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Enhancing accuracy and privacy in speech-based depression 
detection through speaker disentanglement

Vijay Ravia,*, Jinhan Wanga, Jonathan Flintb, Abeer Alwana

aDepartment of Electrical and Computer Engineering, University of California, Los Angeles, CA, 
90095, USA

bDepartment of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA, 
90095, USA

Abstract

Speech signals are valuable biomarkers for assessing an individual’s mental health, including 

identifying Major Depressive Disorder (MDD) automatically. A frequently used approach in this 

regard is to employ features related to speaker identity, such as speaker-embeddings. However, 

over-reliance on speaker identity features in mental health screening systems can compromise 

patient privacy. Moreover, some aspects of speaker identity may not be relevant for depression 

detection and could serve as a bias factor that hampers system performance. To overcome 

these limitations, we propose disentangling speaker-identity information from depression-related 

information. Specifically, we present four distinct disentanglement methods to achieve this — 

adversarial speaker identification (SID)-loss maximization (ADV), SID-loss equalization with 

variance (LEV), SID-loss equalization using Cross-Entropy (LECE) and SID-loss equalization 

using KL divergence (LEKLD). Our experiments, which incorporated diverse input features and 

model architectures, have yielded improved F1 scores for MDD detection and voice-privacy 

attributes, as quantified by Gain in Voice Distinctiveness GV  D  and De-Identification Scores 

(DeID). On the DAIC-WOZ dataset (English), LECE using ComparE16 features results in the 

best F1-Scores of 80% which represents the audio-only SOTA depression detection F1-Score 

along with a GV  D of −1.1 dB and a DeID of 85%. On the EATD dataset (Mandarin), ADV using 

raw-audio signal achieves an F1-Score of 72.38% surpassing multi-modal SOTA along with a GV  D

of −0.89 dB dB and a DeID of 51.21%. By reducing the dependence on speaker-identity-related 
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features, our method offers a promising direction for speech-based depression detection that 

preserves patient privacy.

Keywords

Depression-detection; Speaker-disentanglement; Privacy

1. Introduction

Major depressive disorder (MDD) is a serious medical illness that adversely affects one’s 

emotions, thoughts, and behaviors, and in severe cases, can result in suicide. According to 

James et al. (2018), MDD affects over 264 million people globally and is projected to be 

the second leading cause of disability by 2030 (Mathers and Loncar, 2006). Mental health 

problems such as MDD not only have significant economic and healthcare costs but also 

have a negative impact on the individual, their loved ones, and the community.

Diagnosing MDD currently involves subjective interviews with psychologists and self-

reported surveys (Kroenke et al., 2009), which can be affected by the availability of 

caregivers and patient’s willingness to disclose their symptoms, as well as the societal 

stigma attached to seeking treatment (Goldman et al., 1999). Therefore, there is an 

urgent need to develop secure, efficient, accessible, and scalable mental health assessment 

technologies that can reduce diagnostic inequality and enable early detection of mental 

health disorders.

While technologies like electroencephalogram (EEG) and Magnetic Resonance Imaging 

(MRI) have been used to predict mental health states in the past (Liao et al., 2017; Acharya 

et al., 2015; Mahmood and Ghimire, 2013), they are complex, expensive, and require expert 

supervision, which limits their scalability. Among others, the human voice has emerged as 

a promising biomarker for mental health. As an information-rich data source, speech has 

been shown to effectively capture the mental (Cummins et al., 2015; Ravi et al., 2019) 

and emotional states (Ramakrishnan, 2012; Park et al., 2018) of the human mind. What is 

more, speech data can be collected and analyzed non-invasively, without the need for expert 

supervision, making it a practical and efficient alternative. By extracting representations 

from speech data, a model can be trained to predict the prevalence of mental health 

disorders.

Although automatic objective screening mechanisms for MDD have gained popularity in 

recent years (Bhadra and Kumar, 2022; Safayari and Bolhasani, 2021; Pampouchidou 

et al., 2017), several challenges remain unresolved. One significant concern for digital 

healthcare systems, particularly those that involve mental health diagnoses, is privacy. 

The mental health information of patients is highly personal and confidential, and it is 

essential to safeguard it to prevent harm such as discrimination, stigma, or social exclusion. 

Furthermore, individuals may be hesitant to seek mental health care if they feel their 

information is not secure, which can be counterproductive to the adoption of objective 

screening systems, leading to untreated conditions and negative health outcomes. Therefore, 
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it is imperative that digital screening systems protect individuals’ privacy to the best possible 

extent.

From a speech-processing perspective, speaker-related information, also known as speaker-

identity features, has been utilized in depression detection using speech-based methods 

(Dumpala et al., 2022; Ravi et al., 2022a; Egas-López et al., 2022; Dumpala et al., 2023; Liu 

et al., 2023). However, the use of such features may raise privacy concerns as they can also 

be used to uniquely identify an individual with the help of automatic speaker identification 

(SID) (Snyder et al., 2018) and verification models (Ravi et al., 2020). A specific example 

of privacy threat is the membership inference attack (Shokri et al., 2017; Hu et al., 2022), 

where malicious hackers could compromise the patient’s privacy.

To address these concerns, it is essential for speech-based depression detection models 

to prioritize preserving individuals’ privacy. Instead of relying on speaker-characteristic 

information, the focus should be on capturing general patterns that distinguish between 

depressed and non-depressed populations. By emphasizing the extraction of non-identifying 

features, the models can contribute to a more privacy-conscious approach in speech-based 

mental health research.

Regardless of privacy issues, excessive reliance on individual speaker characteristics in 

depression detection models may introduce dataset biases, leading to poor modeling 

capability. This bias can cause models to overfit to speakers in the training set, resulting 

in inaccurate diagnoses for unseen speakers. This raises the question of whether depression 

detection can be done in a speaker-identity-invariant manner, and whether there are 

components of speech that characterize a speaker but may not be relevant to their mental 

health status. These issues have yet to be fully explored in the speech research community.

In this paper, we address these problems by introducing speaker-disentanglement for 

depression detection, which builds on our previous work (Ravi et al., 2022b). Our approach 

includes three new methods to address the challenges of adversarial loss maximization 

proposed in our previous study. We also extend our previous work with additional 

experiments that incorporate a comprehensive set of input features and backend models. 

Specifically, the contributions of this paper are threefold:

1. Our preliminary experiments highlight that the inclusion of speaker-related 

features in MDD detection systems not only compromises privacy but also 

introduces a bias that can degrade the modeling capabilities of MDD detection.

2. To address the privacy and bias concerns, our proposed approach includes four 

distinct speaker-disentanglement methods, which encompass three novel loss 

equalization frameworks involving noise injection with variance, Cross-Entropy, 

and KL divergence.

3. The performance of our proposed approach surpasses the state-of-the-art (SOTA) 

methods on two publicly available datasets, one in English (Valstar et al., 2016) 

(audio-only) and the other in Mandarin (Shen et al., 2022).
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The remainder of the paper is organized as follows. In Section 2 we review speech-based 

depression detection literature. In Section 3, we explain the motivation for this study 

and introduce the proposed disentanglement methods in Section 4. Section 5 consists of 

experimental details of models and input features. The results are presented in Section 6 

along with a detailed discussion and analysis on model performance. We conclude the paper 

in Section 7 along with suggestions for future work.

2. Literature review

With the advent of digital voice assistants, collecting speech data has become easier, leading 

to significant attention in research and development of objective speech-based screening 

systems for Major Depressive Disorder (MDD) (Valstar et al., 2016; Ringeval et al., 2019; 

Low et al., 2020).

The initial work in this domain focused on analyzing the effect of MDD on human speech. 

Early studies such as Nilsonne (1988) and Andreasen and Pfohl (1976) demonstrated that 

MDD is characterized by verbal cues such as monotonic speech, choice of vocabulary, 

abnormal disfluencies, and other speech-related features. More recent studies have identified 

discernible differences in the acoustic features of speech between depressed and non-

depressed subjects (Cummins et al., 2015; France et al., 2000).

2.1. Acoustic features

Previous studies have explored various acoustic features for speech-based depression 

detection. For instance, in Sanchez et al. (2011), statistics of spectral features such as 

spectral tilt and formant frequencies were used along with pitch and energy to predict 

depression. In Yang et al. (2012), vocal prosody features such as switching pauses and pitch 

were studied for depression severity estimation. Another study (Alghowinem et al., 2013) 

found that jitter, shimmer, energy, and loudness features were robust for detecting depression 

in both read and spontaneous speech. While using frame-level features was common, 

Cummins et al. (2014), Rani (2016) and Di et al. (2021) proposed the use of fixed-length i-

vectors for depression detection inspired by speaker-identification literature (Garcia-Romero 

and Espy-Wilson, 2011). In Afshan et al. (2018), the i-vector representation was extended 

to voice quality features along with a score-level fusion of Opensmile feature (Eyben et al., 

2010). In Dubagunta et al. (2019), it was shown that voice source-related features, such as 

linear prediction residual signals, homomorphically filtered voice source signals and zero 

frequency filtered signals, were better than vocal-tract-related high-frequency features, for 

depression detection. More recently, articulatory features obtained from acoustic inversion 

have also been proposed for depression detection (Seneviratne et al., 2020).

2.2. Model architectures

Apart from exploring various acoustic features, several studies have also contributed towards 

improving the backend model architectures. In the past, traditional machine learning 

methods such as Support Vector Machine (SVM) (Saidi et al., 2020), Gaussian Mixture 

Models (Sturim et al., 2011) and Random-Forest classifiers (Nasir et al., 2016) have been 

investigated for depression detection. More recently, deep learning methods for MDD 
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detection have gained popularity due to their superior performance compared to traditional 

pattern recognition techniques (Shen et al., 2022; Ma et al., 2016; Rejaibi et al., 2022; 

Chlasta et al., 2019; Harati et al., 2021).

Among the various deep-learning based backend model architectures, Convolutional Neural 

Networks (CNN) and Recurrent Neural Networks (RNN) such as Gated Recurrent Unit 

(GRU) and Long Short-Term Memory (LSTM) have been widely applied in depression 

detection. For example, in Ma et al. (2016), a CNN-LSTM framework called DepAudioNet 

was proposed, which utilized mel-spectrogram features for depression detection. Another 

study (Rejaibi et al., 2022) used Mel Frequency Cepstral Coefficients (MFCCs) in 

combination with a pre-trained RNN model, trained on a Speech Emotion Recognition 

(SER) task, to achieve improved depression prediction performance. In Harati et al. 

(2021), the effectiveness of an encoder–decoder structure, where the encoder was pre-

trained on Automatic Speech Recognition (ASR) and fine-tuned for depression detection, 

was investigated. Recently, Shen et al. (2022) proposed an approach that aggregated mel-

spectrograms using a NetVLAD network (Arandjelovic et al., 2016) to generate fixed-length 

segment level embeddings, which were then used to train a GRU model for depression 

classification. Additionally, in Wang et al. (2022a), an Emphasized Channel Attention, 

Propagation, and Aggregation in Time-Delay Neural Network (ECAPA-TDNN) model 

was utilized with MFCC features for depression detection. Furthermore, Wang et al. 

(2022b) proposed a novel self-supervised learning mechanism called instance-discrimination 

learning specifically for depression detection.

2.3. Speaker-identity and depression detection

Several previous studies have explored the use of speaker-related features for depression 

detection in the context of speaker identity. Acoustic features such as x-vectors (Ravi et 

al., 2022a; Egas-López et al., 2022), and other speaker embeddings (Dumpala et al., 2022, 

2023) have been found to be effective in diagnosing a speaker’s mental state. However, these 

features also contain information about the speaker’s identity (Snyder et al., 2018), which 

can be counterproductive to privacy preservation, a crucial factor in the adoption of digital 

mental health screening systems (Lustgarten et al., 2020).

2.4. Privacy preserving speech processing

While the field of privacy-preserving depression detection is relatively new, there have been 

some studies that have attempted to address this issue. Notable examples include federated 

learning (Bn and Abdullah, 2022) and sine-wave speech (Dumpala et al., 2021). However, 

despite their promise, the application of these methods to low-resource depression detection 

from speech signals is still in its early stages, and results in significant performance loss (Bn 

and Abdullah, 2022).

In the past, adversarial speaker normalization has been evaluated in the domain of SER 

(Yin et al., 2020; Li et al., 2020; Gat et al., 2022). In Yin et al. (2020), the authors 

perform speaker-invariant domain adaptation on multi-modal features (speech, text, and 

video). In Li et al. (2020), a gradient reversal technique with an entropy loss is proposed 

to disentangle emotion and speaker information. In Gat et al. (2022), the authors fine-tune 
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a pre-trained Hubert model (Hsu et al., 2021) with gradient-based adversarial learning. Fine-

tuning such models can require large amounts of in-domain data and be computationally 

intensive. Moreover, these papers utilize IEMOCAP and MSP-Improv datasets which are 

mono-lingual and consist of acted audio data (Busso et al., 2008, 2016).

In our earlier study (Ravi et al., 2022b), we proposed a method based on adversarial 

SID loss maximization for depression detection. More recently, Wang et al. (2023) 

proposed a non-uniform speaker disentanglement method for depression detection based on 

differential adversarial loss maximization. Although these studies demonstrated a significant 

improvement in depression detection performance while simultaneously reducing speaker 

separability, it should be noted that a loss-maximization approach for training neural 

networks can sometimes be unstable, leading to poor convergence (further explanation in 

Section 4). Additionally, the privacy attributes of speech representations can be quantified 

using previously published metrics in the voice-privacy literature (Noé et al., 2020; 

Tomashenko et al., 2022).

3. Privacy preservation and speaker bias in depression detection

In this section, we present the preliminary experiments conducted on the English dataset, 

DAIC-WOZ (Valstar et al., 2016), to investigate the aspects of privacy preservation and 

speaker bias in the context of depression detection. The DAIC-WOZ database consists of 

audio-visual interviews of depressed and non-depressed participants. All experiments in this 

paper use only the audio portion of the dataset. The database is described in detail in Section 

5.

3.1. Privacy preservation in depression detection

As mentioned earlier, the use of speaker-identity-related features, such as speaker 

embeddings, can lead to the identification of individuals. For instance, in our preliminary 

work, we utilized embeddings from an ECAPA-TDNN model, which is SOTA in SID, 

to train a naive support vector classifier (SVC) SID system. This setup achieved an SID 

accuracy of 88% on the DAIC-WOZ dataset(a popular depression detection dataset in 

English Valstar et al., 2016), even though the ECAPA-TDNN model was originally trained 

for optimizing depression detection and not speaker prediction (further details in Section 6). 

This highlights that depression detection frameworks that heavily rely on speaker-identity-

related features may compromise the privacy of patients.

3.2. Speaker-bias in depression detection

In addition to the well-documented privacy concerns associated with over-reliance on 

speaker features (Ravi et al., 2022b), another detrimental effect can be overfitting of 

the model to the speakers in the training set. To investigate this issue, a straightforward 

approach is to normalize speaker information across all utterances in a dataset by using 

a voice conversion (VC) system to convert all speakers’ utterances into a single speaker’s 

voice, and then training the depression classification system on the converted dataset. If 

there is an improvement in depression classification performance after the single-speaker 

conversion process compared to the one without VC, it suggests that speaker-identity-related 
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features may introduce bias in depression detection. Therefore, in this section, we conduct a 

preliminary VC experiment using the DAIC-WOZ dataset.

VQMIVC (Vector Quantization and Mutual Information-Based Unsupervised Speech 

Representation Disentanglement for One-shot Voice Conversion, Wang et al. (2021)), a 

SOTA VC system, is used to convert all speakers in the DAIC-WOZ dataset into a single 

speaker (p334_047). To ensure the quality of the converted utterances, several additional 

steps are taken. First, each utterance is segmented into non-overlapping 50-s clips, and 

conversion is applied to each clip, followed by concatenation. Second, to address the issue 

of audio loudness discrepancy, each segment’s loudness in DAIC-WOZ is scaled to match 

the maximum loudness of the reference waveform before conversion. In addition, converted 

audio files were verified manually for quality. Target speaker p334_047 was used because 

it was provided with the demo of the VC model. Another target speaker was evaluated 

(p225_038) but the conversion quality was found to be poor.

The DepAudioNet model (Ma et al., 2016) is chosen for major depressive disorder (MDD) 

classification. Both the baseline and voice conversion (VC) experiments use the same 

feature processing, model hyperparameters, configurations, and dataset splits, as described 

in Section 5. The results of the VC experiment are reported in Table 1 in terms of F1-AVG, 

which is the macro average of the F1-Scores for the two classes — depressed (D) and 

non-depressed (ND).

Table 1 shows that converting all utterances into a single speaker improves depression 

classification performance, with the F1-AVG increasing from 0.6081 for the DepAudioNet 

baseline to 0.6237 for the VC DepAudioNet. This supports the hypothesis that some 

speaker-related features may introduce bias in depression detection.

The use of voice conversion (VC) to mitigate speaker bias in depression detection may 

not be a desirable final solution for several reasons. First, even SOTA VC systems can 

result in loss of content for some speakers (Qian et al., 2022), risking the loss of depression-

related information during conversion. Second, dataset-domain discrepancy between the VC 

training (VCTK Veaux et al., 2016) and the target dataset (e.g., DAIC-WOZ) may still 

result in preserved speaker information, introducing bias. As mentioned in the VCTK dataset 

description, VCTK contains accented read speech spoken by native English speakers from 

the UK, whereas DAIC-WOZ is spontaneous American English speech directed towards 

a robotic AI assistant. Besides, the two datasets have different channel attributes such as 

loudness. Therefore, VC systems trained on VCTK but evaluated for DAIC-WOZ may not 

be 100% successful (Huang et al., 2021). Lastly, converting an entire dataset using VC can 

be computationally expensive and requires tedious manual verification, making it unfeasible 

in real-world scenarios.

4. Speaker disentanglement for depression detection

To mitigate privacy and bias issues as discussed in the previous section, we propose four 

distinct methods of speaker-disentanglement for depression detection in the form of SID loss 

manipulation, as shown in Fig. 1.
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4.1. Adversarial SID-loss maximization

In the first approach, we describe the speaker disentanglement method proposed in our 

previous work (Ravi et al., 2022b). This method involves an adversarial learning mechanism 

based on SID loss for speaker-disentangled depression detection, which we refer to as ADV 

in this paper. Inspired by the domain-adversarial training proposed in Ganin et al. (2016), 

our approach employs a loss minimization–maximization technique.

Let the number of samples in a training batch be N. The loss used for the prediction of 

MDD binary labels is:

LMDD = − 1
N ∑

n = 1

N
Y n ⋅ log pn + 1 − Y n ⋅ log 1 − pn

(1)

Y n ∈ 0,1  is the class label for the nth sample and pn is the probability that sample n’s label 

is depressed. If we denote the total number of unique speakers as M, the adversarial loss for 

speaker ID prediction is defined as -

Ladv = − 1
N ∑

n = 1

N
log exp xn, n

∑m = 1
M exp xn, m

,

(2)

where xn, m is the score of the nth sample’s speaker ID being predicted as speaker m where 

m ∈ 1,2, …, M. And, n̂ is the coordinate for the ground-truth speaker ID of sample n.

To train the model in an speaker-identity-invariant manner, during optimization, we 

minimize the depression loss and maximize the speaker prediction loss. This can be written 

as:

Ltotal−adv = LMDD − λ Ladv

(3)

where λ is an empirically determined hyperparameter that controls how much of the 

speaker loss contributes to the total loss. Through this process, we encourage the model to 

prioritize depression-discriminatory information and reduce its reliance on speaker-specific 

characteristics, making the model more invariant to changes in speaker-related features.

Although loss maximization has been widely used in speech-related tasks, the adversarial 

SID loss is unbounded (because of the log-function in Eq. (2)) which can sometimes 

result in poor model convergence (Xing et al., 2021). In addition, during cross-entropy loss 

optimization in the SID branch, as shown in Eq. (2), only the probability of the specific 

speaker n̂ corresponding to that sample xn is considered1 leaving the other probabilities 

unused, which can limit the potential of disentangling speaker information.
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4.2. SID-loss equalization with variance

To overcome the limitations of adversarial loss maximization, a loss equalization-based 

approach is proposed. Instead of forcing the model to make wrong predictions about speaker 

identity, equalization methods tend to confuse the model to not be able to distinguish 

speaker classes through a uniform regularization process similar to an L2 norm. The 

equalization loss is formulated as follows:

LEvar = 1
N ∑

n = 1

N
∥ σ xn − e ∥2

(4)

where e = 1/M, 1/M, …, 1/M  is the vector that assigns equal probability to each speaker in 

a uniform manner, with length M and xn is the M-dimensional output logit obtained from 

the model and σ is the softmax function to convert logits to probabilities. Since the new loss 

term is meant to be minimized, the objective function is defined as follows:

Ltotal Evar = LMDD + λ LEvar ,

(5)

In the initial experiments using Eq. (4), it was observed that the model learned to predict 

the e-vector very easily within a few epochs without learning to disentangle speakers i.e., 

the speaker prediction branch was overfitting to directly predict the e-vector without tangible 

speaker disentanglement. We refer to this situation as the “trivial” solution. To avoid this 

scenario, additive noise U 0,1  is injected into the vector e. This method is referred to as 

Loss equalization with Variance (LEV) in further sections.

4.3. SID-loss equalization with cross-entropy

In LEV, loss-equalization is achieved via the L2 loss. Alternatively, loss-equalization can 

also be achieved by minimizing the Cross-Entropy loss between the speaker prediction 

probabilities and a ones-vector of the same dimension. Mathematically, the equalization loss 

can be formulated as:

LEce = − 1
N ∑

n = 1

N
∑

m = 1

M
yn, m ⋅ logσ xn, m + 1 − yn, m ⋅ log 1 − σ xn, m

(6)

where yn = 1,1, …, 1  is the M-dimensional target vector and xn is the M-dimensional output 

logits of the models for the nth sample, respectively. σ is a Softmax function to convert logits 

to probabilities. Since yn, m = 1 for all n, m, the above equation can be simplified as -

1Numerator contains only the probability of the target speaker, while the denominator uses probabilities for all coordinates. Because 
the denominator acts as a normalizer, its value is shared across all coordinates. Consequently, the numerator becomes the primary 
contributor to the loss term for the given target speaker.
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LEce = − 1
N ∑

n = 1

N
∑

m = 1

M
logσ xn, m

(7)

Therefore, the total loss can be written as -

Ltotal Evar = LMDD + λ LEce ,

(8)

This method is referred to as Loss equalization with Cross-Entropy (LECE) in further 

sections.

4.4. SID-loss equalization with KL divergence

Another approach to achieve speaker disentanglement is by manipulating the distribution 

of the SID-prediction logits. We hypothesize that a uniform distribution for SID logits can 

help in disentangling speaker identity and MDD characteristics. To achieve this, we propose 

to minimize the KL-divergence loss between the normalized predicted logits and a uniform 

vector e. We denote this method as LEKLD in the following sections. The KL-divergence 

based equalization loss is formulated as:

LEKL = LKL x, e = 1
N ∑

n = 1

N
∑

m = 1

M
em ⋅ log em − log σ xn, m

(9)

where xn, m and em stand for the mth element in predicted logits xn and uniform vector e, 

respectively and σ is the Softmax function. Thus, the final loss with KL-divergence term is 

computed as:

Ltotal EKL = LMDD + λ LEKL ,

(10)

5. Experimental details

To demonstrate that the proposed framework of speaker disentanglement is invariant to the 

input features, the backend models, or the datasets, seven acoustic features, three types 

of model architectures, and two datasets from different languages were investigated. This 

section provides details about the datasets, input features, feature processing, models, and 

evaluation metrics employed in this study.
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5.1. Datasets

Experiments were conducted using two publicly available datasets — the DAIC-WOZ 

(Valstar et al., 2016), and EATD (Shen et al., 2022). The datasets are described in the 

following subsections and the datasets’ details are summarized in Table 2.

5.1.1. DAIC-WOZ—The DAIC-WOZ database (Valstar et al., 2016) used in this 

study comprises audio-visual interviews of 189 participants, both male and female, who 

underwent psychological distress evaluation. Each participant was assigned a self-assessed 

depression score using the patient health questionnaire (PHQ-8) method (Kroenke et al., 

2009). Only the audio data belonging to the participants were extracted using the provided 

time labels. The dataset consists of 22.5 h of participant audio data sampled at 16 kHz, 

with 107 speakers used for training and 35 speakers used for evaluation, following the 

data partitioning provided in the database description. Models are evaluated using the test 

data subset and were also evaluated using the validation subset to enable comparison with 

previous studies (Feng and Chaspari, 2022; Ma et al., 2016; Bailey and Plumbley, 2021).

5.1.2. EATD—The EATD Corpus (Emotional Audio-Textual Depression dataset, Shen 

et al. (2022)) comprises audio and text transcripts from interviews conducted with 

162 Mandarin-speaking participants, including both male and female individuals. Each 

participant answers three randomly selected questions and completes the SDS questionnaire 

(Zung, 1965), which is a commonly used screening tool for depression. In this dataset, 

participants with an SDS score greater than 52 are considered depressed, resulting in a total 

of 30 depressed volunteers and 132 non-depressed volunteers. For our study, we only utilize 

the audio portion of the dataset, which has an overall duration of 2.26 h and is sampled at 

16 kHz. Data partitioning is done according to the provided database description, with 83 

speakers used for training and 79 speakers used for evaluation.

5.2. Input features

We explored seven different acoustic features which can be broadly categorized into two 

groups: low-level and high-level features.

5.2.1. Low-level features—The low-level features employed in this study comprise 

three commonly used feature sets in previous research on depression detection: (1) Mel-

spectrograms, (2) raw audio signals, and (3) OpenSmile features (Eyben et al., 2010). 

Mel-spectrograms are frame-level features extracted using a Hanning window of length 

w = 1024 samples (64 ms) and a hop size of ℎ = 512 samples (32 ms). The dimensionality of 

Mel-spectrogram features is either 40 or 80, depending on the model size. Raw audio signals 

are one-dimensional vectors representing the waveform. OpenSmile features consist of 130-

dimensional features from the ComparE16 feature set (Schuller et al., 2016), which includes 

65 frame-level low-level descriptors and their deltas. All three types of input features 

are normalized using Mean-Variance normalization for consistency in model training and 

evaluation.

5.2.2. High-level features—Self-supervised learning (SSL) models have gained 

popularity in speech-processing tasks due to their ability to leverage large amounts of 
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unlabeled data to learn generic speech patterns that are invariant to downstream tasks. These 

SSL models can then be fine-tuned or used as feature extractors for specific tasks, such 

as speech recognition, emotion recognition, etc. In this paper, the SSL models are utilized 

as feature extractors, and the weights of the pre-trained models are frozen without further 

fine-tuning. Frame-level representations extracted from the following SSL models are used 

as input features for depression detection:

• Wav2vec2.0 (Baevski et al., 2020): Features are extracted from the base pre-

trained model provided by the fairseq toolkit (Ott et al., 2019), with a hidden 

dimension of 768. This model was chosen due to its excellent performance in 

speech-related tasks on the SUPERB benchmark (Yang et al., 2021) and being 

one of the first SSL models specifically trained for speech processing.

• ContentVec (Qian et al., 2022): ContentVec is an extension of the HuBERT 

model (Hsu et al., 2021) with speaker disentanglement. ContentVec features 

capture more content-related information and less speaker-related information, 

hence the name. Features are extracted using the 100-cluster base model with a 

hidden dimension of 768, and the extraction process is similar to Wav2vec2.0.

• WavLM (Chen et al., 2022a): WavLM includes a signal reconstruction 

component and is robust in domain-mismatched scenarios such as noisy 

conditions. Features are extracted using the base model configuration with a 

feature dimension of 768.

• Whisper (Radford et al., 2022): Whisper is a recently proposed large-scale, 

weakly supervised,2 pre-trained model for speech recognition that outperforms 

other SOTA SSL models on speech-recognition tasks. The base English-only 

model is chosen with a hidden dimension of 512. Extraction is done using the 

OpenAI toolkit (Brockman et al., 2016).

5.3. Models

The paper evaluates three different model architectures for depression detection: CNN-

LSTM, ECAPA-TDNN, and LSTM-only. The choice of model architecture is based on the 

dataset size and/or input feature type. The model architectures are summarized in Table 3. 

All three models are trained from scratch.

5.3.1. CNN-LSTM—The CNN-LSTM model, inspired by the DepAudioNet framework 

(Ma et al., 2016), was chosen as one baseline, with implementation based on Bailey 

and Plumbley (2021). The network parameters, such as the number of hidden layers, 

learning rate, dropout probability, etc., were chosen empirically. The architecture includes 

1D convolutional layers (Conv1D) with parameters including channels C , kernel size K , 

and stride S , and recurrent LSTM layers with a hidden state dimension H . The number 

of trainable parameters of CNN-LSTM models is relatively small and pilot experiments with 

high-level SSL features and CNN-LSTM models resulted in overfitting of the model to the 

2Whisper pretaining is not self-supervised but has been included in this section for comparison with other large-scale pre-trained 
speech models.
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training set despite adopting a smaller learning rate, learning rate decay, and weight decay. 

Therefore, this architecture was used only with low-level features.

For the DAIC-WOZ dataset, the model with 40-dimensional Mel-spectrograms as 

input consisted of one Conv1D layer (C = 128, K = 3, S = 1) and two unidirectional 

LSTM layers (H = 128). In case of raw-audio signals, two Conv1D layers 

(C1 = 128, K1 = 1024, S1 = 512, C2 = 128, K2 = 3, S2 = 1  and two LSTM layers H = 128  were 

used. When 130-dimensional ComparE16 features were used, model comprised of one 

Conv1D layer (C = 256, K = 3, S = 1) and two unidirectional LSTM layers H = 256 .

For the EATD dataset and raw-audio signals, two Conv1D layers 

(C1 = 128, K1 = 1024, S1 = 512, C1 = 128, K2 = 3, S2 = 1) and two LSTM layers H = 128  were 

used. With ComparE16 features for the EATD dataset, model comprised of one Conv1D 
layer (C = 256, K = 3, S = 1) and two unidirectional LSTM layers (H = 256).

The Conv1D layers were followed by ReLU non-linearity, a max-pooling layer with a kernel 

of size 3 and a dropout layer. For every model configuration, the final prediction layers (fully 

connected layers, whose inputs were the last-hidden-state of the preceding LSTM layer) 

generated the predictions for MDD and speaker labels. Based on the number of speakers 

in the training set, output dimensions for speaker labels were 107 for experiments with 

DAIC-WOZ and 83 for EATD. For MDD prediction, a sigmoid activation was applied and 

the binary cross entropy loss was used. For SID branch, cross entropy loss was used without 

any output activation for ADV, minimum square error loss with softmax activation was used 

for LEV and point-wise KL divergence loss was used for LEKLD with log-softmax as the 

activation function.

5.3.2. ECAPA-TDNN—ECAPA-TDNN is a model architecture previously proposed for 

speaker recognition tasks (Desplanques et al., 2020) and is currently the SOTA in SID. 

In this paper, to adapt to the smaller training dataset of depression classification and the 

inherent class-imbalance problems, a modified version of the original ECAPA-model is 

proposed. Specifically, the kernel K  and stride S  of the input convolution layer, the 

number of channels C  in the intermediate layers, the attention dimension, the embedding 

dimension and the dimensions of the prediction layers were empirically modified.

For the DAIC-WOZ dataset and Mel-spectrograms as input, the model consists of one 

Conv1D layer (C = 128, K = 5, S = 1) followed by three SE-Res2Blocks with identical 

channel dimension, kernel size, and stride as C = 128, K = 5, S = 1. The three SE-

Res2Blocks have increasing dilation steps as 2, 3, and 4. In our experiments, it was 

experimentally found that 80 dimensional Mel-spectrogram performed better compared 

to 40-dimensional ones. In addition to using Mel-Spectrograms as input features, we 

investigate the usage of raw-audio signals as input features. In this case, one input 

convolution layer (C = 128, K = 1024, S = 512) was followed by three SE-Res2Blocks. 

Dimensions of the SE-Res2Blocks were same as that used with Mel-Spectrograms.

For both Mel-spectrograms and Raw-Audio signal, the attention dimension was 64 and 

the embedding dimension was 128. The final projection layer is similar to CNN-LSTM 
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architecture but the input to the prediction layers is from the embedding layer (as opposed to 

the last-hidden-state of the LSTM layer in the CNN-LSTM model).

5.3.3. LSTM-only—The LSTM-only architecture used for high-level features of the 

DAIC-WOZ dataset in this study consisted of an input LSTM layer with a hidden state 

dimension of H = 256, followed by five hidden LSTM layers with the same hidden state 

dimension as the input layer. Similar to the CNN-LSTM model, the output of the last-

hidden state of the preceding LSTM layer was used as input to the prediction layer. The 

dimensions of the last prediction layer were dependent on the number of speakers in the 

training data, as explained earlier in the paper. This architecture was used to process the 

latent representations obtained from the SSL models, which were used as encoders (feature 

extractors) in this study.

5.4. Evaluation metrics

Every model is evaluated on two aspects — the ability to classify depression status and the 

ability to protect speaker identity.

5.4.1. Depression detection—Depression detection is evaluated using the macro 

average F1-score (F1-AVG) of depression (F1-D) and non-depression (F1-ND) classes 

computed at a speaker level. We opted to report F1-AVG because it provides a balanced 

representation of both D (Depression) and ND (Non-Depression) prediction capabilities.

5.4.2. Speaker-separability and identification—Inspired by the Voice-privacy 

literature (Noé et al., 2020; Tomashenko et al., 2022), we use Gain of voice distinctiveness 

GV  D , measured in dB, and De-Identification Score (DeID), measured in percentage, as 

metrics to quantify speaker-separability and identification, respectively. A 0 db GV  D means 

identical voice distinctiveness before and after disentanglement. A negative GV  D stands for 

a decreased speaker distinctiveness and vice versa. In the case of DeID, a score of 100% 

indicates an optimal de-identification strategy whereas 0% indicates a disentanglement 

approach that does nothing. Mathematical equations to compute GV  D and DeID are provided 

in Appendix.

5.5. Training and evaluation scheme

For the DAIC-WOZ dataset, to address data imbalance, the training data were pre-processed 

using random cropping and sampling techniques, similar to Ma et al. (2016). Each utterance 

was randomly cropped into fragments of the length of the shortest utterance, and each 

fragment was further segmented into multiple segments. Segment lengths were set to 3.84 s, 

which corresponds to 120 frames for Mel-spectrogram, 61 440 samples for raw-audio, 200 

frames for Wav2vec2.0 features, and 193 frames for ContentVec, WavLM, and Whisper. A 

training subset was generated by randomly sampling, without replacement, an equal number 

of depression and non-depression segments. Five separate models were trained for each 

experiment using randomly generated training subsets.

In contrast, for the EATD dataset, segments were generated without random cropping and 

sampling, and the segment length was kept the same as before (3.84 s). Pilot experiments 

Ravi et al. Page 14

Comput Speech Lang. Author manuscript; available in PMC 2024 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



with random cropping and sub-sampling for EATD showed degraded performance, perhaps 

due to the smaller size of the training dataset compared to DAIC-WOZ. Each experiment 

was performed by training only one model using all of the training data.

To avoid overfitting the models to the training set the following mechanisms were adopted - 

(1) random cropping and selection of segments to ensure class imbalance does not influence 

results, (2) aggregation of 5 models trained with different random seeds to average the 

effects of random segmentations, (3) reduction of learning rate using a factor of 0.9 when the 

validation loss does not reduce for two successive epochs and (4) dropout with p = 0.6 for 

LSTM-only, 0.5 for ECAPA-TDNN, and 0.05 for CNN-LSTM models.

At the evaluation stage, segment-level prediction scores are rounded to 0 or 1, representing 

‘non-depressed’ or ‘depressed’ classes, respectively. Then, each model generates a speaker-

level prediction score by averaging all segment-level scores. For experiments conducted 

on the DAIC-WOZ dataset where more than one model is trained, 5-model prediction 

aggregation is performed using two different methods — averaging (5M-AVG) or majority 

voting (5M-MV). For the averaging method (5M-AVG), speaker-level scores from all 

models are averaged and rounded for each individual. In contrast, for the majority voting 

method (5M-MV), speaker-level scores for all models are first rounded, and then a majority 

vote is taken. All rounding operations use a threshold of 0.5 to determine the final 

predicted class label for each individual. Moreover, for comprehensive coverage, we include 

the F1-Score derived from the log-likelihood ratio-based (LLR) aggregation of segment 

probabilities for the English dataset. For the aggregation of segments to speaker prediction, 

we utilized an epsilon value of 1e − 8.

For the speaker-separability experiments, Probabilistic Linear Discriminant Analysis 

(PLDA) models are trained using embeddings of 25 speakers (randomly selected). For 

GV  D computation, two PLDA models are trained separately — one using embeddings from 

baseline and the other using embeddings from the disentangled model. On the other hand, 

for DeID computation, a single PLDA model is trained by combining embeddings from both 

baseline and disentangled models. Evaluation of GV  D and DeID is done on the remaining 

10 speakers. For each speaker, to reduce computational complexity, 50 segments are 

randomly chosen using which similarity matrices are generated as per equations described 

in Appendix A. The Log-likelihood scores in the referenced equations are computed using 

the trained PLDA models. The experiments are repeated three times using different random 

seeds and the average GV  D and DeID are reported.

Lastly, all model hyperparameters, including learning rate, batch size, and learning rate 

decay, are kept the same for both the baseline and the corresponding disentanglement 

experiments. The only hyperparameter that varies is the λ parameter, which controls the 

degree of disentanglement. For baseline experiments, λ is set to 0, while for disentanglement 

experiments, λ is selected empirically to achieve the desired level of disentanglement in the 

latent representations.
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6. Results and discussion

The experimental results are organized and discussed in four stages. First, we present the 

results for four speaker-disentanglement methods using the DAIC-WOZ validation dataset 

for all model-feature combinations considered, comparing the baseline methods with no 

disentanglement with our proposed approach. Following previous studies (Ma et al., 2016; 

Bailey and Plumbley, 2021; Feng and Chaspari, 2022), our discussion of results is limited to 

segment-level probability averaging. Second, the performance of the models is presented on 

the test set of the DAIC-WOZ dataset to show the effectiveness of the method on a held-out 

test set. Third, we extend the best-performing configuration to the EATD dataset to evaluate 

the generalizability of our method. Lastly, we compare the best-performing system using our 

method to the SOTA methods in depression-detection literature.

6.1. Speaker disentanglement with DAIC-WOZ

6.1.1. Adversarial loss maximization (ADV)—Fig. 2 shows the relative change in 

MDD classification F1-AVG and the absolute speaker GV  D (in dB) for each model-feature 

combination when ADV is applied. Detailed results are presented in the Appendix (Table 

B.1).

Across all experiments, it was observed that the MDD F1-AVG score increases when 

speaker disentanglement is applied, while the GV  D is negative in 8 out of 9 scenarios 

indicating a reduction in speaker separability. On average, over 9 experiments, there was 

an improvement of 6.53% in MDD F1-AVG. Improvements in MDD detection were 

statistically significant (McNemar, 1947) in 6 out of the 9 experiments (relative change 

obtained with ComparE16, ContentVec, and Whisper were not statistically significant). 

Although positive trends were observed in all experiments, results for Raw-Audio with 

ECAPA-TDNN, ContentVec with LSTM-only, and WavLM with LSTM-only are selectively 

discussed below.

In the case of the ECAPA-TDNN model is trained with raw-audio signals, the baseline 

setup without disentanglement achieves an F1-AVG score of 0.6196 (5M-AVG) and 0.6941 

(5M-MV). Recall that 5M-AVG and 5M-MV refer to the averaging and majority voting 

aggregation of the 5 models, respectively, as described in Section 5. The best-performing 

configuration is obtained when adversarial loss maximization is applied to the ECAPA-

TDNN model with raw audio signals as input. The F1-AVG increases to 0.6939 (5M-AVG) 

and 0.7900 (5M-MV). This configuration has a GV  D of −0.48 dB which indicates a reduction 

in speaker separability when ADV is applied and a DeID of 22% that indicates a partially 

successful masking of speaker identities.

ContentVec with LSTM-only, on the other hand, resulted in smaller improvements when 

speaker disentanglement was applied. For example, the improvement in F1-AVG is only 

0.88% for both 5M-AVG and 5M-MV. Although the improvements in F1-AVG were small, 

the GV  D was −2.13 dB, the lowest among all features with a DeID of 42.5%. It is possible 

that because ContentVec already includes 3 speaker disentanglement stages, features 

extracted from it have lost much speaker-identity-related information, and therefore, another 
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disentanglement approach improves depression detection performance only marginally but 

can severely degrade speaker separability.

In contrast, it was observed that Speaker GV  D was negative for all scenarios except WavLM 

LSTM-only experiments where GvD was 0.863 dB. However, the DeID for WavLM was 

83.55% indicating that although the speaker identities were successfully masked when ADV 

was applied (because of positive DeID), they were still separable (positive GV  D).

6.1.2. Loss Equalization with Variance (LEV)—Fig. 3 shows the relative change in 

MDD classification F1-AVG and the absolute speaker GV  D (in dB) for LEV. Detailed results 

are presented in the Appendix (Table B.2). Similar to ADV, this loss function results in 

improvements in MDD detection across all 9 experiments, with an average improvement in 

F1-AVG of 6.69%. This is accompanied by a negative GV  D in 8 out of the 9 experiments. 

Improvements in MDD detection were statistically significant (McNemar, 1947) in 5 out 

of the 9 experiments (relative change obtained with Raw-Audio, ComparE16, ContentVec, 

and Whisper were not statistically significant). For LEV, we discuss results from Wav2vec2 

LSTM-only, ComparE16 CNN-LSTM, Whisper LSTM-only, and WavLM LSTM-only.

In the case of LEV, Wav2vec2 features with LEV result in the best MDD classification 

performance. For the baseline model without disentanglement, the F1-AVG scores are 

0.6830 (5M-AVG) and 0.6830 (5M-MV). When the proposed method with a hyperparameter 

value of λ = 5e − 3 is applied, the F1-AVG increases to 0.6939 (5M-AVG) and 0.7619 

(5M-MV). For this case, the GV  D is −0.3126 dB, and the DeID is 30.41%. A negative GV  D

further shows that the disentangled speaker representations are less separable than their 

baseline counterparts.

The highest improvements in MDD detection are observed when ComparE16 features are 

used, with a 17.94% increase in F1-AVG (5M-AVG), from 0.5791 for the baseline to 0.683 

for the proposed method λ = 2e − 4 . The GV  D for this model is −0.0551 dB whereas the 

DeID is 79.62% indicating a successful speaker-identity masking mechanism but only a 

small reduction in speaker-separability.

The lowest GV  D of −2.589 dB is achieved in LEV when Whisper-base features are used with 

the LSTM-only model. This feature also has a high DeID of 84.49%. Lastly, similar to ADV, 

WavLM with LSTM-only and LEV results in the highest GV  D of 1.5854 dB but has a DeID 

of 72.71%. Same as before, although this points to a (partially) successful speaker-identity 

masking method, the disentangled speaker representations are more separable than the 

baseline embeddings.

6.1.3. Loss Equalization with Cross-Entropy (LECE)—Fig. 4 shows the relative 

change in MDD classification F1-AVG and the absolute speaker GV  D (in dB) for LECE. 

Detailed results are presented in the Appendix (Table B.3). Similar to ADV and LEV, this 

loss function results in improvements in MDD detection across all 9 experiments, with 

an average improvement in F1-AVG of 8.86%. In contrast to before, a negative GV  D is 

observed in all 9 experiments. Improvements in MDD detection were statistically significant 

(McNemar, 1947) in 4 out of the 9 experiments (relative change obtained with Raw-Audio, 
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ContentVec, WavLM, and Whisper were not statistically significant). For LECE, we discuss 

results from ComparE16 CNN-LSTM, Raw-Audio ECAPA-TDNN, and Whisper LSTM-

only.

ComparE16 features when used with CNN-LSTM features achieved the best MDD 

classification performance. In the baseline model without disentanglement, the F1-AVG 

scores are 0.5791(5M-AVG) and 0.6941 (5M-MV). When the proposed method with a 

hyperparameter value of λ = 1e − 7 is applied, the F1-AVG increases to 0.5800 (5M-AVG) 

and 0.8011 (5M-MV). For this case, the GV  D is −1.0688 dB, and the DeID is 85.10%. A 

negative GV  D along with a high DeID shows that identity has been successfully masked 

and that the disentangled speaker representations are less separable than the corresponding 

baseline representations.

The highest improvement in F1-Score is observed when Raw-Audio signals are used to train 

the ECAPA-TDNN model. The baseline F1-AVG score improves by 18.60%, from 0.6196 

(5M-AVG) to 0.7348. Although negative, this feature-model combination has the highest 

GV  D of −0.0446 dB with a corresponding DeID of 15.62%.

Similar to LEV, Whisper-base features with the LSTM model resulted in the lowest GV  D of 

−3.767 dB and a DeID of 86.09%.

6.1.4. Loss Equalization with KLD (LEKLD)—Fig. 5 shows the relative change 

in MDD and the absolute speaker GV  D (in dB) for LEKLD with detailed results in 

the Appendix (Table B.4). As seen before in ADV, LEV, and LECE, every experiment 

leads to an improvement in MDD detection performance with an average improvement in 

MDD F1-AVG by 7.07% and a negative GV  D is 8 out of 9 experiments. Improvements 

in MDD detection were statistically significant (McNemar, 1947) in 7 out of the 

9 experiments (relative change obtained with ComparE16 and ContentVec were not 

statistically significant). In this method, we discuss the results from Whisper LSTM-only, 

Raw-Audio ECAPA-TDNN, WavLM LSTM-only, and ComparE16 CNN-LSTM.

In the case of LEKLD, the best-performing model is the Whisper LSTM-only model with 

speaker disentanglement. The baseline F1-AVG of 0.6438 (5M-AVG), 0.6686 (5M-MV) 

increases by 6.09% and 18.16% to 0.6830 (5M-AVG), 0.7900 (5M-MV), respectively when 

the proposed method is applied λ = 1e − 5 . For this model-feature combination, the GV  D is 

−3.93 dB and the corresponding DeID is 69.42%.

Further, the ECAPA-TDNN model trained with Raw-Audio signals achieves the highest 

improvement in MDD detection with an improvement of 18.59% in F1-AVG (5M-AVG) 

from 0.6196 for the baseline to 0.7348 for the proposed method λ = 5e − 3 . The GV  D for this 

model is −2.26 dB and the DeID is 29.56%.

Similar to ADV and LEV, the GV  D for WavLM was positive (0.9268 dB). However, the 

DeID for the same feature was 75%. Again, this shows that LEKLD in this scenario can 

successfully mask speaker-identity but the disentangled representations are more separable 
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than before. In contrast, ComparE16 features with the CNN-LSTM model achieved the 

lowest GV  D of −4.66 dB with a DeID of 62.68%.

6.1.5. Results on held-out test set—To evaluate the effectiveness of the proposed 

methods on a held-out test set, we test the best-performing models using the test set of the 

DAIC-WOZ dataset. The results in terms of average macro-F1-Score are presented in Table 

4.

The proposed speaker disentanglement method improved performance for all systems. The 

highest overall performance of 0.5529 was obtained using the ComparE16 features and 

CNN-LSTM model when LECE was applied and the highest improvement of 18% in 

performance was obtained with Whisper LSTM-only when LEKLD was applied (F1-Score 

improved from 0.4323 to 0.5116). Improvements in MDD detection were statistically 

significant (McNemar, 1947) for ComparE16 features with CNN-LSTM but not for Whisper 

features with the LSTM-only model.

6.1.6. Summary of DAIC-WOZ results—The results of our experiments, which 

include 9 experiments involving seven different input features and three model architectures, 

consistently demonstrate that speaker disentanglement improves depression detection 

performance while simultaneously degrading speaker identification and separability 

(improvements are statistically significant in 22 out of the 36 experiments). Among the 

proposed methods, ComparE16 features with CNN-LSTM achieved the highest F1-AVG 

for MDD detection at 80% when LECE was applied. ADV with Raw-Audio/ECAPA-

TDNN and LEKLD with Whisper/LSTM-only achieved the second-best F1-AVG of 79%. 

The consistent outcome in our experiments, when ContentVec features were used for 

speaker disentanglement, indicated that this approach consistently yielded the smallest 

improvements in MDD depression detection. This suggests that when applying speaker 

disentanglement, features that have already lost a significant amount of speaker-related 

information tend to result in smaller enhancements.

In terms of privacy attribute DeID, the score was the lowest for Mel-Spectrogram features 

(DeID = 1.9%) when used with ECAPA-TDNN showing the robustness of ECAPA-TDNN 

models in extracting speaker-related information from Mel-Spectrograms. In contrast, 

Whisper/LSTM-only with ADV achieved the highest DeID scores of 90.29% suggesting 

that large-scale models pre-trained to optimize speech-recognition performance may contain 

some speaker information that is irrelevant for downstream tasks which can easily be 

disentangled.

Regarding GV  D, the utilization of ComparE16 features in conjunction with the CNN-

LSTM model, along with the application of LEKLD for speaker disentanglement, yielded 

the lowest GV  D score, which was recorded at −4.66 dB. This outcome suggests that 

the proposed framework can effectively diminish the capability of prosodic features to 

distinguish between speakers. Conversely, when employing WavLM features for speaker 

disentanglement via LEV, we observed the highest value of 1.59 dB, despite the presence 

of a high DeID score (72.71%). This suggests that, although our proposed method obscured 
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speaker identities, WavLM features demonstrated considerable resilience, allowing the 

resulting embeddings to remain distinguishable.

6.2. EATD- Speaker disentanglement

To evaluate the generalizability of the proposed speaker-disentanglement method to a 

different language, we applied it to the EATD dataset. We conducted experiments using 

the ADV method with CNN-LSTM/Raw-Audio features the LECE method with ComparE16 

features and the CNN-LSTM model. Using larger models such as the ECAPA-TDNN or 

SSL features such as Whisper-multilingual (Radford et al., 2022) as baselines resulted in 

poor performance due to issues such as model overfitting (a small dataset size) or domain 

mismatch (multilingual to Mandarin). The results of these experiments are presented in 

Table 5.

From the table, we can see that when ADV was applied to the CNN-LSTM model trained 

on Raw-audio, the F1-AVG for MDD prediction increased by 11.99%, from 0.6430 for the 

baseline model to 0.7201 for the proposed method λ = 3e − 5 . In contrast, for the LECE 

method and ComparE16/CNN-LSTM, the performance increased by 2.86% from 65.23% 

for the baseline model to 0.6710% λ = 4e − 3 . Improvements in MDD detection were 

statistically significant (McNemar, 1947) for the ComparE16-CNN-LSTM model but not 

for the Raw-Audio-CNN-LSTM model. Similar to the DAIC-WOZ dataset, an increase in 

MDD prediction performance is accompanied by a negative GV  D and positive DeID. For 

Raw-Audio/CNN-LSTM, the GV  D is −0.88 dB with a corresponding DeID of 51.21% and for 

ComparE16/CNN-LSTM, the GV  D is −0.1635 dB with a DeID of 8.71%.

In contrast to the DAIC-WOZ dataset, ADV performs better than LECE both on MDD 

classification and speaker identity preservation. However, overall, these results indicate that 

speaker-identity-related information is a challenging problem in multiple datasets and our 

proposed methods have the potential to mitigate these challenges effectively.

6.3. SOTA comparison

The SOTA results for depression detection in terms of F1-Score are presented in Table 6.

For the DAIC-WOZ dataset, the proposed method (LECE with CNN-LSTM-only/

ComparE16) results in an F1-AVG of 0.80. The method outperforms the best audio-only 

models in the literature, the Vowel-based method, by 14.28%, and NUSD, by 8.85%. 

Similarly, for the EATD datasets, the CNN-LSTM model trained with raw-audio signals 

and ADV results in an F1-AVG of 0.7201, which outperforms an audio-only BiGRU model 

by 9.1% and also outperforms methods that combine text and audio features (Shen et al., 

2022).3

3Previous studies using the EATD dataset report results using only F1-D instead of F1-AVG. Experiments to obtain F1-AVG results 
from publicly available code repositories resulted in an inferior F1-AVG of ~0.4.
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7. Summary and conclusion

In previous studies, features such as x-vectors and other speaker embeddings have been 

shown to be effective for depression detection. However, these features also contain 

speaker-identity information, which can compromise the privacy of an MDD diagnosis 

system, an important consideration for the adoption of speech-based assessment methods. 

Consequently, this raises the question of whether depression detection can be achieved in a 

speaker-invariant manner, without relying heavily on speaker-identity features.

In this paper, we propose a framework for disentangling speaker identity and depression 

status in order to achieve speaker-identity invariant models for depression detection. Our 

proposed methods demonstrate improved MDD classification performance across multiple 

features, models, and two datasets (English and Mandarin). In comparison to SOTA methods 

from the literature, our methods outperformed them on both datasets. These results indicate 

that when attributes of a speaker’s identity that are irrelevant to a subject’s mental state are 

partially normalized, depression diagnosis is more accurate while also enhancing privacy.

Although the proposed method demonstrates strong results, there are some limitations. 

Firstly, the sensitivity of the method to hyperparameters and the time-consuming nature 

of hyperparameter tuning may pose challenges in practical implementation. Secondly, the 

effectiveness of the proposed methods on larger datasets with greater participant diversity 

needs to be further investigated to ensure generalizability. Lastly, in some cases, while 

individual model performance was not significantly impacted by the proposed methods, their 

combination with model aggregations (averaging and majority voting) yielded better results. 

A more in-depth analysis of such model behavior is warranted in future research.

Additionally, it would be valuable to investigate the specific aspects of speaker-related 

information that are relevant or irrelevant to depression detection. This could provide 

insights into the optimal representation of speech features for depression detection while 

considering the trade-off between privacy and diagnostic accuracy.
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Appendix A.: GV D And De-ID calculation

The following equations define GV  D and DeID as described in (Noé et al., 2020; Tomashenko 

et al., 2022).

GV D = 10log10
Ddiag Mdd
Ddiag Moo

(A.1)
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DeID = 1 − Ddiag Mod
Ddiag  Moo

(A.2)

where Mdd, Moo and Mod are voice similarity matrices and Ddiag M  is called the diagonal 

dominance. In this paper, o stands for the baseline (original) model and d stands for the 

disentangled model. A voice similarity matrix MAB = M i, j 1 ≤ i ≤ N, 1 ≤ j ≤ N is defined for an 

N speakers set where each entry M i, j  defines the similarity between speaker i and j, 
calculated as:

MAB i, j = sigmoid 1
ninj

∑
1 ≤ k ≤ ni and 1 ≤ l ≤ nj

k ≠ l if i = j

LLR xk
i , xl

j

(A.3)

where LLR xk
i , xl

j  is the log-likelihood-ratio obtained from Probabilistic Linear 

Discriminant Analysis (PLDA) model between segment k from speaker i and segment l from 

speaker j . ni and nj are number of segments from speaker i and speaker j, respectively. A and 

B denoted the models from which speaker representations xk
i  and xl

j  are taken, respectively.

The diagonal dominance is defined as the absolute difference between average diagonal and 

off-diagonal elements as follows:

Ddiag M = ∑
1 ≤ i ≤ N

M i, i
N − ∑

1 ≤ j ≤ N and 1 ≤ k ≤
j ≠ k

M j, k
N N − 1

(A.4)

Appendix B.: Speaker disentanglement in DAIC-WOZ

Detailed results of three speaker disentanglement methods using the DAIC-WOZ validation 

dataset are presented in this section.
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Table B. 1

Results, in terms of F1-Score, Confusion-Matrix, GV  D and DeID, for speaker 

disentanglement through ADV using the development set of the DAIC-WOZ dataset. The 

highlighted row (Δ) for each feature-model configuration indicates the relative change in 

performance of that model without disentanglement versus our proposed method. The best 

F1-Score is bold-faced.

Input feature 
(Seq.len × 
Num. of 
features)

Model 
architecture

Speaker 
disentanglement

Model 
parameters

5-Models logit average 5-Models majority voting F1-
AVG 
(LLR)

GV D 
(in dB)

DeID 
in 
(%)F1-Score Confusion Matrix F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-
Spectrogram 
(120 × 40), 
(120 × 80)

CNN-LSTM
No 280k 0.6081 0.6977 0.5185 15 8 5 7 0.6578 0.7556 0.5600 17 6 5 7 0.6173 - -

Yes (α = 4e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7 0.6941 0.7727 0.6154 17 6 4 8 0.6274 −0.4584 14.01

Δ (in %) - - 8.17 8.30 8.00 - - - - 5.52 2.26 9.89 - - - - 1.64 - -

ECAPA-
TDNN

No 515k 0.6578 0.7556 0.5600 17 6 5 7 0.7086 0.8085 0.6087 19 4 5 7 0.5425 - -

Yes (α = 5e-6) 529k 0.6941 0.7727 0.6154 17 6 4 8 0.7464 0.8261 0.6667 19 4 4 8 0.5425 −0.2118 3.69

Δ (in %) - - 5.52 2.26 9.89 - - - - 5.33 2.18 9.53 - - - - 0.00 - -

Raw-Audio (61 
440 × 1)

CNN-LSTM
No 445k 0.6259 0.7755 0.4762 19 4 7 5 0.6686 0.7917 0.5455 19 4 6 6 0.6182

Yes (α = 3e-6) 459k 0.7086 0.8085 0.6087 19 4 5 7 0.7086 0.8085 0.6087 19 4 5 7 0.6429 −0.5868 55.83

Δ (in %) - - 13.21 4.26 27.82 - - - - 5.98 2.12 11.59 - - - - 4.00 - -

ECAPA-
TDNN

No 595k 0.6196 0.7391 0.5000 17 6 6 6 0.6941 0.7727 0.6154 17 6 4 8 0.5949 - -

Yes (α = 2e-4) 609k 0.6939 0.8163 0.5714 20 3 6 6 0.7900 0.8800 0.7000 22 1 5 7 0.5585 −0.4843 22.32

Δ (in %) - - 11.99 10.45 14.28 - - - - 13.82 13.89 13.75 - - - - −6.12 - -

ComparE16 
(384 × 130)

CNN-LSTM
No 1.15M 0.5791 0.7234 0.4348 17 6 7 5 0.6941 0.7727 0.6154 17 6 4 8 0.4804 - -

Yes (α = 5e-3) 1.18M 0.6261 0.8077 0.4444 21 2 8 4 0.7619 0.8571 0.6667 21 2 5 7 0.4643 −1.8526 68.37

Δ (in %) - - 8.12 11.65 2.21 - - - - 9.77 10.92 8.34 - - - - −3.35 - -

Wav2Vec2.0-
base (200 × 
768)

LSTM-only
No 3.6M 0.6830 0.7826 0.5833 18 5 5 7 0.6830 0.7826 0.5833 18 5 5 7 0.5333 - -

Yes (α = 4e-6) 3.7M 0.7472 0.8627 0.6316 22 1 6 6 0.7472 0.8627 0.6316 22 1 6 6 0.5333 −0.6503 52.43

Δ (in %) - - 9.40 10.24 8.28 - - - - 9.40 10.24 8.28 - - - - 0.00 - -

Contentvec-100 
(193 × 768)

LSTM-only
No 3.6M 0.7287 0.7907 0.6667 17 6 3 9 0.7287 0.7907 0.6667 17 6 3 9 0.4804 - -

Yes (α = 1e-2) 3.7M 0.7351 0.7805 0.6897 16 7 2 10 0.7351 0.7805 0.6897 16 7 2 10 0.3966 −2.1326 42.50

Δ (in %) - - 0.88 −1.29 3.45 - - - - 0.88 −1.29 3.45 - - - - −17.44 - -

WavLM-base 
(193 × 768)

LSTM-only
No 3.6M 0.6429 0.7143 0.5714 15 8 4 8 0.6941 0.7727 0.6154 17 6 4 8 0.5333 - -

Yes (α = 4e-7) 3.7M 0.6684 0.7442 0.5926 16 7 4 8 0.7200 0.8000 0.6400 18 5 4 8 0.6749 0.863 83.55

Δ (in %) - - 3.97 4.19 3.71 - - - - 3.73 3.53 4.00 - - - - 26.55 - -

Whisper-base 
(193 × 512)

LSTM-only
No 3.4M 0.6438 0.7660 0.5217 18 5 6 6 0.6686 0.7917 0.5455 19 4 6 6 0.5127 - -

Yes (α = 3e-5) 3.4M 0.6500 0.8000 0.5000 20 3 7 5 0.6749 0.8235 0.5263 21 2 7 5 0.6023 −1.7630 90.29

Δ (in %) - - 0.96 4.44 −4.16 - - - - 0.94 4.02 −3.52 - - - - 17.48 - -

TN = True Negative, FP = False Positive, FN = False Negative, TP = True Positive
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Table B. 2

Results, in terms of F1-Score, Confusion-Matrix, GV  D and DeID, for speaker 

disentanglement through LEV using the development set of the DAIC-WOZ dataset. The 

highlighted row (Δ) for each feature-model configuration indicates the relative change in the 

performance of that model without disentanglement versus our proposed method. The best 

F1-Score is bold-faced.

Input feature 
(Seq.len × 
Num. of 
features)

Model 
architecture

Speaker 
disentanglement

Model 
parameters

5-Models logit average 5-Models majority voting F1-
AVG 
(LLR)

GV D 
(in dB)

DeID 
in 
(%)F1-Score Confusion Matrix F1-Score Confusion Matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-
Spectrogram 
(120 × 40), 
(120 × 80)

CNN-LSTM
No 280k 0.6081 0.6977 0.5185 15 8 5 7 0.6578 0.7556 0.5600 17 6 5 7 0.6173 - -

Yes (α = 5e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7 0.6830 0.7826 0.5833 18 5 5 7 0.5970 −0.1787 2.90

Δ (in %) - - 8.17 8.30 8.00 - - - - 3.83 3.57 4.16 - - - - −3.29 - -

ECAPA-
TDNN

No 515k 0.6578 0.7556 0.5600 17 6 5 7 0.7086 0.8085 0.6087 19 4 5 7 0.5425 - -

Yes (α = 5e-2) 529k 0.6830 0.7826 0.5833 18 5 5 7 0.7464 0.8261 0.6667 19 4 4 8 0.5700 −0.5296 5.37

Δ (in %) - - 3.83 3.57 4.16 - - - - 5.33 2.18 9.53 - - - - 5.07 - -

Raw-Audio (61 
440 × 1)

CNN-LSTM
No 445k 0.6259 0.7755 0.4762 19 4 7 5 0.6686 0.7917 0.5455 19 4 6 6 0.6182 - -

Yes (α = 1e-3) 459k 0.6686 0.7917 0.5455 19 4 6 6 0.7348 0.8333 0.6364 20 3 5 7 0.6429 −1.3189 61.98

Δ (in %) - - 6.82 2.09 14.55 - - - - 9.90 5.25 16.66 - - - - 4.00 - -

ECAPA-
TDNN

No 595k 0.6196 0.7391 0.5000 17 6 6 6 0.6941 0.7727 0.6154 17 6 4 8 0.5949 - -

Yes (α = 3e-3) 609k 0.7086 0.8085 0.6087 19 4 5 7 0.7348 0.8333 0.6364 20 3 5 7 0.6939 −0.5953 24.06

Δ (in %) - - 14.36 9.39 21.74 - - - - 5.86 7.84 3.41 - - - - 16.64 - -

ComparE16 
(384 × 130)

CNN-LSTM
No 1.15M 0.5791 0.7234 0.4348 17 6 7 5 0.6941 0.7727 0.6154 17 6 4 8 0.4804 - -

Yes (α = 2e-4) 1.18M 0.6830 0.7826 0.5833 18 5 5 7 0.7552 0.8182 0.6923 18 5 3 9 0.4804 −0.0551 79.62

Δ (in %) - - 17.94 8.18 34.15 - - - - 8.80 5.89 12.50 - - - - 0.00 - -

Wav2Vec2.0-
base (200 × 
768)

LSTM-only
No 3.6M 0.6830 0.7826 0.5833 18 5 5 7 0.6830 0.7826 0.5833 18 5 5 7 0.5333 - -

Yes (α = 5e-3) 3.7M 0.6939 0.8163 0.5714 20 3 6 6 0.7619 0.8517 0.6667 21 2 5 7 0.6578 −0.3126 30.41

Δ (in %) - - 1.60 4.31 −2.04 - - - - 11.55 8.83 14.30 - - - - 23.35 - -

ContentVec-100 
(193 × 768)

LSTM-only
No 3.6M 0.7287 0.7907 0.6667 17 6 3 9 0.7287 0.7907 0.6667 17 6 3 9 0.4804 - -

Yes (α = 2e-2) 3.7M 0.7287 0.7907 0.6667 17 6 3 9 0.7351 0.7805 0.6897 16 7 2 10 0.4804 −0.1416 18.50

Δ (in %) - - 0.00 0.00 0.00 - - - - 0.88 −1.29 3.45 - - - - 0.00 - -

WavLM-base 
(193 × 768)

LSTM-only
No 3.6M 0.6429 0.7143 0.5714 15 8 4 8 0.6941 0.7727 0.6154 17 6 4 8 0.5333 - -

Yes (α = 2e-3) 3.7M 0.6939 0.8163 0.5714 20 3 6 6 0.7200 0.8400 0.6000 21 2 6 6 0.5139 1.5854 72.71

Δ (in %) - - 7.93 14.28 0.00 - - - - 3.73 8.71 −2.50 - - - - −3.64 - -

Whisper-base 
(193 × 512)

LSTM-only
No 3.4M 0.6438 0.7660 0.5217 18 5 6 6 0.6686 0.7917 0.5455 19 4 6 6 0.5127 - -

Yes (α = 5e-3) 3.4M 0.6830 0.7826 0.5833 18 5 5 7 0.6939 0.8163 0.5714 20 3 6 6 0.5127 −2.8950 84.49

Δ (in %) - - 6.09 2.17 11.81 - - - - 3.78 3.11 4.75 - - - - 0.00 - -

TN = True Negative, FP = False Positive, FN = False Negative, TP = True Positive
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Table B. 3

Results, in terms of F1-Score, Confusion-Matrix, GV  D and DeID, for speaker 

disentanglement through LECE using the development set of the DAIC-WOZ dataset. The 

highlighted row (Δ) for each feature-model configuration indicates the relative change in the 

performance of that model without disentanglement versus our proposed method. The best 

F1-Score is bold-faced.

Input feature 
(Seq.len × 
Num. of 
features)

Model 
architecture

Speaker 
disentanglement

Model 
parameters

5-Models logit average 5-Models majority voting F1-
AVG 
(LLR)

GV D 
(in dB)

DeID 
in 
(%)F1-Score Confusion matrix F1-Score Confusion matrix

F1 
(Avg)

F1 
(ND)

F1 (D) TN FP FN TP F1 
(Avg)

F1 
(ND)

F1 (D) TN FP FN TP

Mel-
Spectrogram 
(120 × 40), 
(120 × 80)

CNN-LSTM
No 280k 0.6081 0.6977 0.5185 15 8 5 7 0.6578 0.7556 0.5600 17 6 5 7 0.6173 - -

Yes (α = 4e-1) 293k 0.6684 0.7442 0.5926 16 7 4 8 0.6684 0.7442 0.5926 16 7 4 8 0.5238 −3.5427 72.13

Δ (in %) - - 9.91 6.66 14.29 - - - - 1.61 −1.51 5.82 - - - - −15.15 - -

ECAPA-
TDNN

No 515k 0.6578 0.7556 0.5600 17 6 5 7 0.7086 0.8085 0.6087 19 4 5 7 0.5425 - -

Yes (α = 2e-7) 529k 0.6830 0.7826 0.5833 18 5 5 7 0.7464 0.8261 0.6667 19 4 4 8 0.5700 −0.489 5.91

Δ (in %) - - 3.83 3.57 4.17 - - - - 5.33 2.18 9.52 - - - - 5.07 - -

Raw-Audio (61 
440 × 1)

CNN-LSTM
No 445k 0.6259 0.7755 0.4762 19 4 7 5 0.6686 0.7917 0.5455 19 4 6 6 0.6182 - -

Yes (α = 4e-5) 459k 0.7086 0.8085 0.6087 19 4 5 7 0.7086 0.8085 0.6087 19 4 5 7 0.6684 −0.5476 53.56

Δ (in %) - - 13.21 4.26 27.82 - - - - 5.98 2.12 11.58 - - - - 8.12 - -

ECAPA-
TDNN

No 595k 0.6196 0.7391 0.5000 17 6 6 6 0.6941 0.7727 0.6154 17 6 4 8 0.5949 - -

Yes (α = 3e-5) 609k 0.7348 0.8333 0.6364 20 3 5 7 0.7734 0.8511 0.6957 20 3 4 8 0.5333 −0.0446 15.62

Δ (in %) - - 18.60 12.75 27.27 - - - - 11.42 10.14 13.04 - - - - −10.35 - -

ComparE16 
(384 × 130)

CNN-LSTM
No 1.15M 0.5791 0.7234 0.4348 17 6 7 5 0.6941 0.7727 0.6154 17 6 4 8 0.4804 - -

Yes (α = 1e-7) 1.18M 0.5800 0.7600 0.4000 19 4 8 4 0.8011 0.8750 0.7273 21 2 4 8 0.4804 −1.0668 85.10

Δ (in %) - - 0.16 5.06 −8.00 - - - - 15.42 13.24 18.18 - - - - 0.00 - -

Wav2Vec2.0-
base (200 × 
768)

LSTM-only
No 3.6M 0.6830 0.7826 0.5833 18 5 5 7 0.6830 0.7826 0.5833 18 5 5 7 0.5333 - -

Yes (α = 5e-5) 3.7M 0.7619 0.8571 0.6667 21 2 5 7 0.7619 0.8571 0.6667 21 2 5 7 0.6939 −2.6701 63.55

Δ (in %) - - 11.55 9.53 14.29 - - - - 11.55 9.53 14.29 - - - - 30.11 - -

ContentVec-100 
(193 × 768)

LSTM-only
No 3.6M 0.7287 0.7907 0.6667 17 6 3 9 0.7287 0.7907 0.6667 17 6 3 9 0.4804 - -

Yes (α = 5e-4) 3.7M 0.7552 0.8182 0.6923 18 5 3 9 0.7464 0.8261 0.6667 19 4 4 8 0.7086 −1.6775 59.11

Δ (in %) - - 3.64 3.48 3.84 - - - - 2.43 4.48 0.00 - - - - 47.50 - -

WavLM-base 
(193 × 768)

LSTM-only
No 3.6M 0.6429 0.7143 0.5714 15 8 4 8 0.6941 0.7727 0.6154 17 6 4 8 0.5333 - -

Yes (α = 2e-2) 3.7M 0.7472 0.8627 0.6316 22 1 6 6 0.7756 0.8846 0.6667 23 0 6 6 0.6686 −0.5155 76.98

Δ (in %) - - 16.22 20.78 10.53 - - - - 11.75 14.48 8.33 - - - - 25.37 - -

hisper-base 
(193 × 512)

LSTM-only
No 3.4M 0.6438 0.7660 0.5217 18 5 6 6 0.6686 0.7917 0.5455 19 4 6 6 0.5127 - -

Yes (α = 5e-6) 3.4M 0.6684 0.7442 0.5926 16 7 4 8 0.7552 0.8182 0.6923 18 5 3 9 0.3966 −3.7670 86.09

Δ (in %) - - 3.82 −2.85 13.59 - - - - 12.96 3.34 26.91 - - - - −22.64 - -

TN = True Negative, FP = False Positive, FN = False Negative, TP = True Positive
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Table B. 4

Results, in terms of F1-Score, Confusion-Matrix, GV  D and DeID, for speaker 

disentanglement through LEKLD using the development set of the DAIC-WOZ dataset. The 

highlighted row (Δ) for each feature-model configuration indicates the relative change in 

performance of that model without disentanglement versus our proposed method. The best 

F1-Score is bold-faced.

Input feature 
(Seq.len × 
Num. of 
features)

Model 
architecture

Speaker 
disentanglement

Model 
parameters

5-Models logit average 5-Models majority voting F1-
AVG 
(LLR)

GV D 
(in dB)

DeID 
in 
(%)F1-Score Confusion matrix F1-Score Confusion matrix

F1(Avg) F1(ND) F1(D) TN FP FN TP F1(Avg) F1(ND) F1(D) TN FP FN TP

Mel-
Spectrogram 
(120 × 40), 
(120 × 80)

CNN-LSTM
No 280k 0.6081 0.6977 0.5185 15 8 5 7 0.6578 0.7556 0.5600 17 6 5 7 0.6173 - -

Yes (α = 5e-5) 293k 0.6578 0.7556 0.5600 17 6 5 7 0.6578 0.7556 0.5600 17 6 5 7 0.5970 −0.3079 11.42

Δ (in %) - - 8.17 8.30 8.00 - - - - 0.00 0.00 0.00 - - - - −3.29 - -

ECAPA-
TDNN

No 515k 0.6578 0.7556 0.5600 17 6 5 7 0.7086 0.8085 0.6087 19 4 5 7 0.5425 - -

Yes (α = 1e-1) 529k 0.6941 0.7727 0.6154 17 6 4 8 0.7464 0.8261 0.6667 19 4 4 8 0.4853 −1.1953 1.90

Δ (in %) - - 5.52 2.26 9.89 - - - - 5.33 2.18 9.53 - - - - −10.54 - -

Raw-Audio (61 
440 × 1)

CNN-LSTM
No 445k 0.6259 0.7755 0.4762 19 4 7 5 0.6686 0.7917 0.5455 19 4 6 6 0.6182 - -

Yes (α = 2e-3) 459k 0.6830 0.7826 0.5833 18 5 5 7 0.7348 0.8333 0.6364 20 3 5 7 0.6684 −0.5503 37.05

Δ (in %) - - 9.12 0.92 22.49 - - - - 9.90 5.25 16.66 - - - - 8.12 - -

ECAPA-
TDNN

No 595k 0.6196 0.7391 0.5000 17 6 6 6 0.6941 0.7727 0.6154 17 6 4 8 0.5949 - -

Yes (α = 5e-3) 609k 0.7348 0.8333 0.6364 20 3 5 7 0.7348 0.8333 0.6364 20 3 5 7 0.6261 −2.2619 29.56

Δ (in %) - - 18.59 12.75 27.28 - - - - 5.86 7.84 3.41 - - - - 5.24 - -

ComparE16 
(384 × 130)

CNN-LSTM
No 1.15M 0.5791 0.7234 0.4348 17 6 7 5 0.6941 0.7727 0.6154 17 6 4 8 0.4804 - -

Yes (α = 1e-2) 1.18M 0.6173 0.6829 0.5517 14 9 4 8 0.7287 0.7907 0.6667 17 6 3 9 0.4804 −4.6687 62.68

Δ (in %) - - 6.60 −5.60 26.89 - - - - 4.98 2.33 8.34 - - - - 0.00 - -

Wav2Vec2.0-
base (200 × 
768)

LSTM-only
No 3.6M 0.6830 0.7826 0.5833 18 5 5 7 0.6830 0.7826 0.5833 18 5 5 7 0.5333 - -

Yes (α = 5e-4) 3.7M 0.7009 0.8462 0.5556 22 1 7 5 0.7472 0.8627 0.6316 22 1 6 6 0.5333 −4.5179 55.83

Δ (in %) - - 2.62 8.13 −4.75 - - - - 9.40 10.24 8.28 - - - - 0.00 - -

Contentvec-100 
(193 × 768)

LSTM-only
No 3.6M 0.7287 0.7907 0.6667 17 6 3 9 0.7287 0.7907 0.6667 17 6 3 9 0.4804 - -

Yes (α = 5e-4) 3.7M 0.7287 0.7907 0.6667 17 6 3 9 0.7351 0.7805 0.6897 16 7 2 10 0.4804 −0.1199 24.40

Δ (in %) - - 0.00 0.00 0.00 - - - - 0.88 −1.29 3.45 - - - - 0.00 - -

WavLM-base 
(193 × 768)

LSTM-only
No 3.6M 0.6429 0.7143 0.5714 15 8 4 8 0.6941 0.7727 0.6154 17 6 4 8 0.5333 - -

Yes (α = 5e-1) 3.7M 0.7086 0.8085 0.6087 19 4 5 7 0.7348 0.8333 0.6364 20 3 5 7 0.5139 0.9268 75.49

Δ (in %) - - 10.22 13.19 6.53 - - - - 5.86 7.84 3.41 - - - - −3.64 - -

Whisper-base 
(193 × 512)

LSTM-only
No 3.4M 0.6438 0.7660 0.5217 18 5 6 6 0.6686 0.7917 0.5455 19 4 6 6 0.5127 - -

Yes (α = 1e-5) 3.4M 0.6830 0.7826 0.5833 18 5 5 7 0.7900 0.8800 0.7000 22 1 5 7 0.5139 −3.9297 69.42

Δ (in %) - - 6.09 2.17 11.81 - - - - 18.16 11.15 28.32 - - - - 0.23 - -

TN = True Negative, FP = False Positive, FN = False Negative, TP = True Positive.
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Fig. 1. 
Block diagram representing disentanglement of speaker and depression characteristics. Four 

methods of speaker disentanglement are proposed.
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Fig. 2. 
(a) Relative change, in percentage, in MDD classification F1-Score and (b) GV  D in dB, 

respectively, for each experiment when speaker disentanglement is applied in the form 

of ADV. The X-axis of each plot represents the 9 different feature-model combinations. 

5M-AVG and 5M-MV refer to the averaging and majority voting aggregation of the 5 

models, respectively.
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Fig. 3. 
(a) Relative change, in percentage, in MDD classification F1-Score and (b) GV  D in dB, 

respectively, for each experiment when speaker disentanglement is applied in the form 

of LEV. The X-axes represent the 9 different feature-model combinations. 5M-AVG and 

5M-MV refer to the averaging and majority voting aggregation of the 5 models, respectively.
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Fig. 4. 
(a) Relative change, in percentage, in MDD classification F1-Score and (b) GV  D in dB, 

respectively, for each experiment when speaker disentanglement is applied in the form of 

LECE. The X-axes represent the 9 different feature-model combinations. 5M-AVG and 

5M-MV refer to the averaging and majority voting aggregation of the 5 models, respectively.
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Fig. 5. 
(a) Relative change, in percentage, in MDD classification F1-Score and (b) GV  D in dB, 

respectively, for each experiment when speaker disentanglement is applied in the form of 

LEKLD. The X-axes represent the 9 different feature-model combinations. 5M-AVG and 

5M-MV refer to the averaging and majority voting aggregation of the 5 models, respectively.
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Table 1

Depression detection performance in terms of F1-AVG on the DAIC-WOZ dataset, with and without voice 

conversion (VC), using the DepAudioNet model trained using Mel-Spectrograms.

Experiment F1-AVG

DepAudioNet (Ma et al., 2016) 0.6081

DepAudioNet+VC 0.6237
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Table 2

Summary of datasets used in this paper. Cases refers to ‘depressed’ class and Controls is ‘non-depressed’ 

class.

DAIC-WOZ EATD

Language English Mandarin

Number of participants 142 162

Gender M&F M&F

Cases/Controls 42/100 30/132

Sampling rate (Hz) 16000 16000

Total duration (Hours) 22.56 2.26
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Table 3

Summary of Model architectures used in this paper. ‘Conv’ indicates convolutional layer. ‘LSTM’ indicates 

Long Short-term Memory Layer. ‘FC’ indicates fully connected layer. The number of layers and dimensions 

of each varies with the dataset size and/or input features.

Model architecture Initial layers Hidden layers Output layer

CNN-LSTM Conv LSTM FC

ECAPA-TDNN Conv Time-Dilated Conv FC

LSTM-only LSTM LSTM FC

Comput Speech Lang. Author manuscript; available in PMC 2024 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Ravi et al. Page 40

Table 4

Results, in terms of F1-Score, for speaker disentanglement through ADV, LEV, LECE, and LEKLD using the 

test set of DAIC-WOZ dataset. The best F1-Score is bold-faced for each experiment.

Model Disentanglement method

No ADV LEV LECE LEKLD

Mel Spectrogram CNN-LSTM 0.4101 0.4346 0.4623 0.4402 0.4428

Mel Spectrogram ECAPA-TDNN 0.4530 0.4670 0.4751 0.4698 0.4894

Raw-Audio CNN-LSTM 0.5107 0.4987 0.4990 0.5253 0.4982

Raw-Audio ECAPA-TDNN 0.4264 0.4685 0.4710 0.4489 0.4461

Compare16 CNN-LSTM 0.5152 0.4609 0.5153 0.4603 0.4983

Wav2vec2 LSTM-Only 0.4926 0.5440 0.5401 0.5223 0.5440

ContentVec LSTM-Only 0.4986 0.5129 0.5151 0.5529 0.5317

WavLM LSTM-Only 0.4412 0.5351 0.5191 0.5075 0.5202

Whisper LSTM-Only 0.4323 0.5027 0.5116 0.4672 0.4642
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Table 5

Results, in terms of F1-AVG, Confusion-Matrix, GV  D and DeID, speaker disentanglement through ADV and 

LECE using the development set of EATD dataset. TN, FP, FN, and TP are True Negative, False Positive, 

False Negative, and True Positive, respectively. The best F1-Score is bold-faced.

Feature-Model Speaker disentanglement # Params F1-AVG Confusion matrix GV D (in dB) DelD (in %)

TN FP FN TP

Raw-Audio No 445k 0.643 62 6 7 4 - -

CNN-LSTM ADV (α = 3e-5) 456k 0.720 62 6 5 6 −0.8827 51.21

ComparE16 No 1.15M 0.652 66 2 8 3 - -

CNN-LSTM LECE (α = 4e-4) 1.18M 0.671 64 4 7 4 −0.1635 8.71
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Table 6

Comparison in terms of F1-Scores of SOTA MDD-prediction methods from literature for DAIC-WOZ and 

EATD datasets and our proposed method. Best result is bold-faced.

Dataset Method MDD F1

DAIC-WOZ

DepAudioNet (Ma et al., 2016) 0.6081

FVTC-CNN (Huang et al., 2020) 0.6400

CNN-LSTM (Dumpala et al., 2022) 0.6850

SpeechFormer (Chen et al., 2022b) 0.6940

Vowel-based (Feng and Chaspari, 2022) 0.7000

NUSD (Wang et al., 2023) 0.7349

Proposed 0.8000

EATD

BiGRU+Text (Shen et al., 2022) 0.6500

BiGRU+Audio (Shen et al., 2022) 0.6600

RoBERTa+BiLSTM+Text (Zhang et al., 2022) 0.6900

BiGRU, Fusion Speech + Text (Shen et al., 2022) 0.7100

Proposed 0.7201
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