
Lawrence Berkeley National Laboratory
LBL Publications

Title
Quantum-parallel vectorized data encodings and computations on trapped-ion and
transmon QPUs

Permalink
https://escholarship.org/uc/item/8v41x5jg

Journal
Scientific Reports, 14(1)

ISSN
2045-2322

Authors
Balewski, Jan
Amankwah, Mercy G
Van Beeumen, Roel
et al.

Publication Date
2024

DOI
10.1038/s41598-024-53720-x

Supplemental Material
https://escholarship.org/uc/item/8v41x5jg#supplemental

Copyright Information
This work is made available under the terms of a Creative Commons Attribution License,
available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8v41x5jg
https://escholarship.org/uc/item/8v41x5jg#author
https://escholarship.org/uc/item/8v41x5jg#supplemental
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/

Quantum-parallel vectorized data encodings and
computations on trapped-ion and transmon QPUs
Jan Balewski1, Mercy G. Amankwah1,2, Roel Van Beeumen3, E. Wes Bethel4, Talita Perciano5,*,
and Daan Camps1,*

1National Energy Research Scientific Computing Center, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
2Department of Mathematics, Applied Mathematics and Statistics, Case Western Reserve University, Cleveland, OH 44106,
USA
3Applied Mathematics and Computational Research Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,
USA
4Computer Science Department, San Francisco State University, San Francisco, CA 94132, USA
5Scientific Data Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
*Corresponding authors: tperciano@lbl.gov, dcamps@lbl.gov

ABSTRACT

Compact data representations in quantum systems are crucial for the development of quantum algorithms for data analysis. In this study,
we present two innovative data encoding techniques, known as QCrank and QBArt, which exhibit significant quantum parallelism via
uniformly controlled rotation gates. The QCrank method encodes a series of real-valued data as rotations on data qubits, resulting in
increased storage capacity. On the other hand, QBArt directly incorporates a binary representation of the data within the computational
basis, requiring fewer quantum measurements and enabling well-established arithmetic operations on binary data. We showcase various
applications of the proposed encoding methods for various data types. Notably, we demonstrate quantum algorithms for tasks such as
DNA pattern matching, Hamming weight computation, complex value conjugation, and the retrieval of a binary image with 384 pixels, all
executed on the Quantinuum trapped-ion QPU. Furthermore, we employ several cloud-accessible QPUs, including those from IBMQ and
IonQ, to conduct supplementary benchmarking experiments.

Introduction

Quantum computing is believed to open doorways to novel methods and algorithms that can outperform their classical counterparts1.
Among the most prominent examples of quantum algorithms are Shor’s prime factoring algorithm2 and Grover’s unstructured search
algorithm3. In addition, recent results show that quantum computers have great potential to solve problems in machine learning4–9.
Similarly, there has been considerable work in quantum image processing10–14. However, despite this progress, the current era of noisy
intermediate-scale quantum (NISQ) devices still calls for basic research to understand better the capabilities and applicability of quantum
information science (QIS)15.

A crucial problem when designing and implementing quantum algorithms that process classical data is the data encoding problem16,
which relates to how data is encoded in the quantum state of a qubit register, and is closely related to the data input problem. In the
encoding process, there is a trade-off between the efficient use of the Hilbert space and the computational complexity of the algorithms
leveraging the quantum representation9.

The main contributions of this paper are related to the data encoding problem and how to address it on NISQ hardware to implement
quantum data analysis algorithms in practice. First, we introduce an extension of the uniformly controlled rotation gate17 that enables
concurrent execution of two-qubit CX gates on the address and data qubits of the memory. We call this a parallel uniformly controlled
rotation gate and it can be viewed as a generalization of the parallel Toffoli gate decomposition18 to more than 2 address lines.

We implement our circuits in two quantum data encoding schemes: a QCrank angle encoding for continuous data and a QBArt
basis encoding for discrete data in binary representation. Second, we present the results of a collection of data encoding and analysis
experiments demonstrated using real quantum processors at an unprecedented scale for different data types, including images, DNA
sequences, and time-series.

The three most well-known types of data encoding are basis encoding, amplitude encoding, and angle encoding19. Assume that the
input data is an N = 2n-dimensional vector x⃗ = [x0, . . . ,xN−1]. Basis encoding is mainly used when discrete data must be arithmetically
manipulated in a quantum algorithm. In this case, x⃗ is a binary string obtained from the original classical data. For example, if the classical
data is the vector [0,1,2,3], then x⃗ = [00,01,10,11]. This binary string is encoded in the computational basis states of a qubit system,
i.e., |⃗x⟩= |00011011⟩. In the case of amplitude encoding, a (normalized) real- or complex-valued data vector x⃗ is directly encoded in a

1

2n-dimensional Hilbert space through the amplitudes of the state ∑i xi |i⟩. Finally, in an angle encoding, each xi in x⃗ is embedded through
single-qubit rotations, for example, as

⊗
i (cos(xi/2) |0⟩+ sin(xi/2) |1⟩) in case of a Pauli-Y rotation.

As previously mentioned, the problem of quantum data encoding is closely related to research on quantum data input and quantum
memory. Analogous to classical computer memory, the two main designs under investigation within the field of quantum computing are
quantum read only memory (QROM)20 and quantum random access memory (QRAM)18, 21. Both are based on coherent access to data
stored in quantum memory addresses that can be queried within a quantum algorithm. Theoretical designs vary from quantum circuit
implementations to proposals for native hardware implementations of quantum memory.

This work extends data encodings predominantly used in quantum image processing, usually called quantum image representations
(QIR), and have a close connection to QROM/QRAM. A variety of QIR methods have been developed22. The (improved) flexible
representation of quantum images ([I]FRQI)23–25, the (improved) novel enhanced quantum representation ([I]NEQR)26, 27, the multi-
channel representation of quantum images (MCRQI/MCQI)28, 29, and the (improved) novel quantum representation of color digital images
([I]NCQI)30, 31 are among the most powerful existing QIR methods. Our previous work proposed an overarching encoding framework
called QPIXL32 that unifies all QIRs mentioned above. In the QPIXL framework, every QIR can be written as

|ψ (⃗x)⟩= ∑
i
|i⟩⊗ |ci⟩ , (1)

where |ci⟩ is an encoding of the pixel colors in the qubit state and |i⟩ an encoding of the pixel positions in the qubit state32. All QIRs that
are commonly considered in the literature use a straightforward basis encoding for the pixel position information. However, the color
mapping varies for different QIRs. For example, NEQR employs a basis encoding for the pixel color information, FRQI uses an angle
encoding in a single qubit. In contrast, IFRQI and MCRQI/MCQI use angle encodings over multiple qubits.

The second contribution of QPIXL is an asymptotically optimal quantum circuit implementation to prepare QIRs based on uniformly
controlled rotation (UCR) gates17. A UCR is a multi-parameter, multi-qubit gate acting on na control or address qubits and 1 target or
data qubit. A UCR gate performs a single-qubit rotation of the data qubit around a fixed axis on the Bloch sphere. Here, the rotation angle
depends conditionally on the computational basis state of the address qubits. As such, it is parametrized by 2na rotation angles as there are
2na different basis states in the address register. For example, assuming Pauli-Y rotations,

Ry(φ) := e−iY φ/2 =

[
cos φ/2 −sin φ/2

sin φ/2 cos φ/2

]
, (2)

the unitary matrix corresponding to a UCRy gate with the final qubit as the data qubit is given by the following block diagonal matrix,

UCRy(⃗α) =

Ry(α0)
. . .

Ry(α2na−1)

 , (3)

where α⃗ = [α0, . . . ,α2na−1] is a vector of rotation angles. It follows that32

|ψFRQI(⃗α)⟩= UCRy(⃗α)(H⊗na ⊗ I) |0⟩⊗(na+1) ,

= ∑
i
|i⟩⊗ (cos αi/2 |0⟩+ sin αi/2 |1⟩). (4)

To recover α⃗ through projective measurement of |ψFRQI(⃗α)⟩ in the computational basis, we sample from the probability density function
(PDF)

∣∣|ψFRQI(⃗α)⟩
∣∣2 = ∣∣[c0,s0, . . . ,c2na−1,s2na−1]

∣∣2, where ci = cos αi/2 and si = sin αi/2. The input angles α⃗ can be uniquely recovered
by measuring the PDF,

α
meas
i = 2arctan

√
|si|2
|ci|2

, i ∈ [2na], (5)

provided that αi ∈ [0,π]. The input data x⃗ should be rescaled to rotation angles in this restricted range, e.g., αi = xi/A, where A is a
scaling factor such that the angles are mapped to [0,π].

A straightforward circuit implementation of the UCRy gate in Eq. (3) consists of 2na fully-controlled Ry gates, where, for i ∈ [2na], the
rotation angle is given by αi and the na address qubits are controlled on the state |i⟩. An optimized circuit implementation existing of a
depth-2na sequence of two-qubit CX gates and uncontrolled single-qubit Ry rotations17 reduces the quantum resources32 at the cost of an
increased classical overhead to solve the linear system

θ j = ∑
i

W ′
i, jαi, for i, j ∈ [2na], (6)

2/14

for the rotation angles θ⃗ . The angles θi are the parameters that are used in Ry rotations of the compact circuit implementation for the UCRy
gate in Fig. 1(a). The linear system (6) is a Walsh-Hadamard transformation with Gray ordering, explained in more details in “Theoretical
analysis of permuted UCRy gates” in the Supplementary Information. It can be solved efficiently classically in O(N logN) operations
through a Fast Walsh-Hadamard Transform (FWHT)32, where N denotes the length of the input sequence.

In another related work, we proposed FABLE33, which leverages compact UCRy and UCRz circuits to generate block-encodings of
matrices, a widely used primitive in quantum linear algebra algorithms such as the quantum singular value transformation34, 35.

Our new data encoding QCrank is an extension of the QPIXL–FRQI and MCRQI angle encodings. It uses parallel single-qubit
rotations and CX gates acting on disjoint qubit pairs leading to much shorter circuits with a high degree of quantum parallelism. Our
new QBArt basis encoding is a QCrank derivative that generates compact circuits for QIRs which use a basis encoding for the color
mapping |ci⟩ such as NEQR. We do consider both QCrank and QBArt in the broader context of encoding ordered data x⃗ in a quantum
state following Eq. (1), where the ordering of x⃗ is imposed by the tensor product of states on the address |i⟩ and data qubits |ci⟩. Eq. (1)
can be viewed as a generic case of a vectorized data structure with |i⟩ the index and |ci⟩ encodes the value of xi, respectively. This general
quantum index-value data structure enables a natural representation and manipulation of different types of ordered data, such as DNA
sequences, complex-valued series, 2D images, and time-ordered ECG waveforms, as shown by the experiments presented in the next
section and in “Further experiments using QCrank and QBArt” in the Supplementary Information. The experiments leverage QCrank and
QBArt based quantum algorithms and are executed on either NISQ36 hardware or noisy simulators. This work demonstrates that today’s
NISQ devices can encode and compute on classical data sets. Because of the limitations on circuit depth that NISQ devices impose,
we use relatively small data sets and simple processing tasks that are straightforward for classical computers. Nonetheless, our results
showcase the limits of what is currently experimentally possible in this field. At the same time, our initial proof-of-concept results unveil
the true possibilities for data analysis using quantum algorithms in the future as quantum hardware evolves.

Results
In this section, we describe the main contributions of this paper, including the optimally scheduled parallel UCR gates, our new QROM
encodings QCrank and QBArt, and a series of experiments with various types of data demonstrating their performance on real QPUs.

Optimally scheduled parallel UCR gates
Fig. 1(a) illustrates the standard compact circuit implementation for a UCRy gate17 with na = 5 address qubits used in the QPIXL
framework32. However, the UCRy circuit implementation is not unique. The positions of the control qubits of the CX gates can be
permuted cyclically, as shown in Fig. 1(b). We denote UCR(na;s)

y as the circuit implementation of a uniformly controlled Ry rotation with
na address qubits and cyclic permutations s ∈ [na]. We show all 3 possible realizations of cyclic permuted UCRs for 3 address qubits, i.e.,
s = 0 → [0,1,2], s = 1 → [1,2,0], and s = 2 → [2,0,1]. Note that the different implementations of the UCRy gate require a permutation
of the linear system (6) to compute the rotation angles. However, the angles can always be computed with an O(N logN) algorithm. More
details are provided in “Theoretical analysis of permuted UCRy gates” in the the Supplementary Information.

The benefit of the permuted UCRy gates becomes clear when we combine multiple of them acting on different data qubits but sharing
the same address qubits, as shown in Fig. 1(c). In this case, the 1- and 2-qubit gates expressing the UCRy circuits with the 3 different
permutations acting on 3 data qubits can be reordered to an equivalent circuit with the same critical depth as a single UCRy circuit
operating on 1 data qubit. That is possible because the single-qubit Ry rotations work on different qubits, and groups of CX gates act on
different pairs of qubits. Consequently, both the Ry and CX gates mutually commute and can be reordered to enable concurrent execution.
We call this a parallel uniformly controlled rotation gate or pUCR(na,nd)

y with na address qubits and nd data qubits. The CX-depth of a
pUCR(na,nd)

y circuit is

dCX ≤ 2na ⌈nd/min(na,nd)⌉, for nd ,na > 0. (7)

If nd ≤ na, Eq. (7) is a strict equality, because the CX gates within a cycle act along edges in the bipartite connectivity graph shown on the
right of Fig. 1(c) that connect disjoint pairs of address and data qubits. Consequently, these CX gates can be executed in parallel on the
quantum hardware, significantly shortening the execution time and improving the fidelity. If nd > na, we require nd UCR circuits but only
na different UCR permutations exist. Following the gate grouping shown in Fig. 1(c), we again find the CX depth on the right-hand side
of Eq. (7). However, for certain ratios of nd/na, we can commute independent CX and Ry gates and regroup them in such a manner that
further reduces the critical CX depth to the number of CX gates that are controlled by the address qubit with the most CX gates connected
to it.

Table 1 illustrates the circuit depth advantage of the pUCRy gate implementation, introduced in Fig. 1(c), over a logically equivalent
serial implementation that does not use the cyclic permuted UCRy but instead just combines unpermuted UCR(na;0)

y circuits on different
data lines. In this implementation, all the CX gates in a single cycle (blue box in Fig. 1(c)) share the same control qubit and cannot be
executed concurrently on current quantum hardware. The circuit depths reported in Table 1 are taken after transpilation. We see that the

3/14

Qiskit transpiler is not able to achieve the same data starting from the serial circuit compared to the parallel circuit. The reduction ranges
between 2.1× to 5× for the size of circuits we considered. This maps 1-to-1 to a similar reduction in data loading time.

A pUCR(na,nd)
y (⃗α) gate implements the block diagonal unitaryRy(α0,0)⊗···⊗Ry(α0,nd−1)

. . .
Ry(α2na−1,0)⊗···⊗Ry(α2na−1,nd−1)

, (8)

with α⃗ = [αi, j] a vector of nd ×2na rotation angles that encode the data x⃗.
Next, we describe our new QROM encodings QCrank and QBArt, which take advantage of this novel idea of optimally scheduled

parallel UCR gates.

QCrank data encoding
The quantum-parallel data encoding scheme we propose in this paper leverages the pUCRy circuits to generate an encoding. To this end,
we only have to prepend Hadamard gates acting on the register of address qubits of the pUCRy circuit. That creates an equal superposition
over all addresses as required for Eq. (1). Fig. 2 shows the high-level block diagram of the QCrank circuit. We call our method QCrank
as the arrangement of the CX gates in the pUCRy circuit diagram in Fig. 1(c) resembles a crankshaft in a combustion engine.

Similar to Eq. (4), it follows from Eq. (8) that the QCrank circuit prepares the state:

∣∣ψqcrank(⃗α)
〉
=

1√
2na

2na−1

∑
i=0

|i⟩⊗ |ci,0⟩ |ci,1⟩ · · ·
∣∣ci,nd−1

〉
,∣∣ci, j

〉
= cos(αi, j/2) |0⟩+ sin(αi, j/2) |1⟩ ,

(9)

where j ∈ [nd]. For a fixed index i and corresponding state |i⟩ on the address qubits, the different rotation angles αi,0, . . . ,αi,nd−1 are
encoded in the product state |ci,0⟩ · · · |ci,nd−1⟩. Consequently, the data recovery process can be decoupled into nd independent vectors of
input parameters α⃗:,0, . . . , α⃗:,nd−1, where α⃗:, j denotes the vector constructed by taking all values with second index equal to j. By tracing
out all data qubits except the jth, the FRQI state23 corresponding to the input parameter α⃗:, j is retrieved. Formally,

ρFRQI(⃗α:, j) = TrDk:k ̸= j ρqcrank(⃗α), (10)

where Dk:k ̸= j is the Hilbert space of all data qubits except the jth, and ρFRQI and ρqcrank are the density matrices defined in the usual
manner. Eq. (10) provides a procedure to reduce the PDF on na + nd qubits measured from QCrank to nd PDFs on na qubits for an
FRQI encoding, for which we can recover the data using Eq. (5). As such, the state

∣∣ψqcrank(⃗α)
〉

can be used to encode a dataset x⃗ of size
2na ×nd by mapping and/or rescaling real values xi, j to QCrank inputs αi, j ∈ [0,π]. We note that QCrank uses shared address qubits
with different data qubits, naturally resulting in shorter circuit depths as shown in Fig. 1. We remark that the QCrank state preparation
defined in Eq. (9) is mathematically equivalent to the MCRQI encoding29.

In an idealized setting, QCrank allows for a lossless data encoding in a quantum state. In general, the purpose of the QCrank scheme
is to enable potentially complex data processing or learning tasks on quantum computers. However, because of the limitations of current
NISQ-era hardware, which is still severely restricted by gate infidelities, short coherence times, and cross-talk, we limit ourselves in this
work to experimental demonstrations that either load and immediately recover the data through measurement, or apply a relatively simple
and shallow data processing circuit.

For the task of data recovery, x⃗ meas can in principle be measured up to arbitrary precision with the error scaling as N−1/2
s , where Ns is

the number of shots. For a NISQ device, we cannot expect that the reconstruction error decreases monotonically just by increasing Ns. For
example, slight under- or over-rotation during the Ry rotations on the data qubits can accumulate and distort the relationship between the
intended and achieved rotation angles. Moreover, CX errors are typically an order of magnitude higher and lead to non-local errors. To
compensate for all these effects, we introduce a hardware and circuit-dependent heuristic function g(·), called adaptive calibration,

α
meas∗
i = g(αmeas

i) , i ∈ [2na], (11)

which corrects the angles obtained from Eq. (5) to allow for a near-perfect QCrank decoding on NISQ devices. For clarity, we distinguish
parameters recovered with the heuristic Eq. (11) by adding an asterisk as a superscript. The construction of g(·) from calibration
measurements is discussed in more detail in “Methods”.

Additionally, for the QCrank experiments discussed in this work, we limit the input data x⃗ from continuous to discrete variables. We
assume that x⃗ consists of a sequence of values drawn from a discrete set [0,1, . . . ,K −1]. We call each possible input value a symbol and
interpret K as the max value or ⌈log2(K)⌉ as the bit depth in the case of digitized sequences, images, or time-series data. The advantage
here is that to recover the discretized data xmeas∗, we only need to be able to distinguish K different αmeas∗ values that are spaced π/K

4/14

apart. In practice, we choose K = 8, which is small enough to simplify the task of distinguishing the K different rotation angles in the
presence of noise and a limited measurement budget.

Despite all of the advantages of the QCrank encoding, we must point out that there are two difficulties in using it for large-scale data
processing. First, to decode the data from a QCrank encoding relies on accurately measuring the PDF to compute the data using Eq. (5),
which clearly scales exponentially with the number of address qubits na. For example, assuming 8 address qubits and 16 data qubits,
QCrank can store 28×16 = 212 real input values onto a QPU onto 24 qubits. To recover all 212 real values, we need to accurately measure
probabilities for all 28 = 256 address bit-strings separately for each data qubit. Assuming we aim for an error of 1% for probabilities used
in Eq. (5), it would require about 104 shots per bit-string. Hence, about 106 shots would be required to recover 100s of stored values with
a desired precision of 1%. This estimate on the number of shots is based purely on sampling error. It does not consider the infidelity of the
actual quantum hardware, which will further increase the necessary amount of shots. Using QCrank in this manner can be practical if we
plan to recover only a small number of values from the QPU, in which case specific address bits can be queried on the address register.
Furthermore, merely encoding and decoding classical data on a QPU is of limited interest beyond benchmarking and verification purposes.
Consequently, some quantum data processing that condenses the information from the high-dimensional input space to a low-dimensional
solution must be applied on the QPU before we read it out classically. Second, it is not trivial to develop data processing algorithms that
act on the angle encoding used in QCrank and return a condensed result. To overcome these issues, we propose the QBArt encoding,
which uses the NEQR basis encoding.

QBArt data encoding
Our Quantum Binary representation Arithmetic (QBArt) encoding retains the quantum-parallel feature of QCrank while encoding the
data in the well-studied basis encoding as used in NEQR26. Formally, QBArt generates circuits with identical structure as the QCrank
circuit (Fig. 2), except that the rotation angles are now restricted to two discrete values α⃗ ∈ {0,π}. It was noted in Figure 3 and Definition
6 in our previous work32 that serial UCRy gates can be used to prepare a NEQR state. QBArt instead leverages the compact parallel UCR
circuits to efficiently prepare the NEQR state on real QPUs.

QBArt offers a lower density of information storage than QCrank because data qubits now hold only superposition of {0,1}’s
instead of superposition of real numbers encoded as Ry rotations. However, the output of QBArt is sparse, so decoding requires a far
smaller number of shots. Furthermore, instead of relying on estimating the PDF and using Eq. (5) to recover the data, the observed
bit-strings themselves contain the data. Theoretically, that leads to an exact data value reconstruction using a single observation. We will
experimentally demonstrate that post-processing by majority voting suppresses the noise artifacts very effectively for QBArt executed on
NISQ hardware. The number of data qubits used in QBArt sets the absolute precision with which a quantum computation is performed
on the data, regardless of the QPU’s fidelity. Since many data processing tasks require 8 to 16 bits of precision, this is a manageable
overhead for the qubit count, even for existing QPUs.

QBArt benchmarking
In this section, we run a benchmark using a QBArt circuit of fixed size on various available QPUs. We consider this to be an application-
level benchmark37, 38 that specifically evaluates the performance of the QPU to serve as QROM. We use this benchmark to inform our
choice of QPU to run the data processing experiments described in “Quantum Data Processing on H1-1”.

We use a QBArt circuit with 2 address and 4 data qubits such that it can be executed on any QPU with at least 6 qubits. A circuit of
this size can load 4 bit strings, each of length 4, and we use randomly generated bit strings as input data. Our benchmarks are executed on
Quantinuum, IonQ, and IBMQ QPUs. The specifications of these different backends are summarized in Table 2.

A QBArt encoding generates the optimal circuit for QPUs on which a bipartite qubit connectivity is naturally available. The
trapped ion QPUs (H1-1, Harmony, and Aria) natively allow such connectivity. However, for the transmon-based QPUs from IBMQ
with heavy-hexagonal connectivity, the transpiled circuits become deeper due to the inevitable swap operations (see Table 2). Before
transpilation, the circuit depth is 8 CX-cycles. We also run the same experiment on the noise-free Qiskit simulator for reference.

We compare shot dependence of two metrics pertaining to (1) the fidelity of individual values in the sequence and (2) the whole
sequence being recovered correctly, both defined in “Methods”. The results are shown in Fig. 3. The trapped-ion QPUs require only 100
shots to recover the entire sequence and significantly outperform the transmon-based QPUs. The two decisive factors are differences in
the fidelity of entangling gates and the versatility of the native connectivity. Only on the IBM jakarta, which has a relatively low CX-gate
error, can we achieve 100% sequence fidelity but at the expense of more than 2000 shots. It requires 100 times more shots compared to an
ideal noise-free QPU.

The Quantinuum H1-1 QPU achieves the highest fidelity among all the QPUs tested and will be the backend we use for the data
processing experiments in the next section.

Quantum Data Processing on H1-1
In the following, we describe four experiments using different types of data executed on H1-1 as summarized in Table 3.

5/14

DNA sequences
The genetic code of any organism is described as a sequence of codons that encode specific amino acids. A codon consists of three
nucleotides. Since 4 types of nucleotides exist in nature (A, T , G, C), there are 64 different codons, which is equivalent to 6 classical bits
of information. On a quantum computer, we will use 6 qubits to encode a codon by assigning 2-qubit basis states to the 4 nucleotides,

A = |00⟩ ,T = |01⟩ ,G = |10⟩ ,C = |11⟩ , (12)

and constructing the tensor product of 3 2-qubit states, e.g., ACT = |001101⟩ or AT G = |000110⟩. To compare 2 DNA sequences made
of codons, we compute on pairs of codons, requiring 12 qubits in total. Consequently, the integer values in Eq. (1), ci ∈ [4096], allow the
encoding of 2 codons as a quantum state |a0 · · ·a5 b0 · · ·b5⟩, being again a tensor product of the quantum states of 2 codons.

We realize that the quantum DNA data processing primitives presented in this section are toy models based on relatively small data
sets and do not provide computational advantage over far more efficient conventional algorithms. Our goal is rather to demonstrate what
is possible with current generation quantum computers and motivate future work in this field.

Pattern matching In Experiment #1, the inputs are two codon sequences of equal length, and the output is a 1-bit sequence of the same
length that contains 1 for every position where the codons match and 0 elsewhere. The additional 6-bit wide output sequence encodes
which nucleotides did not match. The QBArt circuit (Fig. 4 (Left)) implementing Experiment #1 requires a total of 16 qubits, 4 of which
are used as address qubits, and the 12 data qubits encode the codons of both sequences using 6 bits each. To save on quantum resources,
we ‘recycle’ 5 qubits in the middle of the circuit by applying a reset gate, which is available on most QPUs. The total circuit depth is 68
CX-gates, of which 48 are needed by QBArt itself, following Eq. (7). We perform this DNA matching experiment on the real 20-qubit
trapped-ion QPU from Quantinuum, H1-1. The input sequence A is a random snippet from the COVID-19 genome strain39. Sequence B
is a copy of A, but the 6 codons in positions 5 to 10 are randomly altered, as shown in Fig. 4 (Right). At the expense of 600 shots and
using the majority voting technique, we achieve an exact result for all 16 codon pairs. The results shown in Fig. 4 (Right, (a)) confirm
that the 6 XOR bits pi are all 0 when the two codons match, and some are non-zero otherwise, following the ground-truth. The bit m0,
indicating a match, is also correctly computed, as shown in Fig. 4 (Right, (b)).

Hamming weight computation The Hamming distance between two bit-strings tells us in how many places they differ from one
another; hence, when applied to codon sequences, it is an essential tool for studying the evolution of the genetic code. The Hamming
weight of a binary string is defined as the number of bits set to 1. In Experiment #1 we have already computed the binary XOR value
between the two codons, stored at pi. We will now pass them to the Hamming weight algorithm to compute the desired Hamming distance.
Experiment #2 computes the Hamming weights for a 3-bit sequence of length 16. We use QBArt with 4 address qubits and 3 data qubits
to encode the input and 1 ancilla qubit. The complete QBArt circuit (Fig. 5 (Left)) uses 8 qubits, has a CX-depth of 28 cycles on an
all-to-all connected QPU. The experimental results from H1-1 for a pseudo-random input sequence and using 300 shots agree with the
ground-truth exactly, as shown in Fig. 5 (Right).

We recognize that the quantum circuit in Fig. 5 (Left) does only ‘half’ of the job since it reduces only 3 inputs p0, p1, p2 to 2 output
bits s0,s1. However, with enough resources, we can add a second copy of the same circuit acting in parallel on the output qubits p3, p4, p5
from the circuit shown in Fig. 4 (Left) and compute the missing 2nd Hamming weight, to be stored on qubits s2,s3. Then, we can apply a
binary adder on two 2-bit inputs, using one of the known quantum circuits40, to obtain the total Hamming distance between the 2 6-bit
codons.

Complex conjugate
The time evolution of a damped pendulum described by Eq. (13) is an example of a process described by the ordinary differential equation,
ODE, in the complex domain. The real and imaginary components of the complex-valued amplitude C(t) are denoted as A(t) and B(t),
respectively. They are plotted independently as a parametric trajectory in blue on 3 panels in Fig. 6 (Right). The purpose of Experiment #3
is to store the time-series Ct onto the QPU, compute the complex conjugate of the amplitude, C∗

t , and recover the resulting new time-series
through measurement.

Ct = aexp [(b+ jc)t + c], Ct ∈ C, for t ∈ [0, . . . ,31]
At = Re(Ct), (13)
Bt = Im(Ct),

where j =
√
−1 and the real parameters a,b,c,d are conveniently chosen to match the initial condition |A0|, |B0| ≃ 24 and |A31|, |B31| ≃ 1.

We use the signed integer 5-bit representation for both components At and Bt , stacked as a single 10-bit input for the QBArt circuit
(Fig. 6 (Left)). Next, we invert the sign of the Bt -data and perform the measurement. This circuit uses 5 address qubits and 10 data qubits,
with a CX-depth of 64. Only one cycle of X gates is needed to invert all 32 Bt values stored in the Hilbert space. The output −Bt values
are 1’s complementary and need to be decoded as such classically, back to signed integers. This method of computing 1’s complementary
was proposed in the original NEQR paper26. However, to the best of our knowledge, we present the first practical demonstration of such
computation using a real QPU. To recover all 32 10-bit values exactly, the H1-1 requires 103 shots.

6/14

2D image
Any multi-dimensional indexed dataset can always be enumerated as a 1-dimensional sequence. Therefore, our proposed quantum data
encodings can directly encode 2D images as well. Experiment #4 demonstrates the QCrank encoding of the black and white image
of size 384 bits shown in Fig. 7(a). The recovered image from the Quantinuum H1-1 QPU is shown in Fig. 7(b). At the expense of
7000 shots, QCrank recovers 97% of the pixels correctly. The location of the 12 incorrect bits is random, as shown in Fig. 7(c). This
experiment shows that we can store, today, a non-trivial sized image on a 12 qubit system. Moreover, an image encoded with QBArt
could be manipulated by a quantum algorithm, such as filtering13.

Simulations
In addition to the four experiments executed on H1-1, we explore the robustness and versatility of our proposed encodings with additional
simulated experiments presented in “Further experiments using QCrank and QBArt” in the Supplementary Information. In particular, we
demonstrate the feasibility of storing and retrieving an arbitrary waveform on a QPU. We generate a synthetic electrocardiogram (ECG)
time-series of length 64, digitize it with the 6-bit resolution, and encode it using QBArt. We also study the dynamic range and recovery
fidelity for QCrank as a function of the simulated noise and the number of shots.

Discussion
This work presents two significant contributions to practical realization of quantum data encoding and analysis. First, the parallel
uniformly controlled rotation circuits (pUCR) significantly reduce the critical circuit depth (dCX) compared to a serial implementation.
The pUCR circuit leverages concurrent execution of CX gates which leads to compact circuits that are well-suited for QPUs with a high
degree of connectivity, such as those based on the ion trap technology. Second, we propose two data encoding methods that use pUCR
circuits: QCrank which encodes continuous real data as rotation angles, and QBArt which encodes integer data in binary representation.
Finally, we present an extensive collection of experiments conducted on different real QPUs with both QCrank and QBArt encodings.
We demonstrate successful quantum data encoding and analysis at a considerably larger scale than achieved in previous studies. This is
enabled by two new error mitigation strategies for QCrank and QBArt respectively, to correct the noisy hardware results.

Our experiments show that the Quantinuum H1-1 QPU can reliably prepare a QCrank state that encodes 384 black-and-white pixels
on 12 qubits. We introduce an adaptive calibration routine to compensate for the hardware noise and achieve a 97% recovery fidelity
using 7,000 shots. This QCrank state on na = 4, nd = 8 qubits encodes 128 real values. It is 16× more then the state-of-the-art QML
experiments in9, which extracted from the MNIST images the 8-dimensional real feature vectors in order to encode them on quantum
hardware. The data encoding method in9 allow for trade-offs between ancillary qubits and circuit depth. It is an interesting topic of future
research to investigate if our circuits can allow for a similar trade-off.

Our experiments with QBArt show that the H1-1 QPU can, with near-perfect fidelity, (1) simultaneously encode two DNA sequences
of 16 codons stored in 6 bits and compute the positions where the sequences are mismatched, (2) compute the Hamming weight of a
sequence of 16 3-bit integers, and (3) compute the complex conjugate of a sequence of 32 complex values with real and imaginary parts
both encoded with bit-depth 5. Furthermore, we successfully use a majority voting technique to reliably identify the correct results from
the measured bit strings. Finally, we report the results of a 6 qubits QBArt encoding benchmark comparing the recovered value and
sequence fidelity on Quantinuum, IonQ, and IBM QPUs. This experiment highlights the superiority of ion trap QPUs over superconducting
QPUs for preparing a QBArt state. That is partially attributed to the qubits connectivity: additional swap gates are required to run a
pUCR circuit on superconducting QPUs.

For a fixed number of qubits, the angle encoding in QCrank and FRQI24 can store more data than a binary encoding in QBArt and
NEQR26. However, data processing of angle encodings is considerably more complex than computing on binary encodings where classical
binary logic operations can be efficiently converted to reversible quantum operations1. Additionally, our experiments show that binary
data can be recovered with greater fidelity and using an order of magnitude fewer shots compared to data stored in an angle encoding.

Our multiplexor pUCR gates are closely related to circuit implementations used for QROM/QRAM. For example, the implementation
of the bucket brigade QRAM18 leverages parallel decompositions of commuting Toffoli gates which closely resemble the pUCR circuit
for the special case na = nd = 2. It is important to note, however, that our circuits have been designed for execution in the current NISQ
era, whereas QRAM implementations typically target future fault-tolerant architectures. It is likely that our pUCR circuits are suboptimal
in a fault-tolerant setting because the logical synthesis of the Ry gates will lead to a large overhead compared to18.

One exciting topic for future study that our results hint at is the potential of the compact, parallel QCrank circuits in the context of
hybrid algorithms such as Variational Quantum Algorithms (VQA)41 or Quantum Machine Learning (QML)42 tasks. In this context,
the rotation angles in the QCrank circuit are considered free parameters that are variationally optimized in a quantum-classical hybrid
iteration where the cost function is evaluated on the QPU.

Methods
Metrics of fidelity
We define three metrics to characterize the quality of the recovered results using QCrank and QBArt encodings on noisy QPUs:

7/14

• Dynamic range (Dr) is defined as the distance between the expectation values of the reconstructed angle αmeas (Eq. (5)) for the
first and last symbol. It is applicable only for QCrank with input quantized into K symbols a0, . . . ,aK−1

Dr =
E
(
αmeas(aK−1)

)
−E

(
αmeas(a0)

)
α(aK−1)−α(a0)

. (14)

The domain of Dr is [0,1], where 1 corresponds to a perfect result and 0 means that pure noise is measured.

• Recovered value fidelity (RVF) is defined as the probability to recover the correct symbol at a given position in the sequence,
averaged over the sequence.

• Recovered sequence fidelity (RSF) is defined as the probability of all recovered values in a sequence being correct. In the simplest
case, RSF ∼ (RVF)N , with N being the length of the sequence.

Adaptive calibration for QCrank
Based on experiments using a noisy simulator, we observed that the dynamic range (Dr) is reduced with increasing gate infidelity, which
leads to incorrect symbol reconstruction, as shown in Supplementary Fig. S1. Therefore, we developed an adaptive calibration method to
compensate for these distortions. For each input symbol, ai, we measure the average reconstructed output E(αmeas

i). We then define a
lookup table with K −1 thresholds τi,

τi =
E(αmeas

i)+E(αmeas
i+1)

2
, (15)

set halfway between those K averages, shown as horizontal dotted lines in Supplementary Fig. S1. Next, we reanalyze the same experiment
and assign the discrete reconstructed symbols using a heuristic function g(.), g : αmeas → ameas∗ defined by the following lookup table:

g(αmeas) =


a0, if αmeas < τ0

aK−1, if αmeas ≥ τm−2

a j, if αmeas ∈ [τ j,τ j+1)

. (16)

Majority voting for QBArt
For measurements subject to a low noise level, only a few of the measured bits will be incorrect, resulting in either corrupted address or
corrupted data bits. To compensate for this uncorrelated noise, for each measured address, we choose the reconstructed data to be the
most probable value (MPV) of all the data sub-strings collected from the measured bit-strings. This procedure is equivalent to majority
voting on the data bit-strings. As the errors on the address bit-strings manifest in the same way, MPV selection also suppresses it.

References
1. Nielsen, M. A. & Chuang, I. L. Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2010).

2. Shor, P. W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26,
1484–1509, DOI: 10.1137/s0097539795293172 (1997).

3. Grover, L. K. A fast quantum mechanical algorithm for database search. In Proceedings of the twenty-eighth annual ACM symposium
on Theory of computing - STOC ’96, 212–219, DOI: 10.1145/237814.237866 (ACM Press, New York, New York, USA, 1996).

4. Ciliberto, C. et al. Quantum machine learning: A classical perspective. Proc. Royal Soc. A: Math. Phys. Eng. Sci. 474, 20170551,
DOI: 10.1098/rspa.2017.0551 (2018).

5. Abbas, A. et al. The power of quantum neural networks. Nat. Comput. Sci. 1, 403–409, DOI: 10.1038/s43588-021-00084-1 (2021).

6. Huang, H.-Y. et al. Power of data in quantum machine learning. Nat. Commun. 12, 1–9, DOI: 10.1038/s41467-021-22539-9 (2021).

7. Liu, Y., Arunachalam, S. & Temme, K. A rigorous and robust quantum speed-up in supervised machine learning. Nat. Phys. 17,
1013–1017, DOI: 10.1038/s41567-021-01287-z (2021).

8. Schuld, M. & Killoran, N. Is quantum advantage the right goal for quantum machine learning? PRX Quantum 3, 030101, DOI:
10.1103/PRXQuantum.3.030101 (2022).

9. Johri, S. et al. Nearest centroid classification on a trapped ion quantum computer. npj Quantum Inf. 7, DOI: 10.1038/
s41534-021-00456-5 (2021).

10. Yan, F. & Venegas-Andraca, S. E. Quantum Image Processing (Springer Singapore, Singapore, 2020).

8/14

10.1137/s0097539795293172
10.1145/237814.237866
10.1098/rspa.2017.0551
10.1038/s43588-021-00084-1
10.1038/s41467-021-22539-9
10.1038/s41567-021-01287-z
10.1103/PRXQuantum.3.030101
10.1038/s41534-021-00456-5
10.1038/s41534-021-00456-5

11. Yao, X.-W. et al. Quantum image processing and its application to edge detection: Theory and experiment. Phys. Rev. X 7, 031041,
DOI: 10.1103/PhysRevX.7.031041 (2017).

12. Wang, Z., Xu, M. & Zhang, Y. Review of quantum image processing. Arch. Comput. Methods Eng. 29, 737–761, DOI: 10.1007/
s11831-021-09599-2 (2022).

13. Jiang, S., Zhou, R.-G., Hu, W. & Li, Y. Improved quantum image median filtering in the spatial domain. Int. J. Theor. Phys. 58,
2115–2133, DOI: 10.1007/s10773-019-04103-w (2019).

14. Li, P., Shi, T., Zhao, Y. & Lu, A. Design of threshold segmentation method for quantum image. Int. J. Theor. Phys. 59, 514–538,
DOI: 10.1007/s10773-019-04346-7 (2020).

15. Deutsch, I. H. Harnessing the power of the second quantum revolution. PRX Quantum 1, 020101, DOI: 10.1103/PRXQuantum.1.
020101 (2020).

16. Lloyd, S., Schuld, M., Ijaz, A., Izaac, J. & Killoran, N. Quantum embeddings for machine learning, DOI: 10.48550/arXiv.2001.03622
(2020).

17. Möttönen, M., Vartiainen, J. J., Bergholm, V. & Salomaa, M. M. Quantum circuits for general multiqubit gates. Phys. Rev. Lett. 93,
DOI: 10.1103/PhysRevLett.93.130502 (2004).

18. Paler, A., Oumarou, O. & Basmadjian, R. Parallelizing the queries in a bucket-brigade quantum random access memory. Phys. Rev. A
102, 032608, DOI: 10.1103/PhysRevA.102.032608 (2020).

19. Schuld, M. & Petruccione, F. Quantum models as kernel methods. In Schuld, M. & Petruccione, F. (eds.) Machine Learning with
Quantum Computers, 217–245, DOI: 10.1007/978-3-030-83098-4_6 (Springer International Publishing, Cham, 2021).

20. Babbush, R. et al. Encoding electronic spectra in quantum circuits with linear t complexity. Phys. Rev. X 8, 041015, DOI:
10.1103/PhysRevX.8.041015 (2018).

21. Giovannetti, V., Lloyd, S. & Maccone, L. Quantum random access memory. Phys. Rev. Lett. 100, 160501, DOI: 10.1103/PhysRevLett.
100.160501 (2008).

22. Yan, F., Iliyasu, A. M. & Venegas-Andraca, S. E. A survey of quantum image representations. Quantum Inf. Process. 15, 1–35, DOI:
10.1007/s11128-015-1195-6 (2016).

23. Le, P. Q., Dong, F. & Hirota, K. A flexible representation of quantum images for polynomial preparation, image compression, and
processing operations. Quantum Inf. Process. 10, DOI: 10.1007/s11128-010-0177-y (2011).

24. Le, P. Q., Iliyasu, A. M., Dong, F. & Hirota, K. A flexible representation and invertible transformations for images on quantum
computers. In New Advances in Intelligent Signal Processing, 179–202, DOI: 10.1007/978-3-642-11739-8_9 (Springer, Berlin,
Heidelberg, 2011).

25. Khan, R. A. An improved flexible representation of quantum images. Quantum Inf. Process. 18, 201, DOI: 10.1007/
s11128-019-2306-6 (2019).

26. Zhang, Y., Lu, K., Gao, Y. & Wang, M. NEQR: A novel enhanced quantum representation of digital images. Quantum Inf. Process.
12, DOI: 10.1007/s11128-013-0567-z (2013).

27. Jiang, N. & Wang, L. Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14, 1559–1571, DOI:
10.1007/s11128-014-0841-8 (2015).

28. Sun, B. et al. A multi-channel representation for images on quantum computers using the RGBα color space. In 2011 IEEE 7th
International Symposium on Intelligent Signal Processing, 1–6, DOI: 10.1109/WISP.2011.6051718 (2011).

29. Sun, B., Iliyasu, A. M., Yan, F., Dong, F. & Hirota, K. An RGB multi-channel representation for images on quantum computers. J.
Adv. Comput. Intell. Intell. Informatics 17, DOI: 10.20965/jaciii.2013.p0404 (2013).

30. Sang, J., Wang, S. & Li, Q. A novel quantum representation of color digital images. Quantum Inf. Process. 16, 42, DOI:
10.1007/s11128-016-1463-0 (2016).

31. Su, J., Guo, X., Liu, C., Lu, S. & Li, L. An improved novel quantum image representation and its experimental test on IBM quantum
experience. Sci. Rep. 11, 1–13, DOI: 10.1038/s41598-021-93471-7 (2021).

32. Amankwah, M. G., Camps, D., Bethel, E. W., Van Beeumen, R. & Perciano, T. Quantum pixel representations and compression for
N-dimensional images. Sci. Rep. 12, 7712, DOI: 10.1038/s41598-022-11024-y (2022).

33. Camps, D. & Van Beeumen, R. FABLE: Fast approximate quantum circuits for block-encodings. In 2022 IEEE International
Conference on Quantum Computing and Engineering (QCE), 104–113, DOI: 10.1109/QCE53715.2022.00029 (2022).

9/14

10.1103/PhysRevX.7.031041
10.1007/s11831-021-09599-2
10.1007/s11831-021-09599-2
10.1007/s10773-019-04103-w
10.1007/s10773-019-04346-7
10.1103/PRXQuantum.1.020101
10.1103/PRXQuantum.1.020101
10.48550/arXiv.2001.03622
10.1103/PhysRevLett.93.130502
10.1103/PhysRevA.102.032608
10.1007/978-3-030-83098-4_6
10.1103/PhysRevX.8.041015
10.1103/PhysRevLett.100.160501
10.1103/PhysRevLett.100.160501
10.1007/s11128-015-1195-6
10.1007/s11128-010-0177-y
10.1007/978-3-642-11739-8_9
10.1007/s11128-019-2306-6
10.1007/s11128-019-2306-6
10.1007/s11128-013-0567-z
10.1007/s11128-014-0841-8
10.1109/WISP.2011.6051718
10.20965/jaciii.2013.p0404
10.1007/s11128-016-1463-0
10.1038/s41598-021-93471-7
10.1038/s41598-022-11024-y
10.1109/QCE53715.2022.00029

34. Gilyen, A., Su, Y., Low, G. H. & Wiebe, N. Quantum singular value transformation and beyond: Exponential improvements for
quantum matrix arithmetics. In Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, 193–204, DOI:
10.1145/3313276.3316366 (Association for Computing Machinery, 2019).

35. Martyn, J. M., Rossi, Z. M., Tan, A. K. & Chuang, I. L. Grand unification of quantum algorithms. PRX Quantum 2, 040203, DOI:
10.1103/PRXQuantum.2.040203 (2021).

36. Preskill, J. Quantum computing in the NISQ era and beyond. Quantum 2, 79, DOI: 10.22331/q-2018-08-06-79 (2018).

37. Tomesh, T. et al. Supermarq: A scalable quantum benchmark suite, DOI: 10.48550/ARXIV.2202.11045 (2022).

38. Lubinski, T. et al. Application-oriented performance benchmarks for quantum computing, DOI: 10.48550/ARXIV.2110.03137
(2021).

39. Sah, R. et al. Complete genome sequence of a 2019 novel coronavirus (SARS-CoV-2) strain isolated in Nepal. Microbiol. Resour.
Announc. 9, e00169–20, DOI: 10.1128/MRA.00169-20 (2020).

40. Cuccaro, S. A., Draper, T. G., Kutin, S. A. & Moulton, D. P. A new quantum ripple-carry addition circuit, DOI: 10.48550/arXiv.
quant-ph/0410184 (2004).

41. Cerezo, M. et al. Variational quantum algorithms. Nat. Rev. Phys. 3, 625–644, DOI: 10.1038/s42254-021-00348-9 (2021).

42. Biamonte, J. et al. Quantum machine learning. Nature 549, 195–202, DOI: 10.1038/nature23474 (2017).

Acknowledgements
All authors were supported by the U.S. Department of Energy (DOE) under Contract No. DE-AC0205CH11231. DC and RVB were
supported by the Office of Advanced Scientific Computing Research (ASCR) Exploratory Research for Extreme-Scale Science. This
research used resources of the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of
Science User Facility located at Lawrence Berkeley National Laboratory. This research used resources of the Oak Ridge Leadership
Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725.

Author contributions
J.B. proposed quantum parallelization scheme, designed and executed experiments, and wrote the original draft of the paper. M.A.
explored algorithms computing on quantum representations. R.V.B. contributed to the proposed research. T.P defined the research
objectives and the scope of the paper, and oversaw the development of the work. D.C developed mathematical representation and the core
code implementation of the proposed quantum algorithms. R.V.B, E.W.B, T.P., and D.C contributed to writing the paper. All the authors
reviewed and edited the paper.

Data availability
The data generated for the QCrank and QBArt experiments can be found at https://github.com/QuantumComputingLab/
qpixlpp/tree/master/examples/SciRep2024_QBArt_QCrank_Data.

Additional information
Competing interests: the author(s) declare no competing interests.

10/14

10.1145/3313276.3316366
10.1103/PRXQuantum.2.040203
10.22331/q-2018-08-06-79
10.48550/ARXIV.2202.11045
10.48550/ARXIV.2110.03137
10.1128/MRA.00169-20
10.48550/arXiv.quant-ph/0410184
10.48550/arXiv.quant-ph/0410184
10.1038/s42254-021-00348-9
10.1038/nature23474
https://github.com/QuantumComputingLab/qpixlpp/tree/master/examples/SciRep2024_QBArt_QCrank_Data
https://github.com/QuantumComputingLab/qpixlpp/tree/master/examples/SciRep2024_QBArt_QCrank_Data

(a)

UCR(5)
y

a0 · · · · · · · · · •
a1 • · · · · · · · · ·
a2 • · · · · · · · · ·
a3 • • · · · · · · · · · •
a4 • • • • · · · · · · · · · • •
d · · · · · · · · ·

a0

a1

a2

a3

d

a4

(b)

UCR(3;0)
y

a0 • • • •
a1 • •
a2 • •
d

a0

a1

a2

d

d′

d′′

UCR(3;1)
y

a0 • •
a1 • • • •
a2 • •
d′

a0

a1

a2

d

d′

d′′

UCR(3;2)
y

a0 • •
a1 • •
a2 • • • •
d′′

a0

a1

a2

d

d′

d′′

(c)

pUCR(3,3)
y

a0 • • • • • • • •
a1 • • • • • • • •
a2 • • • • • • • •
d
d′

d′′

a0

a1

a2

d

d′

d′′

Figure 1. Different types of uniformly controlled rotation (UCR) gates with optimal connectivity graphs for qubits shown on the right.
(a) Standard compact circuit implementation for a UCRy gate that was used in the QPIXL framework32 for 5 address and 1 data qubits.
Square boxes denote single qubit Ry rotations. (b) All 3 possible realizations of the cyclic permuted UCRs for 3 address and 1 data qubits.
(c) Parallel UCR for 3 address and 3 data qubits. The same 3 different permuted UCRy circuits using the common 3 address qubits and 3
different data qubits can be reordered to an equivalent circuit with the same CX depth as a single UCRy circuit. Blue rectangles indicate
groups of 3 CX gates which can be executed concurrently in the same cycle.

|0⟩⊗na / H⊗na □

|0⟩⊗nd / pUCR(na,nd)
y (⃗α)

Figure 2. High-level block diagram of the QCrank circuit encoding nd ×2na real values α⃗ onto the state of na +nd qubits.

11/14

101 102 103 104

shots per circuit

0.0

0.2

0.4

0.6

0.8

1.0
va

lu
e

 fi
de

lit
y

(a)

ideal simu
Qtuum H1-1

IonQ Aria-1
IonQ Harmony

IBM jakarta
IBM guadalupe

IBM montreal

101 102 103 104

shots per circuit

0.0

0.2

0.4

0.6

0.8

1.0

se
qu

en
ce

 f
id

el
ity

(b)

Figure 3. Reconstruction fidelity for the QBArt benchmark experiment that uses 4 4-bit integers loaded on 6 qubits. Data is shown for
Quantinuum, IonQ, and IBMQ QPUs:
(a) reconstructed value fidelity (b) reconstructed sequence fidelity. The H1-1 experiment with 50 shots was only performed for one input
sequence, so no error bars are shown.

|0⟩⊗4 /

Q
B
A
r
t
(

A⃗
,B⃗

)

addr
|0⟩a0 X • X p0

|0⟩a1 X • X p1

|0⟩a2 X • X p2

|0⟩a3 X • X p3

|0⟩a4 X • X p4

|0⟩a5 X • X p5

|0⟩b0 • |0⟩ •
|0⟩b1 • |0⟩ •
|0⟩b2 • |0⟩ •
|0⟩b3 • |0⟩ •
|0⟩b4 • |0⟩ m0

|0⟩b5 •

XOR(A⃗, B⃗) AND(p̄0, ..., p̄5)

0

5

10

15

in
t(

XO
R

 A
,B

) (a)

ACT
ACT

ATT
ATT

CAA
CAA

CCA
CCA

AGG
ATC

GTT
GGG

GAA
GCA

AAG
AAT

AAA
ACT

AAG
ATC

CTT
CTT

GAT
GAT

GGC
GGC

TTT
TTT

ATG
ATG

GGT
GGT

seq A →
seq B →

⟵ mutated ⟶

ground truth measured H1-1

False

True

m
at

ch

(b)

Figure 4. (Left) Quantum circuit computing the match between two 16 elements long input sequence of 6-bit values A and B, encoded on
qubits ai and bi, respectively. The QBArt unitary prepares the initial state. The 6 CX gates compute the XOR between bits of sequences
element. The following 5 nested Toffoli gates set the output qubit m0 to state |1⟩ if both 6-bit input pairs match. The intermediate XOR
output result is also measured on qubits pi. (Right) Results obtained by the DNA sequence matching executed on Quantinuum H1-1 QPU.
The algorithm correctly detects the differences between the 6 codons in positions 5 to 10, marked in red. (a) 6-bit XOR(A⃗, B⃗) output
sequence and (b) measured match-bit, both follow the ground-truth.

12/14

|0⟩⊗4 /

QBArt

addr
|0⟩p0 • •
|0⟩p1 • •
|0⟩p2 • • s0

|0⟩ s1

p1 + p2 +p0

0

1

2

3

Ha
m

m
in

g
we

ig
ht

 0
0
0
0

 1
0
0
1

 2
0
1
0

 4
1
0
0

 3
0
1
1

 5
1
0
1

 6
1
1
0

 7
1
1
1

 0 4 6 1 5 3 2 7input →
(bin) →

ground truth measured H1-1

Figure 5. (Left) Quantum circuit computing the Hamming weights (HW) for a sequence of 16 3-bit integers. QBArt unitary encodes
the input sequence on qubits pi. The following 1st sub-ciruit computes the partial HW for inputs p1, p2. The 2nd one adds the value of
p0 to the partial HW stored binary on qubits s0,s1. The final HWs are measured on qubits s0,s1, for all addresses. (Right) Results of
Hamming weight computation for a sequence of 16 3-bit integers, executed on Quantinuum H1-1.

|0⟩⊗5 /

QBArt(A⃗, B⃗)

/ t [addr]

|0⟩⊗5 / / At

|0⟩⊗5 / / X −Bt

0 10 20 30
time index

−10

0

10

re
al

 a
m

pl
itu

de

(a)

output input

0 10 20 30
time index

−10

0

10
im

ag
.

am
pl

itu
de (b)

−10 0 10
imag. amplitude

−10

0

10

re
al

 a
m

pl
itu

de

(c)

Figure 6. (Left) QBArt circuit for Experiment #3 computing the complex conjugate of the input sequence At + jBt → At − jBt The
values of A⃗ and -B⃗ are retrieved as signed int at the addresses encoded as unsigned int. (Right) Results of the complex conjugate on
complex-valued time-series obtained on the H1-1 QPU are presented in magenta. The input is shown in blue. (a) and (b) show real and
imaginary components of the pendulum amplitude, respectively. (c) depicts its trajectory as function of time. The conjugation operation
inverts the sign of the imaginary component.

(a) (b) (c)

False Negative False Positive

Figure 7. Demonstration of recovery of a black and white 384 pixels image using QCrank Experiment #4 executed on the Quantinuum
H1-1 real QPU. a) ground-truth image, b) recovered image has 97% of correct pixels, c) residual showing the locations of 12 incorrect
pixels.

13/14

na (# address qubits) 4 5 6 8 10
nd (# data qubits) 4 5 6 8 10

dCX

parallel UCR 16 32 64 256 1,025
serial UCR 32 81 193 1,025 5,121
reduction 2.1× 2.5× 3.0× 4.0× 5.0×

Table 1. Comparison of CX depth (dCX) for parallel versus serial implementations of the UCR gate on na = nd ∈ {4,5,6,8,10} qubits.

qubits CX error CX depth # runs

Quantinuum H1-1 20 0.003 8 1-10
IonQ Harmony 11 0.040 8 10-15
IonQ Aria 23 0.004 8 10
IBM guadalupe 16 0.012 42 98
IBM montreal 27 0.020 39 98
IBM jakarta 7 0.008 42 98

Table 2. Basic characteristics of the QPUs used for benchmarking. The listed average CX error is officially reported by the hardware
providers at the time of circuit execution.

Experiment #1 Experiment #2 Experiment #3 Experiment #4

Encoding QBArt QBArt QBArt QCrank

Data type DNA Sequence Time-series Binary image

Objective DNA match Hamming weight Complex conjugate LBL logo I/O

QPU H1-1 H1-1 H1-1 H1-1
addr. qubits 4 4 5 4
data qubits 12 3 10 8
ancillas - 1 - -
reset ops 5 - - -

input (bits) 192 48 320 384⋆

⋆Assuming 3-bit resolution per real value encoded by QCrank.

Table 3. QCrank and QBArt data processing experiments executed on Quantinuum H1-1.

14/14

	References

