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ABSTRACT	
	

Incorporating Ecological Processes into Coral Reef Restoration 
 

by 
 

Mark Christopher Ladd 
 
 
 

Coral reefs are the ecological, economic, and social backbone of tropical coastal 

communities. Yet, more than half of the world’s tropical reefs are gone. With further declines 

predicted, there is an urgent need to develop effective solutions to resurrect degraded reefs. 

Part of the challenge of reef restoration is that coral reefs are extremely complex ecosystems. 

As such, they are often studied via a reductionist approach, whereas rebuilding an ecosystem 

requires a comprehensive plan to reconstruct the ecological processes necessary for a 

functioning reef ecosystem. Unfortunately, while we have a mechanistic understanding of 

many factors driving coral reef decline, there is a dearth of information available to guide us 

on how to restore degraded coral reefs and recover their ecosystem functions. 

To this end, my dissertation examines how harnessing key ecological processes on coral 

reefs can facilitate the pace and success of coral reef restoration. In Chapter 1, I investigated 

the role of restored coral density on habitat production, and explored mechanisms 

contributing to density dependence in coral restoration. I found evidence of a unimodal 

relationship among restored Acropora cervicornis colonies suggesting positive density 

dependence at intermediate densities. Importantly, these findings highlight the fundamental 

role that basic restoration design elements, like outplant density, play in the success or failure 

of coral restoration. In Chapter 2, I assessed the importance of genotypic identity and 

diversity in restoration outcomes. Using a field experiment, I identified a tradeoff between 
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thermal-tolerance and growth rates among A. cervicornis genotypes, suggesting genotypic 

identity is a critical factor to incorporate into restoration planning.  

While restoring individuals to rebuild coral populations is an important first step in coral 

restoration, outplanted corals do not exist in isolation when transplanted to a degraded reef. 

Non-scleractinian invertebrates like sponges, gorgonians, and zoanthids are increasing on 

reefs, yet there is a paucity of data on interactions between these increasingly common 

organisms and corals. In Chapter 3, using observational surveys I found that competitive 

interactions were pervasive on Florida reefs, with 60% of sessile benthic invertebrates 

interacting with at least one other invertebrate. Further, results from a common garden 

competition experiment demonstrated that non-scleractinians like sponges and zoanthids 

consistently outcompeted the common species Porites porites and Siderastrea siderea, 

suggesting competition may limit the success of these coral species and is likely to remain an 

important process structuring contemporary coral reef communities. 

Chapter 4 addresses our knowledge gap on the effects of coral restoration on reef 

communities and important ecosystem functions. To do so, I conducted surveys of sites in the 

Florida Keys that had undergone coral restoration paired with unmanipulated control sites. I 

found that coral restoration enhanced coral populations, increasing coral cover 4-fold, but 

manifested in limited differences in coral and fish communities. Interestingly, damselfishes, 

whose territorial behavior may deter important processes like herbivory, were the only group 

of fishes that positively responded to coral restoration. These findings suggest that additional 

considerations beyond outplanting corals will likely be necessary to effectively restore coral 

reefs in a time of increasingly frequent and intense disturbances. 
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Lastly, in Chapter 5 I synthesized literature on coral restoration and reef ecology to 

identify key drivers of recovery and propose a path forward to improve coral restoration. 

Specifically, restoration practitioners can manipulate factors such as the density, diversity 

and identity of transplanted corals and leverage existing ecological processes on coral reefs 

to restore positive feedback processes, or disrupt negative feedback processes, and facilitate 

restoration success. Importantly, the results of this dissertation can be directly applied to 

inform how coral reef restoration is conducted and improve our ability to effectively restore 

degraded coral reefs. 
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I. Density dependence drives habitat production and survivorship of 

Acropora cervicornis used for restoration on a Caribbean coral reef 

 
 
 
With Andrew A. Shantz, Ken Nedimyer, and Deron E Burkepile 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Ladd, M.C., Shantz, A.S., Nedimyer, K., and Burkepile, D.E. 2016. Density dependence 

determines success of Acropora cervicornis restoration on a Caribbean coral reef. Frontiers 

in Marine Science. 3(261) 
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A. Introduction 
 

Coral reefs only cover <0.1% of Earth’s surface, yet house more than 30% of total marine 

biodiversity (Reaka-Kudla, 2005). Reefs are a key source of fisheries production (Moberg 

and Folke, 1999) and also provide shoreline protection for >100 million people living next to 

coastlines (Ferrario et al., 2014). However, the invaluable ecosystem services coral reefs 

provide are increasingly jeopardized as corals decline globally (Bruno and Selig, 2007; 

Jackson et al., 2014). In the Pacific Ocean, reefs have lost nearly half of their corals over the 

past four decades (Bruno and Selig, 2007). This alarming trend is even more pronounced in 

the Western Atlantic Ocean (henceforth, the Caribbean), where coral reefs have lost 50% of 

their coral cover since the mid 1970’s (Gardner et al., 2003; Jackson et al., 2014). On many 

reefs, coral declines are accompanied by a loss of benthic diversity and increases in algae, 

weedy coral species, soft corals, and sponges (Burman et al., 2012; Ruzicka et al., 2013; 

Cardini et al., 2015). Such declines in coral cover and diversity often lead to the loss of 

structural complexity (Alvarez-Filip et al., 2009), diminished fish populations (Newman et 

al., 2015), and decreased coral recruitment (Dixson et al., 2014), jeopardizing the ecosystem 

function and economic value of reefs (Costanza et al., 2014). 

To address these declines, coral restoration has gained increasing attention as a viable 

strategy to help degraded reefs recover, with large-scale restoration efforts now underway 

across the globe (Young et al., 2012). Current restoration efforts are primarily focused on 

restoring ecosystem engineers by outplanting nursery-raised corals to degraded reefs (Lirman 

et al., 2014; Cabaitan et al., 2015; Griffin et al., 2015). These projects have shown that coral 

size (Garrison and Ward, 2008), genotype (Lirman et al., 2014), and source location 

(Forrester et al., 2013) all influence the success of restored corals. While coral restoration is a 
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rapidly progressing field, significant knowledge gaps remain regarding the drivers of 

restoration success. 

One such gap is the optimal density and arrangement for outplanting restored corals. 

Restoration via transplantation of autogenic ecosystem engineers in ecosystems ranging from 

tropical forests (Zahawi and Augspurger, 2012), to grasslands (Morgan and Scacco, 2006), to 

mangroves (Elster, 2000) suggests that the density and arrangement of organisms used for 

restoration can significantly influence their survival, growth (Li and Wilson, 1998), and 

recruitment (Mulligan et al., 2002). Further, the density of restored ecosystem engineers can 

mediate important ecological processes that drive community dynamics, such as herbivory 

and nutrient cycling (Holl et al., 2000).   

Similarly, on coral reefs, the density and arrangement of outplanted corals will likely 

affect important responses such as growth rates, habitat production, disease dynamics, and, 

ultimately, coral survivorship. Indeed, Griffin et al. (2015) found that short-term growth rates 

of restored Acropora cervicornis over three months in the US Virgin Islands were inversely 

related to outplant density. In contrast, Shaish et al. (2010) found no differences in mortality 

or bleaching of restored Montipora digitata in high density, low density, or “patchy” 

arrangements of nursery-raised corals in the Philippines after 15 months.  

Theoretical work suggests that corals outplanted in high densities and arranged with even 

spacing will maximize the development of topographic complexity on degraded reefs 

(Sleeman et al., 2005). The creation of habitat may aggregate important fishes such as 

schooling grunts, which can focus nutrient delivery from excretion and create nutrient 

hotspots that can increase the growth rates of restored corals as well as important processes 

such as herbivory (Shantz et al., 2015) and the removal of coral predators (Ladd and Shantz, 
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2016). However, there is a paucity of long-term studies that investigate the role of outplant 

density on coral restoration success. Given that coral restoration is an expensive and labor-

intensive process, determining the most effective densities in which to outplant restored 

corals is an important step towards balancing the costs and benefits of coral restoration.  

Here, we address this information gap by investigating the influence of coral density on 

the growth, habitat production, and survivorship of restored corals. Over 13 months we 

monitored experimentally-established populations of Acropora cervicornis outplanted in a 

gradient of densities on a reef in the Florida Keys, USA. We tracked the growth, habitat 

production, tissue loss, and survivorship of restored corals as proxy for the success of coral 

restoration. We hypothesized that low-density treatments would demonstrate higher growth 

rates and per-coral habitat production compared to high-density treatments. Further, we 

predicted that per capita tissue loss and colony mortality would be greatest in high-density 

plots.  

 

B. Methods 
 

Study Species 

Acropora cervicornis is a fast-growing, branching coral species with the ability to rapidly 

expand via asexual fragmentation (Glynn 1973; Tunnicliffe 1981). The structural complexity 

provided by A. cervicornis and its congener, A. palmata, provides essential habitat for a 

multitude of reef-associated organisms (Reviewed in Bruckner 2002). Populations of these 

two species, historically structural dominants on many reefs throughout the Caribbean, have 

declined 80-90% in the past four decades, with drastic population reductions of >95% in 

some areas (Hughes 1994; Aronson & Precht 2001; Bruckner 2002; Jackson et al., 2014). 
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Acropora cervicornis populations have failed to recover throughout the majority of their 

historical range, resulting in their listing as “Threatened” under the US Endangered Species 

Act (Hogarth, 2006) and contributing to significant declines in structural complexity on 

many Caribbean reefs (Alvarez-Filip et al., 2009). Currently, coral restoration efforts are 

primarily focused on A. cervicornis due to life history characteristics amenable to rapid 

propagation and to the species’ critical role on Caribbean coral reefs as habitat. 

 

Experimental Design 

Our field site was a low-relief reef in ~5-7m of water located approximately 6.5km 

offshore of Plantation Key, Florida, USA (24.924°N, 80.503°W). We established four 

experimental blocks of six 4m2 plots, with each plot separated by ≥5m. Each block of 4m2 

plots contained one replicate of each density treatment: 3-, 6-, 12-, or 24-colonies, as well as 

control plots in which no corals were outplanted. Each block also contained a 12-colony 

treatment (hereafter ‘12-clumped’), in which 12 coral colonies were outplanted within 1m2 of 

the plot (Figure 1). Treatments were randomly assigned to plots within a block. Three 

Acropora cervicornis genotypes (K-1, K-2 and U24), obtained from the Coral Restoration 

Foundation’s nursery offshore of Tavernier Key, Florida, were used and present in equal 

(1:1:1) ratios to create experimental treatments. 

To establish experimental treatments, we outplanted colonies of A. cervicornis 

approximately 85cm in total linear extension (TLE) to each plot in May of 2013. We 

maximized spacing among coral colonies within a plot such that colonies in low-density plots 

were spaced farther apart than those in high-density plots. We also organized colonies to 

maximize genotype mixing and avoid clumping of the same genotype. Genotype analyses, 
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completed as part of the Coral Restoration Foundation’s coral nursery establishment, were 

done using known microsatellite markers (e.g. Baums, 2008). We outplanted four replicates 

of each treatment in the randomized block design for a total of 228 corals outplanted into 

twenty-four 4m2 plots. Each colony was secured to the substrate using a small amount of 

marine epoxy where branches contacted the reef substrate and labeled with an individually 

numbered tag.  

 

Figure 1. Schematic of experimental design (to scale). Each dot represents an individual coral outplant, different 
shades indicate the three unique genotypes (K-1, K-2, and U24) used to establish experimental treatments. 
 

 

Coral Colony Growth, Condition and Predator Surveys 

To quantify the effects of density on colony growth, we measured coral colony 

dimensions (length, width and height) to the nearest centimeter every 3-6 months. Surveys 

were conducted in May, August, and December of 2013, and June of 2014. At each sampling 

event, we also recorded the percent of each coral colony without live tissue and the presence 

of any disease-like symptoms (e.g., rapid tissue loss, white band disease) via visual 

3-colony
(0.75 corals m-2)

6-colony
(1.5 corals m-2)

12-colony
(3 corals m-2)

24-colony
(6 corals m-2)

12-clumped
(12 corals m-2)
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assessment. We also counted corallivorous snails (Coralliophila abbreviata) and fireworms 

(Hermodice carunculata) on each A. cervicornis colony. However, these predators and 

instances of disease were so rare that we did not explore these data quantitatively. 

 

Statistical Analyses 

We estimated total skeletal linear extension (TLE; the sum of the lengths of all branches 

on a colony) using length, width, and height conversions provided by Kiel et al. (2012). To 

calculate per capita live TLE for each survey period we used the equation: 

𝑝𝑒𝑟	𝑐𝑎𝑝𝑖𝑡𝑎	𝑙𝑖𝑣𝑒	𝑇𝐿𝐸 = 𝑐𝑜𝑙𝑜𝑛𝑦	𝑡𝑜𝑡𝑎𝑙	𝑇𝐿𝐸 − (𝑐𝑜𝑙𝑜𝑛𝑦	𝑡𝑜𝑡𝑎𝑙	𝑇𝐿𝐸	𝑥	%	𝑜𝑓	𝑐𝑜𝑙𝑜𝑛𝑦	𝑤𝑖𝑡ℎ𝑜𝑢𝑡	𝑙𝑖𝑣𝑒	𝑡𝑖𝑠𝑠𝑢𝑒) 

Growth rates were calculated for each interval by dividing the TLE accumulated between 

survey periods by the number of days elapsed to generate a daily growth rate. For all growth 

rate and TLE calculations, data for corals were not included if: (1) they showed signs of 

previous breakage, a common natural occurrence in A. cervicornis corals, or (2) displayed 

100% tissue loss, which avoided artificially depressing growth rates or TLE measures. We 

calculated TLE and live TLE at the plot level by summing measures of TLE or live TLE for 

all corals within a plot. We then used these measures to compare total habitat production 

(using TLE as a proxy) and live TLE among treatments.  

We assessed changes through time in growth rates, per capita TLE, and per capita live 

TLE via a nested two-way repeated measures ANOVA that considered time and treatment or 

genotype as predictors and included an interaction between the main factors. For these 

analyses individual corals were nested within a plot and considered as a random effect to 

avoid violating assumptions of independence. Among treatment differences within individual 

survey periods were analyzed via post-hoc tests with Tukey’s corrections using the multcomp 

package in R (Hothorn et al., 2008). Because of the non-normal structure of the tissue loss 



8		

data, we used a Kruskal-Wallis test with post-hoc analysis to compare median values of the 

percent of colony without live tissue among treatments at each survey period.  

Treatment survivorship was calculated using the percentage of colonies that were alive 

within a plot at each survey period. Genotype survivorship was calculated as the percentage 

of coral colonies for each genotype that remained alive at a given survey point. A coral was 

considered dead when it had no living tissue on the skeleton. Among treatment differences in 

survivorship, plot level TLE, and plot level live TLE were analyzed via a two-way ANOVA 

that considered treatment and time as predictors with an interaction between the main factors. 

Among treatment differences within individual survey periods were analyzed via post-hoc 

tests with Tukey’s corrections using the multcomp package in R (Hothorn et al., 2008). 

Among genotype differences in survivorship at the end of the experiment were analyzed via a 

Fisher’s Exact Test, followed by pairwise comparisons of the three genotypes using a 

Bonferonni correction. Colony growth rates and per capita live TLE were square-root 

transformed, while per capita TLE, plot level TLE, and plot level live TLE were log-

transformed to meet ANOVA assumptions.  

To investigate the presence of density dependent effects among treatments, we compared 

treatments that differed two-fold in coral density by calculating ratios of final plot level TLE 

(i.e. 6-colony vs. 3-colony treatments). To generate conservative estimates, we first ranked 

plots within a treatment from highest to lowest plot level TLE. We then paired plots 

according to ranks and then divided the final plot level TLE of one treatment by the final plot 

level TLE of the treatment with half the number of corals (e.g. 6-colony/3-colony). If there 

were no density dependent effects, we expected that a doubling of coral density would result 

in a doubling of TLE. Thus, if density dependence did not influence habitat production, we 
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expected a ratio of 2:1 for plot level TLE. A ratio >2 would indicate positive density 

dependence (i.e. a doubling of coral density resulted in more than a doubling in TLE) while a 

ratio <2 would suggest negative density dependence (i.e. a doubling of colony density 

resulted in less than a doubling in TLE). We also compared the 12-clumped and 12-colony 

final plot level TLE to assess the effect of arrangement. For this comparison, if density did 

not influence habitat production, we expected a ratio of 1:1, since both treatments contained 

12 corals. We used a two-tailed t-test to determine if ratios were significantly different from 

two, the expected doubling in TLE from a doubling of density (or one in the case of the 12-

clumped vs. 12-colony comparison). We conducted these comparisons for both plot-level 

TLE and plot-level live TLE. We computed a Pearson product-moment correlation 

coefficient to assess the relationship between the density of corals and proportion of corals 

alive within a treatment at the end of the experiment. All analyses were conducted in R 

version 3.0.2 (R Core Team, 2013). All data reported are means ± SE. 

C. Results 

Genotype Effects 

Genotype had no effect on restored coral growth rates, total linear extension (TLE), or 

live TLE at any point during the experiment (Appendix 1). At the conclusion of the 

experiment, genotype had a marginal effect on the mean percent of a colony with no live 

tissue (Genotype effect: F2,189 = 2.649, p = 0.073) and survivorship of restored corals 

(Fisher’s Exact Test, p = 0.078; Appendix 2). Genotype K-1 was trending towards lower 

survivorship and having less live tissue per colony. However, genotype appeared to have 

little influence on coral growth and survivorship as compared to treatment effects described 

below. 
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Density Effects 

Growth rates of individual corals varied among treatments more than three-fold, from a 

low of 0.248 cm day-1 to a high of 0.829 cm day-1 (mean ± SE; 0.49 ± 0.016), and showed a 

significant time by treatment interaction (F8,222 = 4.694, p < 0.001; Figure 2). Complete 

statistical results are provided in Appendix 3. Post-hoc tests with Tukey’s correction revealed 

that while growth rates were statistically indistinguishable from May to December 2013, 

corals in the 12-colony treatments grew nearly two times faster than corals in 24-colony 

treatments from December 2013 to June 2014 (p = 0.035). All of the other treatments also 

had ≥ 50% greater mean growth rates than the 24-colony treatment during this time period, 

but post-hoc tests did not detect statistical differences likely due to high variability in growth 

rates.  

Both per capita total linear extension (Treatment x Time effect: F12,476 = 3.96, p < 0.001; 

Figure 3 top) and per capita live total linear extension (Treatment x Time effect: F12,476 = 

13.322, p < 0.001; Figure 3 bottom) differed among treatments through time. However, post-

hoc tests indicated that the only among treatment differences were for live TLE at the final 

(June 2014) sampling period where corals from 12-colony treatments had nearly 3x more live 

TLE than those in the 24-colony treatments (p = 0.03). The other treatments were 

intermediate in live TLE and did not differ from either the 12- or 24-colony treatments. The 

patterns for TLE were similar but post-hoc tests did not show statistically significant 

differences. Median values for percent of colony without live tissue were significantly higher 

for corals within the 12-clumped and 24-colony treatments as compared to 3- and 12-colony 

treatments (χ2 = 43.07, df = 4, p < 0.001; Figure 4). Further, we found clear effects of density 

treatment on restored coral survivorship (Treatment x Time effect: F16,72 = 4.108, p < 0.001; 
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Figure 5), with survivorship significantly decreasing with increasing density. The 12-

clumped treatment had the highest initial mortality rates (August 2013) and ended up losing 

~50% of individual colonies by the end of the experiment, similar to that of the 24-colony 

treatment. On the other extreme, the 3-colony treatment had 100% survivorship for the 

duration of the experiment. At the conclusion of the experiment, colony survivorship was 

negatively correlated the density of corals (Pearson’s product-moment correlation coefficient, 

r = -.085, df = 3).  

 

Figure 2. Daily growth rate (cm day-1) of individual corals by treatment through time. Labels on x-axis indicate 
the time period over which growth rates were calculated. Statistics are from nested two-way repeated measures 
ANOVA. Letters represent significant differences (p < 0.05) among treatments within a time period from post-
hoc tests with Tukey’s correction. Data are means ± SE. 
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Figure 3. (top) Per capita total linear extension (TLE) and (bottom) per capita live TLE of individual corals by 
treatment through time. Labels on x-axis indicate the time at which each survey was conducted. Statistics are 
from nested two-way repeated measures ANOVA. Letters represent significant differences (p < 0.05) among 
treatments within a time period from post-hoc tests with Tukey’s correction. Data are means ± SE. 
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Figure 4. Percent of each coral colony without live tissue compared among treatments within each survey 
period. P-values for each survey period are from Kruskal-Wallis test. Letters represent significant differences (p 
< 0.05) among treatments from post-hoc analysis comparing median percent of colony without live tissue values 
within a survey period. Data are means ± SE. 

 

 

Figure 5. Mean survivorship of coral colonies by treatment over time. Statistics are from nested two-way 
repeated measures ANOVA. Letters represent significant differences (p < 0.05) among treatments within a time 
period from post-hoc tests with Tukey’s correction. Data are means ± SE. 

 

p < 0.001 p = 0.052 p < 0.001

b b
b

a

b

b

a,b

b

a

a

0

20

40

60

May'13 Aug'13 Dec'13 Jun'14

Time

M
ea

n 
Pe

rc
en

t o
f C

ol
on

y 
w

ith
ou

t L
ive

 T
is

su
e

Treatment

3−colony

6−colony

12−colony

12−clumped

24−colony



14		

The differences in per capita live TLE resulted in the 12- and 24-colony treatments 

ending with similar overall habitat production (plot-level TLE) by the end of the experiment, 

despite the 12-colony treatment starting the experiment with half the number of corals 

(Treatment x Time effect: F12,60 = 1.193, p = 0.309; Figure 6 top). The patterns in plot-level 

live TLE were similar to overall TLE, showing significant Treatment x Time effects (F12,60 = 

2.240, p = 0.02; Figure 6 bottom). Similar to the overall plot-level TLE, the 12- and 24-

colony treatments showed similar levels of live TLE. Surprisingly, within three months 6-

colony treatments had produced as much live TLE at the plot level as 12-clumped treatments.  

Analyzing these dynamics over time within treatments showed several interesting 

patterns. All treatments except the most dense (12-clumped) increased in plot level TLE 

during the course of the experiment (Figure 7 top). On average, 24-colony treatments did not 

accumulate live TLE at the plot level during the course of the experiment (Time effect: F3,12 

= 0.10, p = 0.956; Figure 7 bottom) as tissue loss appeared to occur at the same rate as tissue 

growth. Similarly, 12-clumped treatments actually decreased in live TLE from May to 

August of 2013, then rebounded to initial levels by December 2013. Conversely, 12-, 6- and 

3-colony treatments significantly increased in plot level live TLE throughout the course of 

the experiment. The largest increase relative to initial TLE was seen in 12-colony treatments, 

which more than tripled the amount of live TLE by the end of the experiment.  
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Figure 6. (top) Total linear extension and (bottom) live TLE at the plot level comparing among treatments 
across each survey period. Statistics are from nested two-way repeated measures ANOVA. Letters represent 
significant differences (p < 0.05) among treatments within a time period from post-hoc tests with Tukey’s 
correction. Data are means ± SE. 
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Figure 7. (A) Total linear extension and (B) live TLE at the plot level comparing among survey periods within 
each treatment. Statistics are from one-way ANOVA. Letters represent significant differences (p < 0.05) among 
time periods within a treatment from post-hoc tests with Tukey’s correction. Data are means ± SE. 
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colony treatments, respectively, although both tests for a difference from the 2:1 ratio were 

marginally significant (p = 0.07 for TLE and p = 0.09 for live TLE). 

 

Figure 8. Ratios comparing final plot level (top) TLE and (bottom) live TLE between treatments differing in 
coral density. Comparisons are either between treatments that differ two-fold in coral density (e.g. 6-colony vs. 
3 colony treatments; left panels) or with equal densities (12-clumped vs. 12-colony treatments; right panels). 
The black dotted line represents the expected 2:1 (right panels) or 1:1 ratio (left panels). Points that fall within 
the blue shaded area exceeded expectations of habitat production and suggest positive density dependence. 
Points that fall within the red shaded area produced less habitat than predicted and suggest negative density 
dependence.  
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2014). Thus, there is a need to maximize ecological benefits while minimizing costs to 

continue scaling up coral restoration efforts. Here, we show that coral outplant density is a 

key factor to the success of coral restoration. We found that the survivorship of restored 

corals decreased with increasing density. Corals outplanted in moderate densities (12-colony 

treatments; 3 corals m-2) grew faster and lost less live tissue than high-density (24-colony and 

12-clumped treatments; 6 and 12 corals m-2) treatments. Further, corals in 12-colony 

treatments tripled in total linear extension (TLE) during the course of the experiment and on 

average ended up with more live TLE at the plot level as compared to 24-colony treatments, 

though they started the experiment with half the number of corals. Importantly, our data 

suggest the presence of both positive and negative density dependent effects. Increasing 

density to 3 corals m-2 resulted in more coral growth than expected. But, continuing to add 

more corals (6 or 12 corals m-2) resulted in negative density dependence and less coral 

growth than expected. 

Despite substantial evidence of the impact of coral genotype on coral growth rates, 

survivorship, and disease prevalence (Vollmer and Kline, 2008; Lirman et al., 2014), we 

found no effect of genotype on any of our response variables. Instead, we show that density 

dependence plays a large, yet underappreciated, role in the success or failure of coral 

restoration efforts. Although we found stronger density effects than genotype effects, we only 

used three genotypes of A. cervicornis. Promoting genotypic diversity should still remain a 

restoration priority. Given the uncertain conditions reefs are likely to experience in the future 

(Pandolfi, 2015; Pendleton et al., 2016), including genotypes with a range of traits and 

environmental tolerances will likely be essential for successful coral reef restoration. 
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Density often influences the success of restoring ecosystem engineers in other 

ecosystems (Li and Wilson, 1998; Holl et al., 2000; Mulligan et al., 2002). Yet, limited 

research on the role of density exists for coral restoration, particularly in the Caribbean. Our 

findings suggest that outplanting A. cervicornis for restoration in moderate densities (3 corals 

m-2 – our 12-colony treatment) maximizes growth rates and habitat production while 

minimizing tissue loss and coral mortality. To our knowledge, the only other study that 

manipulated the density of A. cervicornis colonies found a negative relationship between 

coral density and linear extension (Griffin et al., 2015). However, this study only tracked 

corals for a period of three months, had limited replication (n=1 per density), and potentially 

confounded density effects with genotype effects. The longer (13 month) duration of our 

study allowed us to elucidate the effect of the density of restored corals over timescales more 

relevant to coral reef community recovery. Similar to Griffin et al. (2015), we found that 

growth rates in our 24-colony treatment were lower than the others at the end of the 

experiment. However, we show that density dependence can influence the success of A. 

cervicornis outplanted for restoration, and that the strength and direction of density 

dependence changes with coral density. These findings run counter to work done in the 

Philippines, which found no effect of outplant density or arrangement on Montipora digitata 

growth or mortality over a 15-month study, suggesting different species may display variable 

responses to outplant density (Shaish et al., 2010).  

Density dependence has been heavily studied in terrestrial and intertidal systems, often 

with a particular focus on foundation species (Bertness and Callaway, 1994; Bruno et al., 

2003). Work in marine systems, and specifically coral reef ecosystems, has largely focused 

on the effects of density dependence on the growth and survivorship of coral-associated 
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organisms, such as coral reef fishes, rather than corals themselves (Hixon and Carr, 1997; 

Hixon and Webster, 2002; but see Baird and Hughes, 2000; Shantz et al., 2011; Marhaver et 

al., 2013). Here, we found that the densities of our densest treatments resulted in less habitat 

creation and live coral tissue than would be expected, suggesting negative density 

dependence.  

Although TLE and live TLE increased for the 3-colony, 6-colony, and 12-colony plots, 

the densest treatments (12-clumped and 24-colony) saw little to no increase in these metrics 

over our 13-month study. Several mechanisms could be important for driving this negative 

density dependence. While small-scale alterations in water flow may benefit corals growing 

in close proximity, at some density threshold, such as in our 24-colony or 12-clumped 

treatments, coral branches could become so dense as to have a negative effect on water flow. 

At such high densities, reductions in water flow may reduce mass transfer of nutrients to the 

coral or efflux of oxygen as a byproduct of photosynthesis, contributing to declines in 

photosynthesis and the energy available for coral growth (Finelli et al., 2006). Additionally, 

crowding in high-density treatments could increase shading and intensify competition for 

light, effectively reducing photosynthesis (Chadwick and Morrow, 2011). Although A. 

cervicornis relies heavily on photosynthetic endosymbionts for energy, heterotrophic feeding 

is an important component of growth rates, particularly under stressful conditions 

(Houlbrèque and Ferrier-Pagès, 2009; Towle et al., 2015). Thus, corals in high-density plots 

may have experienced increased competition for food particles in the water column, 

contributing to lower growth rates in these treatments.  

Additional mechanisms likely contributed to the negative density-dependent effects at the 

high-density treatments. High densities of corals may facilitate disease transmission among 
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coral colonies. Some coral diseases can be vectored between A. cervicornis branches that are 

in direct contact (Williams and Miller, 2005). Thus, disease transmission may have been 

facilitated in 24-colony and 12-clumped treatments where branches of colonies were more 

likely to be in direct contact as compared to lower density treatments. The corallivorous snail 

Coralliophila abbreviata, and the fireworm Hermodice carunculata can vector or act as a 

reservoir for coral diseases (Sussman et al., 2003; Williams and Miller, 2005; Gignoux-

Wolfsohn et al., 2012). Consequently, these coral predators, which commonly feed on A. 

cervicornis (Miller, 1981), may cause initial disease infection or spread diseases within a plot 

of restored corals. Tightly clustered colonies in high-density treatments may have provided a 

physical escape from predation for small corallivores, increasing the probability of tissue loss 

and infection. Further, C. abbreviata prefers A. cervicornis colonies surrounded by 

conspecifics rather than solitary colonies or those surrounded by heterospecifics (Johnston 

and Miller, 2014), suggesting that high-density treatments may be preferred by corallivores.  

While we did record predator density and disease presence as part of this study, our 

surveys were not frequent enough to track disease progression or link tissue loss to predator 

abundance. Although variable among replicates, we observed an average of 30% of corals 

showing signs of disease (rapid tissue loss) in 12-clumped treatments during our August 

2013 survey, which coincided with significant increase in live tissue loss (Figure 4). Thus, 

the densest treatment appeared to facilitate disease, leading to dramatic loss of live coral. 

Partial colony mortality, highest in the 12-clumped and 24-coral treatments at the end of the 

experiment, likely depressed growth rates and contributed to the negative density-dependent 

effects we observed in the high-density treatments. 
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Farming damselfish (e.g., Stegastes planifrons) can rapidly colonize A. cervicornis 

colonies outplanted for restoration, cause significant amounts of partial mortality, and 

decrease coral growth rates (Schopmeyer and Lirman, 2015). While we did not specifically 

quantify damselfish abundance in our experiment, we also did not observe strong 

colonization by farming damselfish in our study. However, damselfish may selectively 

recruit to high-density plots that provide more shelter from predators (Almany, 2004) and 

substrate to create their algal lawns (Ceccarelli et al., 2001). Thus, at other restoration sites, 

the colonization of high-density coral treatments by territorial damselfish could be an 

additional mechanism contributing to negative density-dependence of corals used for 

restoration. 

Although our analyses showed only marginally significant effects for positive density 

dependence, the patterns were suggestive of positive effects of increasing density to 

moderate levels. This pattern was most obvious going from the 6-colony to the 12-colony 

densities where TLE and live TLE increased 2.5 to 3 times. These data suggest the existence 

of positive feedback mechanisms for coral growth and habitat creation under moderate 

increases in density. For corals, more live tissue affords increased opportunity for growth, 

and therefore increasing structural complexity, particularly for branching corals such as A. 

cervicornis. Positive density dependence could also be expected for corals through the 

improvement of microclimatic conditions, as observed for plants in terrestrial systems (Bruno 

et al., 2003). For example, increased coral density could decrease laminar flow and increase 

mixing, reducing the boundary layer and enhancing delivery of nutrients and dissolved 

oxygen to nearby corals (Atkinson and Bilger, 1992; Lesser et al., 1994). For species that 

rely heavily on asexual fragmentation, such as A. cervicornis, high densities can function to 
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trap and stabilize asexual fragments, contributing to a positive density dependent feedback 

(Tunnicliffe, 1981). Over time branches can fuse together to form dense thickets that increase 

resistance to physical disturbance and further promote fragment retention. 

Reef fishes, often limited by habitat availability as both juveniles and adults, selectively 

recruit to live coral, where they grow faster than fishes recruiting to non-living structure 

(Holbrook et al., 2000; Feary et al., 2009; Kerry and Bellwood, 2015). The topographic 

complexity provided by corals can aggregate fishes, concentrating fish-derived nutrients that 

can increase coral growth (Holbrook et al., 2008; Shantz and Burkepile, 2014). These fish-

derived nutrient hotspots also increase grazing by herbivorous fishes and decrease algal 

abundance, both of which likely help facilitate coral growth and survivorship (Shantz et al., 

2015). Further, many of the fishes that aggregate around structurally complex corals are 

invertivores, such as white grunts (Haemulon plumierii), possibly promoting top-down 

control on coral predators (Lirman, 1999; Ladd and Shantz, 2016).  

Our findings have important implications for how we approach coral restoration. 

Ultimately, the goal of coral restoration is to promote ecological processes and positive 

feedbacks that foster self-sustaining coral reef communities. While the goal of coral 

restoration is not focused solely on corals, these ecosystem engineers are the foundation upon 

which other essential species and ecological processes depend (Mumby and Steneck, 2008; 

Newman et al., 2015). For example, coral and fish larvae are able to track the smell of corals 

to use as positive settlement cues (Dixson et al., 2014). Larger corals also have higher 

reproductive potential (Szmant, 1986), and therefore are more likely to contribute to sexual 

reproduction, a key component of coral reef recovery. Thus, restoration efforts that maximize 
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coral growth, coral survivorship, and habitat creation will likely promote these important 

positive feedbacks and more quickly foster the recovery of coral reef communities. 

 

Figure 9. (left) Relationship between the density of A. cervicornis outplanted for restoration and colony 
survivorship. The size of each point is scaled to the average amount of live TLE (i.e. habitat created) for each 
treatment at the conclusion of the experiment. The green area represents the densities over which positive 
density dependence may facilitate coral survivorship and habitat production. Statistics from Pearson’s product-
moment correlation (df = 3). (Right) Proposed relationship between the density of A. cervicornis outplanted for 
restoration, colony survivorship, and habitat production. Points are scaled to the amount of live habitat created, 
thus larger circles represent more habitat generation. The green area highlights densities where restoration 
practitioners can take advantage of positive density-dependence to maximize the benefits of coral restoration. 
 

Here, we show that the direction and intensity of density dependence on the success of 

corals used for restoration is context-dependent. These findings highlight the need for 

restoration practitioners to consider the density of corals when planning restoration efforts. 

For A. cervicornis, the primary species used for coral restoration in the Caribbean, our data 

suggests that outplanting in densities of three corals m-2 can take advantage of positive 

density dependent processes that maximize habitat production and reduce mortality (Figure 9 

left). We posit that by capitalizing on positive density-dependent processes, restoration 

practitioners can maximize the benefits of coral restoration (Figure 9 right). Further, this 

would avoid overloading areas with corals that could be used to restore other areas. 

Importantly, we found that increasing the density of coral to 6 or 12 corals m-2 can actually 

induce negative density dependent processes that increase coral mortality and slow coral 
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growth, working against restoration goals. These results demonstrate the need to evaluate the 

influence of density on the success of other coral species used for restoration, which likely 

display density-dependent relationships that could be exploited to facilitate coral restoration. 

Further work is needed to determine the effect density has on important factors such as 

disease transmission and predator attraction as well as ecosystem processes such as herbivory 

and nutrient recycling that will likely also influence coral restoration success. Long-term 

studies investigating how the density of corals influences the development of coral reef 

communities and the ecological processes that maintain healthy reefs will advance our ability 

to effectively restore coral reef communities.  
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A. Introduction 
 

Coral reefs comprise the ecological, economic, and social backbone of tropical coastal 

communities worldwide (Burke et al. 2011). However, coral reefs are being lost at an 

alarming rate (Bruno & Selig 2007), particularly in the Caribbean where reefs have lost ca. 

80% of their corals since the 1980’s (Gardner et al. 2003; Jackson et al. 2014). To confront 

declines in coral cover, coral restoration, the process of outplanting nursery-raised corals to 

degraded reef sites, has become increasingly popular over the past decade (Young et al. 

2012). However, coral restoration is time consuming, costly, and in some cases, restored 

corals meet the same fate as the coral predecessors they are intended to replace. Accordingly, 

research identifying the mechanisms that dictate restoration success or optimize restoration 

strategies is sorely needed. To date, studies have investigated the influence of a variety of 

factors on the growth and survival of restored corals including outplant size (Garrison & 

Ward 2008), density (Ladd et al. 2016), genotype (Lirman et al. 2014), source location 

(Forrester et al. 2013), and species diversity (Cabaitan et al. 2015). However, despite recent 

progress, significant knowledge gaps in our understanding of coral restoration remain that 

may impede our ability to successfully restore coral reef communities. 

One important gap is understanding how the genotypic diversity and identity of corals 

used for restoration affect the outcome of restoration efforts. Genotypic diversity can impact 

ecosystem function via complementarity among genotypes in ecologically important traits, 

such as biomass production or disease resistance (Fargione et al. 2007; Hughes & 

Stachowicz 2011). Alternatively, one or several genotypes can outperform others in a 

particular trait and drive population level patterns (i.e., the sampling effect; Loreau & Hector 

2001). For example, Reusch et al. (2005) documented 4-fold differences in shoot density 
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between restored seagrass (Zostera marina) genotypes when confronted with thermal stress. 

Indeed, Z. marina displays genotype-specific differences across ecologically important traits 

such as shoot biomass, production, and nutrient uptake (Hughes et al. 2009). Accordingly, 

genotypically diverse populations can better resist or recover from disease (Mundt 2002), 

species invasions (Crutsinger et al. 2008), herbivory (Peacock & Hunter 2001; Hughes & 

Stachowicz 2004), and environmental extremes (Reusch et al. 2005). Given the multitude of 

stressors influencing marine systems, environmental and biological context will likely 

influence intraspecific differences in important ecological traits. Thus, the differences in 

traits among genotypes may be an important driver of the impact of genotypic diversity in 

determining population performance. In the context of ecological restoration, genotype-

specific traits may be especially important for choosing individuals that perform best or are 

robust to changes in environmental conditions in order to maximize restoration success.  

However, on coral reefs, relatively little is known about genotype-specific performance 

of corals used for restoration, particularly when confronted with common stressors. This 

knowledge gap may hinder our ability to develop successful and sustainable coral reef 

restoration strategies (Baums 2008). Here, we address this gap by investigating the influence 

of genotypic identity and diversity on the growth and survivorship (henceforth referred to as 

“performance”) of restored corals. We assessed the success of restored corals based on 

survivorship and total linear extension of the coral skeleton, a proxy for the amount of habitat 

generated by an individual coral. This definition of success is based on a series of positive 

feedbacks that high coral cover and habitat complexity are posited to promote on coral reefs 

(Mumby & Steneck 2008).  
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Originally, we set out to test two main research questions: (1) does genotypic diversity of 

restored corals influence the success of coral restoration efforts? and (2) do genotypes of 

restored corals vary in growth rates and habitat production? However, 2014 was the warmest 

summer on record for the Florida Keys (Manzello 2015), including a prolonged thermal 

stress event during which water temperatures remained above 30°C for a period of 17 weeks 

at our field site. This thermal event allowed us to test our original questions in the context of 

environmental extremes predicted to become increasingly common (Hoegh-Guldberg et al. 

2007; Descombes et al. 2015). Therefore, we also tested two additional questions: (3) do 

restored coral genotypes exhibit differences in their response to thermal stress? and (4) do 

restored corals demonstrate tradeoffs between growth and survivorship when confronted with 

thermal stress? 

To answer these questions, we tracked the growth and survivorship of experimentally 

established plots of Acropora cervicornis differing in genotypic diversity over the course of 

21 months. We hypothesized that different genotypes would exhibit differences in growth 

rates and that inter-genotypic competition would suppress growth rates and lead to larger 

corals in single-genotype treatments compared to those with higher genotypic diversity. 

Further, we predicted that at the conclusion of the experiment, survivorship would be highest 

in the most genotypically diverse plots. Lastly, we hypothesized that genotypes would differ 

in their response to thermal stress and that genotypes with greater growth rates would 

demonstrate lower survivorship following thermal stress. 

 

 

 



39		

B. Methods 

Study Species 

Acropora cervicornis is a fast-growing, branching coral species that can rapidly expand 

via asexual fragmentation (Glynn 1973; Tunnicliffe 1981). The structural complexity 

provided by A. cervicornis and its congener, A. palmata, provides essential habitat for a 

multitude of reef-associated organisms (Reviewed in Bruckner 2002). Historically, these two 

species were dominant habitat forming and reef-building species on many Caribbean reefs, 

including in the Florida Keys (Hughes 1994; Aronson & Precht 2001). Today, A. cervicornis 

populations on most Caribbean reefs have declined 80-90% compared to 1970’s populations, 

with drastic population reductions of >95% in some areas (Hughes 1994; Aronson & Precht 

2001; Bruckner 2002), resulting in significant losses in structural complexity on most 

Caribbean reefs and their listing as “Threatened” under the US Endangered Species Act 

(Hogarth 2006). Currently, coral restoration efforts are primarily focused on A. cervicornis 

due to its life history characteristics amenable to rapid propagation and the species’ critical 

role on Caribbean coral reefs as habitat.  

 

Experimental Design 

Our field site was a low-relief reef in ~5-7m of water located approximately 10km 

offshore of Summerland Key, Florida, USA (24.532°N, 81.483°W). We established four 

experimental blocks of four 1m2 plots ≥5m away from and parallel to the reef ledge. Each 

block of 1m2 plots contained one replicate of each genotypic diversity treatment: 1-, 2-, 4-, or 

6-genotypes. Within each block, 1m2 plots were separated by 3-4m, while blocks of 1m2 plots 

where separated by ~30m. Treatments were randomly assigned to plots within a block. Eight 
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genotypes (named D-K) were used to create experimental treatments. However, due to 

limited availability of certain genotypes, only four genotypes (D, E, F and G) were present in 

all treatment levels.  

We outplanted twelve colonies of A. cervicornis, each approximately 35cm in total linear 

extension (TLE), to each plot in May of 2013 (Figure 1). We evenly spaced coral colonies 

within plots such that colony density and arrangement did not differ between treatments. We 

also organized colonies to maximize genotype mixing and avoid clumping of the same 

genotype in plots with multiple genotypes. Genotype analyses, completed as part of Mote 

Marine Laboratory’s initial establishment of a coral nursery, were done using known 

microsatellite markers. Corals from confirmed genotypes had been grown in the Mote 

Marine Laboratory offshore coral nursery from 5-10cm fragments (E. Bartels, pers. comm.). 

We outplanted four replicates of each treatment in the randomized block design for a total of 

192 corals outplanted into 16 1m2 plots. Each colony was secured via a cable tie to a masonry 

nail hammered into the reef substrate and labeled with an individually numbered tag. 

 

Coral Colony Growth, Condition and Predator Surveys 

To quantify the effects of genotypic identity and diversity on colony growth, we 

measured coral colony dimensions (length, width and height) to the nearest centimeter every 

3-6 months. Surveys were conducted in May, September, and December of 2013, June and 

October of 2014, and January of 2015. At each sampling event, we recorded the percent of 

each coral colony that had live tissue, presence of coral bleaching, and presence of disease 

via visual assessment. We also took a photograph of the entire plot from the same location to 

compare images through time. Additionally, we counted corallivorous snails (Coralliophila 
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abbreviata) and fireworms (Hermodice carunculata) on each A. cervicornis colony. 

However, these predators were so rare that we did not explore these data quantitatively. 

Beginning June 15, 2014, sea surface temperatures recorded at a site 9 km away at the 

same depth reached 30°C, just below the threshold for bleaching in A. cervicornis (Manzello 

et al. 2007). Temperatures at this site remained above 30°C from June 15 until October 7, 

2014 (Appendix 4). During our June 2014 survey (June 19), we did not observe bleaching in 

any of our experimental A. cervicornis corals or naturally occurring coral colonies of any 

other species growing on the reef at our study site. Therefore, we refer to May 2013 through 

June 2014 as “pre-bleaching” surveys. During September and early October of 2014, >75% 

of A. cervicronis colonies observed in many areas of the Florida Keys exhibited some degree 

of bleaching (Manzello 2015). Although we were not able to sample our experiment during 

the regional height of the bleaching event, we did survey corals again on October 30, 2014. 

While the peak in bleaching at our study site is unknown, at this time corals still exhibited 

substantial bleaching and we therefore considered this our “bleaching” survey. Even though 

we may have missed the peak of the bleaching, the relative patterns in bleaching among 

genotypes were likely similar to the peak time of bleaching. Our final sampling was 

conducted in January 2015 for a “post-bleaching” survey, at which time bleached corals had 

died or recovered and no bleaching was observed. 

 

Statistical Analyses 

Total skeletal linear extension (TLE) was calculated using length, width, and height 

conversions provided by Kiel et al. (2012). Growth rates were calculated for each interval by 

dividing the TLE accumulated between survey periods by the number of days elapsed to 
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generate a daily growth rate. For all growth rate and TLE calculations, data for corals were 

not included if they showed signs of breakage that would confound actual coral growth rates. 

Corals that suffered 100% tissue loss were included in growth rate and TLE calculations for 

the first survey where total mortality was recorded, but were removed from future growth 

calculations to avoid artificially depressing growth rates or TLE measures by continually 

including dead corals in our calculations. Coral colonies were likely broken during natural 

processes such as turtle and fish activity within plots (M. Ladd, pers. obs.). 

We assessed changes through time in growth rates, total linear extension, and percent of 

colony with no live tissue via nested two-way repeated measures ANOVAs. Genotypic 

diversity treatment effects were tested using plot as a replicate by calculating a mean value 

for the response variable of interest (growth rate, TLE, or percent of colony with no live 

tissue) for each plot. Treatment effect models considered treatment, survey and block as 

fixed factors with an interaction between treatment and survey and plot considered a random 

effect.  

In separate models, we tested the effect of genotype on individual colony growth rate, 

TLE, and percent of colony with no live tissue, using a model that considered genotype, 

survey and block as fixed factors and included an interaction between genotype and survey. 

We did not include genotypic diversity treatment in this model because only a subset of 

genotypes were present in each treatment making it impossible to test for effects of both 

genotypic diversity and genotypic identity in the same model. In models testing for effects of 

genotype, individual corals were nested within a plot and considered as a random effect to 

avoid violating assumptions of independence. When there were significant genotypic 

diversity or genotype effects, we tested for differences among treatment or genotype for 
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individual survey periods via post hoc tests with Tukey’s corrections using the multcomp 

package in R (Hothorn et al. 2008). Among genotype differences in percent of colony 

bleached were assed via an ANOVA using the October 2014 survey period. Growth rates, 

percent of colony with no live coral tissue, and percent of colony bleached were square-root 

transformed to meet ANOVA assumptions.  

Survivorship within genotypic diversity treatments was calculated using the percentage of 

colonies that were alive within a plot at each survey period. A coral was considered dead 

when it had no living tissue on the skeleton. Among treatment differences in survivorship at 

the end of the experiment (January 2015) were analyzed using an ANOVA with treatment 

and block as fixed factors. Survivorship among genotypes was calculated as the percentage 

of coral colonies for each genotype that remained alive at a given survey point.  Among 

genotype differences in survivorship at the end of the experiment were analyzed via a 

Fisher’s Exact Test, followed by pairwise comparisons of the eight genotypes using a 

Bonferonni correction.  

To determine if there was a relationship between growth rate and final TLE, tissue loss, 

or bleaching prevalence we regressed the average growth rate for each genotype from 

September to December 2013 against the mean final TLE, percent of colony with no tissue at 

the conclusion of the experiment, or percent of colony bleached in October 2014. We used 

growth data from September to December 2013 (henceforth referred to as “initial” growth 

rates) to represent individual genotype growth rates. Focusing on this time period removed 

any influence from transplant stress (May to September 2013). Using data from this time 

period also removed any influence of intraspecific competition, which can influence coral 

growth rates (Chadwick & Morrow 2011; Griffin et al. 2015), that we observed beginning 
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after our December 2013 survey (Figure 1). All analyses were conducted in R version 3.0.2 

(R Core Team 2013).  

 

Figure 1. Photographic time series of an experimental plot during each survey periods. Evidence of bleaching 
and post-bleaching recovery is evident in October 2014 and January 2015. 
 

 

C. Results 

Genotypic Diversity Effects 

Genotypic diversity within plots had no effect on coral growth rates (Treatment effect: 

F3,9 = 0.247, p = 0.86) or total linear extension (Treatment effect: F3,9 = 0.303, p = 0.82) 

during any survey period in the experiment (Table 1). Genotypic diversity treatments also 

had no effect on bleaching prevalence within plots (F3,9 = 0.486, p = 0.70) or mean percent of 

colony with live tissue (Treatment effect: F3,9 = 0.52, p = 0.68).  
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 Response 
Variable Predictor df1 df2 F P 

G
en

ot
yp

ic
 d

iv
er

sit
y 

ef
fe

ct
s  Growth rate 

(cm day-1) 

Survey 5 59 27.15 < 0.001 
Treatment 3 9 0.25 0.86 
Treatment x Survey 15 59 0.71 0.77 
Block 3 9 0.1.77 0.22 

Total linear 
extension 

Survey 5 59 38.55 < 0.001 
Treatment 3 9 0.30 0.82 
Treatment x Survey 15 59 0.34 0.99 
Block 3 9 1.27 0.34 

Percent of 
colony 

without live 
tissue 

Survey 5 47 29.02 < 0.001 
Treatment 3 9 0.52 0.68 
Treatment x Survey 15 47 0.28 0.99 
Block 3 9 0.69 0.58 

G
en

ot
yp

e 
ef

fe
ct

s  

Growth rate 
(cm day-1) 

Survey 5 642 340.78 < 0.001 
Genotype 7 169 0.63 0.73 
Genotype x Survey 35 642 2.26 < 0.001 
Block 3 12 2.67 0.09 

Total linear 
extension 

Survey 5 585 700.51 < 0.001 
Genotype 7 169 2.35 0.026 
Genotype x Survey 35 585 4.99 < 0.001 
Block 3 12 3.47 0.06 

Percent of 
colony 

without live 
tissue 

Survey 5 905 276.16 < 0.001 
Genotype 7 169 6.21 < 0.001 
Genotype x Survey 35 905 5.75 < 0.001 
Block 3 12 0.62 0.61 

Table 1. Results from nested two-way repeated measures ANOVA testing the effect of genotypic diversity 
treatment on growth rate, total linear extension, and percent of colony without live tissue and nested two-way 
repeated measures ANOVA testing the effect of genotype on mean growth rate, total linear extension, and 
percent of colony without live tissue. 

 

Genotype Effects 

Mean growth rates among genotypes ranged 4-fold, from a minimum of 0.18 to a 

maximum of 0.73 cm day-1 (mean ±SE; 0.33 ±0.01) and significantly differed through time 

among genotypes (Genotype x Survey effect: F35, 642 = 2.256, p < 0.001; Figure 2a). 

However, post-hoc tests with Tukey’s correction were unable to detect significant differences 

in growth rates among genotypes, likely due to the high number of comparisons conducted. 

Mean daily growth rates for genotype D nearly tripled after the 2014 thermal stress event 

(from 0.25 cm day-1 to 0.73 cm day-1), and manifested in a large increase in mean total linear 

extension (TLE), a proxy for habitat produced (Genotype x Survey effect: F35,585 = 4.998, p < 
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0.001; Figure 2b). We found that individuals of genotype D were on average 20-327% larger 

than the other genotypes by the end of the experiment.  

 

Figure 2. (a) Daily growth rate of individual genotypes through time regardless of treatment. Labels on the x-
axis indicate the time period over which the growth rate was calculated. (b) Total linear extension of colonies 
by genotype throughout the experiment. Labels on the x-axis indicate the survey period the data was collected. 
Statistics are from nested two-way repeated measures ANOVA. The shaded area represents the 17-week period 
of thermal stress when sea surface temperatures remained above 30°C. Data are means ± SE. 
 

In 2014 a thermal stress event occurred from June 15 to October 7, during which sea 

surface temperatures near our study site remained above 30°C and caused significant 

bleaching and mortality in coral colonies throughout the Florida Keys (Manzello 2015). 

During our October 2014 survey, we observed significant differences among genotypes in 

the percent of coral colonies bleached (F7,166 = 4.77, p < 0.001; Figure 3). Specifically, 

genotype D and K corals had on average nearly twice the amount of bleached coral tissue per 

colony compared to all other genotypes. 
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Figure 3. Mean percent of colony bleached in October 2014 for the eight Acropora cervicornis genotypes used 
in this study. Statistics are from one-way ANOVA. Different letters represent significant differences (p < 0.05) 
among genotypes from post hoc tests with Tukey’s correction. 

 

Genotypic differences in response to the thermal stress event were evident in cumulative 

survivorship, which varied 3-fold among genotypes (Fisher’s Exact Test, p < 0.001; Figure 

4a) and ranged from a high of 93.1% to a low of 27.8% colonies alive at the end of the 

experiment. There was no effect of genotypic diversity treatment on cumulative survivorship 

(Treatment effect: F3,9= 0.06, p = 0.98). Thermal stress appeared to drive differences between 

genotypes in the average percent of a colony with no live tissue at the end of the experiment 

(Genotype x Survey effect: F35,905 = 5.75 , p = < 0.001; Figure 4b). By October 2014, 

genotypes E, F and J had lost live tissue on approximately 3x more of the skeleton per colony 

compared to genotypes D, G and I. This pattern held until the end of the experiment, 

suggesting there was little tissue recovery after the bleaching event for these genotypes. All 

results from nested two-way repeated measures ANOVAs can be found in Table 1. 
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Figure 4. (a) Cumulative survivorship of colonies of the eight Acropora cervicornis genotypes used in this 
study. The inset bar plot presents the percent of corals dead for each genotype at the conclusion of the 
experiment. Different letters represent significant differences (p < 0.05) from Fisher’s Exact Test with 
Bonferroni correction among genotypes in January 2015. (b) Mean (± SE) percent of colony without live tissue 
for each genotype at each survey period. The inset bar plot presents the mean partial mortality per coral colony 
for each genotype at the conclusion of the experiment. Different letters represent significant differences (p < 
0.05) among genotypes within a survey from post hoc tests with Tukey’s correction. The shaded area represents 
the period of thermal stress when sea surface temperatures remained above 30°C. 
 

We found no relationship between mean initial growth rates (September to December 

2013) and final TLE (F1,6 = 0.513, p = 0.54) across genotypes (Figure 5a). Thus, initial 

growth rates were not related to final amount of habitat created. Similarly, there was no 

relationship between initial growth rates and the amount of bleached tissue in coral colonies 

(F1,6 = 0.417, p = 0.542). However, the percent of tissue on a colony that died during the 

experiment was significantly positively related to initial genotype-specific growth rates (F1,6 
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= 6.445, p = 0.044; Figure 5b), indicating that genotypes with faster initial growth rates 

ultimately lost more live tissue. 

 

Figure 5. Average growth rate cm day-1 for each genotype from October to December 2013 regressed against (a) 
the mean TLE for each genotype and (b) mean percent of colony with no live tissue at the end of the experiment 
in January 2015. Statistics are from linear regression. 
 
 
 

D. Discussion  

Coral restoration is gaining traction globally as a feasible approach to restore degraded 

reefs on a local scale (Montoya-Maya et al. 2016). Understanding how restored corals will 

perform when outplanted to degraded reef sites, particularly in response to common stressors, 

is an important step towards developing more effective restoration strategies. Our study 

reveals important genotype-specific differences among restored corals in growth and 

survivorship, key elements of successful coral restoration. We found a 4- and 3-fold 

difference in growth rates and survivorship, respectively, and up to 327% difference in the 

amount of habitat created by corals of different genotypes. Further, these differences were 

context-dependent and only emerged after a prolonged (17 week) thermal stress event that 

induced coral bleaching and mortality. Importantly, genotypes with faster initial growth rates 

suffered more tissue mortality after the bleaching event. To our knowledge, this is the first 

example of tradeoffs in performance between important traits in corals used for restoration. 
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Our work adds to a growing body of literature suggesting that the genotypic identity of 

corals should be a key factor to consider when planning coral restoration efforts (Jin et al. 

2016). We found a nearly 3-fold difference in growth rates among genotypes during our 21-

month study. Previous work with nursery-raised A. cervicornis has demonstrated variable 

growth rates based on genotype and source location (Bowden-Kerby 2008; Griffin, Spathias 

& Moore 2012), manifesting in variable growth rates for corals outplanted to coral reef sites 

(Lirman et al. 2014). However, most studies documenting the performance of restored corals 

have been on relatively short time scales (≤1 year), often in an ideal setting such as an 

underwater nursery, and averaged growth rates over the entire study period (e.g., Griffin, 

Spathias & Moore 2012; Lirman et al. 2014). Our results are unique in the fact that our 

experiment was in a natural reef setting where the different genotypes were subject to the 

normally occurring biotic and abiotic forces on reefs that can shape differential growth and 

survivorship. Further, our longer time scale allowed us to examine how prolonged thermal 

stress, which will likely become more common with global climate change (Hoegh-Guldberg 

et al. 2007; Descombes et al. 2015), differentially impacts genotypes of corals used for 

restoration.  

One of the major goals of coral reef restoration is to restore ecological processes and 

feedbacks that can drive community recovery. One key driver of these positive feedbacks on 

reefs is the creation of structural complexity by live coral (Mumby & Steneck 2008), which 

provides habitat for diverse and ecologically important fish and invertebrate assemblages 

(Newman et al. 2015), refuge from predators (Almany 2004), and facilitates nutrient cycling 

(Holbrook et al. 2011; Shantz et al. 2015). Surprisingly, we found no relationship between 

initial growth rates and the amount of habitat produced by a coral. This finding suggests that 
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initial growth rates, often used to evaluate corals raised in nurseries (e.g. Griffin et al. 2012; 

Lirman et al. 2014), may not be a reliable predictor for how corals will perform when 

outplanted for restoration. Further, coral genotypes with initially high growth rates ended up 

losing more live tissue after the thermal stress event than colonies with slower initial growth 

rates, suggesting a tradeoff between growth rate and ability to cope with thermal stress. 

Another potential explanation for this tradeoff could be differences in energy allocation 

strategies between coral genotypes. Coral energy reserves are positively correlated with 

survival and recovery from bleaching events (Grottoli et al. 2014; Schoepf et al. 2015). 

However, calcification is an energetically intensive process. Thus, genotypes that devote 

more energy to rapid growth may possess smaller energy reserves than slower growing 

genotypes resulting in less capacity to deal with stressors.  

In the Pacific, coral families with the highest skeletal extension rates often have lower 

immunity levels as compared to those with lower growth rates that are more resistant to 

disease, infection, and bleaching (Palmer et al. 2010). Similarly, in our study the three 

genotypes with the lowest initial growth rates displayed roughly three times less tissue loss 

than genotypes with faster initial growth rates. There could also have been a positive 

relationship between growth rate and bleaching prevalence that we did not detect if we 

indeed missed the peak of the bleaching event. Importantly, the tradeoff between growth and 

tissue loss after thermal stress was evident with only eight genotypes. Had we been able to 

include a higher number of genotypes with a wider range of traits, we may have seen 

stronger or more diverse tradeoffs.  

Corals can exhibit high levels of local adaptation, including the ability to cope with a 

variety of stressful conditions (Barshis et al. 2010; Sanford & Kelly 2011). Such differences 
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among genotypes suggest that genotype by environment interactions are likely important to 

consider in restoration planning to maximize the survival and growth of restored corals. Our 

findings suggest that numerous tradeoffs likely exist among multiple coral traits, highlighting 

the need to test genotypes across a range of environmental conditions. For example, 

genotypes of A. cervicornis differ in disease resistance (Vollmer & Kline 2008), thermal 

tolerance (this study), growth rates (Griffin et al. 2012), and habitat production (this study). 

Given such differences, we predict tradeoffs among these traits to influence the performance 

of restored corals when exposed to stressors such as thermal tolerance or disease (Figure 6). 

Understanding the performance of restored corals under varied biotic and abiotic conditions 

is particularly relevant in a time of global climate change that will see an increase in both 

chronic and acute stressors on many coral reefs (Descombes et al. 2015; Gattuso et al. 2015; 

Pendleton et al. 2016).  

 

Figure 6. Visualization of a potential tradeoff among multiple coral traits under different environmental 
contexts. Each circle represents a distinct coral genotype. Cooler colors represent more thermally tolerant 
genotypes, while hotter colors represent thermally intolerant genotypes. The amount of habitat created by a 
genotype is depicted by the size of each circle, with smaller circles representing less habitat created compared to 
larger circles. Genotype-specific growth rates (x-axis), disease resistance (y-axis), and thermal tolerance (color) 
may all interact to influence the amount of habitat generated by restored corals. Habitat generation by restored 
corals will be highly influenced by environmental context and tradeoffs among important coral traits. Shown are 
hypothesized outcomes at a site heavily influenced by coral disease (left panel) and to site subjected to thermal 
stress (right panel) as compared to a relatively healthy reef (center panel). 
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Genotypic diversity of foundation species can be a major driver of community structure 

and ecosystem function (Crutsinger et al. 2006). However, we found that genotypic diversity 

had no effect on the growth rate, size, or survivorship of restored A. cervicornis. The 

unexpected lack of a genotypic diversity effect on restored coral performance may have been 

due to several factors. Restricted availability of specific genotypes limited our highest 

genotypic diversity treatment to six genotypes, while genotypic diversity effects may be 

evident only at higher levels of genotypic diversity. However, the prominence of asexual 

fragmentation by A. cervicornis (Tunnicliffe 1981) and extremely low sexual recruitment in 

the Florida Keys (van Woesik et al. 2014) suggest that our genotypic diversity treatments 

were within realistic ranges for natural populations. Diversity effects may be emergent 

properties only evident at the level of ecosystem processes such as primary production or 

nutrient cycling and not detectable by measuring growth and survivorship responses in 

individual corals. Alternatively, specific genotype combinations may be required to generate 

hypothesized genotypic diversity effects. For example, in rocky intertidal seaweed 

communities, biodiversity can enhance nitrate uptake and photosynthesis, but only in realistic 

(non-random) assemblages (Bracken & Williams 2013). Thus, it is plausible that genotypic 

composition of restored coral populations is as important, if not more, than genotypic 

diversity for restoration success.  

The need for coral restoration is becoming increasingly urgent as the worlds’ reefs 

continue to lose corals (De’ath et al. 2012; Jackson et al. 2014; Graham et al. 2015; Hughes 

et al. 2017). It is critical to recognize that environmental conditions are variable across reefs 

and over space and time. Thus, matching genotype-specific performance to the 

environmental conditions of restoration sites will be critical to furthering restoration goals. 
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We suggest weighting restoration at sites with predictable conditions towards genotypes with 

known attributes that can boost survivorship and habitat production. Conversely, at sites 

prone to frequent disturbances or highly variable conditions, including a suite of traits from 

numerous genotypes at a single restoration site may be important to maximize the likelihood 

that these populations will persist under uncertain future conditions (Pandolfi 2015; 

Pendleton et al. 2016). Ultimately, long term studies assessing how different genotypes 

perform under a variety of environmental conditions will afford restoration practitioners the 

ability to select genotypes best suited for site-specific conditions and increase the chances of 

achieving restoration goals. 
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A. Introduction 

Competition for limiting resources is a fundamental process that drives population 

dynamics, community succession, and structures ecological communities (Connell, 1961; 

Diamond, 1978; Barabás et al., 2016). On coral reefs, where space is often a limiting and 

highly contested resource, competition can be a major driver of benthic community 

composition (Connell, 1978; Lang and Chornesky, 1990; Connell and Hughes, 2004). When 

coral cover declines, as is occurring on reefs around the globe (Jackson et al., 2014; Hughes 

et al., 2018), the newly available substrate is often occupied by organisms that can rapidly 

colonize open space, such as macroalgae (Jackson et al., 2014; Graham et al., 2015). 

However, while coral-algal dynamics have justifiably received extensive research attention, 

algae are just one of many benthic groups that compete for space on coral reefs. Indeed, 

sponge and coral cover is now similar on many Caribbean reefs, with sponges actively 

overgrowing ~8-16% of corals on some reefs (Loh and Pawlik, 2014; Loh et al., 2015). 

Additionally, fast growing, “weedy” species such as hydrocorals, octocorals, gorgonians, and 

zoanthids have increased in abundance on Caribbean reefs (Burman et al., 2012; Ruzicka et 

al., 2013; Cruz et al., 2016). Consequently, the benthic communities of many contemporary 

Caribbean reefs are fundamentally different from historical assemblages (Aronson et al., 

2004; Burman et al., 2012). 

Shifts in ecological communities can generate novel interactions between species and 

alter interactive networks within a community (Gilman et al., 2010; Urban et al., 2012). 

Thus, there is a need to evaluate interactions among contemporary benthic invertebrates to 

understand how competition influences benthic community assemblages. Here, we present 

one of the first studies examining competitive interactions among a suite of sessile benthic 
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invertebrates representing a variety of taxa, growth strategies, and life history traits found on 

modern coral reefs.  

The Florida Reef Tract has some of the lowest coral cover in the Caribbean (Gardner 

et al., 2003; Jackson et al., 2014), with many reefs now dominated by benthic invertebrates 

such as gorgonians and sponges (Ruzicka et al., 2013; Loh and Pawlik 2014). If coral reefs 

throughout the Caribbean continue to lose corals and experience shifts in community 

structure as predicted (Hoegh-Guldberg et al., 2007; Grottoli et al., 2014; Descombes et al., 

2015), they may become similar in composition to present-day Florida reefs (Burman et al., 

2012). Thus, research on Florida coral reefs provides important insights into how future 

Caribbean coral reefs may function. While there is a wealth of data on the benthic cover of 

Caribbean coral reefs and how communities have changed over recent decades, there is 

surprisingly little data quantifying interactions among benthic species (Chadwick and 

Morrow 2011), with most data focusing on coral-algal interactions (Swierts and Vermeij, 

2016; but see Loh et al., 2015; Karlson, 1980). 

 To address these research gaps, we examined competitive interactions among 

historically abundant scleractinian corals on Caribbean reefs (Orbicella faveolata and 

Acropora cervicornis), corals increasing in relative abundance on contemporary reefs 

(Siderastrea siderea and Porites porites), and increasingly abundant non-scleractinian taxa, 

specifically fire corals, zoanthids, gorgonians, and sponges. We combined field surveys with 

a common garden competition experiment to investigate interference competition among 

these organisms, an important form of competition that can drive the presence and abundance 

of species (Jackson and Buss, 1975; Lang and Chornesky, 1990; Connell et al., 2004). 

Specifically, we addressed three main research questions: (1) What is the frequency of 
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interference competition among sessile benthic invertebrates on a contemporary Caribbean 

coral reef? (2) How do these species differ in aggressiveness (i.e., ability to reduce a 

competitor’s live area) and susceptibility to competition (i.e., effect of competitors on their 

own growth rates)? And, (3) Does a competitive network exist among common sessile 

benthic invertebrates? 

 

B. Materials and Methods 

Study Species 

We chose four scleractinian corals to comprise half of our focal species, representing a 

variety of life history strategies and varying historical and contemporary abundance on 

Caribbean reefs (Darling et al., 2012; Figure 1). Orbicella faveolata is a mounding, slow-

growing species that has been historically abundant on Caribbean reefs (Gladfelter 1978). 

Siderastrea siderea is now one of the most abundant corals on reefs in Florida and the 

Caribbean (Burman et al., 2012; Perry et al., 2015) and exhibits a high tolerance to abiotic 

stressors such as temperature and sedimentation (Kemp et al., 2011). Acropora cervicornis is 

one of the fastest growing Caribbean coral species and was ubiquitous across Caribbean reefs 

before a massive die-off in the early 1980’s (Aronson and Precht 2001). Currently, Ac. 

cervicornis is the primary species used in coral restoration efforts (Ladd et al., 2018). Porites 

porites is a branching coral relatively tolerant to a wide range of abiotic conditions and able 

to colonize disturbed habitats (Marcus and Thorhaug, 1981; Darling et al., 2012). Using ten 

species traits, Darling et al. (2012) classify these four coral species as employing distinct life 

history strategies: generalist (O. faveolata), stress-tolerant (S. siderea), competitive (Ac. 

cervicornis), and weedy (P. porites).  
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Figure 1. Photographs of the eight focal species used in this study affixed to experimental concrete pucks. 
Scleractinians (top row) are organized by morphology and prominent characteristics. Species on the bottom are 
representative of taxa increasing in abundance on Caribbean reefs and are generally characterized as aggressive, 
fast-growing, and ruderal species. 

 
We also selected four non-scleractinian species that represent ruderal life-history 

strategies characteristic of groups that are increasingly common on Caribbean coral reefs 

(Knowlton 2001; Alvarez-Filip et al., 2011; Ruzicka et al., 2013). Millepora alcicornis is a 

fast growing, aggressive hydrocoral frequently observed overgrowing corals, gorgonians, and 

sponges (Wahle 1980; Wegener et al., 2018). Erythropodium caribaeorum, an encrusting 

gorgonian with inducible sweeper tentacles (Sebens and Miles 1988), and the zoanthid 

Palythoa caribaeorum are aggressive, fast-growing species (Bastidas and Bone 1996). 

Lastly, Aplysina fistularis, a common sponge species in Florida that produces biologically 

active metabolites (Walker et al., 1985). We chose these species to represent a broad range of 

sessile benthic invertebrates but note that extensive interspecific variation among important 

Branching scleractinians Mounding scleractinians

Fast growing Tolerant Aggressive Tolerant

Acropora cervicornis Porites porites Orbicella faveolata Siderastrea siderea

Aplysina fisultarisErythropodium caribaeorumPalythoa caribaeorumMillepora alcicornis

Ruderal species increasing on contemporary Caribbean reefs
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traits exists within these groups and that these species are not necessarily representative of all 

related taxa. 

 

Natural Competitive Interactions 

To determine the abundance of our eight focal species and frequency of competitive 

interactions with other benthic invertebrates, we conducted photo transects at Pickles Reef 

(24.989ºN, 80.376ºW), a low-relief reef in 6-9 m of water 9 km offshore of Key Largo, 

Florida, USA in the Florida Keys National Marine Sanctuary (FKNMS). Along five 25 x 1 m 

haphazardly placed transects, we photographed 0.5 m x 0.5 m benthic quadrats (n = 50 

quadrats per transect). From these photographs we identified all of the focal species present 

and classified the remaining non-focal invertebrates into one of three groups: “upright 

gorgonians”, “other sponges” (i.e. any sponge besides Aplysina fistularis), and “other hard 

corals” (i.e. any scleractinian other than the four focal species). Including these three 

additional groups allowed us to capture nearly all of the interactions among benthic 

invertebrates and thus better quantify the frequency of competitive interactions on the reef. 

For each benthic invertebrate observed in a photoquadrat, we recorded whether the individual 

was solitary or interacting with another individual and if interacting, recorded what species or 

group the individual was interacting with. We considered organisms to be interacting when 

any portion of another sessile benthic invertebrate was seen within 1 cm of the colony’s 

boundary. Although interference competition between corals can occur at distances >1 cm 

(Chadwick and Morrow 2011), distances at which many other benthic invertebrates can 

interact with neighbors is unknown. Therefore, to ensure that all individuals were actually 

interacting, we used 1 cm distance as a cutoff based on preliminary surveys that found 
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negative effects (e.g. altered growth, tissue paling, tissue mortality) between focal species at 

this distance. A single individual could be interacting with multiple other individuals. We 

considered an individual as a discrete unit with clear borders, thus nearby individuals of the 

same species could be fragments of the same genet. Shading and overtopping can be 

important forms of competition (Baird and Hughes 2000) but were not observed between our 

focal species and could not be accurately assessed from our top-down photographs. Thus, our 

estimates of interaction densities focus on interference competition and do not include 

mechanisms of exploitative competition like shading.  

Although photographic transects allowed us to document the frequency of interference 

competition, it was difficult to quantify the outcome of these interactions from photographs. 

Instead, we conducted roving diver surveys to quantify the outcome of competitive 

interactions among the eight focal species. Roving diver surveys were conducted at Pickles 

Reef, Conch Reef (24.956ºN, 80.458ºW), and Pinnacles Reef (24.949ºN, 80.503ºW) in the 

Upper Florida Keys. For each survey, divers swam for 30 minutes away from a central point 

at predetermined headings to avoid censusing the same area. During each survey, we 

recorded every focal species we encountered that was interacting with another focal species 

and classified the outcome as one of three states, (1) win: individual had killed, damaged, or 

overgrown the competitor’s tissue, identifiable by visible paling and mortality at the 

competition margin (Figure 2a) or the direct overgrowth of live tissue (Figure 2b); (2) loss: 

individual was killed, damaged, or overgrown by the competitor, or (3) draw: no signs of 

damage, tissue mortality, or overgrowth in either competitor (Figure 2c). We note these 

surveys represent a one-time snapshot of competitive interactions, and thus may not 

necessarily reflect the final outcome of the interaction (Wellington 1980; Chornesky 1989). 
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Common Garden Competition Experiment 

To remove confounding factors and isolate spatial competitive ability, we conducted a 

competition experiment in situ using the eight focal species described above. In May 2014, 

we deployed 10 experimental platforms at 8-9 m depth on a sand flat near Pickles Reef. Each 

platform consisted of a 150 x 80 cm piece of PVC-coated wire mesh (2.5 cm diameter mesh 

size) secured to a PVC frame and placed on top of two cinderblocks (Appendix 5). A 1 m 

section of rebar was placed through the mesh on each corner and hammered into the sand to 

hold the platform in place and 20 cm tall mesh tops were secured to the platforms with cable 

ties to prevent fish predation on the focal species. 

We obtained colonies of O. faveolata and S. siderea from the FKNMS Coral Nursery in 

Key West, Florida. Corals were transported to our field station in Key Largo in coolers filled 

with seawater, cut into 5 x 5 cm fragments using a tile saw, and transported immediately to 

our study site in fresh seawater. Acropora cervicornis fragments 5 cm in length were 

obtained from the Coral Restoration Foundation’s underwater nursery in the upper Florida 

Keys, while similar sized P. porites fragments were collected from a nearby patch reef ~4 km 

away. All corals were transported directly to our field site after fragmentation and epoxied 

onto concrete pucks (5 x 5 x 0.5 cm) using underwater epoxy. 

For our other focal species, we collected fragments of M. alcicornis (5 cm height, ≤ 5 cm 

width), and colonies of E. caribaeorum (~5 x 5 cm), P. caribaeorum (~5 x 5 cm), and Ap. 

fistularis (≤ 5 cm diameter) from near Pickles Reef. We epoxied M. alcicornis to concrete 

pucks, and attached Ap. fistularis, E. caribaeorum, and P. caribaeorum to pucks via PVC 

coated wires, as these organisms had negative reactions to the fresh epoxy. All fragments 
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were collected and brought to the study site during the same seven-day period. Concrete 

pucks with experimental colonies were temporarily secured to the mesh tables at least 10 cm 

apart and allowed to acclimate for 14 days, at which time no colonies showed signs of 

mortality or fragmentation. 

After acclimation, we rearranged fragments and paired them with either: a conspecific 

fragment from a different colony, another species, or an empty concrete puck that served as a 

control (n=5 per species for all possible combinations; Appendix 5). Concrete pucks were 

epoxied to the platforms such that competing organisms were in direct contact. Each 

competitive pair was separated from the nearest pair by 10 cm. Twenty-two pairs were 

arranged on every platform in a randomized block design so that all combinations were 

present on each set of platforms for a total of 220 experimental pairs. Mesh platforms and 

tops were brushed weekly to remove any fouling organisms.  

On 18 July (initial time point), 23 October, and 11 December of 2014 (final time point) 

we took top-down photographs of each competitive pair and recorded any changes in colony 

appearance (e.g., paling), instances when an individual damaged or overgrew its competitor’s 

tissue, and instances in which an individual killed, or was killed by its competitor. Finally, 

we analyzed each photograph in ImageJ® to measure colony area (cm2) and used these 

measurements to calculate the percent change in live area between the initial and final time 

points and the direction of growth for each individual (i.e., growing towards competitor, 

growing away from competitor, or no direction/unknown). Two-dimensional surface area is a 

common measure of growth and proxy for spatial competition, as it represents the amount of 

the limiting resource (i.e. space) a colony is using (Connell et al., 2004; Álvarez-Noriega et 

al., 2018). 
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Statistical Analysis 

To calculate the percent cover of sessile invertebrates we overlaid a 50-point grid on each 

photoquadrat (n = 50 per transect) and used Coral Net (https://coralnet.ucsd.edu) to identify 

the substrate or organism below each point to the lowest taxonomic level possible. After 

identification, each point was categorized into one of 12 groups. Descriptions of these 

benthic groups and percent cover data are provided in Appendix 6. We used a linear mixed 

effects model with a binomial distribution to determine whether specific species or 

invertebrate groups had a higher probability of interacting with other benthic invertebrates. 

For this model, we included species (or invertebrate group) and percent cover as fixed 

interacting factors and transect as a random effect. 

For the roving diver surveys, we analyzed whether each of the eight focal species was 

overgrowing (i.e. “winning”) or being overgrown (i.e. “losing”) by competitors more than 

expected by chance using a one-sample Wilcoxon signed rank test. For these two-sided tests, 

we assigned each of the three possible interaction outcomes a numeric value: win = 1, draw = 

0, and loss = -1. We tested competitive outcomes observed for each species against the null 

hypothesis, µ = 0 (draw), assuming that if a species was not competitively superior or 

inferior, there was an equal probability of an interaction ending in one of the three possible 

outcomes. 

To measure the aggressiveness of each species in the common garden experiment, we 

calculated the mean percent change in live area of all heterospecific competitors when 

competing against that species. We did not include intraspecific competition for these 

analyses. We used two-sided t-tests to evaluate if the percent change in area that each species 

caused in their competitors’ area significantly differed from the average percent change in 
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the area of heterospecifics growing without competitors. To quantify each species’ 

susceptibility to competition, we used two-sided t-tests to compare the mean change in area 

of a species when in competition with heterospecifics to the mean change in area of the 

conspecific controls. 

To measure species-specific effects of spatial competition on growth, we calculated the 

change in percent live area relative to the mean change of that species without a competitor 

(i.e. controls) for each individual. We used the average change in live area for control 

individuals of each species to represent growth in the absence of a competitor due to 

variation among control replicates. We used the mean change in live area relative to control 

values to generate 95% confidence intervals using the ‘summarySE’ function in R for each 

species combination. For O. faveolata, we present data from July to October 2014 due to 

several control colonies exhibiting abnormally high levels of partial mortality from October 

to December 2014. We considered differences significant when the confidence interval did 

not overlap zero, with values lower than zero indicative of negative effects of competition 

with that particular species, while values above zero indicate a species performed better when 

in competition compared to control individuals (i.e. facilitation). 

 All analyses were conducted using R Version 3.4.3 (R Core Team 2017).  

 

C. Results 

Natural Competitive Interactions 

Competition between benthic invertebrates was common, with 60% of the 3,267 

individuals we recorded in our photoquadrats involved in an interaction. We found an 

average of 31 ±2.8 interacting individuals m-2 (mean ±SE) and 21 ±0.69 solitary individuals 
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m-2 organisms (Figure 2d; percent cover provided in Appendix 6). Upright gorgonians and 

Ap. fistularis were the most abundant benthic invertebrates observed (12.05 ±1.0 and 11.62 

±1.08 individuals m-2, respectively). At low coral cover, both Ap. fistularis and P. 

caribaeorum had a higher probability of interacting than other invertebrate groups. 

Furthermore, as the percent cover of benthic invertebrates increased, the probability of 

interacting for P. caribaeorum, upright gorgonians, and other sponges grew significantly 

faster than other benthic invertebrate groups (Appendix 7). Approximately 85 ±5.4% of 

“other sponge” individuals (i.e. all sponges except Ap. fistularis) and 73 ±4.3% of P. 

caribaeorum colonies were interacting, the highest proportion for any species or groups we 

surveyed. In contrast, only 36 ±6.8% of “other hard corals” and 37 ±3.3% of Porites porites 

colonies surveyed were interacting with another benthic invertebrate. Orbicella faveolata and 

Ac. cervicornis were rare at this site and not observed on the transects.  

Table 1. Interaction outcomes from the common garden competition experiment. Lethal interactions: “Won” = 
individual killed its competitor, “Lost” = individual was killed by its competitor, “No Death” = neither 
competitor died. Non-lethal Interactions: “Tissue damaged by competitor” = individual’s tissue was damaged or 
overgrown by competitor, “Damaged or overgrew competitors’ tissue” = individual damaged or overgrew their 
competitor’s tissue, “No damage” = no damage or overgrowth by competitor. Growth Direction: “Grew towards 
competitor” = individual grew in the direction of competitor, “Grew away from competitor” = individual grew 
in a direction away from competitor, “No directional growth” = Individual did not grow or unable to determine 
the direction of growth. Data presented are the percent of all interactions for that species that resulted in a 
specific outcome.  

 Lethal Interactions Non-lethal Interactions Growth Direction 

Species Lost Won No 
Death 

Tissue 
damaged 

by 
competitor 

Damaged or 
overgrew 

competitors’ 
tissue  

No 
damage 

Grew 
towards 

competitor 

Grew away 
from 

competitor 

No 
directional 

growth 

Acropora 
cervicornis 27.9 4.7 67.4 4.7 11.6 83.7 39.5 2.3 58.2 

Aplysina 
fistularis 0 2.3 97.7 6.8 52.3 49.9 61.4 11.4 27.2 

Erythropodium 
caribaeorum 22.2 20.0 57.8 15.5 6.7 77.8 6.7 2.2 91.1 

Millepora 
alcicornis 15.9 4.5 79.6 11.4 9.1 79.5 11.4 0 88.6 

Orbicella 
faveolata 20.0 8.9 71.1 40.0 11.1 48.9 2.2 0 97.8 

Palythoa 
caribaeorum 13.0 10.9 76.1 13.0 8.7 78.3 21.7 10.9 67.4 

Porites  
porites 6.8 4.5 88.7 31.8 11.4 56.8 25.0 38.6 36.4 

Siderastrea 
siderea 0 8.9 91.1 20.0 2.2 77.8 0 0 100 
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From our roving diver surveys, we found several consistent patterns in competitive 

outcomes among the eight focal species surveyed. Orbicella faveolata and Ap. fistularis were 

observed winning the highest proportion of competitive interactions (83% and 71%, 

respectively; Figure 3). However, for O. faveolata this was not significantly different from 

the null hypothesis that wins, losses, and draws were equally probable (p=0.13), likely due to 

the rarity of this species in our surveys (n=6). In contrast, Ap. fistularis was abundant and 

found interacting with all seven other focal species. Interestingly, the only species that Ap. 

fistularis was not found overgrowing were O. faveolata and Ac. cervicornis (individual 

species outcomes are provided in Appendix 8). The third most successful species was Ac. 

cervicornis, which we found overgrowing competitors in 63% of observations. Palythoa 

caribaeorum, E. caribaeorum, and M. alcicornis were winning in approximately half of their 

interactions (54%, 51%, and 50%, respectively), but ranged widely in the percent of 

interactions lost (19.5 – 45%). The two remaining scleractinian corals, P. porites and S. 

siderea, were consistently being overgrown by their competitors, losing 76% and 92% of 

competitive interactions, respectively. Of all the interactions recorded for P. porites and S. 

siderea, the only instance of either species overgrowing a competitor was when they were 

interacting with each other (Appendix 8). Draws between species were the least common 

competitive outcome but were most frequent for E. caribaeorum (29% of interactions) and P. 

caribaeorum (19% of interactions).  
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Figure 2. Photos of competitive interactions among common benthic invertebrates on contemporary reefs in the 
Florida Keys. (a) Palythoa caribaeorum killing the tissue of Siderastrea siderea (i.e. P. caribaeorum is 
“winning” and S. siderea is “losing”), (b) Aplysina fisularis overgrowing S. siderea (i.e. Ap. fistularis is 
“winning” and S. siderea is “losing”). (c) Standoff (i.e. “draw”) between S. siderea and P. caribaeorum. (d) 
Total density for each species or group recorded in field surveys represented by the tallest bars for each species 
or group. Lighter inset bars represent density of each species or group found interacting with another individual. 
For example, upright gorgonians had a density of 12.05 individuals m-2 but only 6.3 individuals m-2 were 
interacting with another individual. Data are means ±SE. 
 
 
 

Common Garden Competition Experiment 

 On average, four of the eight species reduced the live area of their competitors during 

the course of the experiment (Figure 4a). However, organisms differed widely in the amount 

they reduced their competitors’ live area. Erythropodium caribaeorum reduced competitors’ 

live area by 41.8 ±7.47% while O. faveolata and P. caribaeorum reduced their competitors’ 

live area by 28.7% ±6.04 and 21.0%, ±6.84 respectively. The two weakest competitors in our 

natural interaction surveys, S. siderea and P. porites, were also two of the least aggressive of 
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our eight focal species (Figure 4a). While Ap. fistularis only outright killed its competitor in 

one instance during our common garden competition experiment, it was observed damaging 

or overgrowing its competitors’ tissue 52% of the time, nearly 5x more often than any other 

of our focal species (Table 1). Further, Ap. fistularis was observed growing towards 

competitors in 61% of instances, in stark contrast to P. porites that grew away from 

competitors in ~39% of interactions. 

Aggressiveness did not translate to increases in live area for most species. In fact, the 

four most aggressive species suffered the largest losses in live area, while less aggressive 

species gained live area or did not lose any area during the course of the experiment (Figure 

4b). The most aggressive species, E. caribaeorum, lost >50% of their live area throughout the 

course of the experiment and were killed in 22% of interactions in our common garden 

experiment (Table 1). Aplysina fistularis was the only species where average growth was 

positive against all competitors, increasing in live area by 31.8 ±3.24%, though this was not 

different from the mean increase in area when paired with a control. Surprisingly, P. porites, 

one of the least aggressive species that was losing the majority of interactions in our field 

surveys, was the only other species that did not lose tissue area as a result of competition. 
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Figure 3. Competitive outcomes from field surveys in the summer of 2014 for the eight focal species of this 
study. Asterisks above bars denote that a species was found winning or losing significantly more interactions 
than predicted by the null model (p < 0.05; Wilcoxon test). 
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Figure 4. (a) Mean percent change in the live area of heterospecific competitors caused by each species from 
July to December 2014 (i.e. species aggressiveness). Gray points represent mean percent change in live area for 
heterospecifics when paired with controls. Data are means ±SE from the common garden competition 
experiment. Asterisk indicates that the percent change in live area was significantly different from the mean 
percent change of heterospecific individuals when paired with controls (p < 0.05; two-sided t-test). (b) Mean 
percent change in the live area of each species in competition with all species (i.e. susceptibility to competition). 
Gray points represent mean percent change in live area for each species when paired with controls. Data are 
means ±SE from the common garden competition experiment. Asterisk indicates that the percent change in live 
area was significantly different from mean percent change of that species when paired with controls (p < 0.05; 
two-sided t-test).  
 

Species-specific interactions were largely similar to overall patterns in aggressiveness, 

with most species losing the most live area when competing against E. caribaeorum, O. 

faveolata, as well as conspecifics (Appendix 8). However, we also identified several nuanced 

interactions between species. For example, every Ac. cervicornis competing with E. 

caribaeorum was killed. Further, M. alcicornis growing in competition with P. porites grew 

significantly more than control fragments, suggesting a facilitative interaction may occur 

between these species that benefits M. alcicornis.  
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D. Discussion   

On coral reefs, sessile organisms must compete for- and defend space on the benthos to 

successfully recruit, grow, and reproduce (Connell et al., 2004; Chadwick and Morrow 

2011). The outcomes of these competitive interactions can shape benthic community 

assemblages, in turn influencing the quantity and quality of habitat available for a myriad of 

reef-associated organisms (Work et al., 2008; González-Rivero et al., 2011, 2016). Here, we 

found that competitive interactions were pervasive on Florida reefs, with 60% of sessile 

benthic invertebrates interacting with at least one other individual. At low invertebrate cover, 

Ap. fistularis and P. caribaeorum had the highest probability of being found interacting with 

other benthic invertebrates. Furthermore, the probability of being involved in an interaction 

increased more than predicted with increasing percent cover for P. caribaeorum, upright 

gorgonians, and other sponges, all of which employ a ruderal life history strategy. Our 

surveys and common garden competition experiment identified a non-transitive competitive 

network (Figure 5) as well as two species that were consistently inferior competitors. In our 

natural interaction surveys, Ap. fistularis and Ac. cervicornis won a higher proportion of their 

interactions than any other species except for the extremely rare coral O. faveolata. 

Importantly, P. porites and S. siderea, two of the most abundant scleractinians on 

contemporary Caribbean reefs (Burman et al., 2012; Perry et al., 2015), were consistently 

overgrown by all other focal species, suggesting that competition could limit the success of 

these species. 

Interactions among benthic invertebrates were far more common than expected based on 

the amount of space they occupied for sponges (Ap. fistularis and other sponges), P. 

caribaeorum, and upright gorgonians. Several mechanisms could cause sessile invertebrates 



79		

to aggregate. First, when substrate becomes available non-invertebrate groups could rapidly 

expand, preempting suitable habitat for invertebrates to settle. At our site, turf-algal sediment 

matrix occupied >75% of the benthos. This consortium of short algal turfs can inhibit coral 

recruitment (Birrell et al., 2005), and thus may substantially reduce the substrate available for 

sessile invertebrates to colonize. Alternatively, aggregation could occur if multiple species 

utilize similar settlement cues. Regardless of the mechanisms responsible, the high frequency 

of interactions suggests that competition is a pervasive process influencing sessile 

invertebrates on Caribbean reefs, even when individual taxa are not especially abundant. 

 

Figure 5. Non-transitive competitive network among seven of the eight focal species based on the outcomes of 
field surveys of competition and supported by results from the common garden competition experiment. Species 
at the top were observed winning the majority interactions with the species below them. Percentages in arrows 
represent the percent of interactions the inferior species was found winning against the superior competitor in 
natural interaction surveys (Appendix 8). Orbicella faveolata was not included due to being rare in our surveys. 
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2011; Precoda et al., 2017; Álvarez-Noriega et al., 2018), there is a paucity of data on 

interactions between increasingly common benthic invertebrates and scleractinians. Our 

results from both natural and experimental interactions suggest that P. porites and S. siderea 

consistently lose aggressive interactions with other benthic invertebrates (Figure 5). In 

interactions between the other focal species, however, there were no clear superior 

competitors. For instance, Ac. cervicornis overgrew Ap. fistularis 100% of the time but had 

no winning interactions with E. caribaeorum (Appendix 8). However, E. caribaeorum in turn 

won less than half of its interactions with Ap. fistularis. This lack of a single dominant 

competitor is suggestive of a non-transitive network (sensu Buss and Jackson, 1979; Precoda 

et al., 2017), which can help maintain the diversity of competing community members. Thus, 

while there may not be a competitive dominant amongst these increasingly common benthic 

invertebrates, an increase in their populations on Caribbean reefs could negatively impact 

some of the most common scleractinian species remaining. 

These mixed competitive outcomes suggest that environmental context could be 

important for mediating winners and losers among these species. Competition on reefs can be 

mediated by biotic and abiotic drivers such as predation (Hill 1998; Loh et al., 2015), spatial 

arrangement (Idjadi and Karlson 2007), light (Benayahu and Loya 1981), and size 

(Zilberberg and Edmunds 2001). Thus, the outcomes of some competitive interactions are 

often context dependent and changing environmental conditions may create situations where 

typically inferior competitors can outcompete superior competitors. For example, at Palmyra 

Atoll iron enrichment from a grounded ship has been implicated in promoting growth of 

Rhodactis howesii and inducing a shift from a coral-dominated reef to one completely 

overgrown by this corallimorph (Work et al., 2008). Nutrient pollution is a pervasive stressor 
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on coral reefs across the globe (Halpern et al., 2008; Ban et al., 2014), particularly on Florida 

reefs which are situated next to a population of ~6 million people (Ward-Paige et al., 2005). 

Thus, an overlooked but important effect of nutrient pollution on reefs could be the alteration 

of competitive outcomes, potentially contributing to observed shifts in benthic community 

assemblages (Smith et al. 2001; Burman et al., 2012; Darling et al., 2012; Perry et al., 2015; 

Cruz et al., 2016). While we could not find any experiments testing the effects of nutrient 

enrichment on competitive outcomes among benthic invertebrates, this research direction 

seems worthwhile as nutrient availability often dictates competitive outcomes in other 

communities (Fourqurean et al., 1994; Burson et al., 2018).  

Alternatively, shifts in top-down control may now favor species that are competitively 

superior but have historically been kept at low abundance by predators. For example, 

overfishing of Caribbean reefs has relaxed top-down pressure by removing spongivorous 

fishes, potentially resulting in an increased abundance of sponges and more frequent 

overgrowth of scleractinians (Loh et al., 2015; Loh and Pawlik, 2014). Alternatively, 

predation could increase on scleractinians as coral populations decline (Burkepile 2012). 

Either or both scenarios could alter competitive outcomes to favor non-scleractinians in 

competitive interactions to reshape benthic communities. 

Sponges in particular are increasing in abundance on many Caribbean coral reefs and 

may be benefiting from anthropogenically-modified conditions (Maliao et al., 2008; 

McMurray et al., 2010; Pawlik, 2011; Pawlik et al., 2016). Aplysina fistularis was not only 

the most abundant focal species but was also overgrowing competitors in most interactions, 

suggesting that Ap. fistularis thrives under the current conditions on Florida reefs. While our 

other focal species did not grow when competing, Ap. fistularis increased in size 31.8 
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±3.24% and in most instances, overgrew the live tissue of its’ competitors. These 

observations corroborate recent coral-sponge interaction work (Loh et al., 2015), and suggest 

overgrowth as a potentially important mechanism driving recent increased sponge abundance 

on reefs in Florida and the Caribbean (McMurray et al., 2010; Ruzicka et al., 2013). While 

our experiment only included one sponge species, sponges are frequently competitively 

dominant when released from predation (Wulff, 2006; Loh et al., 2015). Future studies that 

include multiple sponge species will further our ability to generalize how dominant sponges 

are as competitors and how changing conditions on Caribbean coral reefs influences their 

competitive abilities. 

The changing environment on reefs may not only alter competitive abilities but could 

also dictate the utility of particular life history strategies. Both the Universal Adaptive 

Strategy theory (Grime 1977) and the Intermediate Disturbance Hypothesis (Connell 1978) 

suggest that highly competitive species should decline as disturbances and stress increase. 

We found that three of the four non-scleractinian species we studied were able to defend 

space on the reef by reducing the live area of their competitors (Figure 4a). The only 

scleractinian that reduced competitors’ live area, O. faveolata, is now extremely rare on 

Florida reefs (Ruzicka et al. 2013). However, most aggressive species were unable to 

translate the death of competitors’ tissue into growth gains and only one aggressive species 

(Ap. fistularis) increased in size. Indeed, organisms which devote significant resources to 

compete with neighbors often have less energy to devote to growth (Huot et al. 2014). 

In contrast, P. porites and S. siderea were the least aggressive species, yet accounted for 

~96% of the non-restored corals (i.e. Ac. cervicornis) in our surveys and are now two of the 

most common corals on Florida reefs (Burman et al., 2012). Darling et al. (2012) classify P. 
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porites and S. siderea as ruderal and stress-tolerant species, respectively, life history 

strategies predicted to thrive under high-disturbance or sub-optimal conditions. In our study, 

even though P. porites consistently lost aggressive interactions with competitors, they did not 

experience a decline in live tissue area (Figure 4b). This was likely due to the fact that on our 

experimental pucks, P. porites could grow away from competitors to escape competition, 

which occurred in ~39% of experimental P. porites colonies (Table 1). However, the 

substantial reduction in growth relative to controls suggests competition exacted a heavy 

physiological cost. Thus, current conditions on Caribbean reefs may favor species with more 

tolerant strategies that allocate less energy towards competition and more towards 

withstanding environmental stressors and growing into unoccupied space. However, as 

unoccupied space becomes more limiting, the consequences of competition are likely to 

become more severe for weaker competitors.  

As global change reconfigures communities (Gilman et al., 2010; Urban et al., 2012), 

understanding how sessile invertebrates interact on the reefs of the future will be critical to 

management and restoration efforts. For example, 100% of the Ac. cervicornis competing 

with E. caribaeorum died. In contrast, Ac. cervicornis overgrew Ap. fistularis 100% of the 

time in field surveys (n=5) and grew by ~60% when placed next to P. porites. Such 

information could be used to inform coral restoration efforts, which primarily focus on 

outplanting nursery raised Ac. cervicornis colonies onto degraded reefs (Ladd et al., 2018). 

Specifically, when selecting reefs and sites within a reef to outplant corals, our findings 

suggest that restoration practitioners could avoid or remove species like E. caribaeorum, 

which are particularly harmful to Ac. cervicornis. Likewise, the high growth of Ac. 
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cervicornis when competing with P. porites suggests that P. porites may be a good candidate 

for mixed species outplanting to increase the diversity of corals being restored. 

The assemblages of benthic communities on Caribbean coral reefs are changing as 

scleractinians decline and other benthic invertebrates become more common (Burman et al., 

2012; Ruzicka et al., 2013; Perry et al., 2015). Competition has traditionally played a strong 

role in structuring benthic communities, yet the uncertain future of coral reefs requires a 

better understanding of the processes that will shape the reefs of the future. Our study 

suggests that competition among sessile invertebrates is likely to remain an important process 

in structuring coral reefs, but the optimal strategies for maintaining space on the benthos may 

change. We show that there is a competitive network among some of the common space 

holders on contemporary Caribbean reefs. While some scleractinians were strong competitors 

in both natural and experimental settings, these corals were either extremely rare (O. 

faveolata) or only present where coral restoration had been conducted (Ac. cervicornis). 

Instead, the most common corals were those that could either tolerate competition or grow 

into open substrate. In contrast, new dominants on Caribbean reefs, such as E. caribaeorum, 

Ap. fistularis, and P. caribaeorum, outcompeted other benthic invertebrates, including the 

most common scleractinians. Thus, the growing frequency of disturbances such as bleaching 

events and disease outbreaks on contemporary Caribbean reefs may shift communities from 

aggressive, highly competitive corals to favor species with ruderal or stress tolerant strategies 

(Darling et al., 2012). Manipulative experiments can contribute to our understanding of the 

mechanistic underpinnings of benthic spatial competition and help to predict competitive 

outcomes on reefs of the future. Ultimately, such results could be used to generate a 
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theoretical framework that predicts future changes in coral reef community structure and how 

anthropogenic forcing may drive these changes.  
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A. Introduction 
 

Coral reefs, along with the ecological and ecosystem services they provide, are being lost 

at an alarming rate (Hoegh-Guldberg et al. 2007; Hughes et al. 2017). Although coral reefs 

only cover <0.1% of Earth’s surface, they rival the species diversity of rainforests, housing 

more than 30% of marine biodiversity (Reaka-Kudla 2005) and provide innumerable 

ecosystem services including protein (Burke & Maidens 2004; de Groot et al. 2012) and 

shoreline protection for >100 million people living near coastlines (Ferrario et al. 2014). 

However, in the past half-century, nearly half of the corals on Pacific reefs have been lost 

(Bruno & Selig 2007; Hughes et al. 2017). Similarly, Caribbean reefs have been decimated 

by an approximately 80% decline in coral cover (Jackson et al. 2014). This drastic loss of 

coral stems from a combination of stressors such as overfishing, coastal development, 

pollution, and rising ocean temperatures (Zaneveld et al. 2016; Hughes et al. 2018), with 

degraded reefs often experiencing positive feedbacks that maintain them in a degraded state 

(Mumby 2009). Thus, there is an urgent need for strategies to effectively facilitate the 

recovery of degraded reefs while also preventing further coral loss.  

Coral restoration, i.e. actively enhancing coral populations, is an increasingly popular 

approach to confront local declines in coral abundance (Bayraktarov et al. 2016; Ladd et al. 

2018). Inspired by successful restoration strategies used to restore other habitats, 

contemporary coral restoration approaches primarily consist of outplanting nursery-raised 

corals to degraded reefs (Young et al. 2012). Propagation and outplanting of nursery-grown 

corals has become so popular that over 150 restoration groups currently operate coral 

nurseries in more than 20 countries throughout Caribbean alone (Lirman & Schopmeyer 

2016). As a result, coral restoration efforts are increasingly capable of augmenting coral 
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populations at ecologically-meaningful scales (Miller et al. 2016; Montoya-Maya et al. 

2016).  

The primary goal of coral restoration has been to augment populations of target coral 

species. However, an implicit expectation is that restoring these foundation species will 

eventually drive reefs towards recovery by facilitating the development of coral and fish 

communities that can foster important functions like herbivory. While most coral restoration 

studies focus on the survival and growth of outplanted corals, few have investigated if and 

how restoration has impacted the reef community or important ecological processes (Ladd et 

al. 2018). This oversight poses a serious problem for restoration planning, as restoring 

singular components of an ecosystem may be necessary, but not sufficient, to drive the 

recovery of a community and restore important ecosystem functions (Palmer & Filoso 2009). 

If coral outplanting strategies do not generate positive feedbacks on community composition 

or ecosystem processes, restored reefs will be vulnerable to reoccurring decline and 

restoration practitioners should incorporate additional considerations to realize these benefits. 

Thus, quantitative studies detailing the effects of coral outplanting on community structure 

and ecosystem processes are sorely needed.   

Here, we measured: (1) the effects of coral restoration on enhancing populations of the 

coral Acropora cervicornis, and (2) the potential cascading effects on community structure 

and ecosystem processes that may arise when coral populations are enhanced. To do so, we 

measured diversity, community structure, and ecological processes at four reefs in the Florida 

Keys, USA. On each reef we compared restored sites where corals were outplanted with 

unmanipulated control sites to assess the abundance, diversity, and community structure of 

corals and fishes present. Additionally, we investigated how restoration influenced proxies 
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for two important ecological processes: herbivory and corallivory. We hypothesized that 

restored sites would have greater diversity and abundance of corals. In turn, we predicted that 

increased coral cover and diversity would lead to increased richness and biomass of fishes, 

enhancing herbivory rates and increasing the removal of invertebrate corallivores. 

 

B. Methods 

Study Sites 

From July to August of 2014 we surveyed four reefs in the Florida Keys National Marine 

Sanctuary, USA (Appendix 10). Restoration using nursery-raised colonies of the threatened 

coral Acropora cervicornis began on a limited scale in the region in the early 2000’s and has 

expanded rapidly since (Miller et al. 2016). We selected four reefs undergoing coral 

restoration: Molasses Reef (11 years of outplanting), Pickles Reef (6 years), Snapper Ledge 

(5 years), and Conch Reef (2 years). Although these sites differ in time since coral 

outplanting began, large scale restoration (i.e. 100’s of corals yr-1) did not begin until 2011 

for all reefs (Appendix 11). Therefore, we chose these sites because they represent a gradient 

of outplanting effort spanning low (Snapper Ledge and Conch Reef; ~500 corals), moderate 

(Pickles Reef; ~1,150 corals), and high (Molasses Reef; ~2,300 corals) numbers of corals 

outplanted. Molasses and Pickles Reef are spur-and-groove reef formations, while Snapper 

Ledge and Conch Reef are ledge formations. Outplanted corals were secured to the substrate 

using a small amount of marine epoxy where branches contacted the benthos. At each reef, 

we conducted surveys within two sites along the main spur or ledge formations: restored sites 

where A. cervicornis colonies had been outplanted and non-restored control sites ≥5m away 

from the restored site along the same main ledge or an adjacent, parallel spur formation. 
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Control sites were located within the same reef, possessed similar topographical 

characteristics, and provide a characterization of benthic communities in the unrestored 

areas.	

	

Community and Ecosystem Process Metrics	

(1) Diversity: On reefs, coral diversity may be a particularly important indicator of 

ecosystem integrity as the physical structure provided by distinct corals creates important 

habitat (Syms & Jones 2000). Similarly, diverse assemblages of fishes are critical for 

structuring healthy reef communities: herbivores consume algae that compete with corals 

(Hughes et al. 2017; McCook et al. 2001), invertivores feed on coral predators (Ladd & 

Shantz 2016), and predators can shape the behavior of lower trophic groups (Catano et al. 

2017). 

We assessed differences in the abundance and diversity of corals and fishes in restored 

and control sites via transect surveys. Between 10h00 and 14h00, we swam ten 25x4m belt 

transects at each reef. Transect starting positions were chosen haphazardly but were laid out 

parallel to spur or ledge formations and remained completely within restored (i.e. A. 

cervicornis present) or control sites (n=5 in restored and control sites). A single diver swam 

the length of each transect and recorded the species and estimated sizes for all fishes >5cm 

total length before re-swimming the transect to identify and count cryptic and juvenile fishes 

<5cm. After completing the fish surveys, we counted every coral in a 25x2m swath along the 

same transect. For colonies ≥5cm in diameter, we identified the coral to the species level, and 

measured each coral along its longest diameter and at the widest point perpendicular to the 
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first measurement. Additionally, we estimated the percent of each colony’s surface without 

live tissue to assess partial mortality. 

(2) Community Structure: Closely related to diversity, community structure represents the 

physiognomy and architecture of the biological community (SER, 2004). Changes in coral 

communities and accompanying structural complexity influence the biomass and richness of 

other invertebrate and fish species (Komyakova et al. 2013). Further, alterations to fish 

community structure can impact functional redundancy and complementarity among 

community members, which are often vital for maintaining reef resilience (Burkepile & Hay 

2008). 

For coral communities, we multiplied colony size measures to estimate the surface area 

of each colony and summed the total area of all colonies to calculate the percent cover of 

coral on each transect. Additionally, we calculated the total linear extension (TLE) m-2 for A. 

cervicornis using conversions from Kiel et al. (2012). Total linear extension is a common 

measurement of A. cervicornis that more accurately captures the 3-dimensional habitat than 

colony area (Huntington et al. 2017). To assess the effect of coral restoration on site-wide 

structural complexity, we measured rugosity every 5m along our transects by measuring the 

difference between the lowest and highest point on the reef within a 1m radius (Ladd & 

Collado-Vides 2013). These measurements were averaged to generate an estimate of rugosity 

for each transect. For fish communities, we used published length-weight relationships 

(Bohnsack & Harper 1988; Marks & Klomp 2003) to estimate the biomass of each species 

and functional group (e.g., piscivores, invertivores, herbivores) observed within each 

transect. 
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To examine if restoration influenced younger cohorts of coral and fish populations, we 

compared the abundance of juvenile corals (surface area <16cm2 sensu Ritson-Williams et al. 

(2009)) and fishes (juvenile life stage or <5cm; excluding small-bodied damselfishes, gobies, 

and blennies) in restored versus control sites. However, since only corals ≥5cm length in one 

diameter were recorded, we stress that our results provide conservative estimates of the 

abundance of juvenile-sized corals.  

(3) Ecological Processes: Promoting ecological processes and interactions between 

community members is a fundamental goal of ecological restoration (SER, 2004). We 

assessed the impact of coral restoration on proxies for two important processes: herbivory 

and corallivory. Herbivory is one of the strongest drivers of benthic community composition 

on reefs (Burkepile & Hay 2006). Sufficient herbivory can prevent reefs from becoming 

dominated by algae and is critical for maintaining coral-dominated habitats (Adam et al. 

2011). In contrast, corallivory can significantly damage corals (Rotjan & Lewis 2008), 

remove tissue at rates that far outpace coral growth (Baums et al. 2003), spread coral diseases 

(Williams & Miller 2005), and make corals more susceptible to thermal stress (Shaver et al. 

2018). 

To assess how restoration affected herbivory, we measured grazing intensity in restored 

and control sites using assays of Thalassia testudinum, a ubiquitous, palatable seagrass 

commonly used to quantify grazing pressure on reefs (e.g. Catano et al. 2017; Lewis 1986). 

Each morning we gathered T. testudinum from a nearby seagrass bed. Each blade was cut to 

10cm length, cleaned of epiphytes, and secured to a clothespin. We secured clusters of 5 

clothespins together and deployed assays at 5m and 20m along each transect after completing 

our fish and coral surveys. We left the assays undisturbed for one hour before collecting and 



100		

re-measuring the remaining seagrass length to quantify consumption. To assess how 

restoration influenced corallivore abundance, we counted the two most common invertebrate 

corallivores in the Florida Keys, Coralliophila abbreviata and Hermodice carunculata, on 

each coral surveyed and recorded whether signs of disease were present. However, H. 

carunculata were so rare that we did not explore these data quantitatively. 

 

Statistical Analysis 

We tested for differences in coral cover, fish biomass, juvenile coral and fish abundance, 

and rugosity using separate mixed-effects ANOVAs with treatment (restored or control) as a 

fixed factor and reef as an interacting random effect. We used similar models to test whether 

the biomass or density of fish functional groups responded to restoration by including 

functional group as an interacting fixed factor. Coral cover and juvenile coral abundance 

were logit transformed and fish biomass and abundance log transformed to meet assumptions 

of ANOVA. Additionally, we tested whether restoration impacted the abundance of common 

and ecologically important fish genera and species by subtracting the number of individuals 

found in a restored site from the number found in the paired control site. For each group, we 

used t-tests to determine if the difference in fish abundance differed from zero, with values 

significantly greater than zero indicating an increase in abundance with restoration and 

values less than zero indicating declining species abundance.  

We used a combination of PERMANOVA and SIMPER analyses based on Bray-Curtis 

distances to examine differences in the species composition of corals and fishes at restored 

and control areas. PERMANOVA models used 9,999 permutations and considered site (4 

levels) and treatment (2 levels) as interacting fixed factors with transect nested within site. 
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To examine species diversity, we calculated the Shannon-Wiener index (H) for corals and 

fishes based on species abundance. Because species diversity and richness were highly 

variable between transects, we pooled the observations within control and restored sites at 

each reef and tested for differences in H and species richness between restoration regimes 

using a paired t-test.  

We tested for differences in the percent of seagrass assays consumed using a mixed-

effects ANOVA with treatment as a fixed factor and site a random, interacting effect. To 

avoid violating assumptions of independence, we nested each assay within the transect on 

which it was deployed. Percent seagrass consumed was logit transformed to normalize the 

distribution of the residuals. Corallivorous snail abundance, coral mortality, and disease 

prevalence data were heavily skewed towards zero. Therefore, we used Pearson’s Chi-

squared tests to determine whether restoration impacted the probability that snails were 

present on corals or that corals were experiencing tissue mortality. We used Fisher’s test to 

explore whether snail presence influenced the probability that a coral displayed signs of 

disease. For this analysis, we only compared corals within restored areas because there were 

no observations of corals with both snails and disease in control sites.  

The effects of restoration may depend on the density of restored corals, which could 

influence important processes like disease dynamics and the aggregation of fishes (Ladd et 

al. 2016; Huntington et al. 2017). We used linear mixed effects models to test how the mean 

density (cm TLE m-2) and the percent cover of restored A. cervicornis along each transect 

impacted six responses in the restored reef community: density of C. abbreviata, percent of 

seagrass assays consumed, the density of all fish, fishes <15cm TL, juvenile fish, and 

damselfish, which are most likely to utilize the habitat created by A. cervicornis 
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(Schopmeyer & Lirman 2015), as well as two metrics of coral health: partial mortality and 

the frequency of diseased coral colonies. For all of these models, reef was included as a 

random effect.  

All analyses were conducted using R Version 3.3.2 (R Core Team 2016). PERMANOVA 

analyses were conducted using the vegan package (Oksanen et al. 2018). Mixed-effects 

ANOVAs were carried out using the nlme package (Pinheiro et al. 2015). P-values from 

these models were calculated via Wald F-tests using Satterthwaite approximate degrees of 

freedom in the car package (Fox et al. 2012). When we detected significant interactions in 

the main models, we tested for differences between treatments within reefs via post hoc 

analyses corrected for false discovery rates using the multcomp package (Hothorn et al. 

2008).   

 

C. Results 

Restoration Effects on Coral Communities 

Across all four reefs, we observed 23 coral species within restored sites and 19 species at 

control sites (Appendix 12). Coral communities did not differ in diversity between restored 

(H=1.52 ±0.10; mean ±SE) and control sites (1.61 ±0.12; P=0.33). However, coral cover 

differed among reefs (χ2(3)=9.14, P=0.027; Figure 1) and was consistently higher in restored 

sections of the reef than in adjacent control sites (χ2(1)=215.68, P<0.001).  

Within-site differences in coral cover were driven by the presence of outplanted 

Acropora cervicornis colonies, which comprised >75% of coral cover in restored sites. 

Surprisingly, although coral cover was nearly 4x higher in restored- vs control areas, we 

detected no difference in rugosity within (χ2(1)=0.76, P=0.382) or among reefs (χ2(3)=1.02, 



103		

P=0.797). There was a significant Treatment x Reef effect on the abundance of non-

acroporid juvenile-sized corals (χ2(3)=12.00, P=0.007; Figure 2), with juvenile-sized corals 

more abundant in the restored site at Pickles Reef than the control site, but no differences at 

the other reefs. The high abundance of A. cervicornis in restored areas drove differences in 

coral communities (PERMANOVA: F1,32=22.17, P<0.001), with 48% of the dissimilarity 

attributable to A. cervicornis (Appendix 13). When we excluded A. cervicornis from our 

analysis, the differences between control and restored coral communities were no longer 

present (PERMANOVA: F1,32=0.96, P=0.47). 

 

Figure 1. Mean percent cover of corals by genera in restored vs. control sites at the four reefs surveyed. Data 
presented are pooled from all transects within a reef and restoration treatment (n = 5 for both restored and 
control sites). Statistics from mixed effects ANOVA. Asterisks indicate significant differences (p < 0.05) in 
coral cover between restored and control sites within a reef from post hoc tests with Tukey’s correction. 
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Figure 2. Abundance (individuals 50 m-2) of juvenile-sized corals (surface area < 16 cm2) observed in restored 
vs. control sites at each reef. Statistics from mixed effects ANOVA. A line over points indicates significant 
within-reef differences (p < 0.05) in the abundance of juvenile-sized corals between restored and control sites 
from post hoc tests with Tukey’s correction. 
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other fish taxa in restored versus control sites (Figure 3c). We also found no evidence that 

restoration influenced the density of juvenile fishes (χ2(3)=0.12, P=0.730; Figure 3d).  

 

Figure 3. (a) Biomass of all fishes in restored vs. control areas at each reef and (b) mean damselfish density 
(individuals 100 m-2). (c) Difference in the mean abundance of fishes in restored vs. control areas for important 
genera and species of herbivores (Acanthurus spp., Scarus spp. and Sparisoma spp.), invertivores (Haemulon 
spp. and Thalassoma bifasciatum), piscivores (Lutjanus spp.), and the most common damselfish (S. partitus). 
Asterisk indicates difference in mean abundance significantly different from zero (p < 0.05). Statistics from t-
test. (d) Abundance of juvenile fishes (< 5cm TL) in restored and control sites. Statistics from mixed effects 
ANOVA. Data are means ± SE. 
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the proportion of seagrass assays consumed (χ2(3)=15.94, P=0.001; Figure 4a). Surprisingly, 

grazing intensity was only significantly higher in restored sites at Conch Reef (P=0.03). 

Although not significant, restored sites also had ~1.6x as many corallivorous snails as control 

sites (χ2(1)=1.51, P=0.22; Figure 4b). Similarly, we found 2x as many snails on Orbicella 

colonies in restored sites (n=65 on 6 coral colonies) than in control sites (n=32 on 9 coral 

colonies), though this difference was not statistically significant (P=0.549). Of the 306 C. 

abbreviata we recorded, 62% were found in restored sites, the majority of which were 

preying on A. cervicornis. Interestingly, within restored sites corals that were being actively 

preyed on by snails were 4.6x more likely to display signs of disease than corals without 

snails (P<0.001; Figure 4c).  

Overall, disease prevalence was nearly 4x greater in restored sites than in control sites 

(11.63% vs. 2.92%, respectively), with A. cervicornis accounting for 86% of the documented 

instances of coral disease in restored habitats and 72.9% of all disease recorded. The 

remaining observations of disease-like symptoms were nearly exclusively from Siderastrea 

siderea colonies displaying signs of dark spot syndrome (DSS; 25.7% of all diseased coral 

observations). The percent of S. siderea colonies with DSS in control and restored sites was 

nearly identical (9.05 and 8.34%, respectively).  

The proportion of colonies experiencing tissue mortality was also greater in restored sites 

than control sites (χ2(1)=43.24; P<0.001). Like disease prevalence, differences in the 

prevalence of partial mortality between restored and control sites were driven by A. 

cervicornis, 69% of which were experiencing some degree of tissue loss, compared to 39% 

of corals in control sites. When A. cervicornis were excluded from the analysis, the 
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difference in tissue mortality prevalence between restored and control sites was no longer 

present (χ2(1)=0.706; P=0.40). 

 

Figure 4. (a) Percent of seagrass assays consumed in restored vs. control sites at each reef. Statistics from mixed 
effects ANOVA. A line over points indicates significant within-reef differences (p < 0.05) in the consumption 
of seagrass assays between control and restored sites. (b) Abundance of the corallivorous snail Coralliophila 
abbreviata in restored vs. control sites. P-value from Pearson’s Chi-squared test. Data are means ± SE. (c) 
Proportion of coral colonies within restored areas with and without corallivorous snails present that were 
displaying signs of disease. Values above each bar represent the number of corals surveyed. P-value from 
Fisher’s test comparing effect of snail presence on the probability that a coral displayed disease-like signs. 
 

Effects of Outplant Density Within Restored Sites 

Within restored sites, the density of A. cervicornis (TLE) ranged from 378 cm m-2 at 

Molasses Reef to 113 cm m-2 at Snapper Ledge. The percent cover of restored corals 

followed the same pattern and was on average highest at Molasses Reef (12.96%) and lowest 

at Snapper Ledge (3.98%). We found a marginal increase in mean partial colony mortality 
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with increased A. cervicornis density (χ2(1)=3.305; P=0.07), but no effect on disease 

prevalence (χ2(1)=0.339; P=0.49). Further, we found no relationship between A. cervicornis 

density (χ2(1)=0.475; P=0.56) or cover (χ2(1)=0.567; P=0.45) and the density of corallivorous 

snails, consumption of seagrass assays (density: χ2(1)=1.859; P=0.17; cover: (χ2(1)=0.728; 

P=0.39), or any of the four fish community metrics (Appendix 15). 

 

D. Discussion 

Here, we show that recent coral outplanting across multiple reefs in the Upper Florida 

Keys enhanced the local population of A. cervicornis, creating areas where this threatened 

species is now abundant. We found some evidence of increased herbivory, abundance of 

herbivorous fishes, and juvenile corals in areas where corals had been restored, but these 

effects were inconsistent across different reefs. Several taxa consistently responded 

positively to coral restoration. In particular, the density of damselfish was consistently higher 

in restored sites, and corals in restored areas had on average 1.6x more corallivorous snails 

compared to control sites. Corals in restored sites experienced a higher prevalence of disease 

and mortality, primarily driven by patterns of restored A. cervicornis. Thus, three years after 

large scale coral restoration began, the gains in coral density from restoration have persisted, 

but these gains have had inconsistent impacts on diversity, community structure, and 

ecological processes. 

Numerous ecological processes and positive feedbacks posited to govern coral reef 

communities hinge on the physical structure provided by live corals (Mumby & Steneck 

2008; Huntington et al. 2017). We expected that enhanced coral populations would foster 

changes in the physical structure of restored reefs and subsequently influence ecological 
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processes that shape coral reef communities. Yet, despite a ~4-fold increase in coral cover at 

restored sites, we found no measurable difference in topographic complexity between 

restored and control sites. This pattern was surprising given the three-dimensional 

complexity of outplanted A. cervicornis colonies. Several factors could potentially explain 

this unexpected result. First, the low rugosity found within restored sites may be partly due to 

restoration practitioners intentionally selecting relatively flat areas to facilitate outplanting. 

Alternatively, it is possible that the high degree of tissue mortality in outplanted corals 

limited the growth and structure created by A. cervicornis. Similarities in the size distribution 

of restored corals at these sites (Appendix 16) further suggests that the oldest outplants may 

have died, experienced partial mortality, or breakage, reducing the amount of structure 

created by restored corals. Finally, our method to quantify rugosity may have been too coarse 

to detect changes in rugosity generated by A. cervicornis outplants. However, if this absence 

of an effect was simply a result of the scale at which we measured rugosity, we would still 

expect responses in some component of the fish community, as recruit abundance of many 

reef fish is tightly linked to live coral cover (Holbrook et al. 2000; Graham 2014). 

Overall, biomass and diversity of fishes did not differ with restoration across reefs. At the 

functional group level, herbivores were more abundant in the restored area at Pickles Reef 

but did not differ at any other reef. Roving herbivores like parrotfish and surgeonfish can 

have territories up to 1000 m2 (Mumby and Wabnitz 2002; Catano et al. 2015). This area is 

large enough to span portions of both restored and control areas on the reefs we surveyed, 

which could make it difficult to detect differences in herbivore abundance between our 

treatments. In contrast, fishes such as grunts exhibit diurnal movement patterns, consistently 

sheltering at the same location on the reef for the entire day and leaving at night to forage in 
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nearby sand flats and seagrass beds (Ogden and Quinn 1989; Shantz et al. 2015). Thus, if 

coral restoration had augmented habitat enough to promote the aggregation of these fishes, 

we would have expected to see a response in this component of the fish community, even 

with the relatively small (≥ 5m) distance between our restored and control areas. 

We observed taxa-specific responses to coral restoration, with higher densities of 

damselfishes in restored areas. Increased damselfish density was not entirely unexpected, as 

many Caribbean damselfishes are territorial, site-specific fishes that often colonize 

outplanted A. cervicornis (Schopmeyer & Lirman 2015). Life history may play a key role in 

determining what species are able to take advantage of increased habitat from restored corals 

and the rate at which they are able to colonize these new habitats. For example, S. partitus, 

which comprised the majority of damselfish observed, has fast generation times and high 

larval supply on reefs in the Florida Keys compared to longer lived species like parrotfishes 

and surgeonfishes (Grorud-Colvert & Sponaugle 2009), potentially allowing them to rapidly 

colonize coral outplants. Thus, the relatively short (3 years) time period between the start of 

large-scale coral outplanting and our study may not be sufficient time for longer-lived fishes 

to respond to enhanced structure on restored reefs. However, if S. partitus can quickly 

colonize restored corals, their territorial behavior, or simply physical occupation of limited 

habitat, can impact the ability of other fishes to recruit to these areas (Risk 1998; Almany 

2004). Regardless of the mechanism, slow responses to increased habitat availability	by 

functional groups that provide key ecological functions on reefs (e.g. herbivores) may be 

problematic for regaining ecosystem functions, particularly when large fishes play a 

disproportionate role in driving important ecological processes (Lokrantz et al. 2008).  
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We found limited evidence that coral restoration influenced herbivory as Conch Reef was 

the only reef that had higher herbivory rates in restored areas. The abundance of damselfish 

in restored areas may help explain this pattern. Although S. partitus are less aggressive and 

territorial than other damselfish species, they can influence patterns of herbivory within their 

territories (Williams et al. 2001) and were the most common fish in our surveys. 

Furthermore, while the average abundance of damselfish was 1.5x higher in restored sites 

compared to control sites, Conch Reef had the lowest damselfish density (mean=0.43 

individuals m-2 versus 0.68-1.11 at other sites). Interestingly, Conch Reef also had the 

shortest history of restoration effort, with just one year of coral outplanting when our surveys 

occurred, which may have limited the recruitment or establishment of damselfishes. Thus, 

the lower densities of damselfishes at Conch Reef may have allowed increased herbivory in 

restored areas. Territorial damselfishes can also modify the home ranges of numerous species 

of wrasses (Jones 2007), consistent with the inverse relationship we observed between S. 

partitus and T. bifasciatum. Accordingly, damselfishes rapidly colonizing outplanted A. 

cervicornis may delay or preclude the benefits of coral restoration to fish communities by 

inhibiting certain fish from using, aggregating, or recruiting to restored areas.  

Similar to damselfishes, corallivorous snails (C. abbreviata) were 1.6x more abundant in 

restored sites than control sites, consistent with previous evidence for C. abbreviata 

preference for A. cervicornis (Johnston & Miller 2014). While this difference was not 

statistically significant, likely due to the high variability in this aggregating species, the 

ecological consequences could be important. Coralliophila abbreviata are known disease 

vectors (Williams & Miller 2005), and in our study disease was ~3x more prevalent on coral 

colonies with a snail present. Further, predation by C. abbreviata can make corals more 
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susceptible to thermal stress (Shaver et al. 2018). Thus, aggregating coral predators at 

restored sites could increase disease prevalence as well as reduce corals’ ability to survive to 

thermal stress in these areas. However, excluding outplanted corals from our analysis 

revealed no differences in partial mortality or disease between restored and control areas, 

suggesting the negative impacts of increased corallivorous snail abundance were not 

transmitted to other corals. Thus, the higher prevalence of disease and partial mortality in 

restored sites is likely a consequence of A. cervicornis’ high susceptibility to disease and 

partial mortality (Williams & Miller 2005; Miller et al. 2016). 

High densities of corals may be necessary to initiate positive feedbacks that facilitate reef 

recovery. For example, positive relationships between A. cervicornis density and the 

abundance of schooling grunts may only be realized in areas with high coral densities (2,000-

4,500 cm TLE m-2; Huntington et al. 2017). Schooling fishes can create nutrient hotspots that 

benefit nearby corals by enhancing growth and promoting algal removal by herbivores 

(Shantz et al. 2015). Alternatively, increased coral density at restored sites could intensify 

herbivory by reducing the available substrate for macroalgae, thereby concentrating existing 

herbivory on fewer available resources (Williams et al. 2001). Across the four reefs we 

surveyed, the average density of A. cervicornis ranged from 113-378 cm TLE m-2, mirroring 

outplanting effort (i.e. number of colonies outplanted) at each reef. Accordingly, we found no 

relationship between the density or cover of outplanted corals and the density of fishes, 

regardless of fish size or life stage (Appendix 15), and consequently no change in herbivory 

or the density of invertebrate corallivores. Although restoration increased overall coral cover 

~3 to 12%, our findings suggest that at such low levels of initial coral cover (<2%) this 

increase may be insufficient to initiate positive feedbacks. Thus, while current restoration 
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efforts in the Upper Florida Keys have successfully increased the density of A. cervicornis, 

these restored populations may still be at densities too low to foster facilitative interactions 

between corals and fishes.  

 

Restoration Implications and Recommendations 

As the worldwide decline of coral reefs continues (Hughes et al. 2017), the need for 

effective restoration methods is becoming increasingly urgent (Ladd et al. 2018). Coral 

restoration has rapidly developed to meet this challenge, evidenced by the success of coral 

outplanting substantially enhancing populations of targeted coral species (Miller et al. 2016). 

However, our data suggests that generating community-wide benefits from coral restoration 

will likely require additional considerations beyond solely outplanting corals. While the 

primary goal of coral restoration has been to augment coral populations, it is worth 

considering how future restoration efforts can enhance coral populations in a way that helps 

kickstart positive feedbacks to facilitate ecosystem functions. Assessing how coral 

restoration influences major drivers of community dynamics on coral reefs, such as 

herbivory, corallivory, and disease, will help improve the development of effective 

restoration strategies. In a time of frequent and intense stress events on reefs across the globe 

(Hughes et al. 2017, 2018), hastening the speed at which reefs recover critical ecological 

functions that can promote resistance and resilience to stress events is increasingly important 

to prevent reoccurring decline on restored reefs. 

For example, while outplant survival and growth can be maximized by outplanting at 

moderate densities (Ladd et al. 2016), finding ways to achieve higher densities of restored 

coral could benefit restoration by aggregating fishes and initiating positive feedbacks 
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(Huntington et al. 2017). Beyond promoting coral growth and herbivory (Shantz et al. 2015), 

concentrating schooling fishes like grunts in restored areas could increase the abundance of 

fishes that prey on corallivores (Ladd & Shantz 2016), potentially helping to reduce the high 

incidence of partial mortality and disease we observed in restored areas. Further, leveraging 

the inverse relationship between predator biomass and damselfish abundance shown for some 

areas of the Caribbean (Vermeij et al. 2015) could inform restoration site selection. 

Outplanting corals at sites with abundant piscivorous fishes, and presumably higher rates of 

predation on small fishes, could help impinge on the multiple mechanisms by which 

damselfish may impede coral recovery (Schopmeyer & Lirman 2015).  

However, restoring structure alone may not be sufficient to jumpstart recovery on 

degraded reefs. For instance, Komyakova et al. (2013) found that variation in fish abundance 

and diversity at Lizard Island on the Great Barrier Reef was mainly due to coral species 

richness rather than topographic complexity. Promisingly, as coral propagation techniques 

improve, more species are becoming available for outplanting that may elicit stronger 

responses in the fish community. Outplanting mixed-species assemblages could reduce the 

negative impacts of corallivory by deterring the attraction of C. abbreviata, which prefer 

foraging in monospecific patches of A. cervicornis (Johnston & Miller 2014). Thus, future 

work assessing the influence of outplant diversity on restoration outcomes will be important 

for improving our ability to restore degraded reefs. 

Moving forward, restoration efforts that both augment coral populations and promote 

ecological processes that foster important positive feedbacks can maximize the benefits 

gleaned from the time, effort, and money invested in restoration, and will also be essential for 

restoring reefs resilient to future perturbations. However, to do so we must begin to transition 
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towards incorporating community dynamics and ecosystem processes into restoration 

planning (Shaver & Silliman 2017; Ladd et al. 2018). Thus, there is a pressing need to 

develop approaches that restore key processes and functions on coral reefs in order to execute 

effective and sustainable ecological restoration on coral reefs. 
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V. Harnessing ecological processes to facilitate coral restoration 
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A. Introduction 

Although coral reefs cover only <0.1% of Earth’s surface, they house more than 30% of 

total marine biodiversity (Reaka-Kudla 2005), are a key source of fisheries production 

(Moberg and Folke 1999), and provide shoreline protection for >100 million people living 

next to coastlines (Ferrario et al. 2014). However, corals are in rapid decline on many reefs 

due to global stressors associated with climate change, such as increasing sea surface 

temperatures that cause coral bleaching and disease, as well as local stressors such as nutrient 

pollution, sedimentation, and overfishing (Hughes et al. 2017). In the Pacific Ocean, reefs 

have lost nearly half of their corals over the past four decades (Bruno and Selig 2007) and 

many have lost an additional 30-50% during the recent (2014-16) global coral bleaching 

event (Hughes et al. 2017). This alarming trend is even more pronounced in the western 

Atlantic Ocean (henceforth, the Caribbean), where coral reefs have lost approximately 80% 

of their corals since the mid 1970’s (Jackson et al. 2014). Although the causes of coral 

decline are numerous, many of drivers of coral loss are localized, acute disturbances, making 

coral restoration a feasible method to restore corals in many of areas. 

Coral restoration is an increasingly necessary tool to confront declines in coral 

populations worldwide. Currently, these restoration efforts focus on outplanting nursery-

raised corals to augment coral populations with the goal of restoring key foundational species 

on degraded reefs. These efforts have become increasingly successful at reestablishing target 

corals that are often threatened or endangered (Young et al. 2012; Figure 1). In the Caribbean 

alone, there are currently more than 150 coral propagation operations in over 20 countries 

containing tens of thousands of nursery-raised corals for restoration (Lirman and 
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Schopmeyer 2016). Thus, the nascent field of coral restoration is now on the threshold of 

conducting substantial restoration programs.  

 

Figure 1. Examples of coral restoration efforts in the Caribbean and western Atlantic. Clockwise from top left: 
corals outplanted on a degraded reef in Puerto Rico (Courtesy of Sean Griffin, NOAA); juvenile blue tang 
(Acanthurus coeruleus) sheltering within restored Acropora cervicornis colonies; coral nursery in the Florida 
Keys, USA; restored A. cervicornis colony displaying signs of rapid tissue loss.  
 

Restoration efforts commonly focus on restoring populations of foundation species that 

provide the physical structure upon which community members depend for shelter, 

resources, or reproduction (e.g., grasses; Werner et al. 2016; trees; Elliott et al. 2003; 

mangroves; Bosire et al. 2008; seagrass; Reynolds et al. 2013). There is a long history of 

restoring foundation species in terrestrial systems where planting trees has been central to 

restoring key ecosystem processes and services (Holl 2017). However, beyond simply 

restoring foundation species, restoration efforts often incorporate fundamental ecological 

processes, such as competition, succession, and herbivory, to restore communities that 

support important ecosystem functions (Suding et al. 2004). Indeed, two decades ago Palmer 

et al. (1997) recognized the central role that basic ecological theory and community ecology 
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play in effective restoration. For example, manipulating community dynamics by outplanting 

later successional species is often used to accelerate the process of community succession in 

restoring terrestrial systems (Palmer et al. 1997; Werner et al. 2016). Facilitation of target 

restoration species using nurse plants or specific early successional species is frequently 

utilized in restoration of terrestrial and coastal ecosystems to reduce physical stress and 

improve local growing conditions (Bruno et al. 2003; Silliman et al. 2015). 

The practice of harnessing positive interactions and ecological processes to facilitate 

restoration in terrestrial systems is increasingly being applied to restore degraded aquatic and 

marine communities (Bruno et al. 2003; Halpern et al. 2007). For example, promoting 

genetic diversity in large-scale seagrass restoration planning can restore genetically diverse 

populations more than an order of magnitude faster than natural regeneration via recruitment 

(Reynolds et al. 2013). Silliman et al. (2015) proposed that simple changes in coastal 

wetland restoration designs that leverage positive interactions, rather than trying to minimize 

negative ones, can greatly increase restoration success.  

While facilitation and ecological processes are often incorporated into restoration 

approaches in many terrestrial, aquatic, and marine systems, restoration on coral reefs 

appears slower to embrace this approach. To assess the degree to which ecological processes 

are incorporated into restoration efforts on coral reefs, we surveyed 116 published scientific 

papers on coral restoration published from 1987-2017 (Appendix 17). The majority of these 

studies focused on factors such as the growth and survivorship of corals either in nurseries or 

outplanted to reefs. Only 19% of the studies incorporated any aspect of ecological processes 

(e.g. recruitment, predation, herbivory; Table 1).  
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General Topic	 Specific Topic	 No. Publications	

NURSERY STUDIES 
 

(n=45)   

39%	

Propagation	 34	

Growth and survivorship	 30	
Genotype traits	 10	
Species traits	 9	
Site characteristics/effects	 5	
Nursery maintenance	 3	

OUTPLANT STUDIES 
 

(n=70) 

60%	

Attachment method/substrate	 23	

Outplant survivorship	 58	
Outplant growth	 35	
Genotype traits	 10	
Species traits	 8	

RESTORATION DESIGN 
STUDIES 

(n=14)   

12%	

Density	 7	

Genotypic diversity	 1	
Mixed-species assemblages	 5	
Removing macroalgae	 1	

TESTED OR MEASURED 
AN ECOLOGICAL 

PROCESS 
 

(n=22)  

 19%	

Recruitment/reproduction	 6	

Succession	 6	
Predation	 5	
Herbivory	 3	
Fish-derived nutrients	 2	
Disease	 1	
Competition	 0	

Table 1. Number of peer-reviewed articles published on coral restoration and coral reef restoration (1987 – 
2017) broken down by the general topic addressed in each study. Publications were categorized by general 
topic, and then reviewed for the specific topics addressed within each study. Some publications were included 
in multiple general topics. Percentages represent the percent of publications under a general topic out of the 116 
publications reviewed. Search criteria, references for included publications, and category descriptions can be 
found in Appendix 17. 
 

Additionally, we surveyed 21 coral restoration practitioners conducting coral restoration 

operations in 12 different countries and territories throughout the Caribbean region to 

ascertain what factors influence how practitioners choose reefs to conduct coral restoration 
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and determine sites within those reefs to outplant corals (Table 2; Appendix 18). The three 

most important factors identified when selecting a reef to conduct restoration were: existing 

coral cover, available clean substrate, and water depth. Factors associated with ecological 

processes were generally low on the ranking list.  

Yet, when selecting where to outplant corals within a reef, practitioners appeared to give 

ecological processes more consideration as the three most important factors identified were: 

outplanting on the best available substrate, avoiding potential benthic competitors, and 

outplant near herbivores. However, there appears to be little data addressing how effective 

these different processes may be for facilitating restoration. For example, avoiding benthic 

competitors was the second most highly ranked criteria for selecting sites to outplant corals 

(Table 2). Yet, there have been zero scientific studies examining the impacts of competition 

on restored corals (Table 1). Further, recruitment of fishes and corals has been the most 

studied process in the context of this restoration (but only 5% of all restoration studies). 

However, these studies typically only measure recruitment following coral outplanting with 

little consideration of how the design of restoration can facilitate or impede recruitment. 

Thus, there is clearly interest in integrating ecological processes into coral restoration, 

however it is not clear how extensively ecological theory has shaped current practices. 

Here, we outline a framework suggesting how restoration practitioners could potentially 

increase the success and rate of restoration by better integration of key ecological processes 

such as herbivory, competition, predation, and nutrient cycling into restoration efforts. We 

propose that restoration practitioners can manipulate where, when, and how corals are 

outplanted to enhance coral survivorship and growth in order to restore positive or break 

negative feedback processes. Further, we highlight important knowledge gaps regarding the 
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ecological underpinnings of coral restoration that need to be addressed with rigorous 

scientific studies (Appendix 19). By explicitly incorporating methods that either take 

advantage of or manipulate key processes, restoration efforts may be able to utilize dynamic 

ecological forces to help hasten the recovery of coral populations. 

Rank	 Criteria For Selecting  
Among Reef Locations	

Criteria For Selecting  
Sites Within a Reef	

1	 Existing coral cover	 Outplant on best available substrate	
2	 Available clean substrate	 Avoid potential benthic competitors	

3	 Water depth	 Outplant near herbivores	

4	 Presence of potential benthic competitors	 Ensure corals are distributed 
throughout restoration site	

5	 Presence of herbivorous fishes	 Outplant close to any existing coral	

6	 Abundance of coral predators	 Avoid coral predators such as 
corallivorous snails	

7	 Level of human visitation	 Outplant near fish aggregations	
8	 Presence of algal-farming damselfish	 Outplant far from existing coral	

Table 2. Rankings of priority given by restoration practitioners to criteria considered when selecting reefs at 
which to conduct coral outplanting (among reefs) and placement of corals at sites within a reef. Results are from 
a survey of coral restoration practitioners (n = 21) representing 13 affiliations conducting coral restoration 
operations in 17 different countries and territories in the Caribbean region. 

 

B. Capitalizing on Important Ecological Processes on Coral Reefs 

Promoting Herbivory in Restored Areas 

Herbivory by fishes and urchins is one of the strongest forces influencing benthic 

community structure on coral reefs (Adam et al. 2015). Restoration practitioners recognize 

the importance of herbivory as ‘outplanting near herbivores’ was the third ranked criteria for 

selecting sites on a reef to outplant corals (Table 2). Yet only 2.5% of studies on coral 

restoration address herbivory at all, with only one study focusing on herbivory by fishes or 

urchins. Thus, capitalizing on herbivory in concert with coral restoration, either by 

outplanting coral in areas where herbivory is high or promoting herbivory on reefs where it is 
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diminished should be both a research and restoration priority. Herbivory is a linchpin of a 

series of positive feedbacks that reinforce topographically-complex, coral-dominated reefs 

thereby supporting ecosystem function (Mumby and Steneck 2008). Robust herbivore 

populations can suppress macroalgal cover, minimize coral-algal competition, increase coral 

growth and recruitment, and help coral populations recover after disturbances (Graham et al. 

2015; Zaneveld et al. 2016).  

Whereas populations of small coral-associated fish often decline with losses in coral 

cover, populations of larger, roving fishes such as herbivorous parrotfishes and surgeonfishes 

may persist in the immediate aftermath of coral loss (Graham et al. 2007). For example, in 

Moorea, French Polynesia, herbivorous fish populations around the island increased after an 

outbreak of coral-eating sea stars consumed virtually all existing live corals. The increased 

herbivory facilitated recovery by keeping the substrate free of macroalgae, allowing corals to 

recruit back to these reefs (Holbrook et al. 2016). For reefs with lower coral recruitment 

rates, restoring corals shortly after an acute disturbance may harness the benefits of existing 

herbivore populations to help jump-start recovery of coral populations as compared to a site 

where herbivory is less strong.  

Additionally, restoring corals soon after disturbances could help maintain robust 

herbivorous fish populations as fish larvae, as well as coral larvae, are positively attracted to 

waterborne chemical cues from corals (Dixson et al. 2014). Thus, quickly restoring corals 

after disturbances might help prevent diminished recruitment of important fishes and corals 

in the absence of abundant coral. Initiation of such recruitment cascades could hasten the 

recovery not only of coral populations, but organisms that provide key ecosystem functions 

such as herbivory and nutrient cycling (e.g. Halpern et al. 2007). Such a scenario highlights 
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the key aspects that larger-scale processes, such as connectivity between reefs and larval 

supply dynamics, will play in coral restoration planning. 

Different types of herbivores likely vary in their ability to facilitate restoration given that 

herbivores differ in the spatial extent and intensity at which they graze. Urchins can provide a 

concentrated source of grazing over a small area of the reef (~1 m2), whereas herbivorous 

fishes may provide a more diffuse (100’s m2) source of grazing (Sandin and McNamara 

2012). The consistent and intense herbivory provided by urchins can decrease coral-algal 

competition and allow transplanted or juvenile corals to establish (Sandin and McNamara 

2012). Indeed, localized recovery of the historically abundant grazer, the long-spined urchin 

(Diadema antillarum), on some Caribbean reefs have significantly reduced macroalgal cover 

and increased coral recruitment compared to adjacent areas where Diadema are not present 

(Carpenter and Edmunds 2006).   

Establishing recovery nuclei is common in forest restoration to attract community 

members such as birds and rodents that can deposit seeds, concentrate nutrients, and facilitate 

succession (Holl 2017). On reefs, restoring coral in areas with existing urchin populations 

could harness a consistent source of herbivory to facilitate coral growth and serve as recovery 

nuclei within a degraded reef. However, it remains important to consider the density-

dependent nature of urchin benefits; at high densities grazing by urchins can dislodge 

juvenile corals, kill coral recruits, and reduce the cover of important coral settlement 

substrate (McClanahan et al. 1996). At high densities, or in the absence of adequate coral 

growth, urchins may work against long-term restoration goals by degrading reef framework 

(Kuffner and Toth 2016).  
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Decreasing the amount of substrate open for algal colonization can force herbivores to 

graze more intensely on remaining space (Williams et al. 2001). This might be achieved by 

increasing the density of corals outplanted for restoration, using fast growing species, and/or 

corals with morphologies that occupy relatively large amounts of surface area (Figure 2).  

 

Figure 2. Recovery of corals on a degraded reef can be facilitated by positive feedbacks (center left; modified 
from Mumby and Steneck 2008). If restoration can promote one or several of these feedback mechanisms, the 
likelihood for coral recovery increases. Simultaneously, a series of negative feedback mechanisms can operate 
to inhibit recovery (center right). However, restoration can be designed to impinge on one or multiple negative 
mechanisms to break these feedbacks and initiate recovery. For example, areas of existing aggregations of 
fishes could be selected within a site to outplant corals and capitalize on rapid nutrient cycling to promote coral 
growth (top left). Similarly, outplanting corals to areas within a reef that contain robust populations of 
herbivorous urchins can take advantage of intense and consistent herbivory to promote coral growth and 
survival (bottom left). The density of corals outplanted for restoration is a fundamental component that can be 
tailored to minimize competition, coral mortality, and maximize habitat production (top right). The density of 
corals likely influences key processes like competition, disease transmission, and the attraction of corallivores, 
all of which can work against restoration efforts. Mixed-species outplanting could benefit restoration beyond 
increased species diversity. Using corals that can rapidly occupy the benthos can decrease the amount of 
grazable substrate available, effectively intensifying herbivory in remaining areas (bottom right). 
 

Additionally, the temporary use of uncolonizable, algal-free surfaces to reduce grazable 

substrate can concentrate existing herbivory (Williams et al. 2001). Coupling targeted high-

density outplanting of corals with the re-stocking of grazers such as urchins or parrotfishes 
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could jumpstart positive feedbacks and hasten the development of recovery nuclei (Maciá et 

al. 2007; Obolski et al. 2016). Such approaches may be more feasible for discrete areas such 

as patch reefs where natural barriers aid in spatially restricting herbivores. Reducing Coral  

 

Predation and Disease 

Coral predation (i.e., corallivory) is a chronic source of tissue loss and mortality for many 

species of coral (Rotjan and Lewis 2008). Common predators of coral include invertebrates 

such as snails, fireworms, and sea stars, as well as damselfishes, butterflyfishes, and other 

corallivorous fishes. Before the mass bleaching of 2014-16 (Hughes et al. 2017), over 40% 

of the coral cover lost in the past three decades on Australia’s Great Barrier Reef is attributed 

to outbreaks of the corallivorous crown-of-thorns sea star (Acanthaster plancii; De’ath et al. 

2012). In the Caribbean, algal-farming damselfishes can be a substantial source of partial 

mortality for colonies of staghorn coral (Acropora cervicornis) outplanted for coral 

restoration (Schopmeyer and Lirman 2015; Figure 3). Surprisingly, our survey revealed that 

avoiding or managing corallivory is one of the least important criteria when selecting sites to 

outplant corals (Table 2), although corallivory seems to have garnered more focus in 

published coral restoration literature (Table 1). Importantly, there appears to be relatively 

easy decisions practitioners could make to help minimize predation on restored corals. 

As coral cover declines, predation by roving corallivorous fishes can generate an 

alarming pattern in which predation intensity on corals increases as coral cover decreases 

(Burkepile 2012). Corallivory from less mobile organisms (e.g. invertebrates) also intensifies 

as coral cover decreases and food resources become scarcer (Baums et al. 2003). Given this 

relationship, sites with the lowest coral cover may actually be poor choices for restoration, 
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particularly if the corals being used for restoration are frequent targets of corallivores. Thus, 

outplanting on reefs with some existing coral populations may be important to reduce 

damage from corallivory.  

 

 

Figure 3. Context-dependent nature of damselfishes in coral reef restoration. Algal garden created by Stegastes 
planifrons on restored Acropora cervicornis colonies in the Florida Keys (3a; Courtesy of S. Schopmeyer, 
University of Miami RSMAS). In the Caribbean, coral reef restoration efforts would likely benefit from 
choosing sites with high biomass of piscivores to reduce the abundance of damselfish and their negative impacts 
on corals (3b). Extensive Acropora spp. thicket within Stegastes nigricans territories on a patch reef in Moorea, 
French Polynesia (3c; Courtesy of B. Banka, UC Santa Barbara). On reefs in the Indo-Pacific, coral restoration 
efforts may benefit from targeting areas with a high abundance of territorial damselfishes to reduce predation on 
corals from roving corallivorous fishes (3d). 
 

Asymmetry in prey preference can also make the outplanting of rare but preferred corals 

particularly problematic. Such is the case for A. cervicornis, the primary species used for 

coral restoration in the Caribbean, which is the highly-preferred prey of the corallivorous 

short coral snail (Coralliophila abbreviata; Johnston and Miller 2014). In regions with high 

spatial variability of corallivore abundance, avoiding reefs with large populations of 
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corallivores in favor of targeting sites with low corallivore abundance could help to stymie 

this negative feedback hindering coral restoration (Williams et al. 2014). 

Current restoration efforts largely focus on restoring one or a few species of corals. 

However, as coral propagation techniques advance, the increasing number and diversity of 

corals available for restoration affords the opportunity to test and employ creative approaches 

to restoration. Some coral species, such as Porites spp. in the Caribbean (Miller and Hay 

1998) and Acropora spp. and Montipora spp. in the Pacific (White and O’Donnell 2010) are 

rapidly consumed when transplanted onto a reef. Limiting access by corallivores to palatable 

coral species by protecting them with less palatable branching corals is one creative approach 

to reduce corallivory and increase the diversity of corals being restored. In Florida, colonies 

of A. cervicornis outplanted next to conspecifics were more rapidly preyed upon compared to 

those outplanted next to different species (Johnston and Miller 2014). Similarly, colonies of 

the leaf coral (Pavona frondifera) outplanted next to finger corals (Porites cylindrica) 

suffered lower predation rates than P. frondifera outplanted with conspecifics (Cabaitan et al. 

2015). If the corals being used for restoration are heavily targeted by corallivores, informed 

use of mixed-species assemblages of corals may help reduce the attraction of corallivores and 

their negative effects on coral restoration (Figure 2). Such an approach would parallel 

positive interactions commonly utilized in terrestrial restoration (Bruno et al. 2003). 

Coral disease is a significant source of mortality that can have devastating effects on 

coral populations (Precht et al. 2016). Although we did not ask about disease specifically in 

our survey of practitioners, our literature search surprisingly showed that only one study out 

of 116 has focused on disease dynamics in restored corals (Table 1). There is a clear 

mismatch here between the importance of disease as a source of coral mortality and the level 



135		

of focus it has received in published restoration studies. Many corallivores may vector 

disease among corals, including species used for restoration (Williams and Miller 2005). For 

example, the bearded fireworm (Hermodice carunculata), a voracious coral predator and a 

reservoir for coral disease (Sussman et al. 2003), frequently consumes A. cervicornis (Miller 

et al. 2014). Competition between corals and the common green alga Halimeda opuntia can 

attract H. carunculata, increasing the prevalence of coral disease and coral mortality (Wolf 

and Nugues 2013). Thus, seeking ways to control both algal competition (such as restoring 

areas with abundant fishes and/or urchins) and coral predators may aid in reducing coral 

diseases. 

Fishes and other reef inhabitants that prey on corallivores represent potential biological 

controls that could be leveraged to facilitate restoration. For example, white grunts 

(Haemulon plumierii), a fish common on Caribbean reefs, readily consume adult H. 

carunculata (Ladd and Shantz 2016), while the carnivorous deltoid rock snail (Thais 

deltoidea) preys on the corallivore C. abbreviata (Sharp and Delgado 2015), which can also 

vector coral diseases (Williams and Miller 2005). Restoring corals in areas with abundant H. 

plumierii or T. deltoidea may help suppress the negative impacts of corallivores. 

Alternatively, deployment of structures that increase the recruitment or aggregation of fishes 

like H. plumierii or actively seeding restoration areas with T. deltoidea could help reduce the 

abundance of corallivores and transmission of coral diseases in restored areas. 

 

Algal-Farming Fishes as Context-Dependent Forces in Coral Restoration 

Processes that impact coral survivorship, and ultimately restoration efforts, may be 

context-dependent. For example, many damselfishes are territorial algal-gardeners that could 
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promote or hinder restoration efforts depending on geographic location and species-specific 

behavior (Figure 3). In the Caribbean, territorial damselfishes (e.g. Stegastes planifrons) kill 

large portions of live coral tissue to create algal gardens that are fiercely protected from 

larger herbivores (Rotjan and Lewis 2008). Stegastes planifrons can rapidly colonize 

colonies of A. cervicornis outplanted for restoration, cause significant amounts of partial 

colony mortality (Schopmeyer and Lirman 2015; Figure 3a), and may increase the 

prevalence of coral disease (Vermeij et al. 2015). Thus, coral restoration efforts should avoid 

areas with large damselfish populations. Further, concentrating coral outplants to areas with 

high biomass of piscivorous fishes may reduce the abundance of damselfishes and their 

negative impact on corals (Figure 3b).  

Conversely, on Indo-Pacific reefs, territories of the common damselfish Stegastes 

nigricans can promote the survival and growth of rare corals that are otherwise rapidly 

consumed by corallivorous fishes (White and O’Donnell 2010). The corals within these 

territories are often fast-growing, branching species (e.g. Acropora spp.) amenable for use in 

restoration (White and O’Donnell 2010; Figure 3c). Restoration efforts on reefs with 

abundant S. nigricans and other similar damselfish species may benefit from focusing coral 

outplanting within damselfish territories to facilitate the growth and recruitment of corals and 

act as nuclei of recovery. Particularly in areas with robust corallivore populations, the 

protection provided by farming damselfishes such as S. nigricans may be crucial for the 

initial growth and establishment of corals outplanted for restoration (Figure 3d). 
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Fish-derived Nutrients Promote Positive Feedbacks for Corals 

The structure provided by living corals can aggregate fishes and concentrate fish-derived 

nutrients that increase coral growth (Holbrook et al. 2008). These fish-derived nutrient 

hotspots also increase grazing by herbivorous fishes and decrease algal abundance, both of 

which likely help facilitate coral growth and survivorship (Shantz et al. 2015). Additionally, 

many of the fishes that aggregate around structurally complex corals are invertivores, such as 

H. plumierii, potentially promoting top-down control on coral predators (Ladd and Shantz 

2016). Fish-derived nutrient hotspots appear to both facilitate the growth of existing corals 

and concentrate herbivory such that the resultant benthic communities also promote coral 

health and recruitment.  

These natural positive feedbacks on coral health may be important to capture in coral 

restoration designs, yet such processes and feedbacks are not typically part of coral 

restoration approaches (Tables 1 & 2). Fish-derived nutrient hotspots promote many of the 

processes central to reef recovery (e.g. herbivory, coral growth, habitat production, coral 

recruitment). Further, many of the coral species that are commonly used for restoration (e.g. 

Acropora spp., Pocillopora spp.) benefit most strongly from fish-derived nutrients. Focusing 

coral outplanting to sites of existing fish aggregations, or capitalizing on positive density-

dependence of corals used for restoration to maximize habitat production and facilitate the 

aggregation of fishes could harness these positive feedbacks to drive coral reef recovery 

(Figure 2).  
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Competition in the Context of Restoration 

Competition for limiting resources can drive population dynamics, community 

succession, and ecosystem function (Hillerislambers et al. 2012), particularly on coral reefs 

where space is a highly-contested resource (Chadwick and Morrow 2011). On many reefs, 

weedy, fast growing species, such as sponges and soft corals are replacing reef-building 

corals (Norström et al. 2009) and slowing the growth and survivorship of remaining corals 

(Chadwick and Morrow 2011). Thus, frequent and abundant competitive interactions can 

generate a series of negative feedbacks that can inhibit the regeneration of diverse, 

topographically complex coral reefs and impede restoration efforts. 

Understanding competitive interactions among corals used for restoration and their 

benthic competitors could assist in restoration site selection, as practitioners are clearly 

interested in avoiding benthic competitors when outplanting corals (Table 2). Yet, there have 

been no studies to date examining how competition impacts coral restoration (Table 1), 

making this an area ripe for new research (Appendix 19). Within sites, outplanting corals to 

avoid superior competitors presents a relatively simple method to improve coral growth and 

survival. On Caribbean reefs, the encrusting gorgonian Erythropodium caribaeorum and the 

zoanthid Palythoa caribaeorum are two aggressive, fast growing species that can kill or 

suppress the growth of A. cervicornis (Karlson 1980; Suchanek and Green 1981). Removing 

these competitors when outplanting A. cervicornis or targeting outplants to areas with a low 

abundance of these competitors could reduce or eliminate one factor working against 

restoration efforts. 
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C. Future Directions and Concluding Remarks 

Translating ecological theory into realistic approaches for conservation practitioners is 

one of the most challenging aspects of ecological restoration (Figure 2). Promoting positive 

density dependent processes to facilitate restoration is a fundamental component of terrestrial 

and aquatic restoration planning (Halpern et al. 2007). For example, outplanting grasses in 

high densities can promote pollination, increase seed set, and hasten the recovery of 

grasslands (Morgan and Scacco 2006). Outplanting salt marsh plants in high densities can 

reduce abiotic stress, increase biomass production, and initiate facilitation cascades (Silliman 

et al. 2015). On coral reefs, the density of corals outplanted is a basic element of restoration 

planning that may drive many of the ecological processes that will ultimately determine 

restoration success (Figure 2). For example, outplanting A. cervicornis at moderate densities 

can promote positive density dependence that maximizes habitat production and minimizes 

coral mortality (Ladd et al. 2016). Meanwhile, outplanting at higher densities can invoke 

negative density-dependent processes that reduce coral growth and survivorship, possibly by 

attracting coral enemies such as corallivores or facilitating disease (Ladd et al. 2016). Such 

findings highlight the important role density likely plays in the rate and success of coral reef 

recovery.  

However, we lack fundamental knowledge on the mechanisms driving density 

dependence and how abiotic and biological context can mediate the strength and direction of 

density dependence. Although many restoration practitioners currently consider density in 

their restoration design (Table 2), the fact that targeted coral densities varied more than two 

orders of magnitude (0.1-25 corals m-2) highlights the need for a better mechanistic 

understanding of density dependence among corals to optimize restoration efforts. One such 
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scenario would be identifying if disease transmission drives negative density dependence in 

high-density outplants. If this mechanism were confirmed, genotypes resistant to disease 

(Vollmer and Kline 2008) might facilitate successful outplanting at higher densities to hasten 

habitat production without increased risk of disease transmission. The potentially key role of 

density in restoration success underscores the need for further work to understand patterns 

and drivers of density dependence in species used for coral restoration.  

Corals vary widely in basic traits that can drive population and community structure such 

as growth rates, reproductive output, and symbiont identity that vary among species, 

populations, and individuals within a population (Madin et al. 2016). Initial research has 

shown significant variability among nursery-raised genotypes for traits such as growth and 

branching rates (e.g. Lirman et al. 2014). For coral restoration, knowledge of important traits 

of corals used for restoration would allow restoration practitioners to select species and 

genotypes best suited for specific restoration sites (Elliot et al. 2003). For example, at sites 

frequently impacted by thermal stress, weighting the corals outplanted for restoration towards 

genotypes of corals known to exhibit high thermal tolerance could better prepare the site for 

future thermal anomalies (Ladd et al. 2017). Matching coral traits with the environment of a 

restoration site could maximize the survival of outplanted corals and make restoration efforts 

more effective and efficient. Yet, there remains a paucity of data on inter- and intraspecific 

differences in many traits relevant to coral restoration and, particularly, their potential 

ecological tradeoffs (Sandel et al. 2011). Although the process of gathering data on these 

traits may be time consuming and expensive, the ability to make trait-based selections of 

corals informed by data, while maintaining overall genotypic diversity, would provide 

restoration practitioners a valuable tool to increase restoration efficacy. 
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Considerable progress has been made in the past decade in the field of coral restoration. 

However, many important questions remain unanswered, slowing our ability to restore these 

key foundation species (Appendix 19). As corals continue their decline around the world, it is 

urgent we address these questions. Testing and refining innovative, non-traditional 

approaches to restoring corals, such as harnessing important ecological processes, is an 

important next step to advance the field of coral restoration ecology. However, addressing 

these critical questions to better understand how to restore corals is necessary, but not 

sufficient, to ensure the persistence of corals and coral reefs. In addition to these restoration 

efforts, we must also make progress to reduce local sources of coral mortality such as 

pollution and sedimentation as well as reduce carbon emissions to lower the rate and extent 

of climate change.  Without the dual efforts of coral restoration and stress mitigation, corals 

and coral reefs face a dire future. 
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Appendices 
 
Appendix 1. Results from nested two-way repeated measures ANOVA for genotype effects 
on growth rates, TLE, and live TLE. 
 

Response Variable Predictor F P 
Growth rate (cm day-1) 

 

Time 12.677 < 0.001 
Genotype 0.022 0.978 
Genotype x Time 1.087 0.364 

Individual colony TLE 
Time 268.414 < 0.001 
Genotype 0.267 0.766 
Genotype x Time 0.450 0.845 

Individual colony Live TLE 
Time 12.047 < 0.001 
Genotype 0.012 0.988 
Genotype x Time 0.363 0.902 

 
  
Appendix 2. Survivorship of coral colonies by genotype over time. 
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Appendix 3. Results from nested two-way repeated measures ANOVA for treatment 
effects on individual colony growth rate, TLE, live TLE, and results from two-way 
ANOVA for plot level TLE, live TLE, and survivorship. 

 
Response Variable Predictor df1 df2 F P 

Growth rate (cm day-1) 
Time 2 222 48.144 < 0.001 
Treatment 4 12 2.950 0.065 
Treatment x Time 8 222 4.694 < 0.001 

Individual colony TLE 
Time 3 476 69.511 < 0.001 
Treatment 4 12 0.495 0.740 
Treatment x Time 12 476 3.960 < 0.001 

Individual colony Live 
TLE 

Time 3 476 8.598 < 0.001 
Treatment 4 12 0.082 0.987 
Treatment x Time 12 476 13.322 < 0.001 

Plot level TLE 
Time 4 60 80.577 < 0.001 
Treatment 3 60 37.906 < 0.001 
Treatment x Time 12 60 1.193 0.309 

Plot level live TLE 
Time 4 60 24.756 < 0.001 
Treatment 3 60 6.645 < 0.001 
Treatment x Time 12 60 2.240 0.021 

Survivorship 
Time 4 72 4.108 < 0.001 
Treatment 4 72 24.404 < 0.001 
Treatment x Time 16 72 25.491 < 0.001 

 
 
Appendix 4. Daily water temperature recorded at a nearby site in the Lower Florida Keys 
at a similar depth to our experimental site. The red dashed line depicts the bleaching 
threshold (30.5°C) for Acorpora cervicornis according to Manzello et al. (2007). 
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Appendix 5. Photograph of experimental platforms deployed in a sand flat near Pickles 
Reef (top left). Schematic of one complete replicate of experimental pairs for the 
common garden competition experiment (not to scale). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Acropora cervicornis

Porites porites

Orbicella faveolata

Siderastrea siderea

Palythoa caribaeorum

Erythropodium caribaeorum

Aplysina fistularis

Control 

Millepora alcicornis

Table 1 Table 2
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Appendix 6. Descriptions of the 12 benthic categories used for percent cover analysis of 
photoquadrats. Groups highlighted in grey denote focal species. Groups with an asterisk 
indicate groups included in our interaction frequency surveys (Figure 1). 
 

Benthic Group 
Mean 

Percent 
Cover 

SE Description 

Aplysina fistularis* 1.34 0.166  Individuals of the focal species 
Aplysina fistularis 

Upright gorgonian*  7.63 0.955  Any erect gorgonian, regardless of 
species 

Hard coral*  0.11 0.039  All non-focal scleractinian species 
Macroalgae  9.60 2.110  Fleshy macroalgae 
Millepora 
alcicornis*  0.98 0.276  Individuals of the focal species 

Millepora alcicornis 

Other  2.07 0.504  Non-natural items such as PVC 
frame, hand, ruler, etc. 

Palythoa 
caribaeorum*  0.62 0.128  Individuals of the focal species 

Palythoa caribaeorum 

Porites porites*  0.07 0.032  Individuals of the focal species 
Porites porites 

Sand  0.17 0.129  Sand 
Other Sponge*  0.26 0.080  All sponges except Aplysina fistularis 
Siderastrea 
siderea*  0.14 0.057  Individuals of the focal species 

Siderastrea siderea 
Turf-algal sediment 
matrix 76.61 3.918 Turf-algal sediment matrix sensu 

Connell et al. 2014 
 
 
References: 
 
Connell SD, Foster MS, Airoldi L (2014) What are algal turfs? Towards a better description 

of turfs. Mar Ecol Prog Ser 495:299–307  
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Appendix 7. Predicted probabilities of an individual interacting with increasing percent cover 
of benthic invertebrates. Statistics are from a linear mixed effects model. 
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Appendix 8. Species-specific competitive outcomes from field surveys in the summer of 2014 
for each of the eight focal species of this study. Numbers at the bottom of each bar represent 
the sample size for each species-specific pairing. 
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Appendix 9. Mean percent change in live area (July to December) for each species-specific 
interaction relative to mean change in live area of control individuals, calculated by subtracting 
the percent change of the control from the percent change of individuals in competition for 
each species pairing. Asterisks indicate that the 95% confidence interval did not include zero. 
Data are means ±SE from the common garden competition experiment. Orbicella faveolata 
data presented are from July to October. 
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Appendix 10. Locations of the four reefs in the Upper Florida Keys, USA surveyed in this 
study. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 11. Number of nursery-raised Acropora cervicornis colonies ouptlanted at each 
study reef from 2003 to 2013. Outplant data provided by the Coral Restoration Foundation. 
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Appendix 12. List of all coral species found within control and restored sites. Letters 
correspond to reefs at which each species was observed (C = Conch Reef, M = Molasses 
Reef, P = Pickles Reef, SL = Snapper Ledge).  
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Species Restored Control 

Acropora cervicornis C, M, P, SL M, P, SL 
Acropora palmata SL M 
Agaricia agaricites C, M, P, SL C, M, P, SL 
Copophylia natans M M, SL 
Dendrogyra cylindrus   C 
Dichocoenia stokesii C, P, SL C, M, P, SL 
Diploira clivosa M M 
Diploria labyrinthiformis M, P, SL C, SL 
Diploria strigosa P C 
Eusmilia fastigiata C, M P, M, SL 
Favia fragum SL   
Madracis decactus C, M, P, SL P, M, SL 
Madracis formosa P   
Meandrina jacksonii SL C, SL 
Meandrina meandrites P C, M, P, SL 
Montastraea cavernosa C, M, P, SL C, M, P, SL 
Myccetophyllia ferox P   
Orbicella faveolata M, P, C M, P 
Porites astreoides M, P, SL C, M, P, SL 
Porites furcata/divaricata C, M, P, SL M, SL 
Porites porites C, M, P, SL C, M, P, SL 
Siderastrea radians C, M, SL C, M, SL 
Siderastrea siderea C, M, P, SL C, M, P, SL 
Solenastrea bournoni P P 
Stephanocoenia intersepta C, M, P, SL C, M, P, SL 

 
 
 
 
 
 
 
 
 
 
 
Appendix 13. Results from SIMPER analysis. Table displays the ten coral species that 
contributed most to community dissimilarity in restored vs. control sites, and the percentage 
of dissimilarity that each species accounted for. 
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Coral Species 
Contribution to 

Community 
Dissimilarity 

Acropora cervicornis 47.8% 
Agaricia spp. 23.5% 
Porites porites 9.4% 
Siderastrea siderea 6.4% 
A. palmata 3.0% 
P. astreiodes 2.8% 
Madracis decactis 1.1% 
Dichocoenia stokesi 1.0% 
Stephanocoenia intersepta 1.0% 
Siderastrea radians 0.6% 

 
 
Appendix 14. Results from mixed-effects models testing the effect of Treatment, Reef, and 
Treatment x Reef interaction on individual functional group biomass and density of fishes. “-
--” indicates that there were not enough replicates to run the model with interaction. 
 

Fish 
functional 

Group 

Response 
variable 

Treatment 
df 

Treatment 
p-value 

Site 
df 

Reef 
p-value 

Interaction 
df 

Treatment x 
Reef  

p-value 

Invertivore 
Biomass 1 0.781 3 0.498 3 0.104 
Density 1 0.202 3 0.412 3 0.385 

Herbivore 
Biomass 1 0.180 3 0.722 3 0.069 
Density 1 0.002 3 0.150 3 0.015 

Piscivore 
Biomass 1 0.363 3 0.973 3 0.552 
Density 1 0.474 3 0.851 3 0.441 

Corallivore 
Biomass 1 <0.001 3 0.734 NA --- 
Density 1 0.946 3 0.980 NA --- 

Planktivore 
Biomass 1 0.918 3 0.996 3 0.960 
Density 1 <0.001 3 0.496 3 0.929 

 

 
 
 
 
 
 
 
 
Appendix 15. Results from linear models testing the effect of the density of A. cervicornis in 
cm total TLE m-2 and restored coral cover (i.e. Acropora cervicornis only, fixed factor) on 
indicators for key ecological processes.  
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Response variable Metric Chi-squared df p-value 

Snail density 
cm TLE m-2 0.339 1 0.561 

A. cervicornis cover 0.567 1 0.452 
Percent of seagrass 

assay consumed 
cm TLE m-2 1.859 1 0.173 

A. cervicornis cover 0.728 1 0.394 

All fish 
cm TLE m-2 1.423 1 0.239 

A. cervicornis cover 1.831 1 0.176 

Fish <15cm TL 
cm TLE m-2 0.672 1 0.412 

A. cervicornis cover 1.466 1 0.226 

Juvenile fish 
cm TLE m-2 0.032 1 0.857 

A. cervicornis cover 0.073 1 0.787 

Damselfish 
cm TLE m-2 0.351 1 0.553 

A. cervicornis cover 0.451 1 0.502 

Partial colony mortality 
cm TLE m-2 2.950 1 0.0859 

A. cervicornis cover 3.305 1 0.069 
Number of diseased 

colonies 
cm TLE m-2 1.415 1 0.234 

A. cervicornis cover 0.475 1 0.491 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Appendix 16. Frequency distribution of the size (log10(width x length)) of restored Acropora 
cervicornis surveyed in 2014 within restored sites at each reef. 
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Appendix 17. Coral restoration and coral reef restoration peer-reviewed literature review 
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Methods: To conduct a comprehensive search of published literature on coral restoration, we 
searched ISI Web of Science for “coral restoration”, “coral reef restoration”, “coral 
transplantation”, and similar terms. We included papers from the time period 1987-2017. We 
also mined the references of relevant papers, such as recent reviews on coral restoration 
projects (e.g. Johnson et al. 2011; Young et al. 2012; Lirman and Schopmeyer 2016). To be 
included, a publication had to include data from a study focused on corals used for 
restoration, or conducted some aspect of coral reef restoration (e.g. deployment of artificial 
substrate to attract coral recruits). Therefore, we did not include publications that were purely 
modeling, theoretical, or opinions and did not present data. Each publication was reviewed 
and evaluated based on the below criteria (Table 1). If the criteria were met, the publication 
was then assessed and assigned to the appropriate “general topics” and “specific topics”. A 
publication could be assigned to multiple general and/or specific topics if the appropriate 
criteria were met. In total we found 116 papers that met our criteria.  

 
Table 1. Criteria for “general topics” (gray shaded cells) and “specific topics” (no shading) 
within each general topic.  
 

Topic Criteria 

Nursery Studies Studies conducted in a nursery (in-situ or ex-situ) study that 
included one of the below specific topics 

Propagation Methods for growing corals in a nursery setting (ex-situ or in-situ), 
including sexual reproduction methodologies. 

Growth and survivorship Measured growth and survivorship of corals in a nursery setting 

Genotype traits 
Quantified differences in traits (e.g. thermal tolerance) of multiple 
genotypes of the same species in a nursery setting. Growth rate 
included as a trait 

Species traits Quantified differences in traits (e.g. thermal tolerance) of multiple 
species in a nursery setting. Growth rate included as a trait 

Site characteristics/effects 
Compared growth or survivorship among nursery-raised corals 
growing in multiple nursery locations with different abiotic 
characteristics (e.g., depth, water flow, sedimentation) 

Nursery maintenance Methods for maintaining nurseries (e.g. cleaning growth structures) 

Outplant Studies Studies that outplanted corals grown in a nursery and measured 
one of the following specific topics 

Attachment 
method/substrate 

Compared methods for attaching corals to substrate, or measured 
attachment success of corals ouptlanted to multiple types of 
substrate (e.g. sand vs. rubble vs. pavement) 

Outplant survivorship Measured survivorship of corals outplanted to a degraded reef for 
restoration 

Outplant growth Measured growth rates of corals outplanted to a degraded reef for 
restoration 

Species traits 
Measured traits of multiple species of corals outplanted for 
restoration. Traits included growth rates, thermal tolerance, 
Symbiodinium density and composition, etc. 
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Genotype traits 
Measured traits of multiple genotypes of the same species of coral 
outplanted for restoration. Traits included growth rates, thermal 
tolerance, Symbiodinium density and composition, etc. 

Restoration Design Studies Studies that explicitly test a component of coral restoration 
outplant design 

Density 
Tested the effect of the density of corals used for restoration on 
coral growth, survivorship, or an ecological process of interest (e.g. 
disease prevalence) 

Genotypic diversity Tested the effect of the genotypic diversity of corals used for 
restoration on coral growth, survivorship, or response to stress 

Mixed-species assemblages 
Tested the effect of mixed-species assemblages of corals used for 
restoration on growth, survivorship, or an ecological process of 
interest (e.g. predation) 

Removing macroalgae Tested the effect of removing macroalgae on the growth and 
survivorship of corals used for restoration 

Tested or Measured and 
Ecological Process 

Studies that either explicitly tested the influence of an ecological 
process (herbivory, corallivory, disease, competition, recruitment 
or reproduction, fish-derived nutrients) on the success of coral 
restoration or measured how one or several of these ecological 
process changed as a result of coral restoration 

Succession Measured the development of benthic or fish communities in 
response to coral restoration 

Disease 
Quantified how disease impacts corals used for restoration, or 
methods to minimize the negative effects of disease on corals used 
for restoration 

Predation Quantified predation rates on corals used for restoration, or 
methods to mediate predation on corals used for restoration 

Recruitment/reproduction 
Quantified how restoration (outplanting corals or modifying the 
substrate/structure of a degraded reef) influences the recruitment 
of corals. Also included studies that tracked how long it took for 
corals outplanted for restoration to become sexually mature 

Herbivory Quantified the effect of herbivory on the growth, survivorship, or 
competitive interactions of corals outplanted for restoration 

Fish-derived nutrients Quantified the effect of fish-derived nutrients on corals outplanted 
for restoration, herbivory, or benthic community succession 

Competition Tested the effect of intra- or interspecific competition on the 
growth and survivorship of corals used for restoration 
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Appendix 18. Coral Restoration Practitioner Survey Results 
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Methods: To quantify contemporary trends and approaches in coral restoration, we 
developed a survey that asked coral restoration practitioners throughout the Caribbean region 
a series of questions regarding their restoration activities. We were particularly interested in 
how practitioners select sites for coral restoration, where corals are outplanted within a site, 
and any additional factors taken into consideration when planning and conducting restoration 
activities The full questionnaire can be found at the end of WebPanel 1. For questions 
regarding how important specific factors were for restoration efforts, we employed a forced 
ranking system whereby the participant ranked options 1 through 8 (1 = most important, 8 = 
least important). This methodology allowed us to quantify the relative importance of each 
factor in current coral restoration approaches. Responses were analyzed by calculating the 
average rank given to each factor to determine which were given the highest and lowest 
priority by restoration practitioners. 

We emailed the survey directly to a list of ~60 individuals known to be conducting coral 
restoration throughout the Caribbean with the intent to maximize the number of organizations 
and geographic locations (restricted to the Caribbean) surveyed. During the sampling period 
of 14 days, we received 21 completed surveys (~35% completion rate) from 13 different 
affiliations (universities, marine labs, US state and federal agencies, NGOs, independent 
contractor) conducting coral restoration in 17 different countries or territories in the 
Caribbean region.  
 
Results: Eighty-six percent of participants said they consider density in their outplanting 
efforts, with target densities ranging from 0.1 to 25 coral colonies m-2 (mean ±SE: 8.0 
colonies m-2 ±2.6). Ninety percent of participants identified genotypic diversity as an 
important component of their restoration planning. Although the majority of participants 
indicated they try to maximize genotypic diversity at all of their restoration sites, 48% also 
indicated they select coral genotypes for specific traits when planning coral restoration 
efforts. However, only 19% actively select corals within their nursery for known 
performance traits (e.g., tolerance to disease or thermal stress), whereas the remaining 29% 
use corals that have survived past stress events (i.e., passive selection). No participants said 
that they select coral genotypes to try to maximize coral growth, and 52% of those surveyed 
have outplanted mixed-species assemblages. 

The three most important factors identified when selecting a site to conduct restoration 
were: (1) existing coral cover, (2) available clean substrate, and (3) water depth. Factors 
associated with ecological processes were ranked (4) presence of potential benthic 
competitors, (5) presence of herbivorous fishes, (6) abundance of coral predators, and (8) 
presence of algal-farming damselfishes. Other factors that restoration practitioners identified 
as important to consider when selecting a site for coral restoration included algal cover, 
disease prevalence, substrate quality, rugosity, distance to other outplants, time of the year 
(to avoid outplanting during the hot summer months), historical distribution of restoration 
species, tourism use, and outplant size. When selecting where to outplant corals within a 
restoration site, the three most important factors identified were: (1) outplanting on the best 
available substrate, (2) avoiding potential benthic competitors, and (3) outplant near 
herbivores.  
 

Coral Restoration Practitioner Survey 
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1.  First, tell us about your coral restoration activities.  Please mark all of the 
appropriate activities listed below: 
- Maintain in situ nursery 
- Maintain ex situ nursery 
- Routinely outplant nursery-propagated Acropora cervicornis 
- Routinely outplant nursery-propagated Acropora palmata 
- Outplant other species of nursery-propagated corals 
- Reattached damaged corals encountered 
 
2. Do you consider outplant density? 
- yes/no 
 
3. Do you consider coral genotypic diversity? 
- yes/no 
 
4. Have you selected corals to outplant with specific traits to withstand stressors 
such as temperature, disease, etc. 
- yes/no 
 
5. Have you selected coral genotypes to ouptlant specifically to maximize growth? 
- yes/no  
6. Have you outplanted mixed coral species assemblages? 
- yes/no  
7. What other components do you consider when planning coral restoration 
activities? 
8. Below are several potential factors you may consider when selecting a coral 
restoration site.  Please rank these factors in order of importance to you from 1-8. 
Enter a "1" for your most important factor, a "2" for the next important factor, 
and so on for the remaining factors. NOTE: no two factors can have the same 
number. 
- Available clean substrate 
- Existing coral cover 
- Presence of herbivorous fishes 
- Water depth 
- Level of human visitation 
- Presence of potential benthic competitors 
- Abundance of coral predators 
- Presence of algal-farming damselfish 
 
 
 
 
 
 
9. Once a restoration site has been selected, below are several potential approaches 
you could consider when you are outplanting corals.  Please rank these factors in 
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order of importance to you from 1-8. Enter a "1" for your most important factor, a 
"2" for the next important factor, and so on for the remaining factors. NOTE: no 
two factors can have the same number. 

- Outplant close to any existing coral 
- Outplant far from existing coral 
- Avoid potential benthic competitors 
- Outplant on best available substrate 
- Outplant near herbivores 
- Ensure corals are distributed throughout the restoration site 
- Avoid coral predators such as corallivorous snails 
- Outplant near fish aggregations 
 
10. Please tell us about any other restoration activities you couple with your coral 
restoration efforts 
- Restock herbivorous fishes 
- Restock herbivorous urchins 
- Deploy surfaces to concentrate herbivory 
- Remove coral predators at outplanting 
- Remove coral predators after outplanting 
- Deploy fish aggregating devices 
- Introduce predators 
- Other considerations 
 
11. If you remove corallivores for an extended time after outplanting, please tell 
how often and for how long you continue this activity. 
(open question) 
 
12. What do you think are the most important knowledge gaps that need to be 
addressed to effectively conduct coral reef restoration of ecologically meaningful 
scales? 
(open question) 
 
13. Please tell us in what regions you conduct coral restoration (e.g., Florida, 
Virgin Islands, etc.) 
(open question) 
 
14. Please tell us your affiliation (i.e., your Agency, Organization, University) 

(open question) 
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Appendix 19. Knowledge gaps and research needs that should be addressed to advance the 
science and efficacy of coral restoration. 
 

Ecological 
process 

Major restoration  
goals 

Research questions  
to be addressed 

Herbivory 

Reduce algal abundance 
 
Reduce coral-algal 
interactions 
 
Increase coral growth rates 
 
Promote conditions favorable 
for successful coral 
recruitment 
  

How can the density of corals used for restoration be 
manipulated to increase rates of herbivory in restored 
areas? 

How does the density and species of corals used for 
restoration influence the identity (species, phase, size) 
of herbivores? 

Can corals with morphologies that occupy lots of 
surface area be used to increase the intensity of 
existing herbivory by reducing grazable space? 

Can spatially constrained herbivores such as urchins be 
restored along with corals to promote recovery? 

Can the use of artificial structures effectively enhance 
herbivory to facilitate success of restored corals? 

Corallivory 

Reduce the attraction of 
corallivores 
 
Reduce corallivory densities 
 
Reduce partial and full 
mortality from corallivory 
 
Reduce negative secondary 
effects from corallivory (e.g. 
disease transmission, 
dislodgement, etc.) 
  
  
  
  
  

How does the density of outplanted corals influence 
the attraction of coral predators? 
How does the density of existing corals or other 
structural aspects of habitat at a site mediate predation 
of restored corals? 

What are the primary drivers of corallivore abundance? 

What reef organisms consume corallivores? 

How can restoration aggregate predators of important 
corallivores? 
What species or genotypes of corals do corallivores 
prefer?  

What species and genotypes of corals used for 
restoration are most resistant/resilient to predation?  

How can restoration utilize “natural protection” from 
corallivory (e.g., damselfish)? 

Can outplanting of multiple coral species be used to 
reduce attraction or access to preferred coral species? 

Disease 

Minimize the transmission and 
extent of coral disease 
  
  

How does the density of outplanted corals influence 
disease transmission? 

What species and genotypes of corals used for 
restoration are resistant to disease infection? 

What ecological tradeoffs exist among important coral 
traits? 



169		

Can species and/or genotypic diversity enhance 
resistance to disease? 

Competition 
and 

Facilitation 

Utilize competitive 
relationships to drive 
community development 
 
 
  

How does the density of corals used for restoration 
influence coral growth rates, survivorship, and habitat 
production? 

Can specific assemblages of corals promote growth, 
survivorship and the generation of habitat? 

Do competitive hierarchies exist that could be used to 
incorporate succession into restoration planning? 

What benthic competitors should be avoided? 

Are there benthic species that can facilitate the growth 
and survival of corals used for restoration? 

Fish-
derived 

Nutrients 

Capitalize on the positive 
feedback mechanisms 
stemming from localized 
delivery of nutrients within a 
reef 
  
  

Can the density of restored corals be manipulated to 
promote the aggregation of fishes that can create 
nutrient hotspots? 

At what threshold does outplant density promote coral 
and fish recruitment? 

Can artificial structures foster fish aggregation and the 
generation of nutrient hotspots early in restoration? 

What coral species being used for restoration are most 
effective at aggregating fishes that can create nutrient 
hotspots? 

 
 
 




