table 4.3 list these organisms ac-

cording to their evolutionary distances to the human genome (increasing from left to right).

To avoid confusions,o exact sequence similarity values to the human genome are not pro-

vided because there are many possibilities how to calculate them which can lead to very

different results. As expected the performance measures degrade with the evolutionary

distance between the target and reference genomes. While the first four reference genomes

show respectable improvements, the macaque genome seems to be too diverged from human

to achieve any major improvements. However, this performance drop is mainly due to the

difficulty of aligning short reads to a highly diverged reference. Future improvements in

NGS read length and alignment algorithms are likely to enhance AlignGraph’s performance

in this regard.

(D) Improvements to Published Genome. The test results for the published Landsberg

erecta genome are shown in Table 4.4.The initial scaffold set used in this test consisted

of 1,676 sequences. AlignGraph extended 27.6% of these scaffolds, while the extended set

contains 20.3% fewer scaffolds. In addition, AlignGraph improves the N50 value, the number

of covered bases, the average contig length and maximum length values for the extendable

scaffolds by 86.6%, 8.1%, 35.7% and 8.1%, respectively. These improvements demonstrate

AlignGraph’s usefulness in improving published genome sequences, even for those that have

87

Table 4.3: Performance with reference genomes of variable similarity. The tests were per-
formed on the human chromosome 14 sample where the listed primate genomes served as
reference. The results include the percentage values of alignable reads1, extendable contigs
relative to the initial set2 and improvements of the N50 values relative to the extendable
contigs3. Due to space limitations, the latter two rows contain averaged percentage values
for the five assemblers ALLPATHS-LG, SOAPdenovo, MaSuRCA, CABOG and Bambus2.

Percentage of Chimpanzee Gorilla Orangutan Gibbon Macaque

Aligned reads1 94.5% 91.6% 88.9% 49.9% 24.9%
Extendable contigs2 51.0% 36.4% 24.9% 6.7% -
Improved N503 109.9% 84.0% 73.2% 65.3% -

Table 4.4: Improvements to Published Genome. The published scaffolds from Landsberg
erecta were extended with AlignGraph using the A. thaliana genome as reference. The rows
and columns are arranged the same way as in Table 4.2, but several columns are missing
here, because it is not possible to compute the corresponding performance measures in a
meaningful manner without having access to a ‘true’ target genome sequence. In addition,
we report here the total number of bases in the contigs1.

Contig set N N50 N total Average Maximum
Contigs bases1 length length

All 1,676 341,653 112,578,343 67,170 2,930,180
Extendable 462 448,682 57,574,961 124,621 2,930,180
Extendable+AlignGraph 368 837,458 62,216,675 169,067 3,168,537

been carefully curated by their authors.

In summary, the above performance tests demonstrate AlignGraph’s efficiency in improving

the results of a variety of de novo assemblers and species with variable genome complexity

by taking advantage of closely related reference genomes.

88

Chapter 5

Conclusions and Future Work

5.1 Conclusions

SEED is an efficient method for clustering very large NGS data sets while allowing up to

three mismatches and three overhanging residues to their virtual center. The method gains

its performance from a block spaced seed method that greatly accelerates the downstream

clustering process. With increasing numbers of sequences the method shows a linear time

and memory performance. It is able to cluster on a single CPU core 100 million sequences in

less than four hours, while using not more than 8 GB of memory. These are very reasonable

resource requirements for modern computers. The current implementation of SEED is

optimized to handle sequences of 21-200 bp in length. This matches at the moment the

length range of most of the widely used NGS technologies, such as Illumina’s reversible

terminator method. As preprocessing and data reduction tool, SEED is very efficient in

improving the time and memory requirements of downstream NGS data processing routines,

89

such as genome and transcriptome assemblies, often by a factor of 2- to 5-fold, based on the

NGS test data sets used in this study. Moreover, reducing the redundancies in NGS data

with SEED does not negatively impact the quality of the contigs in downstream assembly

steps. In case of the Velvet/Oasis assembler, the N50 values of transcriptome and genome

assemblies could be improved with SEED preprocessing by 12-27%.

BRANCH is an efficient reference assisted post-processing method for enhancing

de novo transcriptome assemblies. It can be used in combination with most de novo tran-

scriptome assembly software tools. The assembly improvements are achieved with help

from partial or complete genomic sequence information. They can be obtained by sequenc-

ing and assembling a genomic DNA sample in addition to the RNA samples required for a

transcriptome assembly project. This approach is practical because it requires only prelim-

inary genome assembly results in form of contigs. Nowadays, the latter can be generated

with very reasonable cost and time investments. In case the genome sequence of a closely

related organism is available, one can skip the genome assembly step and use the related

gene sequences instead.

AlignGraph is a novel de Bruijn graph-based algorithm for improving de novo

genome assemblies guided by sequence information from a closely related species. The cho-

sen PE multi-positional de Bruijn graph approach provides an elegant and efficient solution

to this problem. Our performance results demonstrate that the implemented AlignGraph

software is able to improve the results of a wide range of de novo assemblers for complex

genomes even with relatively diverse and suboptimal guide sequences as reference. More-

over, our results demonstrate AlignGraph’s usefulness for improving unfinished genome

90

assemblies. Another advantage is that AlignGraph can be used in combination with most

existing de novo assemblers.

5.2 Future Work

The three algorithms SEED, BRANCH and AlignGraph can be further improved to achieve

better accuracy, time and memory performance. For example, it will be relatively straight-

forward to parallelize all three algorithms. In addition, their default parameter settings can

be further optimized to achieve better performance. For instance, machine learning tech-

niques can be used for dynamic parameter tuning. The following discusses some specific

extensions of each algorithm.

For SEED, the current read length limitation will be elevated to keep up with

improvements of NGS technologies. This can be achieved by redesigning a set of spaced

seeds of larger weight and length. Another extension will support clustering of PE reads.

Here one can cluster PE reads simply by the partitioning results obtained from only one

read pair, while the other read pair will be placed into the same clusters. The other option

is to check both read pairs and put PE reads into one cluster if both of their left read pairs

and right read pairs meet the similarity requirements. For BRANCH and AlignGraph, as

misassembly detection and correction tool will be added. This can be achieved by techniques

similar to those proposed by Gnerre et al. (2011). Their main idea is to determine if a

transfrag or contig can be aligned to more than one location in the reference genome.

91

Bibliography

Au, K., Jiang, H., Lin, L., Xing, Y., and Wong, W. (2010). Detection of splice junctions from

paired-end rna-seq data by splicemap. Nucleic Acids Research, 38(14), 4570–4578.

Bao, E., Jiang, T., Kaloshian, I., and Girke, T. (2011). Seed: efficient clustering of next-generation

sequences. Bioinformatics, 27(18), 2502–2509.

Bao, E., Jiang, T., and Girke, T. (2013). Branch: boosting rna-seq assemblies with partial or related

genomic sequences. Bioinformatics, 29(10), 1250–1259.

Birney, E. (2011). Assemblies: the good, the bad, the ugly. Nat Methods, 8(1), 59–60.

Boetzer, M. and Pirovano, W. (2012). Toward almost closed genomes with gapfiller. Genome biology ,

13(6), R56.

Boetzer, M., Henkel, C. V., Jansen, H. J., Butler, D., and Pirovano, W. (2011). Scaffolding pre-

assembled contigs using sspace. Bioinformatics, 27(4), 578–579.

Butler, J., MacCallum, I., Kleber, M., Shlyakhter, I., Belmonte, M., Lander, E., Nusbaum, C.,

and Jaffe, D. (2008). Allpaths: de novo assembly of whole-genome shotgun microreads. Genome

Research, 18(5), 810–820.

Chaisson, M. J. and Pevzner, P. A. (2008). Short read fragment assembly of bacterial genomes.

Genome research, 18(2), 324–330.

Cock, P. J., Fields, C. J., Goto, N., Heuer, M. L., and Rice, P. M. (2010). The Sanger FASTQ file

format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids

Res, 38(6), 1767–1771.

92

Dayarian, A., Michael, T. P., and Sengupta, A. M. (2010). Sopra: Scaffolding algorithm for paired

reads via statistical optimization. BMC bioinformatics, 11(1), 345.

Dezso, B., Jüttner, A., and Kovács, P. (2011). Lemon-an open source c++ graph template library.

Electronic Notes in Theoretical Computer Science, 264(5), 23–45.

Dohm, J. C., Lottaz, C., Borodina, T., and Himmelbauer, H. (2007). Sharcgs, a fast and highly

accurate short-read assembly algorithm for de novo genomic sequencing. Genome research, 17(11),

1697–1706.

Edgar, R. C. (2010). Search and clustering orders of magnitude faster than BLAST. Bioinformatics,

26(19), 2460–2461.

Feng, J., Li, W., and Jiang, T. (2010). Inference of isoforms from short sequence reads. In Research

in Computational Molecular Biology , pages 138–157. Springer.

Feng, J., Li, W., and Jiang, T. (2011). Inference of isoforms from short sequence reads. Journal of

Computational Biology , 18(3), 305–321.

Ferragina, P. and Manzini, G. (2000). Opportunistic data structures with applications. In Founda-

tions of Computer Science, 2000. Proceedings. 41st Annual Symposium on, pages 390–398. IEEE.

Fritz, M. H. Y., Leinonen, R., Cochrane, G., and Birney, E. (2011). Efficient storage of high

throughput sequencing data using reference-based compression. Genome Research.

Gao, S., Sung, W.-K., and Nagarajan, N. (2011). Opera: reconstructing optimal genomic scaffolds

with high-throughput paired-end sequences. Journal of Computational Biology , 18(11), 1681–

1691.

Gnerre, S., Lander, E. S., Lindblad-Toh, K., Jaffe, D. B., et al. (2009). Assisted assembly: how to

improve a de novo genome assembly by using related species. Genome Biol , 10(8), R88.

Gnerre, S., MacCallum, I., Przybylski, D., Ribeiro, F. J., Burton, J. N., Walker, B. J., Sharpe,

T., Hall, G., Shea, T. P., Sykes, S., et al. (2011). High-quality draft assemblies of mammalian

genomes from massively parallel sequence data. Proceedings of the National Academy of Sciences,

108(4), 1513–1518.

Grabherr, M. G., Haas, B. J., Yassour, M., Levin, J. Z., Thompson, D. A., Amit, I., Adiconis, X.,

Fan, L., Raychowdhury, R., Zeng, Q., et al. (2011). Full-length transcriptome assembly from

rna-seq data without a reference genome. Nature biotechnology , 29(7), 644–652.

93

Grant, G., Farkas, M., Pizarro, A., Lahens, N., Schug, J., Brunk, B., Stoeckert, C., Hogenesch,

J., and Pierce, E. (2011). Comparative analysis of rna-seq alignment algorithms and the rna-seq

unified mapper (rum). Bioinformatics, 27(18), 2518–2528.

Gritsenko, A. A., Nijkamp, J. F., Reinders, M. J., and de Ridder, D. (2012). Grass: a generic

algorithm for scaffolding next-generation sequencing assemblies. Bioinformatics, 28(11), 1429–

1437.

Guttman, M., Garber, M., Levin, J. Z., Donaghey, J., Robinson, J., Adiconis, X., Fan, L., Koziol,

M. J., Gnirke, A., Nusbaum, C., et al. (2010). Ab initio reconstruction of cell type-specific tran-

scriptomes in mouse reveals the conserved multi-exonic structure of lincrnas. Nature biotechnology ,

28(5), 503–510.

Hazelhurst, S., Hide, W., Lipták, Z., Nogueira, R., and Starfield, R. (2008). An overview of the wcd

EST clustering tool. Bioinformatics, 24(13), 1542.

Hernandez, D., François, P., Farinelli, L., Øster̊as, M., and Schrenzel, J. (2008). De novo bacterial

genome sequencing: millions of very short reads assembled on a desktop computer. Genome

research, 18(5), 802–809.

Hillier, L. W., Reinke, V., Green, P., Hirst, M., Marra, M. A., and Waterston, R. H. (2009). Massively

parallel sequencing of the polyadenylated transcriptome of c. elegans. Genome research, 19(4),

657–666.

Holt, R. A. and Jones, S. J. (2008). The new paradigm of flow cell sequencing. Genome Res, 18(6),

839–846.

Hsieh, L. C., Lin, S. I., Shih, A. C., Chen, J. W., Lin, W. Y., Tseng, C. Y., Li, W. H., and Chiou,

T. J. (2009). Uncovering small RNA-mediated responses to phosphate deficiency in Arabidopsis

by deep sequencing. Plant Physiol , 151(4), 2120–2132.

Hu, T. T., Pattyn, P., Bakker, E. G., Cao, J., Cheng, J. F., Clark, R. M., Fahlgren, N., Fawcett,

J. A., Grimwood, J., Gundlach, H., Haberer, G., Hollister, J. D., Ossowski, S., Ottilar, R. P.,

Salamov, A. A., Schneeberger, K., Spannagl, M., Wang, X., Yang, L., Nasrallah, M. E., Bergelson,

J., Carrington, J. C., Gaut, B. S., Schmutz, J., Mayer, K. F., Van de Peer, Y., Grigoriev, I. V.,

Nordborg, M., Weigel, D., and Guo, Y. L. (2011). The arabidopsis lyrata genome sequence and

the basis of rapid genome size change. Nat Genet , 43(5), 476–481.

94

Huang, X. and Madan, A. (1999). CAP3: A DNA sequence assembly program. Genome research,

9(9), 868.

Idury, R. M. and Waterman, M. S. (1995). A new algorithm for dna sequence assembly. Journal of

Computational Biology , 2(2), 291–306.

Jeck, W. R., Reinhardt, J. A., Baltrus, D. A., Hickenbotham, M. T., Magrini, V., Mardis, E. R.,

Dangl, J. L., and Jones, C. D. (2007). Extending assembly of short dna sequences to handle error.

Bioinformatics, 23(21), 2942–2944.

Jiang, H. and Wong, W. (2008). Seqmap: mapping massive amount of oligonucleotides to the

genome. Bioinformatics, 24(20), 2395.

Jiao, Y. and Meyerowitz, E. M. (2010). Cell-type specific analysis of translating RNAs in developing

flowers reveals new levels of control. Mol Syst Biol , 6, 419–419.

Johnson, C., Kasprzewska, A., Tennessen, K., Fernandes, J., Nan, G. L., Walbot, V., Sundaresan,

V., Vance, V., and Bowman, L. H. (2009). Clusters and superclusters of phased small RNAs in

the developing inflorescence of rice. Genome Res, 19(8), 1429–1440.

Kaufmann, K., Wellmer, F., Muiño, J. M., Ferrier, T., Wuest, S. E., Kumar, V., Serrano-Mislata, A.,

Madueño, F., Krajewski, P., Meyerowitz, E. M., Angenent, G. C., and Riechmann, J. L. (2010).

Orchestration of floral initiation by APETALA1. Science, 328(5974), 85–89.

Kececioglu, J. D. and Myers, E. W. (1995). Combinatorial algorithms for dna sequence assembly.

Algorithmica, 13(1-2), 7–51.

Kent, W. (2002). Blatthe blast-like alignment tool. Genome research, 12(4), 656–664.

Kim, J., Larkin, D. M., Cai, Q., Zhang, Y., Ge, R.-L., Auvil, L., Capitanu, B., Zhang, G., Lewin,

H. A., Ma, J., et al. (2013). Reference-assisted chromosome assembly. Proceedings of the National

Academy of Sciences, 110(5), 1785–1790.

Langmead, B. and Salzberg, S. L. (2012). Fast gapped-read alignment with bowtie 2. Nature

methods, 9(4), 357–359.

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. L. (2009a). Ultrafast and memory-efficient

alignment of short DNA sequences to the human genome. Genome Biol , 10(3).

95

Langmead, B., Trapnell, C., Pop, M., and Salzberg, S. (2009b). Ultrafast and memory-efficient

alignment of short dna sequences to the human genome. Genome Biol , 10(3), R25.

Leinonen, R., Akhtar, R., Birney, E., Bower, L., Cerdeno-Tárraga, A., Cheng, Y., Cleland, I.,

Faruque, N., Goodgame, N., Gibson, R., Hoad, G., Jang, M., Pakseresht, N., Plaister, S., Rad-

hakrishnan, R., Reddy, K., Sobhany, S., Ten Hoopen, P., Vaughan, R., Zalunin, V., and Cochrane,

G. (2010). The European Nucleotide Archive. Nucleic Acids Res.

Levin, J. Z., Yassour, M., Adiconis, X., Nusbaum, C., Thompson, D. A., Friedman, N., Gnirke,

A., and Regev, A. (2010). Comprehensive comparative analysis of strand-specific rna sequencing

methods. Nature methods, 7(9), 709–715.

Li, H. and Durbin, R. (2009a). Fast and accurate short read alignment with burrows–wheeler

transform. Bioinformatics, 25(14), 1754–1760.

Li, H. and Durbin, R. (2009b). Fast and accurate short read alignment with Burrows-Wheeler

transform. Bioinformatics, 25(14), 1754–1760.

Li, H. and Homer, N. (2010). A survey of sequence alignment algorithms for next-generation se-

quencing. Briefings in bioinformatics, 11(5), 473–483.

Li, H., Ruan, J., and Durbin, R. (2008). Mapping short dna sequencing reads and calling variants

using mapping quality scores. Genome research, 18(11), 1851.

Li, H., Handsaker, B., Wysoker, A., Fennell, T., Ruan, J., Homer, N., Marth, G., Abecasis, G.,

Durbin, R., and 1000 Genome Project Data Processing Subgroup (2009). The Sequence Align-

ment/Map format and SAMtools. Bioinformatics, 25(16), 2078–2079.

Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K.,

et al. (2010). De novo assembly of human genomes with massively parallel short read sequencing.

Genome research, 20(2), 265–272.

Li, W. and Godzik, A. (2006). Cd-hit: a fast program for clustering and comparing large sets of

protein or nucleotide sequences. Bioinformatics, 22(13), 1658–1659.

Li, W., Feng, J., and Jiang, T. (2011). Isolasso: a lasso regression approach to rna-seq based

transcriptome assembly. Journal of Computational Biology , 18(11), 1693–1707.

96

Lin, H., Zhang, Z., Zhang, M. Q., Ma, B., and Li, M. (2008). ZOOM! Zillions of oligos mapped.

Bioinformatics, 24(21), 2431–2437.

Lin, Y., Li, J., Shen, H., Zhang, L., Papasian, C. J., et al. (2011). Comparative studies of de novo

assembly tools for next-generation sequencing technologies. Bioinformatics, 27(15), 2031–2037.

Lindblad-Toh, K., Garber, M., Zuk, O., Lin, M. F., Parker, B. J., Washietl, S., Kheradpour, P.,

Ernst, J., Jordan, G., Mauceli, E., Ward, L. D., Lowe, C. B., Holloway, A. K., Clamp, M.,

Gnerre, S., Alföldi, J., Beal, K., Chang, J., Clawson, H., Cuff, J., Di Palma, F., Fitzgerald, S.,

Flicek, P., Guttman, M., Hubisz, M. J., Jaffe, D. B., Jungreis, I., Kent, W. J., Kostka, D., Lara,

M., Martins, A. L., Massingham, T., Moltke, I., Raney, B. J., Rasmussen, M. D., Robinson, J.,

Stark, A., Vilella, A. J., Wen, J., Xie, X., Zody, M. C., Broad Institute Sequencing Platform and

Whole Genome Assembly Team, Baldwin, J., Bloom, T., Chin, C. W., Heiman, D., Nicol, R.,

Nusbaum, C., Young, S., Wilkinson, J., Worley, K. C., Kovar, C. L., Muzny, D. M., Gibbs, R. A.,

Baylor College of Medicine Human Genome Sequencing Center Sequencing Team, Cree, A., Dihn,

H. H., Fowler, G., Jhangiani, S., Joshi, V., Lee, S., Lewis, L. R., Nazareth, L. V., Okwuonu,

G., Santibanez, J., Warren, W. C., Mardis, E. R., Weinstock, G. M., Wilson, R. K., Genome

Institute at Washington University, Delehaunty, K., Dooling, D., Fronik, C., Fulton, L., Fulton,

B., Graves, T., Minx, P., Sodergren, E., Birney, E., Margulies, E. H., Herrero, J., Green, E. D.,

Haussler, D., Siepel, A., Goldman, N., Pollard, K. S., Pedersen, J. S., Lander, E. S., and Kellis,

M. (2011). A high-resolution map of human evolutionary constraint using 29 mammals. Nature,

478(7370), 476–482.

Luo, R., Liu, B., Xie, Y., Li, Z., Huang, W., Yuan, J., He, G., Chen, Y., Pan, Q., Liu, Y., et al.

(2012). Soapdenovo2: an empirically improved memory-efficient short-read de novo assembler.

GigaScience, 1(1), 18.

Ma, B., Tromp, J., and Li, M. (2002). PatternHunter: faster and more sensitive homology search.

Bioinformatics, 18(3), 440–445.

Martin, J. A. and Wang, Z. (2011). Next-generation transcriptome assembly. Nature Reviews

Genetics, 12(10), 671–682.

Medini, D., Serruto, D., Parkhill, J., Relman, D. A., Donati, C., Moxon, R., Falkow, S., and

Rappuoli, R. (2008). Microbiology in the post-genomic era. Nat Rev Microbiol , 6(6), 419–430.

97

Medvedev, P., Pham, S., Chaisson, M., Tesler, G., and Pevzner, P. (2011). Paired de bruijn graphs:

a novel approach for incorporating mate pair information into genome assemblers. Journal of

Computational Biology , 18(11), 1625–1634.

Miller, J. R., Delcher, A. L., Koren, S., Venter, E., Walenz, B. P., Brownley, A., Johnson, J., Li, K.,

Mobarry, C., and Sutton, G. (2008). Aggressive assembly of pyrosequencing reads with mates.

Bioinformatics, 24(24), 2818–2824.

Miller, J. R., Koren, S., and Sutton, G. (2010). Assembly algorithms for next-generation sequencing

data. Genomics, 95(6), 315–327.

Montgomery, T. A., Yoo, S. J., Fahlgren, N., Gilbert, S. D., Howell, M. D., Sullivan, C. M., Alexan-

der, A., Nguyen, G., Allen, E., Ahn, J. H., and Carrington, J. C. (2008). AGO1-miR173 complex

initiates phased siRNA formation in plants. Proc Natl Acad Sci U S A, 105(51), 20055–20062.

Myers, E. W. (2005). The fragment assembly string graph. Bioinformatics, 21(suppl 2), ii79–ii85.

Peng, Y., Leung, H. C., Yiu, S.-M., and Chin, F. Y. (2010). Idba–a practical iterative de bruijn graph

de novo assembler. In Research in Computational Molecular Biology , pages 426–440. Springer.

Peng, Y., Leung, H. C., Yiu, S.-M., and Chin, F. Y. (2011). T-idba: a de novo iterative de bruijn

graph assembler for transcriptome. In Research in Computational Molecular Biology , pages 337–

338. Springer.

Pevzner, P. A., Tang, H., and Waterman, M. S. (2001). An eulerian path approach to dna fragment

assembly. Proceedings of the National Academy of Sciences, 98(17), 9748–9753.

Phillippy, A. M., Schatz, M. C., and Pop, M. (2008). Genome assembly forensics: finding the elusive

mis-assembly. Genome Biol , 9(3).

Picardi, E., Mignone, F., and Pesole, G. (2009). EasyCluster: a fast and efficient gene-oriented

clustering tool for large-scale transcriptome data. BMC bioinformatics, 10(Suppl 6), S10.

Pop, M., Phillippy, A., Delcher, A. L., and Salzberg, S. L. (2004a). Comparative genome assembly.

Brief Bioinform, 5(3), 237–248.

Pop, M., Phillippy, A., Delcher, A. L., and Salzberg, S. L. (2004b). Comparative genome assembly.

Briefings in bioinformatics, 5(3), 237–248.

98

Pop, M., Kosack, D. S., and Salzberg, S. L. (2004c). Hierarchical scaffolding with bambus. Genome

research, 14(1), 149–159.

Qu, W., Hashimoto, S., and Morishita, S. (2009). Efficient frequency-based de novo short-read

clustering for error trimming in next-generation sequencing. Genome Res, 19(7), 1309–1315.

Rao, D., Moler, J., Ozden, M., Zhang, Y., Liang, C., and Karro, J. (2010). PEACE: Parallel

Environment for Assembly and Clustering of Gene Expression. Nucleic acids research, 38(suppl

2), W737.

Rasmussen, K. R., Stoye, J., and Myers, E. W. (2006). Efficient q-gram filters for finding all ε-

matches over a given length. Journal of Computational Biology , 13(2), 296–308.

Robertson, G., Schein, J., Chiu, R., Corbett, R., Field, M., Jackman, S. D., Mungall, K., Lee, S.,

Okada, H. M., Qian, J. Q., et al. (2010). De novo assembly and analysis of rna-seq data. Nature

methods, 7(11), 909–912.

Ronen, R., Boucher, C., Chitsaz, H., and Pevzner, P. (2012). Sequel: improving the accuracy of

genome assemblies. Bioinformatics, 28(12), i188–i196.

Salmela, L., Mäkinen, V., Välimäki, N., Ylinen, J., and Ukkonen, E. (2011). Fast scaffolding with

small independent mixed integer programs. Bioinformatics, 27(23), 3259–3265.

Salzberg, S. L., Phillippy, A. M., Zimin, A., Puiu, D., Magoc, T., Koren, S., Treangen, T. J., Schatz,

M. C., Delcher, A. L., Roberts, M., et al. (2012). Gage: A critical evaluation of genome assemblies

and assembly algorithms. Genome Research, 22(3), 557–567.

Schatz, M. C., Phillippy, A. M., Sommer, D. D., Delcher, A. L., Puiu, D., Narzisi, G., Salzberg,

S. L., and Pop, M. (2013). Hawkeye and AMOS: visualizing and assessing the quality of genome

assemblies. Brief Bioinform, 14(2), 213–224.

Schmidt, B., Sinha, R., Beresford-Smith, B., and Puglisi, S. J. (2009). A fast hybrid short read

fragment assembly algorithm. Bioinformatics, 25(17), 2279–2280.

Schneeberger, K., Ossowski, S., Ott, F., Klein, J. D., Wang, X., Lanz, C., Smith, L. M., Cao, J.,

Fitz, J., Warthmann, N., et al. (2011). Reference-guided assembly of four diverse arabidopsis

thaliana genomes. Proceedings of the National Academy of Sciences, 108(25), 10249–10254.

99

Schulz, M. H., Zerbino, D. R., Vingron, M., and Birney, E. (2012). Oases: robust de novo rna-seq

assembly across the dynamic range of expression levels. Bioinformatics, 28(8), 1086–1092.

Shendure, J. and Ji, H. (2008). Next-generation dna sequencing. Nature biotechnology , 26(10),

1135–1145.

Simpson, J., Wong, K., Jackman, S., Schein, J., Jones, S., and Birol, İ. (2009). Abyss: a parallel

assembler for short read sequence data. Genome research, 19(6), 1117–1123.

Simpson, J. T. and Durbin, R. (2010). Efficient construction of an assembly string graph using the

fm-index. Bioinformatics, 26(12), i367–i373.

Simpson, J. T. and Durbin, R. (2012). Efficient de novo assembly of large genomes using compressed

data structures. Genome Research, 22(3), 549–556.

Trapnell, C., Pachter, L., and Salzberg, S. (2009). Tophat: discovering splice junctions with rna-seq.

Bioinformatics, 25(9), 1105–1111.

Trapnell, C., Williams, B. A., Pertea, G., Mortazavi, A., Kwan, G., van Baren, M. J., Salzberg, S. L.,

Wold, B. J., and Pachter, L. (2010). Transcript assembly and quantification by rna-seq reveals

unannotated transcripts and isoform switching during cell differentiation. Nature biotechnology ,

28(5), 511–515.

Tsai, I. J., Otto, T. D., and Berriman, M. (2010). Method improving draft assemblies by iterative

mapping and assembly of short reads to eliminate gaps.

Wang, E., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S., Schroth, G.,

and Burge, C. (2008). Alternative isoform regulation in human tissue transcriptomes. Nature,

456(7221), 470–476.

Wang, K., Singh, D., Zeng, Z., Coleman, S., Huang, Y., Savich, G., He, X., Mieczkowski, P.,

Grimm, S., Perou, C., et al. (2010). Mapsplice: accurate mapping of rna-seq reads for splice

junction discovery. Nucleic acids research, 38(18), e178.

Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2007a). Assembling millions of short

dna sequences using ssake. Bioinformatics, 23(4), 500–501.

Warren, R. L., Sutton, G. G., Jones, S. J., and Holt, R. A. (2007b). Assembling millions of short

DNA sequences using SSAKE. Bioinformatics, 23(4), 500–501.

100

Weber, K. P., De, S., Kozarewa, I., Turner, D. J., Babu, M. M., and de Bono, M. (2010). Whole

genome sequencing highlights genetic changes associated with laboratory domestication of c. ele-

gans. PLoS One, 5(11), e13922.

Wu, T. and Watanabe, C. (2005). Gmap: a genomic mapping and alignment program for mrna and

est sequences. Bioinformatics, 21(9), 1859.

Xie, Y., Wu, G., Tang, J., Luo, R., Patterson, J., Liu, S., Huang, W., He, G., Gu, S., Li, S.,

et al. (2013). Soapdenovo-trans: De novo transcriptome assembly with short rna-seq reads. arXiv

preprint arXiv:1305.6760 .

Zerbino, D. and Birney, E. (2008a). Velvet: algorithms for de novo short read assembly using de

bruijn graphs. Genome research, 18(5), 821–829.

Zerbino, D. R. and Birney, E. (2008b). Velvet: algorithms for de novo short read assembly using de

Bruijn graphs. Genome Res, 18(5), 821–829.

Zhang, W., Chen, J., Yang, Y., Tang, Y., Shang, J., and Shen, B. (2011). A practical comparison of

de novo genome assembly software tools for next-generation sequencing technologies. PLoS One,

6(3).

Zhao, Q., Wang, Y., Kong, Y., Luo, D., Hao, P., and Li, X. (2011). Optimizing de novo transcriptome

assembly from short-read rna-seq data: a comparative study. BMC Bioinformatics, 12(Suppl 14),

S2.

Zimin, A. V., Marçais, G., Puiu, D., Roberts, M., Salzberg, S. L., and Yorke, J. A. (2013). The

masurca genome assembler. Bioinformatics, 29(21), 2669–2677.

101

Appendix A

Supplementary Materials for

Chapter 2

Proof of Theorem 1

Proof. Note that l
gcd(l,w) is the number of blocks in a seed and w

gcd(l,w) the number of blocks

of 1’s. Hence, l
gcd(l,w) −

w
gcd(l,w) is the number of blocks of 0’s. If k > l

gcd(l,w) −
w

gcd(l,w) ,

then for any set of block spaced seeds with length l and weight w, we can easily find two

sequences of length l that differ by k mismatches located in k different blocks. These two

sequences will not share a bucket in any hash table since at least one of the k blocks is of

1’s, and therefore the block spaced seed set does not achieve full sensitivity.

If k ≤ l
gcd(l,w) −

w
gcd(l,w) , we construct a set of block spaced seeds by including all

block spaced seeds whose first l
gcd(l,w)−

w
gcd(l,w)−k blocks are filled with 0’s and other blocks

form an arbitrary permutation of k blocks of 0’s and w
gcd(l,w) blocks of 1’s. The number of

102

such block spaced seeds is
(w

gcd(l,w)
+k

k

)
. For any k mismatches between two sequences with

length l, there always exists a block spaced seed having k blocks of 0’s where the mismatches

could be located in. Therefore, it is easy to verify that these seeds achieve full sensitivity

with respect to k mismatches.

Analysis of Algorithm 1

As suggested by Lin et al. (2008), to be time efficient, the size c of the block spaced seed set

should be made as small as possible, whereas the weight w of the block spaced seeds should

be maximized while satisfying the memory constraint. We require w ≤ 13, because the

headers of our hash tables take too much memory with larger values. For instance, when

w = 14, they will require 2× 414+1 = 2GB memory per spaced seed according to Equation

(1). Our experience also shows that w should be generally at least 11 in order to achieve

a decent time efficiency. Algorithm 1 computes the number of block spaced seeds required

to guarantee full sensitivity and to minimize the memory usage of the hash table headers

for any given read length l and similarity threshold k. It searches for the best weight w

between 11 and 13, and for each weight w, it uses Theorem 1 to obtain an upper bound on

the minimum number of required block seeds as
(w

gcd(l,w)
+k

k

)
, whenever k > l

gcd(l,w) −
w

gcd(l,w)

holds. When there exist several weights w that yield the same minimum header memory

usage, it chooses the largest w which implies the best time efficiency. After w is chosen, a

set of block spaced seeds is generated according to the proof of Theorem 1, by including

all block spaced seeds whose first l
gcd(l,w) −

w
gcd(l,w) − k blocks are filled with 0’s and other

blocks form an arbitrary permutation of k blocks of 0’s and w
gcd(l,w) blocks of 1’s.

103

…

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

...

…

…

Hash
table 1

Hash
table 2

Hash
table c

Pointers

Sequences
Headers

AA
ACGC

GA

CT
CG
CC
CA
AT
AG

AAC

AGG
ACG

AAA
ACA
TAA

GT
GG

TC
TA

TT
TG

110

101

011

…

…

AA
ACGC

GA

CT
CG
CC
CA
AT
AG

GT
GG

TC
TA

TT
TG

AA
ACGC

GA

CT
CG
CC
CA
AT
AG

GT
GG

TC
TA

TT
TG

Figure A-1: Data structure of the SEED algorithm. The top figure illustrates the general
data structure. On the left are the hash tables. Each hash table corresponds to one spaced
seed and consists of buckets. Each bucket corresponds to a word of w bases and has two
parts: (i) a header and (ii) an array of pointers the header points to. All the array pointers
reference the sequence space on the right. The bopttom figure gives a specific example for
6 sequences with seeds {110, 101, 011} (i.e., l = 3, k = 1 and w = 2). There are three hash
tables each corresponds to one spaced seed, and 42 = 16 buckets in each hash table. Most of
the buckets only have headers but not arrays of pointers, because the number of associated
sequences is very small.

104

●

0.00 0.05 0.10 0.15

0.
95

0.
96

0.
97

0.
98

0.
99

1.
00

Prediction−Performance (x = 0.5)

FPR

T
P

R

●●

●

Figure A-2: Prediction-performance plot. The FPRs are plotted against the TPRs for the
clustering methods: SEED (green), UCLUST with and without its optimal mode (blue),
and SSAKE (red). The ”true” clusters from the alignment-based method were used as
reference to compute the data points for this plot. For each test method the results for the
four ChIP-Seq samples are provided separately (SRR038848-SRR038851). The minimum
similarity required to the true clusters was set to x = 0.5. Note, the results for two UCLUST
modes overplot each other because they are almost identical.

Table A-1: Weights and numbers of block spaced seeds and memory usages of headers for
various read lengths.

Read length Weight # block spaced seeds Header memory usage

25 11 364 11.375 GB
26 12 84 10.5 GB
27 12 35 4.375 GB
28 12 20 2.5 GB
29 11 364 11.375 GB
30 12 10 1.25 GB
31 11 364 11.375 GB
32 12 20 2.5 GB
33 12 35 4.375 GB
34 12 84 10.5 GB
35 11 364 11.375 GB

105

Table A-2: The set of block spaced seeds used in the experiments. Each string of 1’s and
0’s is a block spaced seed.

111111111111000000000000000000
111111000000111111000000000000
111111000000000000111111000000
111111000000000000000000111111
000000111111111111000000000000
000000111111000000111111000000
000000111111000000000000111111
000000000000111111111111000000
000000000000111111000000111111
000000000000000000111111111111

106

Table A-3: Performance tests of SEED on simulated data. The default parameters are:
107 read sequences of length 40 bp, 1000 true clusters with 10,000 members each, ≤ 3
mismatches, ≤ 3 overhanging bases, QV1 = 0, QV2 = 558. Variations of these parameters
are indicated in each subtable. The last two columns give the number of clusters containing
at least 50% and 90% of their original members, respectively. The FPR for each result is
provided in parentheses.

Test Variable Memory in GB Time
≥50% Clusters

(FPR)
≥90% Clusters

(FPR)

(a) Varying numbers of sequences (N)
N = 1× 107 2.6 00:23:53 721 (0) 149 (0)
N = 4× 107 4.6 01:36:55 713 (0) 155 (0)
N = 7× 107 6.3 02:42:23 726 (0) 140 (0)
N = 1× 108 8.0 03:53:08 725 (0) 159 (0)

(b) Varying sequence lengths (L)
L = 40 2.6 00:23:53 721 (0) 149 (0)
L = 60 2.6 00:38:17 723 (0) 133 (0)
L = 80 2.6 00:52:35 703 (0) 143 (0)
L = 100 2.6 01:05:48 707 (0) 165 (0)

(c) Varying numbers of true clusters (TC)
TC = 1 2.3 00:04:19 1 (0) 1 (0)
TC = 10 2.1 00:11:02 6 (0) 4 (0)
TC = 100 2.6 00:24:19 65 (0) 14 (0)
TC = 1000 2.6 00:23:43 721 (0) 149 (0)

(d) Varying numbers of mismatches (MM)
MM = 0 1.4 00:58:50 408 (0) 121 (0)
MM = 1 2.4 00:33:34 438 (0) 150 (0)
MM = 2 2.5 00:28:16 725 (0) 141 (0)
MM = 3 2.6 00:23:53 721 (0) 149 (0)

(e) Varying numbers of overhanging residues (OH)
OH = 0 2.5 00:05:28 1000 (0) 1000 (0)
OH = 1 2.6 00:07:02 1000 (0) 306 (0)
OH = 2 2.6 00:11:01 799 (0) 206 (0)
OH = 3 2.6 00:23:53 721 (0) 149 (0)

(f) Varying threshold values for QV1 constraint
QV1 = 0 3.0 00:41:47 721 (0) 149 (0)
QV1 = 23 3.0 00:32:37 721 (0) 149 (0)
QV1 = 70 3.0 00:16:23 933 (0) 149 (0)
QV1 = 93 3.0 00:10:48 1000 (8× 10−6) 149 (2× 10−5)

(g) Varying threshold values for QV2 constraint.
QV2 = 465 3.0 00:42:05 721 (0) 149 (0)
QV2 = 488 3.0 00:37:24 721 (0) 149 (0)
QV2 = 535 3.0 00:37:20 721 (0) 149 (0)
QV2 = 558 3.0 00:37:20 721 (0) 149 (0)

107

Appendix B

Supplementary Materials for

Chapter 3

The Details of the CO Algorithm

Recall that the CO Algorithm solves the MMPC problem. The standard way to solve the

Minimum Path Cover (MPC) problem is to convert the DAG G to a bipartite graph G′ and

solve the corresponding Maximum Matching (MM) problem for G′. Therefore, to solve the

MMPC problem, we could also convert the weighted DAG G to a weighted bipartite graph

G′, and solve the correspoding Minimum weight Maximum Matching (MMM) problem

(Trapnell et al., 2010). Due to the lack of a suitable software library for solving the MMM

problem available to us at the time of this study, we further convert the weighted bipartite

graph G′ to a weighted complete graph G′′ and then solve the corresponding Maximum

Perfect Matching (MPM) problem, which can be efficiently solved by using several public

108

software libraries (e.g. Dezso et al., 2011). A pseudocode for the CO Algorithm is given

below.

Algorithm 4 Combinatorial Optimization: CO(G)

convert G to bipartitie graph G′

for each node pair v and v′ ∈ G′ do
if there exists an edge e(v, v′) then

let the weight w(e(v, v′)) = −w(e(v, v′))
else

assign an edge e(v, v′) with weight −MAX to G
end if

end for
{G′ is then converted to a complete graph G′′}
MPM(G′′)
for each edge e do

if w(e) = −MAX then
delete e

else
w(e) = −w(e)

end if
end for
{G′′ is converted back to G′}
convert G′ back to G and return the resultant MMPC P

The following lemma can be proven by a straightforward proof-by-contradiction

argument and guarantees the correctness of the CO Algorithm.

Lemma 1. An MPM on G′′ in the CO Algorithm corresponds to an MMM on G′.

Table B-1: Population sizes used for mRNA read sampling. The proportions of transcripts
are listed falling into variable ranges of expression levels. The latter are given in reads per
kb of exon model per million reads (RPKM).

RPKM 0 0-0.1 0.1-1 1-10 10-100 >100

N Transcripts 50% 16% 10% 14% 8% 2%

109

T
ab

le
B

-2
:

A
ss

em
b

li
es

o
f

si
m

u
la

te
d

d
a
ta

w
it

h
va

ri
ab

le
co

n
ti

g
le

n
gt

h
s.

P
er

fo
rm

an
ce

re
su

lt
s

fo
r

d
iff

er
en

t
co

n
ti

g
le

n
gt

h
s

ar
e

sh
ow

n
fo

r
V

el
ve

t/
O

as
es

,
V

el
ve

t/
O

a
se

s
w

it
h

B
R

A
N

C
H

p
os

t-
p

ro
ce

ss
in

g
(r

ef
er

re
d

to
as

V
el

v
et

/O
as

es
+

B
R

A
N

C
H

),
T

ri
n

it
y,

an
d

T
ri

n
it

y
w

it
h

B
R

A
N

C
H

p
os

t-
p

ro
ce

ss
in

g
(r

ef
er

re
d

to
as

T
ri

n
it

y
+

B
R

A
N

C
H

).
T

h
e

in
va

ri
ab

le
p

ar
am

et
er

se
tt

in
gs

in
cl

u
d

e:
1%

co
n
ti

g
se

q
u

en
ci

n
g

er
ro

rs
,

80
%

co
n
ti

g
co

ve
ra

ge
,

50
m

il
li

on
p

ai
re

d
-e

n
d

R
N

A
re

ad
s,

an
d

1%
R

N
A

re
ad

b
as

e
ca

ll
er

ro
rs

.
T

h
e

co
rr

es
p

on
d

in
g

se
n

si
ti

v
it

y
p
lo

t
is

gi
ve

n
in

F
ig

u
re

3.
3a

.

C
o
n
ti

g
le

n
g
th

S
en

si
ti

v
it

y
P

re
ci

si
o
n

N
T

ra
n

sf
ra

g
s

N
C

o
m

p
le

te
tr

a
n

sc
ri

p
ts

N
C

o
m

p
le

te
g
en

es
N

C
o
v
er

ed
tr

a
n

sc
ri

p
ts

N
E

x
o
n

s
N

E
x
te

n
si

o
n

s

V
el

ve
t/

O
a

se
s

-
4
,2

3
5

1
7
.7

%
8
5
,0

8
2

1
,7

3
6

1
,5

8
5

1
,9

9
4

5
0
,3

5
0

-

V
el

ve
t/

O
a

se
s+

B
R

A
N

C
H

1
K

4
,4

0
3

2
4
.6

%
9
5
,8

9
3

1
,7

5
1

1
,5

9
8

2
,3

5
0

5
5
,5

3
7

1
,7

5
8

1
0
K

4
,7

6
9

2
2
.1

%
9
7
,7

0
9

1
,8

2
1

1
,6

4
7

2
,3

6
9

5
7
,5

8
9

3
,6

2
7

5
0
K

4
,9

4
7

2
1
.4

%
9
7
,1

5
2

1
,8

7
1

1
,6

9
8

2
,4

8
3

5
8
,0

6
3

4
,1

4
6

1
0
0
K

4
,6

2
0

1
9
.4

%
9
0
,8

2
1

1
,8

1
2

1
,6

5
0

2
,2

2
5

5
4
,2

3
0

2
,0

3
4

T
ri

n
it

y
-

4
,8

1
7

3
9
.1

%
1
8
,2

4
1

2
,7

9
8

2
,5

3
8

3
,0

2
2

5
3
,6

5
9

-

T
ri

n
it

y
+

B
R

A
N

C
H

1
K

4
,9

2
9

5
4
.8

%
2
8
,5

3
6

2
,8

0
8

2
,5

4
7

3
,1

4
3

5
7
,7

5
5

4
8
7

1
0
K

5
,2

8
7

4
6
.5

%
2
8
,7

9
4

2
,8

0
5

2
,5

3
1

3
,1

8
6

5
9
,4

9
0

1
,4

0
3

5
0
K

5
,3

4
0

4
4
.3

%
2
8
,6

8
2

2
,8

4
0

2
,5

6
4

3
,1

9
1

5
9
,8

1
9

1
6
5
6

1
0
0
K

5
,0

7
7

4
2
.0

%
2
3
,2

1
3

2
,8

2
7

2
,5

5
8

3
,1

0
2

5
6
,8

6
3

8
2
6

110

T
ab

le
B

-3
:

A
ss

em
b

li
es

of
si

m
u

la
te

d
d

at
a

w
it

h
va

ri
ab

le
co

n
ti

g
b

as
e

er
ro

r
ra

te
s.

T
h

e
in

va
ri

ab
le

p
ar

am
et

er
se

tt
in

gs
in

cl
u

d
e:

10
k
b

p
co

n
ti

g
le

n
gt

h
,

8
0%

co
n
ti

g
co

ve
ra

ge
,

50
m

il
li

on
p

ai
re

d
-e

n
d

R
N

A
re

ad
s,

an
d

1%
R

N
A

re
ad

b
as

e
ca

ll
er

ro
rs

.
T

h
e

co
rr

es
p

on
d

in
g

se
n

si
ti

v
it

y
p
lo

t
is

gi
ve

n
in

F
ig

u
re

3.
3b

.

E
rr

o
r

ra
te

S
en

si
ti

v
it

y
P

re
ci

si
o
n

N
T

ra
n

sf
ra

g
N

C
o
m

p
le

te
tr

a
n

sc
ri

p
ts

N
C

o
m

p
le

te
g
en

es
N

C
o
v
er

ed
tr

a
n

sc
ri

p
ts

N
E

x
o
n

s
N

E
x
te

n
si

o
n

s

V
el

ve
t/

O
a

se
s

-
4
,2

3
5

1
7
.7

%
8
5
,0

8
2

1
,7

3
6

1
,5

8
5

1
,9

9
4

5
0
,3

5
0

-

V
el

ve
t/

O
a

se
s+

B
R

A
N

C
H

0
%

4
,8

2
7

2
2
.0

%
9
6
,7

3
3

1
,8

6
9

1
,6

9
5

2
,4

1
0

5
8
,0

3
8

3
,9

8
2

1
%

4
,7

6
9

2
2
.1

%
9
7
,7

0
9

1
,8

2
1

1
,6

4
7

2
,3

6
9

5
7
,5

8
9

3
,6

2
7

2
%

4
,6

6
3

2
2
.1

%
9
8
,3

1
1

1
,7

7
8

1
,6

2
0

2
,3

3
7

5
7
,2

9
2

3
,2

5
7

3
%

4
,6

2
5

2
1
.9

%
9
8
,5

2
6

1
,7

6
6

1
,6

0
2

2
,2

8
3

5
6
,4

9
8

3
,0

3
3

T
ri

n
it

y
-

4
,8

1
7

3
9
.1

%
1
8
,2

4
1

2
,7

9
8

2
,5

3
8

3
,0

2
2

5
3
,6

5
9

-

T
ri

n
it

y
+

B
R

A
N

C
H

0
%

5
,3

1
7

4
7
.6

%
2
8
,0

2
4

2
,8

3
8

2
,5

6
2

3
,2

0
9

5
9
,5

7
7

1
,4

4
1

1
%

5
,2

8
7

4
6
.5

%
2
8
,7

9
4

2
,8

0
5

2
,5

3
1

3
,1

8
6

5
9
,4

9
0

1
,4

0
3

2
%

5
,2

1
9

4
5
.9

%
2
9
,4

5
0

2
,8

1
4

2
,5

3
9

3
,1

7
0

5
9
,0

9
0

1
,3

0
1

3
%

5
,2

1
5

4
5
.2

%
2
9
,6

0
3

2
,7

9
3

2
,5

2
4

3
,1

5
7

5
8
,7

4
3

1
,2

5
7

111

T
ab

le
B

-4
:

A
ss

em
b

li
es

of
si

m
u

la
te

d
d

a
ta

w
it

h
va

ri
ab

le
ge

n
om

e
co

ve
ra

ge
b
y

co
n
ti

gs
.

S
ee

le
ge

n
d

of
T

ab
le

S
-2

an
d

S
-3

fo
r

d
et

ai
ls

.
T

h
e

co
rr

es
p

on
d

in
g

se
n

si
ti

v
it

y
p

lo
t

is
gi

v
en

in
F

ig
u

re
3.

3c
.

C
o
n
ti

g
co

v
er

a
g
es

S
en

si
ti

v
it

y
P

re
ci

si
o
n

N
T

ra
n

sf
ra

g
N

C
o
m

p
le

te
tr

a
n

sc
ri

p
ts

N
C

o
m

p
le

te
g
en

es
N

C
o
v
er

ed
tr

a
n

sc
ri

p
ts

N
E

x
o
n

s
N

E
x
te

n
si

o
n

s

V
el

ve
t/

O
a

se
s

-
4
,2

3
5

1
7
.7

%
8
5
,0

8
2

1
,7

3
6

1
,5

8
5

1
,9

9
4

5
0
,3

5
0

-

V
el

ve
t/

O
a

se
s+

B
R

A
N

C
H

4
0
%

4
,5

9
7

2
0
.1

%
9
1
,1

2
7

1
,8

0
7

1
,6

4
0

2
,2

5
1

5
4
,3

5
2

1
,9

3
0

6
0
%

4
,7

5
3

2
1
.1

%
9
3
,9

0
5

1
,8

3
9

1
,6

6
7

2
,3

5
5

5
6
,0

1
3

2
,7

9
0

8
0
%

4
,7

6
9

2
2
.1

%
9
7
,7

0
9

1
,8

2
1

1
,6

4
7

2
,3

6
9

5
7
,5

8
9

3
,6

2
7

1
0
0
%

5
,0

7
7

2
3
.0

%
1
0
0
,0

9
9

1
,8

9
2

1
,7

0
6

2
,6

0
6

5
9
,6

8
2

4
,6

5
1

T
ri

n
it

y
-

4
,8

1
7

3
9
.1

%
1
8
,2

4
1

2
,7

9
8

2
,5

3
8

3
,0

2
2

5
3
,6

5
9

-

T
ri

n
it

y
+

B
R

A
N

C
H

4
0
%

5
,0

9
2

4
3
.6

%
2
3
,6

3
1

2
,8

0
4

2
,5

3
6

3
,1

1
0

5
6
,9

6
8

8
1
2

6
0
%

5
,2

0
7

4
5
.2

%
2
6
,0

9
1

2
,8

0
5

2
,5

3
6

3
,1

5
7

5
8
,0

6
3

1
,1

2
5

8
0
%

5
,2

8
7

4
6
.5

%
2
8
,7

9
4

2
,8

0
5

2
,5

3
1

3
,1

8
6

5
9
,4

9
0

1
,4

0
3

1
0
0
%

5
,4

4
5

4
7
.7

%
3
1
,4

7
8

2
,8

1
6

2
,5

3
8

3
,2

5
4

6
0
,8

8
9

1
,8

2
4

112

T
ab

le
B

-5
:

A
ss

em
b

li
es

o
f

si
m

u
la

te
d

d
a
ta

w
it

h
va

ri
ab

le
n
u

m
b

er
s

of
R

N
A

re
ad

s.
S

ee
le

ge
n

d
of

T
ab

le
S

-2
an

d
S

-3
fo

r
d

et
ai

ls
.

T
h

e
co

rr
es

p
on

d
in

g
se

n
si

ti
v
it

y
p

lo
t

is
gi

v
en

in
F

ig
u

re
3.

3d
.

N
R

N
A

re
a
d

s
S

en
si

ti
v
it

y
P

re
ci

si
o
n

N
T

ra
n

sf
ra

g
s

N
C

o
m

p
le

te
tr

a
n

sc
ri

p
ts

N
C

o
m

p
le

te
g
en

es
N

C
o
v
er

ed
tr

a
n

sc
ri

p
ts

N
E

x
o
n

s
N

E
x
te

n
si

o
n

s

V
el

ve
t/

O
a

se
s

1
0
M

3
,7

2
4

1
5
.6

%
5
4
,9

5
1

1
,4

4
4

1
,2

9
6

1
,5

3
9

4
0
,1

8
5

-
3
0
M

4
,0

4
1

1
8
.0

%
7
6
,1

7
2

1
,7

0
8

1
,5

5
2

1
,9

0
8

4
7
,4

6
6

-
5
0
M

4
,2

3
5

1
7
.7

%
8
5
,0

8
2

1
,7

3
6

1
,5

8
5

1
,9

9
4

5
0
,3

5
0

-
7
0
M

4
,4

6
1

1
8
.9

%
8
8
,9

9
3

1
,8

6
3

1
,6

9
7

2
,1

4
7

5
1
,4

3
2

-

V
el

ve
t/

O
a

se
s+

B
R

A
N

C
H

1
0
M

3
,9

7
8

2
0
.7

%
6
1
,8

2
4

1
,4

4
3

1
,2

9
2

1
,7

1
3

4
4
,6

4
5

1
,6

7
3

3
0
M

4
,4

6
4

2
2
.5

%
8
7
,0

6
6

1
,7

4
3

1
,5

8
0

2
,2

2
6

5
3
,6

3
9

3
,1

5
3

5
0
M

4
,7

6
9

2
2
.1

%
9
7
,7

0
9

1
,8

2
1

1
,6

4
7

2
,3

6
9

5
7
,5

8
9

3
,6

2
7

1
0
0
M

4
,9

4
8

2
3
.1

%
1
0
3
,0

5
2

1
,9

2
0

1
,7

4
2

2
,5

4
7

5
9
,4

7
9

3
,8

9
7

T
ri

n
it

y
1
0
M

3
,7

0
2

4
2
.2

%
1
3
,4

6
1

1
,8

3
9

1
,6

7
1

1
,9

8
7

4
0
,9

9
2

-
3
0
M

4
,4

5
9

4
2
.9

%
1
6
,4

8
6

2
,5

7
6

2
,3

2
6

2
,7

3
4

4
9
,8

0
7

-
5
0
M

4
,8

1
7

3
9
.1

%
1
8
,2

4
1

2
,7

9
8

2
,5

3
8

3
,0

2
2

5
3
,6

5
9

-
7
0
M

5
,0

3
5

3
9
.4

%
1
9
,2

2
9

3
,0

6
6

2
,7

8
2

3
,2

8
4

5
5
,0

6
7

-

T
ri

n
it

y
+

B
R

A
N

C
H

1
0
M

4
,0

3
1

4
9
.4

%
1
9
,4

5
9

1
,8

1
0

1
,6

4
3

2
,0

7
2

4
5
,3

0
1

1
,0

1
0

3
0
M

4
,8

3
3

4
9
.4

%
2
5
,4

6
8

2
,5

8
4

2
,3

2
9

2
,8

6
8

5
5
,0

6
6

1
,4

1
9

5
0
M

5
,2

8
7

4
6
.5

%
2
8
,7

9
4

2
,8

0
5

2
,5

3
1

3
,1

8
6

5
9
,4

9
0

1
,4

0
3

7
0
M

5
,4

7
8

4
6
.1

%
3
1
,3

0
9

3
,1

0
2

2
,7

9
9

3
,4

4
9

6
1
,7

6
9

1
,4

5
7

113

T
ab

le
B

-6
:

A
ss

em
b

li
es

o
f

si
m

u
la

te
d

d
a
ta

w
it

h
va

ri
ab

le
R

N
A

re
ad

b
as

e
ca

ll
er

ro
r

ra
te

s.
S

ee
le

ge
n

d
of

T
ab

le
S

-2
an

d
S

-3
fo

r
d

et
a
il

s.
T

h
e

co
rr

es
p

o
n

d
in

g
se

n
si

ti
v
it

y
p

lo
t

is
gi

ve
n

in
F

ig
u

re
3.

3e
.

E
rr

o
r

ra
te

S
en

si
ti

v
it

y
P

re
ci

si
o
n

N
T

ra
n

sf
ra

g
s

N
C

o
m

p
le

te
tr

a
n

sc
ri

p
ts

N
C

o
m

p
le

te
g
en

es
N

C
o
v
er

ed
tr

a
n

sc
ri

p
ts

N
E

x
o
n

s
N

E
x
te

n
si

o
n

s

V
el

ve
t/

O
a

se
s

0
%

4
,9

7
7

1
3
.1

%
6
6
,7

9
6

2
,5

4
5

2
,2

9
7

2
,6

5
1

5
1
,2

7
6

-
1
%

4
,2

3
5

1
7
.7

%
8
5
,0

8
2

1
,7

3
6

1
,5

8
5

1
,9

9
4

5
0
,3

5
0

-
2
%

4
,2

7
5

2
1
.6

%
9
9
,0

8
0

1
,4

5
3

1
,3

2
6

1
,7

7
1

4
9
,5

8
8

-
3
%

4
,2

8
1

2
4
.2

%
1
1
1
,4

2
0

1
,3

1
5

1
,1

7
7

1
,6

6
2

4
7
,5

6
5

-

V
el

ve
t/

O
a

se
s+

B
R

A
N

C
H

0
%

5
,1

8
7

1
6
.1

%
7
1
,5

5
8

2
,5

0
2

2
,2

4
7

2
,7

4
3

5
4
,6

4
7

1
,2

2
7

1
%

4
,7

6
9

2
2
.1

%
9
7
,7

0
9

1
,8

2
1

1
,6

4
7

2
,3

6
9

5
7
,5

8
9

3
,6

2
7

2
%

4
,7

7
1

2
4
.7

%
1
1
3
,5

7
8

1
,5

3
2

1
,3

9
6

2
,1

8
7

5
6
,7

7
8

4
,7

0
7

3
%

4
,7

3
5

2
6
.3

%
1
2
7
,6

3
1

1
,3

9
9

1
,2

5
1

2
,1

6
7

5
4
,6

6
2

5
,3

9
4

T
ri

n
it

y
0
%

5
,0

1
9

3
8
.8

%
1
8
,7

6
9

2
,9

7
2

2
,6

7
1

3
,1

6
9

5
4
,8

8
9

-
1
%

4
,8

1
7

3
9
.1

%
1
8
,2

4
1

2
,7

9
8

2
,5

3
8

3
,0

2
2

5
3
,6

5
9

-
2
%

4
,4

6
1

4
0
.9

%
1
7
,7

8
4

2
,5

9
1

2
,3

7
1

2
,7

9
4

5
0
,5

1
1

-
3
%

4
,2

4
6

4
2
.5

%
1
7
,0

4
5

2
,5

0
2

2
,2

8
2

2
,7

0
3

4
7
,8

5
0

-

T
ri

n
it

y
+

B
R

A
N

C
H

0
%

5
,3

5
7

4
2
.7

%
2
3
,0

5
1

2
,9

1
6

2
,6

0
6

3
,2

6
8

5
9
,1

1
8

1
,2

0
6

1
%

5
,2

8
7

4
6
.5

%
2
8
,7

9
4

2
,8

0
5

2
,5

3
1

3
,1

8
6

5
9
,4

9
0

1
,4

0
3

2
%

4
,9

8
7

4
6
.4

%
2
9
,0

1
4

2
,6

2
7

2
,3

9
8

3
,0

1
5

5
7
,2

1
0

1
,7

2
2

3
%

4
,7

3
9

4
6
.2

%
2
8
,5

7
6

2
,5

3
3

2
,3

0
6

2
,8

8
5

5
4
,5

3
9

1
,9

2
6

114

	List of Figures
	List of Tables
	Introduction
	Next Generation Sequencing
	Genome Assembly Algorithms
	De Novo Genome Assembly Algorithms
	Reference-Based Genome Assembly Algorithms

	Transcriptome Assembly Algorithms
	De Novo Transcriptome Assembly Algorithms
	Reference-Based Transcriptome Assembly Algorithms
	Comparison between De Novo and Reference-Based Transcriptome Assembly Algorithms

	Problems and Opportunities
	Completeness of Genome and Transcriptome Assemblies
	Run Time and Memory Performance

	Organization of Dissertation

	SEED Algorithm
	Introduction
	Methods
	Overview of the Algorithm
	Indexing and Hash Tables
	Design of Block Spaced Seed Set
	Clustering
	Incorporating Base Calling Quality Values
	SEED System Design

	Evaluation
	Test Results with Simulated Data
	Test Results with Real Data

	BRANCH Algorithm
	Introduction
	Methods
	Overview of the Algorithm
	Alignment Steps
	Exon Detection Algorithm
	Transfrag Extension Algorithm
	Implementation and Performance

	Evaluation
	Test Results with Simulated Data
	Test Results with Real Data

	AlignGraph Algorithm
	Introduction
	Methods
	AlignGraph Algorithm
	Software Implementation

	Evaluation
	Experimental Design
	Results

	Conclusions and Future Work
	Conclusions
	Future Work

	Supplementary Materials for Chapter 2
	Supplementary Materials for Chapter 3

