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EPIGRAPH

Dubito, ergo sum, vel, quod idem est, cogito, ergo sum.

I doubt, therefore I am – or what is the same – I think, therefore I am.

— Rene Descartes

When nothing seems to help, I go and look at a stonecutter

hammering away at his rock perhaps a hundred times without as

much as a crack showing in it. Yet at the hundred and first blow it

will split in two, and I know it was not that blow that did it –

but all that had gone before.

— Jacob Riis
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Dynamic Modeling of Pulse-like Earthquakes and Ground Motions

by

Growth of major populated cities near active faults (e.g., Los Angeles and San Francisco 

in USA, Tokyo and Osaka in Japan) has significantly elevated the seismic hazards. Understanding 

complex paradigm of near-fault ground motions is crucial in order to mitigate seismic hazards. 

Since the 1994 Mw 6.7 Northridge earthquake, there has been much discussion about the adequacy 

of building code and a term of “pulse”. The engineering effects of near-fault pulse-like ground 

motions were strikingly exhibited in the 1994 Northridge earthquake in which great seismic 

damage was attributed to the large impulsive ground shaking of this type. Such near-fault pulse-

like ground motions with high intensity and damage potentials are hypothetically associated to
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either pulse-like rupture on fault or the rupture directivity. These mechanisms will be introduced

and studied.

In Chapter 2, we study far-field effects of a self-healing pulse-like rupture mode with

dynamic weakening. Pulse-like rupture leads to development of a second corner frequency, and

the intermediate spectral slope is approximately 2 in most cases. The focal-sphere-averaged

lower P and S wave corner frequencies are systematically higher for pulse-like models than

crack models of comparable rupture velocity. The slip-weighted stress drop ∆σE exceeds the

moment-based stress drop ∆σM for pulse-like ruptures, with the ratio ranging from about 1.3 to

1.65, while they are equal for the crack-like case. The transition from arresting- to growing-pulse

rupture is accompanied by a large (factor of ∼1.6) increase in the radiation ratio. Thus, variations

in rupture mode may account for the portion of the scatter in observational spectral estimates of

source parameters.

In Chapter 3, we confirm the pulse-like ground motion in the 2015 Nepal Gorkha earth-

quake is related with the causing fault geometry of the Main Himalayan Thrust (MHT). Our

dynamic rupture simulations in an elastoplastic medium yield earthquake parameters comparable

to those deduced from kinematic inversions, including seismic moment and rupture velocity.

The simulations reproduce pulse-like behavior predicting pulse widths in agreement with those

kinematic studies and supporting an interpretation in which the pulse-like time dependence of

slip is principally controlled by rupture geometry and it is observationally supported by near-field

high-rate GPS recording at station KKN4.

In Chapter 4, we discuss the directivity-induced pulse-like ground motions and assess the

extent to which plastic yielding, which is absent in standard kinematic models, may systematically

affect the amplitude, frequency content, and distance scaling of directivity pulse. We perform

some simple 2D kinematic and 3D spontaneous dynamic ruptures with and without plastic

yielding on flat and rough faults, and find that each of the four 3D models (flat and rough

faults, with and without off-fault yielding), scaled to approximately magnitude 7, predicts a

xxv



fault-normal pulse with characteristic behavior of observed pulses. Plastic yielding systematically

reduces pulse amplitude and increases its dominant period, relative to models that neglect off-

fault yielding. Yielding saturates near-fault peak ground velocity (PGV) with greater stress

drops, alternatively interpreting observed magnitude saturation of PGV near a magnitude of 7,

and provides physics-based implications for period-dependent distance taper and along-strike

saturation of directivity-induced amplification, weakening the wedge-shaped directivity zone.

xxvi



Chapter 1

Introduction

1.1 Motivation

The Growth of major populated cities near active faults (e.g., Los Angeles and San Fran-

cisco in USA, Tokyo and Osaka in Japan) has significantly elevated the seismic hazards. Hall et al.

[1995] claimed that “Occurrence of large earthquakes close to cities in California is inevitable”,

which is also true for some other cities all over the world, especially to some vulnerable to

earthquake-induced secondary hazards. For example, the 2008 M 8 Wenchuan earthquake struck

an area where residents were living near seismically active faults (e.g., Lomgmenshan fault

generated by continental collision between Eurasian and Indo-Australian plates), the extensive

and deep Chengdu Basin, and soft mountainous terrains, and directly caused more than 15,000

geohazards in the form of landslides, rockfalls, and debris flows which resulted in about 20,000

deaths. Along with the knowledge that near-fault ground motions impose larger demands on civil

structures than far from the fault, understanding the complex nature of near-fault ground motions

is crucial in order to mitigate seismic hazards.

While in the past decades, more and more near-fault ground motion data has been collected,

a deeper and closer look at ground motions of a large earthquake magnitude range is always
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hindered by the limited number of observations. At moment magnitudes larger than 6, there

is a great shortage of observations close to the source (within 10 km), and potential gain from

supplementing those observations with simulations. Computational success has been gained at low

frequencies (<1 Hz or so) in simulating strong ground motions, along with investigating attributes

of earthquake sources and underground structure. Recently, computational ability has advanced

to facilitate 3D simulations of high-frequency earthquake ground motions at very remote stations

from the source. This is important because a larger range of synthetic ground-motion frequency

content (e.g., 0.1∼ 10 Hz) can resolve seismic hazards for buildings with varying heights: a rough

approximation is 0.1 second period per story (e.g., 10 story building would have a roughly natural

frequency near 1 Hz and higher than 1 Hz for any shorter building). Within this frequency band,

there are numerous ground-motion characteristics and their causative mechanisms worthwhile

to explore both for their inherent scientific interest and for their applications to earthquake

seismology and engineering.

Since the 1994 Mw 6.7 Northridge earthquake, there has been much discussion about

the adequacy of building codes and the term “pulse” has had a prominent place in discussions

of hazardous ground motions [Hall et al. 1995]. The term “pulse” has been used with reference

to a significant long-period content of ground motion. Distinct from the oscillatory long-period

motions arising from soft-soil effects or basin response, the compact long-period motion in

displacement or velocity is associated directly with the fault-rupture process and source-to-site

geometry. These strong pulse-like near-fault ground motions are of great interest in earthquake

seismology and engineering. The engineering effects of near-fault pulse-like ground motions

were strikingly exhibited in the 1994 Northridge earthquake (Figure 1.1) in which great seismic

damage was attributed to the large impulsive ground shaking [Strasser and Bommer 2009] of this

type. Such near-fault pulse-like ground motions with high intensity and damage potential, also

found for example in the 1979 Imperial Valley, the 1992 Landers, the 2015 Nepal Gorkha and the

2002 Denali earthquakes, are hypothetically associated to either pulse-like rupture on fault or the
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rupture directivity. These mechanisms will be introduced and studied in detail below.

1.2 Pulse-like rupture

Heaton [1990] inferred from seismic finite-fault inversions that most earthquake ruptures

propagate in a pulse-like mode. That study was followed by others, including the recent synthesis

of Melgar and Hayes [2017] who examined a larger and newer dataset of over 150 finite-fault

rupture models (Mw 7 to 9) and favored the preponderance of pulse-like signatures (slip rise times

much shorter than the source duration) (Figure 1.2). This is in contrast to the crack-like mode of

rupture, in which the slip continues to expand until the rupture reaches the outer arresting edges

and the rise time is comparable to the overall event time. The pulse-like fault kinematics shown

in such seismic inversions can be caused by multiple on-fault mechanisms: velocity-dependent

friction, heterogeneity of fault strength/stress, and finite downdip rupture dimension [Beeler and

Tullis 1996; Beroza and Mikumo 1996; Cochard and Madariaga 1996; Day 1982; Day et al. 1998;

Gabriel et al. 2012; Johnson 1992; Noda et al. 2009; Oglesby and Day 2002; Zheng and Rice

1998]. However, it is difficult on the basis of kinematic analysis alone to distinguish these effects

on any individual rupture.

Despite the fact that the causative effects are difficult to distinguish given the frequency

band applied in inferring current finite-fault models, they can be categorized into two major groups.

The first group, containing velocity-dependent friction and heterogeneity of fault strength/stress,

involves control of slip rise times by localized processes independent of the whole fault dimension,

so that slip lasts no longer than that caused by fault geometry. This is termed “self-healing”

rupture pulse. Velocity-dependent friction (dynamic-weakening friction, e.g., flash heating and

thermal pressurization). Figure 1.3) is an example of the self-healing group and has been proposed

as a mechanism to sustain the well-known weak San Andreas Fault (Hickman and Zoback [2004]

estimate that the ratio between shear and normal stress on the SAF is only 0.2 - 0.4). The other
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group in which slip duration is controlled by the overall fault geometry is often found to be

consistent with finite-fault inversion and dynamic models, because natural earthquakes commonly

have one characteristic scale length dictated by fault properties (e.g., seismogenic depth). Here

we designate this the “geometry-induced” rupture pulse. A simple approximation of the rise

time is the length of the finite dimension divided by 2 times rupture velocity [Day 1982]. If the

fault shape transitions from a rectangle with a big length-to-width ratio to a square or circle, the

geometry-induced pulse-like rupture will turn into a crack-like rupture as the rise time becomes

comparable to the rupture duration.

A pulse-like rupture mode produces distinct effects (relative to crack-like rupture). Wang

and Day [2017] in Chapter 2 find that a secondary spectral corner of the far-field seismic spectrum

is introduced by a pulse-like source and seismic radiation efficiency is increased owing to a larger

dynamic stress drop relative to the static stress drop. Wang et al. [2019] in Chapter 3 confirm

the rupture pulse in 2015 Nepal Gorkha earthquake is strongly associated with the geologically

plausible fault geometry of MHT (Main Himalayan Thrust) by matching the near-field impulsive

high-rate GPS recording (15 km above the fault) without applying any filter. Aagaard and Heaton

[2008] showed that the mechanism of pulse-like rupture can affect near-field ground motions

in that the self-healing rupture can potentially compact the fault-normal pulse in a near-fault

range. In contrast, a geometry-induced rupture pulse has longer rise time, and generates a broader

directivity pulse.

1.3 Directivity pulse

When a rupture is propagating towards a site, directivity effects can cause much of the

seismic energy to arrive in one large pulse polarized predominantly normal to the fault [Somerville

et al. 1997]. The large, fault-normal velocity pulses mentioned above are observed when forward

directivity conditions have been met. These conditions are that the rupture front is propagating

4



towards a site on the surface, and the direction of slip on the fault is aligned toward the site. They

are readily met during simple strike-slip faulting, and can be observed qualitatively at site A in the

simple case of a moving point source in Figure 1.4. Somerville et al. [1997] describe the general

effects of directivity: an increase in amplitude as measured by pseudospectral acceleration (SA),

a decrease in duration, and variation in the ratio of fault-normal to fault-parallel motions. To

the extent that far-field approximations apply, the seismic energy resulting from a propagating

rupture will be frequency-shifted in a manner analogous to the Doppler shifted radiation from a

moving point source [Douglas et al. 1988]

In Chapter 4, we will discuss the directivity-induced pulse-like ground motions and

assess the extent to which plastic yielding, which is absent in standard kinematic models, may

systematically affect the amplitude, frequency content, and distance scaling of directivity pulse.

Off-fault inelastic deformation during earthquake rupture results in a redistribution of stresses that

in turn affect the subsequent rupture history and associated ground motion. These effects have

been modeled in the framework of continuum plasticity (e.g. Drucker-Prager, Mohr-Coulomb

and End-cap type) in recent studies [Andrews 2005; Duan and Day 2008; Dunham et al. 2011a;

Dunham et al. 2011b; Ma and Hirakawa 2013; Shi and Day 2013; Roten et al. 2014; Hirakawa

and Ma 2016]. These models suggest that the inelastic deformation not only reduces long-period

ground motions [Roten et al. 2014] (Figure 1.5), but also partially filters out high frequency

seismic motions [Ma and Hirakawa 2013]. It is important to understand how directivity-enhanced

velocity pulses behave very close to the rupture surface, where plastic yielding is likely to affect

their amplitude and waveforms.

While studies of ground-motion pulses have focused principally on the fault-normal

component, there are some events in which pulse-like fault-parallel ground motions were also

clearly observed (e.g., the 2002 Denali, the 1999 Kocaeli (Izmit) and Duzce earthquakes) in the

near-fault regime. Moreover, the pulse periods of fault-parallel and fault-normal components

with similar arrival times are very similar (Table 2 and 3 in Akkar and Gulkan [2002]). For the

5



2002 Denali earthquake, Dunham and Archuleta [2004] demonstrated that the initial pulses on

both the fault-normal and fault-parallel components are due to a supershear rupture. Supershear-

induced Mach waves characterized by a pulse of large amplitude and short duration are also

observed in both the 1999 Kocaeli and Duzce earthquakes [Bouchon et al. 2000; Bouchon et al.

2001]. At steady-state supershear speed, S waves radiate and their velocity waveform on both the

fault-normal and fault-parallel components is identical to the slip-velocity history. In contrast, a

subshear rupture velocity results in a distance-dependent attenuation factor in near-fault ground

motions [Dunham and Archuleta 2005]. An example in which both pulse types occur is the Pump

station 10 recording of the 2002 Denali earthquake. There, the later-arriving pulse (corresponding

to the later subshear rupture) is only manifest in fault-normal component. In summary, the

fault-parallel impulsive motions are sensitive to the relativeness of the rupture velocity to the

shear wave speed.
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Tables and Figures

Figure 1.1: Sample of acceleration, velocity and displacement time histories for a near-fault
ground motion recorded at Jensen Filtration Plant station in the 1994 Northridge earthquake.
Source: Wang, G. et al. (2014). “Seismic performance evaluation of dam-reservoir-foundation
systems to near-fault ground motions”. In: Natural Hazards 72.2, pp. 651–674
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Figure 1.2: Summary statistics for the distribution of rise times for each inversion. The box
indicates the 25th and 75th percentiles, and the red line is the median rise time. The whiskers
are the 10th and 90th percentiles, and the blue dot is the maximum allowed rise time in each
inversion. The rise times have been normalized by the total source duration such that a rise time
value of 1.0 is equivalent to the entire source duration. Source: Melgar, D. and Hayes, G. P.
(2017). “Systematic observations of the slip pulse properties of large earthquake ruptures”. In:
Geophysical Research Letters 44.19, pp. 9691–9698
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Figure 1.3: (A) Friction coefficient (black trace) and sliding velocity (red trace) plotted against
sliding displacement, for a high-speed friction experiment on quartzite. The friction versus slip
curve is essentially a mirror image (across a horizontal mirror plane) of the velocity versus slip
curve above the weakening velocity Vw. The friction coefficient at low slip rates, fo, obtains
nearly identical values before and after sliding at rapid slip rates. (B) Friction coefficient (black
trace) and sliding velocity (red trace) plotted against slip for a VS test on quartzite. As in (A),
above a characteristic weakening velocity Vw, the friction curve is essentially a mirror image of
the velocity curve. The friction coefficient at low slip rates, fo, obtains nearly identical values
before and after rapid slip. On acceleration from 0.06 to 0.13 m/s, weakening is not observed
until a slip of 3 mm has accrued above V = 0.10m/s. Source: Goldsby, D. L. and Tullis, T. E.
(2011). “Flash Heating Leads to Low Frictional Strength of Crustal Rocks at Earthquake Slip
Rates”. In: Science 334.6053, pp. 216–218

12



Figure 1.4: Rupture process approximated as a moving point source, and the resulting motion
(modified after Douglas, A. et al. (1988). “Directivity and the Doppler-Effect”. In: Bulletin of
the Seismological Society of America 78.3, pp. 1367–1372). Absent radiation patterns, at sites
in the forward and backward directions relative to rupture propagation, this shows qualitatively
the forward (a) and backward (b) amplitude and duration variation due to directivity
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Figure 1.5: Reduction in horizontal peak ground velocities (%) obtained with varying cohesion
models (a) 1, (b) 2, and (c) 3 (see Equations 3, 4 and 5 in Roten, D. et al. (2014). “Expected
seismic shaking in Los Angeles reduced by San Andreas fault zone plasticity”. In: Geophysical
Research Letters 41.8, pp. 2769–2777) with respect to the viscoelastic solution.
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Figure 1.6: Both analytical and numerical solutions give insight into supershear rupture dynam-
ics. The plot on the left shows the particle velocity field surrounding a slip pulse propagating
at a supershear velocity. This was calculated using an analytical solution I derived for a two-
dimensional mode II rupture. The shear Mach fronts are clearly visible and the sense of motion
(transverse to the Mach front) within the Mach region is consistent with that of radiating shear
waves radiating from the fault. Source: modified from Dunham, E. M. and Archuleta, R. J.
(2005). “Near-source ground motion from steady state dynamic rupture pulses”. In: Geophysical
Research Letters 32.3
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Chapter 2

Seismic source spectral properties of

crack-like and pulse-like modes of dynamic

rupture

Earthquake source properties such as seismic moment and stress drop are routinely

estimated from far-field body-wave amplitude spectra. Some quantitative but model-dependent

relations have been established between seismic spectra and source parameters. However, large

variability is seen in the parameter estimates, and it is uncertain how the variability is partitioned

among real variability in the source parameters, observational error and modeling error due to

complexity of earthquake behaviors. Earthquake models with dynamic weakening have been

found to exhibit two different modes of rupture: expanding crack and self-healing pulse modes.

Four representative models are generated to model the transition from crack-like to pulse-like.

Pulse-like rupture leads to development of a second corner frequency and the intermediate spectral

slope is approximately 2 in most cases. The focal-sphere-averaged lower P and S wave corner

frequencies are systematically higher for pulse-like models than crack models of comparable

rupture velocity. The slip-weighted stress drop ∆σE exceeds the moment-based stress drop ∆σM
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for pulse-like ruptures, with the ratio ranging from about 1.3 to 1.65, while they are equal for the

crack-like case. The variations in rupture mode introduce variability of the order of a factor of

two in standard (i.e., crack-model based) spectral estimates of stress drop. The transition from

arresting- to growing-pulse rupture is accompanied by a large (factor of ∼1.6) increase in the

radiation ratio. Thus, variations in rupture mode may account for the portion of the scatter in

observational spectral estimates of source parameters.

2.1 Introduction

Estimates of earthquake source parameters such as seismic moment and rupture area are

important to our understanding the physics of source processes and provide important input for

the quantification of seismic hazards. These parameters are routinely measured from far-field

seismic spectra. Low-frequency spectral level, corner frequency and the high-frequency spectral

decay slope are related to seismic moment, rupture area and high-frequency energy radiation,

respectively. Static stress drop, the difference between the average shear stress on the rupture

surface before and after faulting, provides insights into surrounding tectonic environments where

earthquakes are generated [e.g., Kanamori and Anderson 1975; Allmann and Shearer 2007;

Allmann and Shearer 2009]. Observational studies for worldwide Mb 5.5 earthquakes give

stress drop estimates in the range of 0.3 to 50 MPa and, despite the large scatter, the mean

value is at most weakly dependent on magnitude [Allmann and Shearer 2009]. In engineering

applications, stress drop is recognized as an important parameter that scales high-frequency

ground motion [e.g., Hanks and McGuire 1981; Boore 1983]. Moreover, the apparent magnitude

independence of stress drops provides potential physical constraints on the magnitude dependence

of empirically-based ground motion prediction equations (GMPEs) [Baltay and Hanks 2014].

Stress drop may be estimated from measurements of coseismic slip and rupture area

[Eshelby 1957]. For earthquakes without extensive surface rupture, those quantities are not
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accessible to direct measurement, and (apart from relatively large events with extensive geodetic

observations) they must be inferred from the spectral content of far-field P and S waves. The

seismic moment and source dimension, estimated from low-frequency limit and corner frequency

fc of seismic spectra, respectively, are then used to derive stress drop estimates. Variability

in determinations of stress drop arises not only from uncertainties and biases in observational

data selection and processing, but also from the source model assumptions used [e.g., Savage

1966; Brune 1970; Sato and Hirasawa 1973; Molnar et al. 1973; Dahlen 1974; Madariaga 1976;

Kaneko and Shearer 2014; Kaneko and Shearer 2015] and the methodology used in fitting the

spectra to the model spectral shape [Shearer et al. 2006]. Moreover, there is no agreement among

investigators on which types of theoretical models should be used for estimating the source

dimensions, and what degree of model simplification is appropriate [Kaneko and Shearer 2014].

The analytical solution for the elliptical uniform stress drop crack model in a homogeneous

Poissonian medium with major and minor axes A and B [Eshelby 1957; Madariaga 1977b] gives

a relationship between moment, area and stress drop,

∆σ =
M0

c1SB
, (2.1)

where M0 is the seismic moment, S is the source area and c1 is a geometric parameter. For slip

along the major axis, c1 is defined as:

c1 =
4

3E(m)+ [E(m)− B2

A2 K(m)]/m2
, (2.2)

where m =
√

1−B2/A2 and K(m) and E(m) are complete elliptical integrals of the first and

second kinds, respectively [Eshelby 1957; Madariaga 1977b]. In the special case of a circular
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source (R = A = B), the relationship (Equation 2.1) simplifies to

∆σ =
7M0

16R3 , (2.3)

where R is the rupture radius. Given a theoretical model of the source parameterized by the

single length scale R, the source radius can be inferred from the focal-sphere average of corner

frequency fc of the P or S wave through [Brune 1970; Madariaga 1976]

fc = k
β

R
, (2.4)

where β is the shear wave speed and k is a constant that is model dependent. Hence, estimates of

stress drop can be computed as combinations of the expressions above:

∆σ =
7

16
(

fc

kβ
)3M0. (2.5)

Among these variables involved in stress drop determination under the assumption of a

circular crack, only the value of k depends on which theoretical relationship is used to associate

corner frequency with source radius. Both fc and k (but not their ratio) depend on wavetype,

which we will indicate with superscripts. The model proposed by Brune [1970] presumes a

simple circular fault and obtained kS = 0.37, a value which is frequently used for inferring

source dimension and stress drop [e.g., Hanks and Thatcher 1972; Archuleta et al. 1982; Baltay

et al. 2011]. An alternative is the source model of Sato and Hirasawa [1973], which includes

nucleation, constant-velocity spreading and instantaneous stopping of circular rupture. This

model is established by presuming the Eshelby [1957] static solution; given rupture velocity

Vr = 0.9β, the model gives kP = 0.42 and kS = 0.29. Although this model is consistent with a

known static solution [Eshelby 1957] and explicitly incorporates propagation and stopping of the
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rupture front followed by slip cessation, and is favored by many investigators [e.g., Prejean and

Ellsworth 2001; Stork and Ito 2004; Imanishi and Ellsworth 2006], a defect is that slip ceases

at the same instant everywhere over the fault plane. Accordingly, some refinements have been

proposed; for example, Molnar et al. [1973] make modifications such that slip at a point starts

with the arrival of the rupture front and continues until information from the edges of the fault

is radiated back to the point. Dahlen [1974] extended the analysis of rupture kinematics to an

elliptical crack that keeps on growing with the same shape.

The model of Madariaga [1976] has been widely accepted and used [e.g., Abercrombie

1995; Prieto et al. 2004; Shearer et al. 2006; Allmann and Shearer 2007; Allmann and Shearer

2009; Denolle et al. 2015]. Madariaga [1976] simulated a dynamic singular crack model with

constant rupture velocity using a staggered-grid finite-difference method and found that kP = 0.32

for P wave and kS = 0.21 for S wave for Vr = 0.9β. Kaneko and Shearer [2014] constructed

a dynamic model of expanding rupture on a circular fault with cohesive zone that prevents a

stress singularity at the rupture front. Their solutions (obtained with a spectral element method)

give kP = 0.38 and kS = 0.26 for the same rupture speed. Moreover, Kaneko and Shearer [2015]

extended their analysis to symmetric and asymmetric circular and elliptical models with subshear

and supershear ruptures.

Previous studies using dynamic theoretical source models [e.g., Madariaga 1976; Kaneko

and Shearer 2014; Kaneko and Shearer 2015] for quantifying relationship between seismic

spectra and stress drop are all based on so-called crack-like rupture models, i.e., those in which

the duration of slip at a point on the fault is comparable to the overall duration of rupture.

They have also been limited to source models with constant rupture velocity and prescribed

rupture termination edges. An alternative rupture mode, the so-called pulse-like rupture, has

not been considered in the development of dynamic model-based spectral theories (though

the purely kinematic model of Haskell [1964] is pulse-like). Pulse-like rupture, in which slip

duration at a representative point (i.e., slip risetime) is short relative to the rupture duration, may
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occur when dynamic weakening occurs during the most rapid sliding phase and is followed by

restrengthening. Pulse-like rupture can also result from the presence of secondary length scales

(e.g., in the fault geometry, frictional parameter distribution, or stress field) shorter than the

overall rupture dimension. Short slip risetimes inferred from kinematic source inversions were

first interpreted as evidence of a local healing mechanism by Heaton [1990]. This mechanism has

also been introduced to explain the complexity of seismicity patterns [Cochard and Madariaga

1996] and the lack of heat flow anomaly on the San Andreas Fault [Noda et al. 2009]. Theoretical

self-similar solution for pulse-like rupture has been derived by [Nielsen and Madariaga 2003].

Both crack- and pulse-like modes have been observed in laboratory experiments and numerical

simulations [e.g., Lu et al. 2010; Zheng and Rice 1998]. The mechanisms behind the pulse-like

rupture modes that have been proposed include: the velocity dependent friction [Heaton 1990;

Beeler and Tullis 1996; Zheng and Rice 1998; Gabriel et al. 2012], coupling between slip and

dynamic normal stress changes along bimaterial faults [Andrews and Ben-Zion 1997; Ampuero

and Ben-Zion 2008; Dalguer and Day 2009], the spatial heterogeneity of fault strength and initial

shear stress [Beroza and Mikumo 1996; Day et al. 1998; Oglesby and Day 2002], the finite

downdip width of the seismogenic zone [Day 1982; Johnson 1992] or the reflected waves within

the fault zone [Huang and Ampuero 2011].

Here we simulate 4 simplified models of rupture propagating and (in one case) stopping

spontaneously in expanding crack and self-healing pulse-like modes. The spontaneous rupture

model, described in Section 3.1, incorporates strong velocity weakening in a regularized rate-

and state-dependent friction framework [Noda et al. 2009; Rojas et al. 2009]. Section 2.3 gives

a qualitative description of the simulation results. Computation of far-field radiated spectra

is described in Section 2.4, and spectral parameters are discussed in Sections 2.4,2.5 and 2.7

discusses retrieval of energy and stress drop estimates.
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2.2 Crack-like and pulse-like modes generation with forced

or spontaneous termination

Among multiple mechanisms already mentioned for the generation of self-healing rupture,

here we focus on velocity dependent friction. The rate and state framework on which we base

the friction law we use in this paper has its basis in laboratory experiments [e.g., Dieterich 1979;

Ruina 1983; Marone 1998]. We use the regularized formulation of the friction coefficient f as

proposed by Lapusta et al. [2000] (see also Shi and Day [2013], Appendix B),

f (V,ψ) = asinh−1[
V

2V0
exp(

ψ

a
)], (2.6)

where the state variable ψ evolves according to a slip law

ψ̇ =−V
L
[ψ−ψss(V )], (2.7)

ψss(V ) = aln{2V0

V
sinh[

fss(V )

a
]}, (2.8)

where V is slip velocity and fss(V ) is the steady-state friction coefficient at slip velocity V . In

this study, the steady-state friction coefficient takes the form (following Dunham et al. [2011]

and Shi and Day [2013], which is a smoothed version of the form used by Noda et al. [2009] and

Rojas et al. [2009])

fss(V ) = fw +
flv− fw

[1+(V/Vw)8]1/8 , (2.9)

which has a strongly velocity-weakening feature such that when V �Vw, fss approaches a fully

weakened friction coefficient fw. Vw is called weakening slip velocity. When V << Vw, fss
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approaches a low-velocity steady-state friction coefficient flv, i.e.,

flv(V ) = f0− (b−a)ln(V/V0). (2.10)

In the foregoing equations, the constants a and b are the direct-effect and state-evolution parame-

ters, respectively, and f0 and V0 are the reference values for the friction coefficient and slip rate,

respectively.

One commonly-applied way to generate a transition from crack-like to pulse-like rupture

mode is to alter the background shear stress level [e.g., Cochard and Madariaga 1996; Perrin

et al. 1995; Beeler and Tullis 1996; Zheng and Rice 1998; Noda et al. 2009; Dunham et al. 2011;

Gabriel et al. 2012]. Figure 2.1, based on the analysis of Zheng and Rice [1998] shows this

schematically. The transition from pulse-like to crack-like rupture mode is controlled by the

relative values of the initial shear stress τb and a critical stress value τpulse, where the latter, as

defined by Zheng and Rice [1998], is equal to the zero-velocity intercept of the radiation damping

line (blue dashed line) tangent to the steady-state weakening curve (red solid curve). The rupture

mode can be changed from pulse-like to crack-like by varying the initial shear stress from below

to above a fixed τpulse. For convenience in comparing stress drop, we apply here an alternative

scheme that maintains initial stress state and instead varies the weakening slip rate Vw. As Figure

2.1 shows, this variation can also generate a transition between crack-like and pulse-like modes

as it shifts the steady-state velocity-weakening curve towards the right, thus shifting τpulse from

below to above a fixed initial shear stress.

We examine rupture of a planar surface embedded in an infinite homogeneous Poissonian

medium (Figure 2), with velocity weakening friction (i.e., a < b) operating on the interior of a

circle of radius R, with velocity strengthening (b < a) on the exterior (as a device to limit the

rupture extent, with the ratio of (b−a)/a exceeding 10, an essentially unbreakable barrier). The

material properties and initial stress state are given in Table 2.1. For convenience of comparison
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among multiple simulation scenarios, the initial stress state is held fixed, as are the frictional

parameters, apart from the weakening slip velocity Vw. Variations of the latter parameter are used

to generate the transition from crack-like to pulse-like rupture. Rupture is initiated by imposing

a shear stress perturbation ∆τ0(x1,x2) at the center of prescribed circular region (yellow circle

in Figure 2), which elevates the initial shear stress to τb(x1,x2)+∆τ0(x1,x2). ∆τ0(x1,x2) has the

following expression:

∆τ
0(x1,x2) = cexp(

l2

l2−R2
n
)H(Rn− l)τb(x1,x2), (2.11)

where c is coefficient representing over-stress amplitude, l is the distance between fault point

(x1,x2) and hypocenter (xh
1,x

h
2), l =

√
(x1− xh

1)
2 +(x2− xh

2)
2, Rn is the nucleation region radius,

H is the Heaviside step function and τb(x1,x2) is the uniform equilibrium initial shear stress on

the fault. The chosen shape function in Equation 2.11 is smooth (infinitely differentiable and of

compact support) in order to prevent singular behavior at the edge of the nucleation zone. The

amplitude of the shear stress perturbation and the size of nucleation may affect the rupture mode,

and we have chosen values that, in combination with the chosen range of frictional parameters

and background shear stress, permit rupture in either crack-like or pulse-like mode. We examine

the slip rate and stress evolution along two perpendicular profiles through the hypocenter, an

inplane profile (aligned with the initial shear stress) and an antiplane profile (perpendicular to

initial shear stress). In addition to admitting pulse-like ruptures, the study further differs from

related numerical studies of seismic spectra [Madariaga 1976; Kaneko and Shearer 2014; Kaneko

and Shearer 2015], in that it is based on a spontaneous rupture model rather than a fixed rupture-

velocity model. Rupture velocity is determined as part of the problem solution, and may fluctuate

in response to, e.g., local background stress state, fault geometry and frictional conditions.

Accurate numerical results require adequate resolution of the cohesive zone, i.e., the

portion of the fault surface (at a given instant of time) which is slipping at an appreciable rate but
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has not yet fully weakened. Based upon rough estimates [e.g., Shi and Day 2013; Dunham et al.

2011] and detailed measurements [e.g., Rojas et al. 2009] of the size of cohesive zone, we expect

a cohesive zone dimension averaging 500 m or so, and we formulate the numerical simulations

to ensure at least 20 nodes within the cohesive zone. Based on this level of resolution, the

benchmark solutions in simulations done using slip weakening and rate- and state-based friction

laws investigated by Day et al. [2005] and Rojas et al. [2009], respectively, all indicated relative

rms errors for peak slip rate are much below 10 percent, with one to two orders of magnitude

smaller error for their other metrics (e.g., mean static slip and rupture velocity).

We solve 3-D problem of rupture in a viscoelastic medium using SORD (Support Operator

Rupture Dynamics) [Ely et al. 2008; Ely et al. 2009]. This code uses a generalized finite difference

method with spatial and temporal second-order accuracy. The frictional equations 2.6 through

2.10 are solved using the staggered velocity-state method of Rojas et al. [2009]. The full

methodology has been verified in tens of benchmark scenarios developed by the Southern

California Earthquake Center [Harris et al. 2009] and this code has been used in numerous studies

of spontaneous dynamic rupture simulation and strong ground motion [e.g., Ely et al. 2010;

Ben-Zion et al. 2012; Shi and Day 2013; Song et al. 2013; Baumann and Dalguer 2014; Song

2015; Vyas et al. 2016].

2.3 Numerical simulation results

In this section, we present simulation results representing a range of rupture modes from

crack-like to pulse-like, as obtained by adjusting the weakening slip velocity Vw (letting it range

from 0.05 m/s to 0.1 m/s). We examine four examples, including an expanding crack case and

three pulse-like cases. The latter are denoted growing, steady-state, and arresting pulse models,

following commonly-used terminology, [e.g., Noda et al. 2009; Gabriel et al. 2012]. These

names reflect the spatial pattern of slip, as seen in Figure 2.3, which shows some details of the
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slip distributions for these cases. Figures 2.3a and 3b show the slip distribution at equal time

intervals (1s), for profiles on the inplane (Mode II) and antiplane (Mode III) axes, respectively.

For the expanding crack case, slip amplitude is strongly dependent on the distance to hypocenter,

whereas all three pulse-like ruptures show more nearly uniform slip distributions. The mechanism

for generating pulse-like rupture is that hypothesized by Heaton [1990], and can be seen from

the shear stress spatial and temporal evolution near the crack tip in Figure 2.3c and 2.3d. In

the expanding crack example, shear stress remains almost constant following full weakening,

whereas, in pulse-like ruptures, the shear stress increases in response to slip-rate reduction behind

the rupture front, eventually healing the rupture and creating a pulse-like slip rate function.

Further details of the crack-like rupture example are shown are Figure 2.4. The charac-

teristic decrease of slip amplitude from the center toward the unbreakable barrier is evident in

Figure 2.4a. This shape is, however, not identical with the standard elliptical slip distribution (as

a function of radial distance) for a purely static crack, because there is some degree of variability

of the static stress change (Figure 2.4b) with slightly larger static stress drop along the anti-plane

direction and at the edges, due to the barrier as well as the directional dependence of rupture

velocity that is shown in Figure 2.4c. The slip rate function, shown in Figure 2.4d and 2.4e, has

the familiar long-tailed shape, terminated by stopping phases from the rupture edge, and shows

the characteristic increase in peak slip rate with the distance away from the hypocenter.

Details of the growing pulse example are shown in Figure 2.5. Due to the self-healing

behavior, the slip distribution in this case (Figure 2.5a, with corresponding stress changes in

Figure 2.5b) is more uniform than in the expanding crack model, but there are high-slip lobes

along anti-plane direction, near the rupture edge. These two high slip lobes are the result of the

differing rupture velocities along the two axes indicated in Figure 2.5c. Also seen in Figures 2.5a

is a large slip patch associated with the artificial nucleation at the center of the fault. The principal

difference relative to the expanding-crack model is in the shape of the slip rate function, shown

in Figures 2.5d and 2.5e. The slip rate takes the form of a pulse with nearly constant rise time
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(weakly dependent upon distance). Stopping phases are no longer evident at the stations close to

boundary. However, the slip rate function in this case still retains the feature of the expanding

crack model that peak slip rate increases from center to edge. This feature has a significant effect

(to be discussed later) on far-field wave shapes for the growing pulse case.

Most features of the steady-state pulse model are similar to those of the growing pulse,

but slip is more uniformly distributed and smaller on average, while mean stress drop and rupture

velocity are both decreased (Figure 2.6a, 2.6b and 2.6c). The slip rate function is again pulse

shaped, but with reduced rise time compared with the growing-pulse case, and now the peak slip

rate is almost invariant with the distance to edges (Figure 2.6d and 2.6e). The duration of the slip

rate function is also almost invariant with distance, as in the growing pulse model. That is, the

rupture front velocity is close to the healing front velocity (outside the nucleation zone), and this

is consistent with simulated results of Gabriel et al. [2012].

The arresting pulse case (Figure 2.7) corresponds to a weakening slip velocity that is

close to the maximum value that permits a rupture to escape the nucleation area, and results in a

rupture model that stops spontaneously, i.e., before reaching the imposed velocity-strengthening

barrier. In Figure 2.7d and 2.7e, peak slip rate decays to zero as hypocentral distance increases.

This feature of spontaneous arrest distinguishes this case from the other three models. It is also a

departure from previous rupture models used in the study of the far-field spectrum, all of which

involve arrest by edge barriers, with the result that the high-frequency spectral character in those

previous models is dominated by stopping phases.
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2.4 Detailed analysis of properties of far-field displacements

and spectra

In this section, we present for each source model, the far-field displacements, the corre-

sponding spectra, and the consequent spherical distribution of the corner frequencies and fall-off

rates obtained from the spectral fitting. We begin by summarizing the variation of the spectral

corner frequency and fall-off rate over the focal sphere, interpreting them in terms of the rupture

characteristics identified in Section 2.2. For that purpose, we select 8 receivers with different

take-off angle (defined as the angle between the vector normal to the fault and the vector pointing

to the receiver from the source), and fixed azimuthal angle (22.5 degrees to the x axis). Their

displacements and spectra, with stars representing computed corner frequencies, are plotted in

Figure 2.8. The models representing the four different rupture modes can be distinguished by

the four colors (and this color convention for the four rupture modes is followed throughout the

paper).

In discussing the far-field displacements, it is common to refer to their time-domain

form as ”displacement pulses.” These radiated pulses are not to be confused with the pulses of

fault-surface slip velocity that characterizes the pulse-like rupture models. Similarly, we follow

convention and use ”rise time” in this section to refer to the time between the onset and peak of

the far-field displacement, which is not to be confused with our (also conventional) use of the

same term to refer to the duration of the slip pulses in the pulse-like rupture models.

Several factors affecting the far-field displacement pulses and corresponding spectral

shapes in Figure 2.8 should be noted. In these multilateral ruptures, the pulse rise times (duration

between onset and peak value of displacement pulse) are shorter in directions at low angle to the

fault plane (high take-off angle) than they are in directions nearly normal to the fault. The rise time

is controlled by both the focusing due to directivity and increasing peak slip rate in the direction

of rupture propagation [Brune et al. 1979]. The overall pulse width is longer at high take-off
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angle, which is a (well-known) rupture directivity effect. The pulse width is heavily influenced by

stopping phases generated from the edges [Madariaga 1976]. In the case where rupture velocity

is constant and stopping occurs on a circular boundary, delay times of the stopping phases from

the nearest and farthest points on the edge of the fault would be

t = R(
1

VR
∓ sinθ

c
), (2.12)

where R means fault size, VR is rupture velocity, c is wave speed, θ is take-off angle,

minus sign denotes the nearest, and positive sign denotes the farthest, stopping phases. In Figure

2.8, the peak value of displacement is usually controlled by the nearest stopping phase and the

approximate pulse width is controlled by the farthest stopping phase, but the pattern is complicated

by rupture velocity changes and variations in the rupture mode and slip-velocity distribution.

Nucleation phases are common to all models (i.e., the four curves overlap during first few tenths

of a unit of dimensionless time), since they result from a common rupture-initiation procedure.

As the take-off angle is increased, the rise time is shortened while the overall duration

is lengthened, as suggested by Equation 2.14. These two factors have opposing influences on

high- to low-frequency spectral ratios, with the result that the trend of corner frequency with

takeoff angle is non-monotonic, especially for the crack-like model, consistent with the studies of

Madariaga [1976] and Kaneko and Shearer [2014]. Compared with the crack-like rupture mode,

the pulse-like ruptures have P and S waveforms with sharper peaks, in the case of growing and

steady-state pulse models, and smoother shapes, in the arresting pulse case (due to disappearance

of the stopping phase). These effects generate more complex behavior of the seismic spectra,

reflected in the variations in spherically-average values of corner frequency and fall-off rate among

4 models shown in Table 2.2. The rupture velocities given in Table 2.2, V 2
r and V 3

r , are along the

X (inplane motion) and Y (antiplane motion) coordinate axes, respectively. Each is computed

by a linear integral
∫

Vrdl/L along the ruptured portion of the coordinate axis, excluding the
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nucleation zone. In this equation, Vr is the local rupture velocity, l is the distance variable, and L

is the rupture length excluding the nucleation zone.

In the remainder of this section, we elaborate on the features of far-field displacement

pulses, their corresponding spectral amplitudes, and the spatial distributions (on the focal sphere)

of the spectral parameters, for the four representative rupture models described in Section 2.3,

illustrated in Figures 2.9- 2.12.

Figure 2.9 shows results for the expanding crack model. Figures 2.9a and 2.9b show the

spherical distributions (calculated at 5 degree intervals) of normalized corner frequency (corner

frequency divided by the ratio of source radius to S velocity) and spectral fall-off rate, while

2.9c shows the far-field body wave displacement pulses and 9d shows their spectra. We use the

same notation as Madariaga [1976], Kaneko and Shearer [2014] and Kaneko and Shearer [2015].

Near the fault surface (equator or low latitudes in Figure 2.9), the resultant corner frequencies are

generally smaller than average, as a result of the wider displacement pulse width, as indicated in

Figure 2.9c. The variation of pulse width is due to source directivity and duration, which reflects

the differential traveling time between the near and far side of fault termination signals (Equation

2.15). In addition, spectral fall-off rates are generally larger at higher latitudes stations. There

are, in addition, some complexities in the corner-frequency and fall-off rate distributions that

arise from dynamic effects not present in previous, fixed rupture velocity models. For example,

four lobes of high fall-off rate at high latitude (i.e., at take-off angle near fault normal), result

from the dissimilar rupture behaviors along the in-plane and anti-plane directions typical in

spontaneous rupture models (though corner frequencies do not show a corresponding strong

azimuthal dependence). We obtain the following spherically averaged corner frequencies and

fall-off rates for P and S waves,

f P
c = kP β

R
= 0.35

β

R

f S
c = kS β

R
= 0.27

β

R
. (2.13)
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The k values are sometimes called normalized corner frequency and for the convenience of

comparing results with previous studies and other scenarios here, we use normalized corner

frequency, instead of original corner frequency. Rupture velocities average 0.88β along inplane

and 0.84β along antiplane direction, respectively. Spherically averaged spectral fall-off rates for

P and S waves, termed as nP and nS, are 2.2 and 1.9, respectively. The values of kP and kS found

here are very close to results of symmetrical circular rupture with fixed rupture speed of 0.8β

in Kaneko and Shearer [2014]. This is because for our spontaneously propagating expanding

crack model, the far-field pulse width is mainly dominated by anti-plane rupture, which has the

lower rupture velocity. Slight differences with Kaneko and Shearer [2014] in the distributions of

corner frequencies and spectral fall-off rates is attributable to spontaneity of ruptures, effects of

the rupture-initiation method and frequency band used in spectral fitting.

Figure 2.10 shows the results for the growing pulse model. The variation of waveform

pulse width with take-off angle seen in the expanding crack model is still apparent, while the

azimuthal dependency is slightly reduced. Relative to the expanding crack case, the growing-pulse

corner frequencies are higher and spectral decaying slopes are steeper (Figure 2.10a and 2.10b),

as can be inferred from the narrower far-field displacement pulse width (Figure 2.10c). The

estimated rupture velocities of 0.85β along inplane and 0.81β along antiplane direction are not

appreciably (less than 4%) different from the expanding crack case. The spherically averaged

corner frequencies for the growing pulse case are

f P
c = kP β

R
= 0.40

β

R

f S
c = kS β

R
= 0.36

β

R
, (2.14)

and spherically averaged nP and nS are 2.0 and 1.9, respectively. The normalized P and S corner

frequencies are increased by about 14% and 33%, respectively, relative to the expanding crack.

This corner frequency shift and the reduced spectral fall-off rates result from the shorter slip
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duration in the growing pulse model. The P to S corner frequency ratio (∼1.1) is lower for the

growing pulse rupture than for crack-like models (∼1.3 in our spontaneous crack model and

∼1.35 in the crack model of Kaneko and Shearer [2014] with similar rupture velocity).

Figure 2.11 shows results for the steady-state pulse model. In this case, in addition to

the effect of take-off angle, there are also slight azimuthal variations (Figure 2.11a). Nucleation

phases (sharp onset of wave pulses) are larger relative to the overall pulse amplitude than

in the crack and growing-pulse models. Spectral decay slopes are lower compared with the

growing crack and growing pulse models, and there is an accompanying downward shift in

corner frequency. Somewhat smaller rupture velocities (0.78β along inplane and 0.74β along

antiplane) also contribute to the reduction of corner frequencies. The spherically averaged corner

frequencies for the steady-state pulse case are

f P
c = kP β

R
= 0.31

β

R

f S
c = kS β

R
= 0.31

β

R
, (2.15)

and spherically averaged fall-off rates for P and S waves are 1.8 and 1.8, respectively. The ratio

between P and S wave corner frequencies is ∼1.0, a reduction relative to the previously discussed

cases, consistent with previous studies showing near-equality of P and S corner frequencies for

complex sources (e.g., the asymmetrical circular model of Kaneko and Shearer [2015]).

Figure 2.12 shows results for the arresting pulse model. This is the only case in which

rupture growth stops spontaneously, without encountering the circular barrier. The absence of

distinct stopping phases introduces some significant differences compared with the previous

models. The most prominent difference is the smoothing of the peak of the radiated waveforms

(Figure 2.12c), which were sharply cusped in the other models. In addition, for the arresting-pulse

case the initiation phase is relatively large compared to the overall amplitude of the radiated

waveform. The normalized corner frequency for P waves (Figure 2.12a) has a pattern similar
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to that of the other cases, with somewhat lower values for receivers at focal-sphere equatorial

receivers (at high angle to the fault normal) relative to near-polar receivers (low angle to the fault

normal). But for S waves, that pattern is reversed, with corner frequencies lower near the fault

normal. Moreover, the fall-off rates of S waves near the focal equator are much larger than those

at other locations. Average rupture velocities for the arresting-pulse rupture (0.72β along inplane

and 0.66β along antiplane) are somewhat lower than for the previous cases. The spherically

averaged corner frequencies for the arresting pulse model are

f P
c = kP β√

AB
= 0.28

β√
AB

f S
c = kS β√

AB
= 0.34

β√
AB

, (2.16)

where A and B are major and minor axes of elliptical slip distribution in Figure 7a. The spherically

averaged nP and nS are 1.7 and 1.9, respectively. The high-frequency asymptotic slope reflects

the lowest-order singularity present in a waveform, so it might seem paradoxical that the n values

(especially nP) are reduced in this case, given that the waveform cusps have been smoothed.

The reason is that we (deliberately) calculate n values using a frequency band appropriate to

observational studies (as explained in Section 2.4). In the presence of the complexities introduced

by pulse-like rupture, the resulting n values actually characterize an intermediate spectral slope,

not the ultimate high-frequency asymptote. This issue is discussed in detail in the next section.

The P corner frequency is slightly (∼10%) larger than for the corresponding fixed rupture-velocity

crack-model estimate [Kaneko and Shearer 2014], while the S corner frequency is ∼30% larger.

In fact, the arresting-pulse model has a P to S corner frequency ratio of ∼0.82, the only one

of our cases in which the ratio is less than one. This apparently anomalous behavior is partly

a consequence of the high spectral fall-off rate for S at low latitudes of the focal sphere. The

higher spectral slope at the low latitudes has the effect of shifting the corner frequency to higher

frequencies, even though the high-frequency spectral energy is actually diminished in the arresting-
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pulse model relative to the other models. The P wave corner frequency, in contrast, decreases

relative to the steady-pulse model, roughly by the amount expected due to the decreased rupture

velocity (following Kaneko and Shearer [2014]).

These results are compared with those of previous studies [Brune 1970; Sato and Hirasawa

1973; Madariaga 1976; Kaneko and Shearer 2014], all of which were limited to crack-like modes

with fixed rupture velocity. As shown in Table 2.3, the spherical average corner frequencies

of pulse-like modes shows dependency on rupture velocity, which is also observed in previous

models [Sato and Hirasawa 1973; Kaneko and Shearer 2014], though rupture velocity has less

impact on the S corner frequency than on the P corner. Both P and S wave corner frequencies

are affected by rupture mode transition from crack-like to pulse-like. Results in Table 2.2 also

indicate that rupture mode only minimally affects the spectral fall-off rate estimates; apart from

the arresting pulse case, these slope estimates are near 2, consistent with other studies [Brune

1970; Madariaga 1976; Kaneko and Shearer 2014]. The P wave spectral slope estimate for

the arresting pulse case is lower, around 1.7. We emphasize that all spectral slope estimates

were made using the procedure and bandwidth described in Section 2.4, which is intended to

be consistent with observational practice. As shown in the next section, the estimates for the

pulse-like models actually represent intermediate spectral trends, not asymptotic slopes.

2.5 Properties of stacked spectra

In the previous section, the average corner frequency estimate fc is an average of cor-

ner frequency of each spectrum weighted by spherical subarea (following the methodology of

Madariaga [1976], Kaneko and Shearer [2014] and Kaneko and Shearer [2015]). On the other

hand, observational studies [e.g., Prieto et al. 2004; Shearer et al. 2006] frequently use an alter-

native corner frequency estimate, fc, derived directly from spectral stacks. That approach may

provide a more robust estimation, since it reduces effects of spectral distortion due to source and
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propagation complexities. To investigate the effects of our rupture models on source parameter

estimates, we recalculate the average corner frequencies of P and S waves by stacking the loga-

rithms of all individual spectra of each wave type, evenly sampling the focal sphere. In Table

2.2, the values of kP
stack, kS

stack, nP
stack and nS

stack derived from stacked spectra are compared with

those estimated by averaging individual spectral parameters in the previous section. The mean

differences between the two averages (considering all four rupture models together) are 4%, 8%,

1% and 3% for kP, kS, nP and nS, respectively, confirming that observational estimates of source

parameters are only minimally affected by performing the parameter estimation on the spectral

stack.

Stacked spectra for the four models are shown in Figure 2.13, along with Brune spectra

fit to them by the method described in Section 2.4. The spectra in Figure 2.13 are only shown

for frequencies well below the high-frequency resolution limit of the numerical simulations. In

the expanding crack model, the Brune spectral function represents the stacked spectra of P and

S waves with negligible misfit (Figures 2.13b and 2.13c, respectively). This is also consistent

with previous studies [Madariaga 1976; Kaneko and Shearer 2014; Kaneko and Shearer 2015].

The three pulse-like models, however, have systematic misfits at high frequency. The mismatch

takes the form of a secondary corner frequency that becomes progressively better developed as

the rupture mode progresses from growing to arresting pulse behavior.

Double corner frequency spectra are common in both theoretical and empirical seismic

studies. Kinematically, the lower and higher corner frequencies typically correspond to rupture

duration (controlled by fault dimension) and slip rise time (duration of the slip-velocity pulse), re-

spectively [e.g., Ben-Menahem 1962; Haskell 1964]. Physically, the explanation of the secondary

corner in our pulse-like models is similar in spirit to the partial stress-drop model suggested by

Brune [1970]. In Brune’s partial-stress-drop model (in contrast to the conventional Brune model),

slip is hypothesized to be arrested early, such that static stress drop is less than dynamic stress

drop, which is what occurs in our pulse-like spontaneous rupture models (and similar behavior
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is implicit in some barrier and asperity models [e.g., Boatwright 1988; Uchide and Imanishi

2016]). The development of slip pulses was previously related to the occurrence of a secondary

spectral corner in the numerical modeling of Shaw [2003]. Numerous observational studies have

proposed double corner frequency spectral models [e.g., Atkinson and Silva 1997], and the issue

deserves renewed attention in light of observational results such as those of Denolle and Shearer

[2016] documenting a systematic emergence of a secondary spectral corner for the largest events

in the global dataset and Archuleta and Ji [2016] documenting a break in scaling of LogPGA and

LogPGV versus moment magnitude M around M ∼ 5.3.

Anticipating that the second corner frequency can be related to slip rise time (by analogy

with the Haskell fault model), we investigate the distributions (histograms) of slip duration for

each model (Figure 2.13a). In Figure 2.13a, the ordinate gives the percentage of the total rupture

area having slip-rate duration within the 0.5 second wide bin centered at the abscissa value. The

expanding crack model has a very broad distribution of slip duration over the interval from 0.5s to

10s (the curve of the expanding crack is scaled by a factor of 3 to highlight this feature in Figure

2.13a), but all of the pulse-like ruptures have relatively narrow distributions of slip duration. This

can be partially understood as a result of a diminished influence of the overall rupture geometry

for pulse-like ruptures compared with crack-like modes; both total slip and slip velocity of these

pulse-like ruptures are controlled principally by local shear stress and frictional properties rather

than by global rupture features such as rupture edge diffractions. We assume that the second

corner frequency scales inversely with the mean slip duration time:

f 2nd
c =

K
T
, (2.17)

where T is mean slip velocity duration and K is a constant to be determined. In Figure 2.13b

and 2.13c, solid and dashed lines are spectral stacks computed from the simulations and Brune’s

model spectra, respectively. The presence of a second corner frequency shows up as a clear
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departure from the constant spectral slope of the Brune model. The dotted lines in Figures 2.13b

and 2.13c are curves of K/T distribution derived from Figure 2.13a, for a fixed value of K for

each wave type (around 1.8 and 1.5 for P and S wave respectively) that was determined, by trial

and error adjustment, such that the distribution peak (from the dashed curves) coincides with the

lowest frequency where the spectral stack departs visibly from the best fit Brune model. The

proportionality between this frequency and T confirms, unsurprisingly, that, if a secondary corner

frequency is interpreted in terms of pulse-like rupture, its value provides an estimate of mean

slip duration. The upper spectral asymptote is not well determined in the simulations, however,

so this estimate of K provides only a lower bound on the value of the second corner frequency

(where the latter is defined as the frequency of intersection of the intermediate and upper spectral

asymptotes), and thus may not be directly comparable with other K estimates (for example, a

similar parameter in Savage [1972] equals 1 and in Denolle and Shearer [2016] equals 1/π).

As the rupture model evolves from a growing- to an arresting-pulse mode, the spectral

decay above the second corner becomes steeper, as seen in Figures 2.13b and 2.13c. This

transition reflects the relative suppression of stopping phases, especially in the decaying pulse

model, consistent with the expected dominance of stopping phases in the high-frequency limit

[Madariaga 1976; Madariaga 1977a]. In the presence of the second corner and increased rate

of high-frequency decay, fitting over a broad frequency band to the conventional, single corner

frequency Brune spectral function can bias the estimate of the first corner frequency, leading to

uncertainties and bias in the stress drop estimate. For example, for shallow thrust earthquakes,

Denolle and Shearer [2016] find that the conventional Brune model with a single-corner frequency

is unable to fit spectra for high-magnitude events, and a double-corner frequency model improves

the fitting and gives more consistent estimates of the first corner frequency in the sense that the

subsequent stress drop estimates are roughly invariant with seismic moment (given additional

scaling assumptions, i.e., the length to width scaling of Leonard [2010]).
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2.6 Energy partitioning and stress drop

The partitioning of radiated energy between P and S waves is rupture-model dependent,

and we use our four source models to show the effect of rupture mode on the P/S energy ratio.

Radiated energy can be calculated from each simulation using fault-plane stresses and velocities

via [Rudnicki and Freund 1981]

Er =
∫∫

τ0 + τ f

2
∆udS−

∫
∞

0

∫∫
τ(t)∆u̇(t)dSdt, (2.18)

where ∆u̇ is the slip velocity, τ0 and τ f are initial and final shear stress and τ(t) is the shear stress

as a function of time. The corresponding estimate of radiated energy from far-field body-wave

displacements is

E ′r = ρ

∫
∞

0

∫
∞

0
[α(V P)2 +β(V S)2]dΣdt, (2.19)

where V P and V S are far-field velocities of P and S waves, the integration is over a sphere

surrounding the fault and the prime symbol here denotes the parameter derived from far-field

observations instead of from the fault surface. Before considering the P and S contributions

separately, we first verify the internal consistency of our calculations by comparing estimates

(20) and (21) for the total energy. These two energy estimates, for each source model, are listed

in Table 2.4, and show differences of the order of 1 or 2% (which we attribute to errors from

focal-sphere sampling, together with effects of the small artificial viscosity used in the simulations

and neglected in the energy balance calculations) verifying the self-consistency of the far-field

and on-fault estimates.

The computed P and S radiated energies for the crack-like and pulse-like rupture models

are shown in Table 2.4. The P/S ratio for the crack-like rupture mode, 20, is similar to values of

24.4 for the analytical model of Sato and Hirasawa [1973] and 21.8 for the numerical model of

Kaneko and Shearer [2014]. The S/P energy ratio is larger for pulse-like ruptures than for the
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crack-like case, and larger for growing and steady-state pulses than for the arresting pulse rupture

mode. This pattern mirrors the behavior of the radiation ratio ηR [Noda et al. 2013], also shown in

Table 2.4, and examined further in the Discussion section. We also note that our radiated energy

ratios differ markedly from what would be predicted if the rms P- and S-wave spectral shapes

were scaled (both amplitude and frequency axes) versions of each other (something also noted by

Kaneko and Shearer [2014]). As shown by Boatwright and Fletcher [1984], the latter estimate is

ES
r

EP
r
= 1.5(

α

β
)5(

f S
c

f P
c
)3. (2.20)

As Table 2.4 shows, this estimate under-predicts the energy ratio of the crack-like model by about

a factor of two and over-predicts that of the arresting pulse model by a similar factor.

Fault slip and stresses from the simulations provide two complementary measures of

average stress drop, denoted ∆σE and ∆σM by Noda et al. [2013]. The former is the average

static stress drop weighted by the final slip,

∆σE =

∫∫
∆σ∆udS∫∫

∆udS
, (2.21)

where ∆σ is the static stress drop as a function of position on the fault surface. As Shao et al.

[2012] point out, ∆σE is just twice the ratio of so-called ”available elastic energy” [Kanamori and

Rivera 2006] to the seismic potency. Values obtained directly from Equation 2.23 are listed in

Table-4. An alternative measure, called moment-based stress drop [Noda et al. 2013] is stress

drop weighted by the slip distribution E due to a (hypothetical) uniform stress drop on the same

fault surface,

∆σM =

∫∫
∆σEdS∫∫

EdS
. (2.22)

For the circular rupture, Equation 2.24 gives the standard formula Equation 2.3, with the left-hand
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side interpreted now as ∆σM (and a similar expression can be derived for an elliptical rupture).

The corresponding values of ∆σM for the simulations are listed in Table-4 for comparison with

∆σE values. If Equation 2.3 is applied, with rupture radius R estimated from corner frequency

(Equation 2.4) using a crack-like model for k, those radius estimates will be biased for the pulse-

like models by the ratio of the crack- to pulse-like k values in Table 2.3 (i.e., factors of 0.87, 1.13,

and 1.25 for P waves, and 0.75, 0.87, and 0.8 for S waves, for growing, steady-state, and arresting

pulse, respectively). Subsequently using Equation 2.3 to estimate stress drop from radius would

lead to stress drop biased by the cube of those factors (Equation 2.5), if the relationship between

mean slip (or moment) and stress drop followed the crack-like model like Equation 2.1 or 2.3.

However, actual biases in the stress drop estimates are generally more complex than that, because

the relationship between mean slip and stress drop also becomes modified for pulse-like ruptures.

We can examine the variability in spectral estimates of stress drop resulting from pre-

sumably unknown variations in rupture mode. Using values of kP and kS from each of four

crack-like models (1. Madariaga [1976], 2. Kaneko and Shearer [2014], 3. Brune [1970], and

the expanding crack model of the current study), we make ”blind” stress drop (∆σM) estimates

from spectral parameters M0 and fc obtained from the growing, steady-state, and arresting pulse

models, respectively. These estimates are denoted ∆σMa, ∆σKS, ∆σB, and ∆σcrack, respectively.

Results for the four stress drop estimates, normalized by each of the actual stress drops ∆σM

of the pulse-like ruptures (from Table 2.4) are shown in Figure 2.14. For P-wave estimates, the

rupture mode introduces over- and under-estimates ranging over roughly a factor of two either

way. The S-wave estimates have a somewhat larger range, due to a substantial overestimate of

∆σM by the Madariaga [1976] model.

The S wave estimates based on Kaneko and Shearer [2014] and the crack-like model of

the current study are very similar, each biased high by about a factor of two for the pulse-like

ruptures, and each showing about a factor of two variability about that factor. The upward bias

is what would be expected as a consequence of the S-wave rupture radius underestimates noted
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above. That upward bias is sharply reduced, however, when we compare with ∆σE (open squares

in Figure 2.14) instead of ∆σM, since both spectral estimates ∆σKS ([Kaneko and Shearer 2014])

and ∆σcrack (current study) represent quite accurate ∆σE values for the steady-state and arresting

pulse ruptures. The Brune estimate is low for the crack-like rupture model, but within plus/minus

40% for the pulse-like ruptures.

This reduction of bias when bias is taken relative to ∆σE is a result of the differences in

spatial distribution of slip of the pulse- versus crack-like models. For the pulse-like models, ∆σE

exceeds ∆σM, with the excess being related to the level of heterogeneity of stress drop [Noda

et al. 2013]. As indicated in Table 2.4 and Figure 2.14, ∆σE and ∆σM for the expanding crack

are nearly identical as expected. However, in pulse-like ruptures, ∆σM is 24%, 28% and 40%

smaller than ∆σE in growing, steady-state and arresting pulse, respectively. Such a phenomenon

is similarly observed in [Noda et al. 2013]. The reason is that the healing of the pulse-like rupture

freezes in the static slip before it reaches the elliptic shape of the circular static crack, which has

the form [Eshelby 1957]:

∆u(l) = I
√

R2− l2[1−H(l−R)], (2.23)

where I is a constant proportional to the stress drop, R is the rupture radius, l is the distance to

hypocenter and H is a Heaviside function. In Figure 2.15, the dashed and solid lines denote the

best fit solutions of the form of Equation 2.23 and the simulated models (shown along the inplane

direction), respectively. As expected, the crack-like rupture model closely follows the Eshelby

solution, consistent with the close agreement we found between ∆σM and ∆σE . The pulse-like

model deviates much more from the Elshelby solution, with the main difference being weaker

dependency of slip on hypocentral distance (apart from the region right around the nucleation

patch). The resulting contrast in spatial patterns of slip between crack- and pulse-like rupture

elevates ∆σE relative to ∆σM in the pulse-like case.
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2.7 Discussion

The slip-pulse durations in our models are mostly in the range of 1-2 seconds (Figure

13a). This range is also representative of slip-pulse durations inferred in observational studies,

at least for shallow crustal earthquakes [e.g., Heaton 1990; Somerville et al. 1999]. The source

dimension of our simulations is such that the secondary corner introduced by the occurrence

of these pulse-like ruptures only affects the spectral shape at frequencies exceeding the lower

corner frequency by at least a factor of 20. The spectral fitting procedure used here (motivated

by standard observational practice) appears to provide reliable estimates of the lower corner

frequency and the intermediate spectral slope in this case, since the frequency band used in fitting,

0.05 fc < f < 20 fc, is entirely below the higher corner frequency. As indicated in Figure 2.16,

further narrowing the frequency band to 0.05 fc < f < 10 fc, as in Kaneko and Shearer [2014;

2015] only slightly alters the spectral fit, (and only at low take-off angles). The use of the narrower

band suppresses some of the azimuthal variation in the corner-frequency distribution (e.g., near

the z axis in Figure 11a), but has little effect on the averaged values, which are summarized in

Table 2.5. Compared with the results from the narrower band, k and n estimates from the broader

band differ by a maximum of around 10% and 12% respectively (comparing Tables 2 and 5).

When we increase the upper frequency limit to 30 fc (very near to the second corner frequency),

there is no significant change in the estimates of k and n. In summary, the results are fairly

insensitive to our choice the spectral range, although this conclusion depends upon the fact that

the rupture dimension in the models was large enough to provide good separation between the

corner frequencies.

In observational studies, there exists great variability in estimates of earthquake parameters

derived from seismic spectra, such as stress drop and radiated energy. Simulations, for which the

earthquake parameters are precisely known (from near-field calculations) are a valuable aid in the

interpretation of spectra in terms of earthquake parameters and can provide useful insight into the
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origin of the variability of spectrally-derived estimates. Our analysis of the spectral consequences

of the rupture type transition from classic crack-like to pulse-like mode may have application in

the estimation of earthquake parameters for particular earthquakes. For example, we may be able

to sharpen some parameter estimates in cases where we have independent evidence of rupture

mode, e.g., from finite-fault inversion. In such cases, our results for empirical parameters kP and

kS (Section 2.6) and for the effect of pulse-like rupture on stress drop estimation (Section 2.7)

may be used to refine spectral estimates of source parameters. Likewise, the spectral fall-off

rates (nP and nS) could help refine frequency-domain radiated energy estimates (obtained by the

application of Parseval’s theorem to Equation 2.21), which are highly dependent on presumed

spectral shapes [e.g., Hirano and Yagi 2017]. In other cases, absent detailed kinematic inversion

results (especially for small to intermediate earthquakes), rupture types are usually unknown to

us. In those cases, the results (Section 2.5) showing double corner frequency spectral shapes of

pulse-like models may provide interpretive guidance. For example, Denolle and Shearer [2016]

find a double corner frequency model fits their analysis of large, shallow thrust earthquakes, and

since the upper corner appears to be too high in frequency to be related to a fault dimension,

a possible interpretation would relate the upper corner to slip pulse duration (and Denolle and

Shearer [2016] discuss other interpretations). Future work resolving higher frequency spectral

properties, may provide more quantitative constraints on the association of pulse width with the

second corner frequency, the extent to which pulse width may scale with other parameters (e.g.,

moment), and the asymptotic decay slope for pulse-like ruptures.

As noted earlier, the simulations provide precise values of radiated energy, seismic moment

and static stress drop for all the rupture models, and this enables us to consider the implications of

rupture mode for other quantities derived from these source parameters. The radiation ratio (we

follow the terminology of Noda et al. [2013] for what is sometimes called the radiation efficiency,
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though its value can exceed 1), defined as

ηR =
2µER

M0∆σE
, (2.24)

is an interesting example, and values are compiled in Table 2.4 and shown in Figure 2.17a

(red triangles). It is required to clarify that the static stress drop here denotes ∆σE because in

considering energy partitioning, we need energy-based stress drop estimates instead of moment-

based estimates (∆σM) although they are not easy to seismologically distinguish them. The blue

star symbol denotes the average amplitude of the final slip spatial gradient, which can serve as a

good indicator of rupture type (the small value of slip gradient implies flat slip distribution, as

in the more pulse-like ruptures, and the large value denotes crack-like mode. Its mathematical

expression is
∫

L |
d∆u(x)

dx |dl/L in which L is rupture length along the inplane direction (X), l is the

distance variable and ∆u is the slip function). When the rupture type transits from pulse-like to

crack-like (from left to right in Fig 17a), the radiation ratio initially increases, has a maximum

for the growing pulse case, and then falls for the crack-like case. This behavior is probably a

consequence of the undershoot of the static stress drop, relative to the maximum dynamic stress

drop, in pulse-like models, as seen in Figure 2.3b. To verify that this dependence of radiation ratio

on rupture mode is not specific to our method of inducing the rupture mode transition (via scaling

of Vw), we do a similar set of simulations, but inducing the transition from pulse-like to crack-like

modes by raising initial shear stress (with Vw fixed). We also add more simulations (a total of

22) to refine the resolution of the rupture-mode transition. The results, shown in Figure 2.17b,

confirm that the transition of rupture from decaying to growing pulse-like behavior is associated

with a large (up to factor of 1.6), systematic increase in radiation ratio, and that the transition to

crack-like rupture corresponds to an equally large drop in radiation ratio (the small increases in

efficiency for the highest initial-stress case is associated with a supershear rupture transition).
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2.8 Conclusions

Spontaneous rupture simulations with rate and state friction and dynamic weakening show

a rupture mode transition from crack- to pulse-like under adjustment of the critical weakening

velocity Vw. Four representative models provide a basis for examining the effect of rupture

mode on source parameter estimates: an expanding crack, a growing pulse (increasing peak slip

velocity with rupture radius), a steady-state pulse (nearly constant peak slip velocity), and an

arresting pulse (with spontaneous rupture termination). Relative to a crack-like rupture with

similar geometry, a pulse-like rupture leads to additional complexity in the far-field displacement

spectra, including a double corner-frequency structure, with the higher corner frequency inversely

proportional to pulse duration. The focal-sphere-averaged lower P and S wave corner frequencies

(normalized to source dimension) are systematically higher for pulse-like models than for crack

models of comparable rupture velocity (Table 2.3), while the lower P-wave corner is less sensitive

to rupture mode. The P/S corner frequency ratio also varies systematically with rupture mode,

from ∼1.3 for the crack model to ∼0.9 for the arresting pulse (Table 2.2). The spectral slope

(above the lower corner) in most cases is only slightly affected by rupture mode; in nearly all

cases, this slope is in the range −2±0.2, with the P spectral slope more sensitive to rupture mode

than the S slope (Table 2.2).

The slip-weighted stress drop ∆σE exceeds the moment-based stress drop ∆σM for pulse-

like ruptures, with the ratio ranging from about 1.3 to 1.65, while they are equal for the crack-like

case. The variations in rupture mode modeled in this study introduce variability of the order of a

factor of two in standard (i.e., crack-model based) spectral estimates of stress drop, accompanied

by some systematic bias. The S-wave spectral estimates for the pulse-like ruptures are biased high

by about a factor of two when stress drop is interpreted as ∆σM, but show little bias when stress

drop is interpreted as ∆σE (and P-wave estimates show less systematic bias). The transition from

arresting- to growing-pulse rupture is accompanied by a large (factor of ∼1.6) increase in the
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radiation ratio (”radiation efficiency”), with a comparable drop in that ratio at the transition from

growing-pulse to crack-like rupture. Thus, variations in rupture mode may account for portion of

the scatter in observational spectral estimates of source parameters, and, in instances in which

independent constraints on rupture mode are available, the results derived here (in particular,

values for rupture style-dependent normalized corner frequencies kP and kS and spectral slopes

nP and nS) may help sharpen those estimates.
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Tables and Figures

Table 2.1: Models Parameter Values
Parameter Symbol Value

Bulk Properties
Compressive wave speed VP 6000 m/s
Density ρ 2670 kg/m3

Poisson’s ratio ν 0.25
Frictional Parameters

Direct effect parameter a 0.01
Evolution effect parameter b 0.014
Reference slip velocity V0 1 µm/s
Steady-state friction coefficient at V0 f0 0.7
State-evolution distance L 0.4 m
Weakening slip velocity Vw variable
Fully weakened friction coefficient fw 0.2

Initial Conditions
Normal stress on fault σ0 120 MPa
Background shear stress τb 38 MPa
Initial slip velocity Vini 2×10−9m/s
Prescribed rupture radius R 18 km

Nucleation Parameters
Nucleation radius Rn 3000 m
Overstress ∆τ0 1× τb
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Table 2.2: Spectral parameters of P and S waves among 4 models a

Expanding crack Growing pulse Steady-state pulse Arresting pulse

V 2
r 0.88β 0.85β 0.78β 0.72β

V 3
r 0.84β 0.81β 0.74β 0.66β

kP 0.35 0.40 0.31 0.28

kS 0.27 0.36 0.31 0.34

kP

kS 1.3 1.1 1.0 0.8

nP 2.2 2.0 1.8 1.7

nS 1.9 1.9 1.8 1.9

kP
stack 0.38 0.43 0.31 0.28

kS
stack 0.30 0.39 0.31 0.31

kP
stack

kS
stack

1.3 1.1 1.0 0.9

nP
stack 2.2 2.0 1.8 1.8

nS
stack 2.0 1.8 1.8 1.9

a V 2
r and V 3

r denote rupture velocity along inplane and antiplane direction. kP and kS are
normalized corner frequencies, fcβ/R, for the P and S wave, respectively. nP and nS are
(absolute values of) the spectral slopes for the P and S wave, respectively. Unsubscripted
quantities are obtained by averaging separate spectral estimates obtained from each
receiver direction. Subscript ”stack” indicates that the quantity is an estimate obtained
from an amplitude spectrum (”stack”) formed by averaging the individual amplitude
spectra from all receiver directions.
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Table 2.4: Comparison energy partitioning and static stress drop among 4 models.

Expanding crack Growing pulse Steady-state pulse Arresting pulse
Radiated Energy

Er(1015J) 21.01 9.29 2.92 1.14
E ′r(1015J) 20.89 9.17 2.88 1.12

Ratio between ES
r and EP

r

ES
r /EP

r 20 29 27 24
ES

r /EP
r * 11 18 23 46

Static stress drop

∆σE(MPa) 15.69 9.37 6.41 5.53
∆σM(MPa) 15.66 7.13 4.61 3.36

Radiation ratio

ηR 0.40 0.65 0.46 0.41

All parameters underlined are computed directly from fault-plane stresses and slip from the
numerical simulations. Parameters labeled with ′ are derived from far-field displacements or
spectra calculated from the simulations. The energy ratio labeled with ∗ represents results from
Equation 2.22 [Boatwright and Fletcher 1984].
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Table 2.5: Spectral parameters of P and S waves for the 4 models obtained, using modified
frequency band 0.05 fc < f < 10 fc

Expanding crack Growing pulse Steady-state pulse Arresting pulse

V 2
r 0.88β 0.85β 0.78β 0.72β

V 3
r 0.84β 0.81β 0.74β 0.66β

kP 0.38 0.40 0.32 0.30

kS 0.29 0.35 0.32 0.34

kP

kS 1.3 1.1 1.0 0.9

nP 2.3 2.0 1.9 1.9

nS 2.0 1.7 1.8 1.9

kP
stack 0.40 0.43 0.34 0.30

kS
stack 0.31 0.38 0.32 0.32

kP
stack

kS
stack

1.3 1.1 1.1 1.0

nP
stack 2.3 2.0 1.9 1.9

nS
stack 2.0 1.8 1.8 1.9
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Figure 2.1: Schematic illustration indicating how the weakening slip rate Vw generates the
rupture mode transition between crack-like and pulse-like. The red solid lines denote steady-
state shear stress dependent on slip rate. Blue and purple dashed lines are radiation damping
lines corresponding to different Vw values. For the small value of Vw, the corresponding critical
τpulse is below initial background shear stress and a crack-like rupture mode is obtained. With
Vw increased such that τpulse is elevated above the initial shear stress, based on the analysis in
Zheng and Rice [1998], the rupture mode becomes pulse-like.
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Figure 2.2: Circular fault model for generating the transition between crack-like and pulse-like
ruptures. The yellow circle in the center is the nucleation area with overstress. The blue circular
patch is velocity weakening region where a < b and rupture is allowable. Outer grey region
requires a >> b, velocity strengthening, to arrest rupture. X and Y axis correspond to inplane
and antiplane direction along which the green triangular symbols are receivers used to record
slip rate function in Figure 2.3- 2.7.
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Figure 2.3: Numerical simulation results of 4 rupture models: expanding crack (blue), growing
pulse (green), steady-state pulse (pink) and arresting pulse (orange). (a) and (b) show time
dependent slip (1s interval) along inplane and antiplane direction, and the characteristic slip
profiles of the respective rupture modes are observed. The dependence of slip on the distance
from the hypocenter is minimal in pulse-like mode, but (apart from the nucleation zone) has the
expected elliptical shape in the crack-like case. (c) and (d) show shear stress (black line) and
slip rate (red line) for crack-like and pulse-like ruptures. In the pulse-like mode (d), shear stress
has a re-strengthening phase that heals the rupture and reduces the slip duration, in contrast to
the flat residual shear stress and longer slip duration in the crack-like rupture (c).
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Figure 2.4: Details of expanding crack, showing slip (a), static stress change (blue region means
stress drop) (b), rupture front time (c) and slip rate functions (d) and (e).
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Figure 2.5: Details of growing pulse, showing slip (a), static stress change (b), rupture front
time (c) and slip rate functions (d) and (e).
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Figure 2.6: Details of steady-state pulse, slip (a), static stress change (b), rupture front time (c)
and slip rate functions (d) and (e).
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Figure 2.7: Details of arresting pulse, showing slip (a), static stress change (b), rupture front
time (c) and slip rate functions (d) and (e).
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Figure 2.8: The radiated P and S displacement and spectra at 8 take-off angles from 4 dynamic
rupture models (denoted by 4 colors). Best fit corner frequency fc of each spectrum is indicated
by a star.
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Figure 2.9: Far-field displacements, spectra, normalized corner frequencies ( fcR/β) and fall-off
rates for expanding crack model. (a) Distributions of P and S spectral corner frequencies ( fcR/β)
over the focal sphere. X and Y axes are identical with those in Figures 4-7. (b) Distributions of
P and S spectral fall-off rate over the focal sphere. (c) 4 sampled displacements and spectra of P
and S waves. Black dashed lines are best fit Brune model and star symbol denotes best fit corner
frequency.
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Figure 2.10: Far-field displacements, spectra, normalized corner frequencies and fall-off rates
for growing pulse model. (a) Distributions of P and S spectral corner frequencies over the focal
sphere. (b) Distributions of P and S spectral fall-off rate over the focal sphere. (c) 4 sampled
displacements and spectra of P and S waves. Black dashed lines are best fit Brune model and
star symbol denotes best fit corner frequency.
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Figure 2.11: Far-field displacements, spectra, normalized corner frequencies and fall-off rates
for steady-state pulse model. (a) Distributions of P and S spectral corner frequencies over the
focal sphere. (b) Distributions of P and S spectral fall-off rate over the focal sphere. (c) 4
sampled displacements and spectra of P and S waves. Black dashed lines are best fit Brune
model and star symbol denotes best fit corner frequency.
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Figure 2.12: Far-field displacements, spectra, normalized corner frequencies and fall-off rates
for arresting pulse model. (a) Distributions of P and S spectral corner frequencies over the focal
sphere. (b) Distributions of P and S spectral fall-off rate over the focal sphere. (c) 4 sampled
displacements and spectra of P and S waves. Black dashed lines are best fit Brune model and
star symbol denotes best fit corner frequency.

70



Figure 2.13: Slip rate duration distribution and stacked spectra of P and S waves for each model.
(a) The distributions of slip rate durations for each model (we scale the curve of expanding
crack with a factor of 3 to highlight the linearly decreasing distribution of slip duration). (b)
Stacked P wave spectra (solid lines) and best fitted Brune model (dashed lines). Dotted curves
are frequency distribution of K/T , with K scaled such that K/T is a rough indicator of the
second corner frequency. (c) Stacked S wave spectra and best fit Brune model.
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Figure 2.14: The ratio between spectrally estimated stress drop and actual moment-based
stress drop for the 4 simulated rupture models. Four sets of parameters, kP and kS are used to
investigate how large the variabilities of estimations can be. The vertical axis is logarithmic.
Also shown is the ratio between ∆σE and ∆σM for each simulation, denoted by black squares,
demonstrating the divergence of these two averages as rupture mode changes from crack-like to
pulse-like.
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Figure 2.15: Slip distribution, comparing crack-like and pulse-like models. The blue solid
and dashed lines are the final slip distribution from expanding crack model and best fitted
Eshelby’s solution. The pink solid and dashed lines are the final slip distribution from expanding
crack model and best fit Eshelby solution. In both sets of lines, the degree of discrepancy
between obtained models and the theoretical static solution determines the appropriateness of
conventional Equation 2.1 or Equation 2.3 for computing static stress drop. The misfit at small
radius is due to the nucleation effect (different stress drop in the nucleation zone).
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Figure 2.16: Effect of frequency band on spectral fitting. (a) Black solid lines are P and S
spectrum at 22.5◦ take-off angle. The red and blue dashed lines are best fit Brune model using
0.05 fc∼10 fc and 0.05 fc∼20 fc, respectively. At low take-off angle, slight difference of fitting
occurs at high frequency. (b) Black solid lines are P and S spectrum at 82.5◦. The red and blue
dashed lines are best fit Brune model using 0.05 fc∼10 fc and 0.05 fc∼20 fc, respectively. At
high take-off angle, both bands result in identical fitting.
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Figure 2.17: Radiation ratio variation with rupture mode transition. (a) radiation ratio (red
dashed line) and slip gradient (rupture type indicator, blue dashed line) of 4 models show with
rupture mode is changed to crack-like, radiation ratio has an apparent reduction. (b) Similar
pattern can be observed when we switch to adjust initial shear stress to regenerate a rupture
mode transition.
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Chapter 3

Geometric controls on pulse-Like rupture

in a dynamic model of the 2015 Gorkha

Earthquake

The 15 April 2015 Mw 7.8 Nepal Gorkha earthquake occurred on a shallowly dipping

portion of the Main Himalayan Thrust (MHT). Notable features of the event include (1) the

dominance of a slip pulse of about 6-s duration that unlocked the lower edge of the MHT and (2)

the near-horizontal fault geometry, which, combined with proximity of the free surface, allows

surface-reflected phases to break the across-fault symmetries of the seismic wavefield. Our

dynamic rupture simulations in an elastoplastic medium yield earthquake parameters comparable

to those deduced from kinematic inversions, including seismic moment and rupture velocity.

The simulations reproduce pulse-like behavior predicting pulse widths in agreement with those

kinematic studies and supporting an interpretation in which the pulse-like time dependence of slip

is principally controlled by rupture geometry. This inference is strongly supported by comparison

of synthetic ground velocity with the near-field high-rate GPS recording at station KKN4, which

shows close agreement in pulse width, amplitude, and pulse shape. That comparison also
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constrains the updip extent of rupture and disfavors significant coseismic slip on the shallow ramp

segment. Over most of the rupture length, the simulated rupture propagates at a near-constant

maximum velocity (∼ 90% of the S wave speed) that is controlled by the antiplane geometry and

off-fault plastic yielding. Simulations also reveal the role of reflected seismic waves from the free

surface, which may have contributed ∼ 30% elongation of the slip pulse, and show the potential

for significant free-surface interaction effects in shallow events of similar geometry.

3.1 Introduction

On 25 April 2015, a devastating earthquake occurred along the convergent boundary be-

tween Eurasian and Indo-Australian plates. Its epicenter is about 77 km northwest of Kathmandu,

the capital, and most populous city, of Nepal. The active thrust system in this region, which

includes the Main Frontal Thrust along the southern edge of the Sub-Himalayan foothills and the

Main Himalayan Thrust (hereafter MHT) dipping gently to the north, has hosted several large,

damaging earthquakes, for example, earthquakes in 1505 and 1934 with magnitudes greater than

8. This 2015 earthquake was the largest decollement event in the past 80 years. Its hypocentral

depth of 15 km and the absence of observed surface rupture, as well as results from inversions of

seismic and geodetic data, all indicate that this event ruptured a portion of the MHT, whose dip

angle can then be inferred from the low-angle thrust focal mechanism of the event. A number of

essential features of this earthquake have been revealed by multiple types of observations. This

Mw 7.8 earthquake, with a peak slip of 5-8 m, ruptured ∼140 km along the strike direction and

∼60 km along the dip direction and propagated unilaterally southeastward at a velocity of ∼3.0

km/s. These first-order results have been derived from finite-fault inversions [Avouac et al. 2015;

Galetzka et al. 2015; Grandin et al. 2015; Qiu et al. 2016; Wang and Fialko 2015; Yue et al. 2017]

and P-wave teleseismic back-projections [Avouac et al. 2015; Fan and Shearer 2015; Grandin

et al. 2015; Meng et al. 2016; Yagi and Okuwaki 2015]. The event had a pulse-like rupture mode
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[Galetzka et al. 2015; Yue et al. 2017] with a slip pulse of ∼ 20 km in spatial width and ∼6 s

in temporal duration [Galetzka et al. 2015]. Moreover, depth- and frequency-varying rupture

properties [Denolle et al. 2015; Yin et al. 2017; Yue et al. 2017] have been observed, with patterns

broadly resembling those seen on subduction megathrusts [Yao et al. 2013].

Fault morphology plays an important role in earthquake rupture–from initiation, to evo-

lution, to eventual termination–by modifying localized stress conditions and thereby impacting

rupture extent, near-field ground motion, and aftershock triggering [Andrews 1994; King et al.

1994; Oglesby and Mai 2012]. There have been extensive studies of the MHT fault geometry,

upon which the most destructive earthquakes in the region have occurred. Multiple techniques

have been used to explore its geometry in central Nepal, for example, receiver functions [Duputel

et al. 2016; Nabelek et al. 2009; Schulte-Pelkum et al. 2005], structural geology [Avouac 2007;

Hubbard et al. 2016; Pearson and DeCelles 2005], electromagnetic investigations [Lemonnier

et al. 1999], microseismicity and focal mechanism studies [Pandey et al. 1995; Wang et al.

2017], geodetic inversion [Elliott et al. 2016], geodynamical modeling [Cattin and Avouac 2000;

Chamlagain and Hayashi 2007; Robinson 2008]. Among the shared inferences from these studies

are that the MHT serves as a decollement, with a very low dip angle underneath the Lesser

Himalaya, steepening along a ramp down to the north beneath the Higher Himalaya and ramping

up to the south to merge with the shallower Main Frontal Thrust. While there is broad agree-

ment on the overall geometry, there remains substantial uncertainty in the dip angles and the

dimensions of MHT segments. Recently, Hubbard et al. [2016] have incorporated geophysical

and geological results (e.g., surface geology, topography, and seismicity) to formulate a detailed

fault morphological model. The model contains two ramps truncating the edge of the nearly

flat decollement segment along the dip direction and two pinch points confining the dimension

of this shallow-dip segment along the strike direction (Figure 3.1). In this study, we adopt this

fault representation of the MHT because this fault geometry is suggested by previous studies

to be particularly related to the Gorkha earthquake. For instance, (1) the pattern of coseismic
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slip for the Gorkha event [Avouac et al. 2015] is in good agreement with expectations from the

Hubbard et al. [2016] model, (2) the refined relocations and focal mechanisms determined for 16

aftershocks ([Wang et al. 2017], especially their Figure 3.8), shown in Figure 3.1, also suggest a

double-ramp geometry of the MHT in the region of the mainshock in the form of a concentration

of hypocenters delineating a slope change at the northern edge of the main area of coseismic slip,

and (3) earthquake cycle modeling based on this fault geometry [Qiu et al. 2016] suggests that

the 2015 Gorkha rupture area was limited by fault geometrical features. In the current paper, our

aim is to apply dynamic rupture modeling, in conjunction with seismic and geodetic constraints,

to examine the physical relationship between the time-dependent aspects of the earthquake (e.g.,

rupture propagation, slip-rate function, and near-fault ground motion) and the rupture geometry.

The geometrical bounds on rupture in our models were inspired by the underlying model of fault

geometry, but the rupture bounds are enforced by imposing fault strength variations that are not

explicitly geometrical in origin.

In addition to the fault morphology, the free surface can play a role in the dynamics

of rupture. Surface reflected waves not only interfere with the direct seismic waves from the

rupture surface but may also have an effect on the rupture evolution itself [Denolle et al. 2015;

Oglesby et al. 1998; Rudnicki and Wu 1995]. It is reasonable to expect this effect to become

more prominent in a shallow-thrust scenario such as the Gorkha earthquake. On a shallowly

dipping fault, free-surface reflections break the symmetry that pertains for an isolated fault or

for a near-surface vertical fault and thereby induce normal stress fluctuations, correspondingly

altering fault strength. These fluctuations, and accompanying fluctuations in shear stress, have

the potential to interact with rupture processes. Some theoretical studies [e.g., Smith et al. 2005]

have found little or no effect on teleseismic peak-to-peak amplitudes from wave-slip interaction

associated with surface reflected phases, but this result may be quite model dependent, and, in any

case, it does not imply that near-fault seismic observables are unaffected by those interactions.

Additional fault properties such as the presence of a bimaterial interface could further complicate
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this interaction and lead to enhanced hanging/foot wall effects [Ma and Beroza 2008]. In the

case of a normal fault, theory indicates that the free surface can even trigger a shallow nucleation

ahead of the main rupture, which could explain the level of high-frequency radiation originating

at shallow depth from some normal-faulting events [Nielsen 1998]. In contrast to the models

in the foregoing studies, the Gorkha earthquake was an essentially antiplane (Mode III) rupture

event on a shallow, and very shallowly dipping, fault surface, a geometry for which free-surface

interactions have not been previously modeled (free-surface interactions in 2-D models of the

Tohoku earthquake, (e.g., Kozdon and Dunham [2013] and Huang et al. [2014], are for purely

Mode II rupture). Therefore, we include in our modeling an exploration of the interaction between

free-surface-reflected waves and the rupture process in this event and characterize the extent to

which that interaction may affect the character and duration of coseismic slip.

As demonstrated by finite-fault inversions [Galetzka et al. 2015; Yue et al. 2017], the

Gorkha rupture propagated unilaterally eastward in a pulse-like slip mode. Pulse-like rupture

is one of the two principal endmember models for the space-time dependence of coseismic

slip (in contrast to “crack-like”) and has been recognized in many seismological, analytical,

computational, and experimental studies [Beeler and Tullis 1996; Day 1982; Day et al. 1998;

Gabriel et al. 2012; Haskell 1964; Heaton 1990; Huang and Ampuero 2011; Lu et al. 2010;

Nielsen and Madariaga 2003; Noda et al. 2009; Oglesby and Day 2002; Wang and Day 2017;

Zheng and Rice 1998]. Melgar and Hayes [2017] examined a database of over 150 finite-fault

rupture models (Mw 7 to 9) and inferred a pulse-like signature (slip rise times much shorter than

the source duration) for the preponderance of them.

A pulse-like rupture mode produces distinct effects (relative to crack-like rupture) on both

far-field seismic observations (e.g., a secondary spectral corner, as in Wang and Day, 2017) and

near-field ground motions (e.g., compact directivity phases in the fault-normal ground velocity as

in Aagaard and Heaton [2008]. Numerous mechanisms have been hypothesized to contribute to

pulse-like rupture, including velocity dependent friction, heterogeneity of fault strength and initial
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shear stress, and finite downdip rupture dimension. [Beeler and Tullis 1996; Beroza and Mikumo

1996; Cochard and Madariaga 1996; Day 1982; Day et al. 1998; Gabriel et al. 2012; Johnson

1992; Noda et al. 2009; Oglesby and Day 2002; Zheng and Rice 1998]. However, it is difficult

on the basis of kinematic analysis alone to distinguish these effects on any individual rupture.

One complicating factor is uncertainty in the retrieval of the slip-pulse shape, due to factors

such as a prior selection of a functional form to represent the source time function, the choice

of a singlewindow or multiwindow inversion method, and ambiguity in defining the end time of

the pulse. Some efforts have been made to improve inversions for slip pulses by using insights

from dynamic models. Tinti et al. [2005] propose a new source-time function called regularized

Yoffe function that is inspired by a self-similar pulse-like solution [Nielsen and Madariaga 2003]

and approximates some generic characteristics of slip calculated in dynamic models of rupture

propagation. Apart from these essentially observational limitations, however, kinematic analysis

does not address the fundamental uncertainty about how the various hypothesized factors, taken

individually, affect pulse shape and duration and, moreover, how those factors may interact.

In this paper, we investigate factors controlling the slip pulse of the 2015 Gorkha earth-

quake by forward dynamic modeling. We specify a priori the fault geometry and the large-scale

stress and frictional preconditions and enforce observational constraints on total seismic moment.

The model prediction for rupture velocity compares favorably with observational estimates (as

inferred from backprojection studies), and the near-source velocity waveform compares favorably

with a very near source high-rate GPS recording that appears to be relatively free of path effects.

The results support an interpretation in which slip-pulse duration is principally controlled by

the along-dip extent of the rupture. The Gorkha rupture probably interacted with free-surface

reflections, which may have added ∼30% to the average slip-pulse width. The simulations also

support the interpretation that the Gorkha event ruptured, over much of its length, at velocities

near the terminal velocity for an antiplane rupture subject to finite yield strength.
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3.2 Problem Formulation and Model Setup

We first describe the geographical area for modeling the 2015 Gorkha earthquake and the

discretization of the MHT fault surface and surrounding volume. Then we describe our models

for the bulk material properties, the hypothesized initial stress state, and constitutive properties

on the fault. Finally, we outline the numerical method and computational platform employed.

3.2.1 Computational Domain and Discretization

The model area of interest is enclosed by an orange box in Figure 3.2a. The dimensions

along the x axis (horizontally directed from the southeast to the northwest), y axis (horizontally

directed from the southwest to northeast), and z axis (vertically directed downward from the Earth

surface) are 200 km, 80 km, and 60 km, respectively. Inside this box, the fault geometry of the

MHT is taken from Hubbard et al. [2016]. Multiple alternative fault models have been proposed

for the source region of the 2015 Gorkha earthquake. [e.g., Avouac 2007; Duputel et al. 2016;

Elliott et al. 2016; Lemonnier et al. 1999; Nabelek et al. 2009; Schulte-Pelkum et al. 2005].

From among these, we adopted the fault geometry of Hubbard et al. [2016] (hereafter

referred to simply as the Hubbard model) because of its close relationship with the coseismic

slip of the 2015 Gorkha event. The Hubbard model, while based on structural data that are

independent of kinematic inversions of the Gorkha earthquake, has a geometry that is consistent

with the spatial limits of coseismic rupture. In the Hubbard model there are two ramps along

the dip direction, and we will refer to the upper (southern) one as the updip ramp and the lower

(northern) one as the downdip ramp. These are separated by an intervening decollement (which

we will also refer to as the flat segment) that is terminated along strike, both to the east and

to the west, by “pinch points” where the upper and lower ramps merge to yield a single ramp

(Figure 3.1 and 3.2). A decollement of this form, terminated at narrow junctions, correlates well

with the coseismic patch in the Gorkha event. Consequently, the Hubbard model geometry is
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an appropriate starting point for models of rupture dynamics. The dynamic models can, in turn,

help assess the extent to which that geometry controls the time-dependent rupture behavior. We

interpolated the triangularized fault surface representation of the Hubbard model (GOCAD data

format) onto the structured hexahedral grid employed in our dynamic rupture simulation method.

In that grid, the x and y axes are equally and orthogonally gridded (100-m intervals), and z

intervals are variable, as required to ensure that both the fault surface and the free surface conform

to grid coordinate surfaces. To enhance numerical accuracy in computation of fault-surface

tractions, the elements adjacent to the fault on either side have identical shapes and sizes. All

remaining z intervals in the structured, hexahedrally gridded volume are linearly interpolated

between the fault and, respectively, the free surface and bottom perfectly matched layer zone

(illustrated in Figure 3.2b). In total, our final mesh is composed of ∼960 million hexahedral

elements with variable element sizes and shapes.

3.2.2 Bulk Material, Initial Stress State and Fault Constitutive Law

We assume a homogeneous, elastoplastic bulk material in this region. This simplification is

appropriate to our objective of investigating the relationship between the complex fault geometry

and the dynamics of the rupture. The rupture extent will be constrained by comparing the

predicted and observed ground velocity pulse at the KKN4 high-rate GPS station, which, by

virtue of its siting on rock directly above the rupture surface of this event, is relatively insensitive

to path effects. We assign the elastic properties (given in Table 3.1) based upon their values at the

hypocentral depth, as given by the 1-D model of Avouac et al. [2015]. We represent departures

from linearly elastic behavior through the Drucker-Prager elastoplastic model [Drucker and

Prager 1952], which has been widely used in geomechanics to model pressure-dependent inelastic

yielding. It has been long recognized that, if modeled by linear elasticity, the high stresses at

the rupture front are likely to exceed the rock strength [Andrews 1976], and dynamic effects of
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near-fault plasticity have been the subject of several recent studies [Andrews 2005; Duan and

Day 2008; Dunham et al. 2011; Gabriel et al. 2013; Ma and Andrews 2010; Roten et al. 2014;

Roten et al. 2017; Shi and Day 2013]. The introduction of plasticity into dynamic models of

the Gorkha earthquake reduces the unphysically high shear stresses, and the accompanying high

peak slip rates, that develop near the rupture front in purely elastodynamic models. Furthermore,

the reduction of the maximum slip rate increases the length of the frictional cohesive zone,

which in turn serves to control the contraction of the cohesive zone associated with rupture

acceleration toward terminal velocity [Day et al. 2005]. Therefore, because numerical solution

accuracy requires that the computational grid resolve the minimum cohesive zone [Andrews 1976;

Day et al. 2005], plastic yielding has the ancillary effect in this case (though not in general) of

improving numerical accuracy. The Drucker-Prager model formulation is given in Appendix A,

and parameter values used in the simulations are listed in Table 3.1. The initial stress state is

subject to large uncertainties. Even with many simplifying assumptions, geodynamic simulations

of frictional sliding on the MHT in Nepal predict complex compressive and tensional stress fields

around the fault plane [Chamlagain and Hayashi 2007], with details sensitive to the details of

the fault system geometry. To isolate the first-order dynamic effects associated with the assumed

fault geometry (Hubbard model), we simplify the stress state by employing a homogeneous initial

stress tensor. This choice neglects, in particular, any increase in effective normal stress with depth.

However, in that respect the model is consistent with the suggestion by [Rice 1992] that below

some depth, the pore pressure follows the lithostatic gradient instead of the hydrostatic trend (and

the coseismic patch of the Gorkha event is everywhere below 8 km in depth). The initial stress

tensor σ0 is given by

σ
0 =


σxx 0 0

0 σyy σyz

0 σyz σzz

 (3.1)
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where the stress components are listed in Table 3.1 (the coordinate system is that of

Figure 3.2). In designing this initial stress tensor, we attempt, in the interest of simplicity, to

introduce the minimal set of nonzero stress components required to approximate a local stress field

consistent with the faulting style and the very low dip angle of the decollement segment. Here,

three nonzero normal components of the stress tensor (σxx, σyy and σzz) are first assigned (see

Table 3.1). σzz is initially set as the effective normal stress of the overburden at a reference depth

(initially taken as 8 km, but permitted to vary when we scale to seismic moment, as noted below),

assuming hydrostatic pore pressure down to this depth. σyy is set to 2σzz to mimic a thrust faulting

environment (as suggested in Chamlagain and Hayashi [2007], and σxx is set to the mean of σyy

and σzz. Then, we require the ratio between the shear and the normal stress projected onto the fault

to approach prior estimates of the apparent frictional properties compatible with the interseismic

and long-term deformation. Cattin and Avouac [2000] simulated the long-term and interseismic

deformation and infer a low apparent friction coefficient, less than ∼0.3, on the decollement

segment, which allows thrusting on the MHT with negligible internal deformation of the hanging

wall, with a larger value (up to 0.6) on the downdip ramp. Based on those inferences, we rotate

the principal stress axes in the y-z plane by introducing another nonzero stress component σyz,

in order to approximate a shear-tonormal stress ratio of 0.2-0.3 on the decollement segment and

∼0.4 on the ramps (these values are stated as approximations because the fault-segment surfaces

are not planar, so the resolved stresses have some variation). The higher shear stress on the ramps,

relative to the decollement segment, is also seen in earthquake cycle modeling [Michel et al.

2017] that did not impose fault topography but constrained the frictional transitions (velocity

strengthening and weakening) based on interseismic observations. The foregoing considerations

only fix the ratios of the four independent stress components in equation 3.1. We then scale these

ratios by a constant that is determined by trial and error, such that the seismic moment of the

simulation falls within the range of published observational estimates. The resultant shear and

normal stresses are illustrated in Figures 3.3a and 3.3b.
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We introduce an artificial initiation zone on the downdip ramp, near the western pinch

point, to initiate the Gorkha earthquake simulation. We move the U.S. Geological Survey hypocen-

ter (within its uncertainty bounds) closer to the western pinch point, because that adjustment

reduces the level and spatial extent of the stress perturbation required to initiate a sustained rupture

in our model (this is only a computational device to which we attribute no physical significance).

Rupture is initiated on the ramp by imposing a Gaussian-shaped shear overstress within a 7,500-m

radius of the hypocenter (the red circular overstress patch in Figure 3.3a), with peak amplitude

1.5 times the local initial shear stress τb (details can be found in Equation 11 in Wang and Day,

2017). The overstress in initiation zone results in a maximum ratio of shear to normal stress of

0.6.

The fault friction law is one of rate-dependent dynamic weakening, within a rate and state

framework, that has its basis in laboratory experiments [e.g., Dieterich 1979; Marone 1998; Ruina

1983]. Here we use the regularized formulation of the friction coefficient proposed by Lapusta et

al. [2000], and the steady state friction coefficient is formulated following Dunham et al. [2011],

Shi and Day [2013], and Wang and Day [2017]. Details of the formulation are given by Equations

6 to 10 in Wang and Day [2017], and the numerical treatment is outlined in Rojas et al. [2009].

The evolution-effect parameter b, the reference slip rate V0, and the weakening slip rate Vw are

constant over the fault (see Table 3.1).

The other frictional parameters are variable and distributed as shown in Figures 3.3c-3.3f.

We introduce a velocity-weakening portion of the plate interface consisting of the decollement

segment, a narrow strip along the top of the downdip ramp down to 14.5-km depth, and a more

extensive part of the downdip ramp corresponding to an asperity that appears in many source

imaging studies [Avouac et al. 2015; Grandin et al. 2015; Hayes et al. 2015; McNamara et al.

2017; Qiu et al. 2016; Wei et al. 2018; Yue et al. 2017]. Apart from that asperity, the lower

velocity-weakening boundary follows the 14.5-km depth contour (the white contour band in

Figure 3.3c) and does not coincide exactly with the kink joining the decollement and downdip
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ramp (dashed red curve in each of Figures 3.3c-3.3f). It instead extends a short distance onto

the down-dip ramp, and the extra velocity-weakening area near the initiation zone simplifies the

nucleation of a sustained rupture (which we just ascribe to the artificiality of our model of event

initiation). The velocity-weakening area has direct-effect parameter a = 0.01 (b - a = 0.004),

statevariable evolution distance L = 0.1 m, and fully velocity-weakened friction coefficient fw=

0.2 (except on the narrow strip on the downdip ramp, where fw is assigned a transitional value

of 0.3). The remainder of the downdip ramp, as well as the entire updip ramp, are velocity

strengthening, with a = 0.05, L = 0.8 m, and fw= 0.6 (there is also a very narrow transitional

strip between these velocity-strengthening and velocity-weakening regions in which the frictional

parameters are smoothly interpolated).

We set the low-velocity friction coefficient f0 to mirror the pattern of apparent frictional

properties proposed by Cattin and Avouac [2000], that is, 0.3 on the decollement and 0.6 on the

ramps, except that we reduce it to 0.5 on the asperity portion of the downdip ramp in order to

facilitate rupture on that patch. The velocity weakening value of L is essentially determined by

numerical requirements, in that it is near the minimum value that provides a well-regularized

numerical solution, while its high value in the velocity-strengthening zone helps minimize rupture

penetration beyond the velocity-weakening region. The value of fw is not well constrained,

and we chose a value that gives fairly strong dynamic weakening behavior (dynamic friction

substantially below final static shear stress), that value trades off against the initial static stress, so

the trial-and-error adjustment of the initial stress level (to conform to observational estimates of

seismic moment) mentioned earlier is also affected by the choice of fw.

The shallow velocity-strengthening zone (i.e., on the updip ramp) in our model serves

as a barrier to rupture on the coseismic timescale (∼60 s). The actual geophysical mechanism

restricting the upward extent of rupture is not known and may instead be related to insufficient

stress accumulation on a fully coupled shallow region [Gualandi et al. 2017; Michel et al. 2017;

Stevens and Avouac 2015; Wang and Fialko 2018]. Our simulated ruptures are not affected by the
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choice of confinement mechanism (e.g., velocity strengthening versus low stress accumulation).

We solve the 3-D problem of spontaneous rupture propagation within the elastoplastic

medium using the Support Operator Rupture Dynamics [Ely et al. 2008; Ely et al. 2009; Shi and

Day 2013]. This code implements a generalized finite-difference method that accommodates

nonplanar surfaces and nonplanar fault ruptures in a hexahedral mesh. The full methodology

has been verified in tens of test problems developed for the Southern California Earthquake

Center/U.S. Geological Survey dynamic earthquake rupture code validation exercise [Harris

et al. 2009]. This application requires ∼960 million elements to model the 2015 Gorkha (Nepal)

earthquake during a 60-s period, each simulation consuming ∼1.3 hr using 16,384 processors on

Mira at the Argonne Leadership Computing Facility (Argonne National Laboratory).

3.3 Numerical Simulation Results and Analysis

3.3.1 Simulated Rupture Propagation and Earthquake Parameters

The simulated dynamic rupture produces, overall, a relatively simple pattern of unilateral

eastward rupture but with some complexities related to the fault morphology (Figure 3.4). The

rupture shows a pattern of multiple phases, somewhat similar to that noted in Fan and Shearer

[2015]. The rupture is first initiated on the downdip ramp close to the western pinch point (Figure

3.4a). Subsequently, the rupture climbs updip from the ramp onto the decollement segment

and is shaped by the pinch-point feature in the west (Figure 3.4b). This can be associated with

Stage 1 in Fan and Shearer [2015]. Rupture then evolves into a unilaterally propagating, nearly

steady state slip pulse on the decollement segment (Figure 3.4c). This behavior is common to

observation- and simulation-based studies of this event [Galetzka et al. 2015; Michel et al. 2017;

Wei et al. 2018; Yue et al. 2017]. This phase of rupture corresponds to Stage 2 in Fan and Shearer

[2015]. The slip-pulse width is roughly 20 km (an estimate of a slip rise time is based upon
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a threshold slip-rate value for starting and ending of the rupture pulse of 0.1 m/s, alternative

estimates are discussed in Text S1), which agrees with the estimate in Galetzka et al. [2015].

In dynamic models, slip-pulse width can be affected by multiple factors, including prestress

level and dynamic weakening rate [Zheng and Rice 1998], asperity dimensions [Day et al. 1998],

fault-zone low-velocity channels [Huang and Ampuero 2011], and rupture-surface roughness

[Shi and Day 2013]. However, in relatively simple cases, pulse width has a direct relationship to

fault width [Day 1982], so the consistency between observationally inferred and simulated pulse

width during rupture of the updip decollement appears to lend support to the view that the rupture

is largely confined to that segment. We explore this further in a later section.

The downdip asperity plays a marked role in the next stage of the simulated rupture. As

seen in Figures 3.4d and 3.4e, the rupture bifurcates, with the major rupture continuing to the

southeast and a second branch propagating northeast into the large downdip asperity, with a linear

rupture front and shortened pulse width. This phase of the rupture simulation resembles Stage

3 of Fan and Shearer [2015] in location and rupture direction, and the short rise times on the

downdip asperity may be related to the depth-dependent radiation inferred by Yue et al. [2017],

who find relatively strong high-frequency radiation originating on the downdip asperity. The two

branches of rupture are terminated at the eastern pinch point and the northeastern point in the

downdip asperity, respectively (Figure 3.4f). In summary, the simulated dynamics are closely

related to the fault geometry and the influence of geometry on fault-resolved shear and normal

stress fields, with the shallower (∼10-km depth) and deeper (∼14-km depth) kinks controlling

the rupture pulse width and the two pinch points defining the along-strike extent.

Next, we examine the final static values of coseismic slip and the corresponding changes

in shear and normal stress. Recall that the simulation inputs were calibrated to agree with

independent seismic moment estimates. The simulation moment is 6.4×1020N ·m (corresponding

to Mw7.8), compared with an observational range of roughly 6-9×1020N ·m (Mw7.8-7.9) for the

Gorkha earthquake [Avouac et al. 2015; He et al. 2015; Yue et al. 2017].
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The coseismic slip in the simulation (Figure 3.5a) is composed of two slip patches: a major

slip on the decollement and a somewhat smaller slip on the asperity on the downdip ramp. The

peak slip of 8 m is located on the decollement segment, to the south of the asperity. This peak slip

is slightly larger than most observationally inferred peak coseismic slips [5-7m Avouac et al. 2015;

Galetzka et al. 2015; Grandin et al. 2015; Hayes et al. 2015; Lay et al. 2017; Wang and Fialko

2015; Wei et al. 2018; Yagi and Okuwaki 2015; Yue et al. 2017], because our velocity-weakening

zone (motivated by the assumed shape and spatial extent of the decollement segment) restricted

the rupture area in the simulation, requiring higher slip to conform with seismic moment estimates.

This difference may also arise in part from smoothing in the finite-fault inversion. Notably, one

slip inversion model that uses a similar fault geometry finds a value of peak slip very close to ours

[Qiu et al. 2016]. The location of peak slip is along the northern edge of the decollement segment,

just south of the downdip asperity (Figure 3.5a), which is also very similar to the location of the

highest slip in the inversion of Qiu et al. [2016]. In the simulation, localization of peak slip in

that area may be explained by the broadened fault width caused by the concurrent slip on the

downdip asperity.

Figures 3.5b and 3.5c show the static shear and normal stress changes for the simulated

event. In Figure 3.5b, the pattern of the shear stress change in areas where it is negative (areas

of stress drop) is similar to that of the static slip. The region of stress drop is encompassed by

positive shear stress change at its margins, where slip is abruptly suppressed by the transition

from velocity weakening to velocity strengthening. The normal stress change in Figure 3.5c

shows some complexities caused by the 3-D fault geometry. The dynamic slip occurring on the

kink at the lower edge of the decollement, at ∼14-km depth, compresses the fault just below the

kink and decompresses the fault above it, with corresponding changes in normal stress [Kase and

Day 2006]. This effect is largest along the northeastern edge of the main rupture, where slip is

largest (darker blue strip along the northeastern edge). Note also that the aftershocks (denoted by

gray circles in Figure 3.5) have an apparent association with the rupture edge and the fault kink,
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where large shear and normal stress are predicted by the simulation. Das and Henry [2003] note

that aftershock clusters are found preferentially at the edges of unbroken barriers and in regions

of high spatial gradient of slip. Thus, the aftershock locations are consistent with the decollement

bounds used in the simulation. In our simulation, the average stress drop is ∼8 MPa. Due to the

simplicity of our model (e.g., we ignore subsurface sediments, and the geometrical model we

adopt places rather strict limits on the potential rupture area), this value may be best viewed as a

rough upper bound on the average coseismic stress drop.

Finally, we show the rupture velocity for the simulation in Figure 3.5d. The spontaneity

of rupture results in accelerated rupture, beginning at about 0.7 of the S wave speed as rupture

breaks out of the initiation zone and then accelerating to a limiting velocity of about 0.9 of

the S wave speed (i.e., about 3.1 km/s). The latter is maintained over most of the rupture

extent. The saturation of rupture velocity just below the S speed can be understood from the

fact that the Gorkha event approximates antiplane (Mode III) rupture over most of its length.

As is well known, an antiplane rupture has a terminal velocity equal to the S wave speed in

the elastodynamic case [Andrews 1976; Kostrov 1966]. Our terminal velocity of ∼0.9 of the

S wave speed is somewhat lower than that, because of the plastic yielding at the rupture front.

We confirmed this interpretation by also simulating rupture with the plastic yielding suppressed

[Andrews 2005; Duan and Day 2008; Gabriel et al. 2013], in which case we find a terminal

rupture velocity of 98% of the S wave speed, in close agreement with the elastodynamic theory.

The simulation terminal velocity of 3.1 km/s is close to the center of the∼2.8- to 3.3-km/s rupture

velocity range inferred by backprojection analysis for the Gorkha earthquake [Avouac et al. 2015;

Fan and Shearer 2015; Lay et al. 2017; Meng et al. 2016; Yagi and Okuwaki 2015], and the

average rupture velocity in the simulation, approximately 2.9 km/s, is also well within that range.

The rupture velocity is a quite robust prediction of the simulations, once both geometric bounds

of the rupture and an initial stress level consistent with the seismic moment are imposed. It

should be sensitive to energy dissipation in friction and plastic work near the rupture front (as
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confirmed by the contrast between elastodynamic and elastoplastic simulations just alluded to),

so the agreement with observational estimates provides some degree of validation of our models

for those processes.

3.3.2 The Effect of Free Surface on the Dynamic Rupture

In addition to fault nonplanarity, the asymmetry imposed on a nonvertically dipping fault

by the presence of the (near-horizontal) free surface can also modify shear and normal stresses,

through free-surface-reflected waves [Brune et al. 1993; Oglesby et al. 1998; Oglesby et al. 2000].

Depending upon their strength and timing, these reflections may interact with and modify the

rupture. Because the Gorkha earthquake is a large thrust event that is shallow relative to its spatial

extent, simulations of the event provide an opportunity to assess the relative importance of such

free-surface interactions.

We design a modified simulation that shares all model inputs except that the free surface

has been replaced by a perfectly matched layer zone to mimic a whole-space model. In order to

compare the rupture evolution for the two cases, we extract slip-rate time histories on an along-

strike profile of the fault surface, as indicated in Figure 3.6a. In that figure, blue triangles denote

the surface projections of two points, A and B, that will be used to illustrate the interactions of

reflected seismic waves with the rupture. Figure 3.6b is a time-distance plot comparing slip rates

for the Gorkha and modified models, any differences being attributable to rupture interactions

with free-surface reflections in the Gorkha model. This time-distance plot shows similar pulselike

rupture in both cases, but several distinctions are evident. First, some bifurcations of the slip-rate

function, highlighted by gray dashed lines, appear in the unmodified Gorkha model (i.e., with

free surface).

These bifurcations have the appearance of minor ruptures pursuing the main rupture front

with higher speed and finally merging with it. But these bifurcations are absent in the model
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without a free surface, and we can therefore interpret these features as minor ruptures reactivated

by reflected seismic waves from the free surface. This interpretation in terms of free-surface

reflections is reinforced by the simulation snapshots in Figure S3.1, where it is clear that the

secondary reactivations coincide spatially and temporally with the reflected wave front seen on

the cross section of that figure. Second, the model with a free surface has an identifiably longer

pulse width. These differences are evident at check points A and B. At check point A (Figure

3.6c), which is the closer of the two to the hypocenter, the main discrepancy in slip-rate function

is that in the half-space model, after the main rupture, a minor subsequent rupture is nucleated.

That secondary slip has an amplitude of 0.5 m/s and coincides in time with a sharp reduction of

normal stress (blue dashed line). The slip-rate difference is larger at point B (Figure 3.6d). There,

the shape of the slip-rate function for the half-space model deviates markedly from the classic

self-similar solution [Kostrov 1964], whereas the whole-space model resembles the self-similar

pulse for several seconds (until it is terminated by effects of rupture finiteness). The slip pulse has

been broadened by 1 s or more (depending upon the definition of pulse width that is employed,

as discussed in Text S1), and reduction of normal stress is up to 4 MPa. In this geometry, the

reflected S waves from free surface have particle motion that is vertically upward and horizontally

southward at the advancing rupture front (i.e., the free-surface reflection approximately preserves

the polarity of the S wave). Consequently, the returning S waves reduce the normal stress on the

fault, lowering frictional resistance, reactivating minor rupture, and increasing slip duration.

To further quantify the effect of the free surface, we calculate the slip rise time (we use

“slip rise time” and “pulse duration” interchangeably throughout the fault. These statistics can

shed light on the extent to which free-surface effects similar to those predicted by the simulation

might be seismologically resolvable. We retain the definition of rise time used in section 3.3.1

(and Figure 3.4), namely, the period between starting and ending threshold slip-rate values of

0.1 m/s. Figure 3.7 shows rise time spatial distribution across the fault in the Gorkha (half

space) and modified (whole space) simulations (Figures 3.7a and 3.7b) and a comparison of their
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histograms (Figure 3.7c). In each simulation, as seen in Figures 3.7a and 3.7b, the patterns for

the decollement and downdip asperity segments are distinct from each other (as already noted in

the discussion of Figure 3.4). There are also clear distinctions between the two models. First, as

previously shown in Figure 3.6, rise time on the decollement segment for the half-space model is

generally greater than for the whole space. Second, in the whole-space model (Figure 3.7b), a

SE-NW trending pattern of high rise time (south of the downdip asperity) is present, but there

is no corresponding coherent feature in the half-space model. The pattern is attributable to the

increased fault width on the decollement segment and the corresponding delay of healing. In the

half-space model, the rise time is partially controlled by the passage of reflected seismic waves

and is less sensitive to healing phases from the rupture edges. The rise time on the downdip

asperity remains nearly identical for the two models (Figures 3.7a and 3.7b), indicating that

the downdip portion of the rupture is insensitivity to the free-surface effects. This insensitivity

corresponds with the dependence upon dip angle of the normal-stress perturbation from reflected

S waves, and, for the dip-angle range in the Hubbard model, the perturbation is stronger for the

near-horizontal portion of the fault surface than for the higher-dip portions (e.g., Figure 3.2 in

Oglesby et al. [1998] and Oglesby et al. [2000]). This contrast is evident in Figure 3.7c, where

the two peaks (in each model) coincide, respectively, with concentrations of rise time on the

decollement and downdip asperity segments. As noted, the rise time on the downdip asperity is

only weakly affected by free-surface interaction, while the decollement part shows an average

difference of roughly 2 s in rise time. This difference compares with the overall average rise time

of approximately 6 s, which is in accord with the observational estimate of Galetzka et al. [2015].

A difference of this magnitude may be seismically resolvable, even though it might be difficult

or impossible to unambiguously separate a free-surface interaction effect of this level from the

many other factors potentially affecting rise time. On the other hand, for an otherwise similar

event rupturing to shallower depths, we would expect the freesurface effect on rise time to be

even greater, and it could become an essential component in interpreting the rupture kinematics.
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3.3.3 The Comparison Between Simulated Near-Field Ground Motions

and GPS Signals

Numerous kinematic studies have inferred a pulse-like rupture for the Gorkha earthquake

[e.g., Galetzka et al. 2015; Yue et al. 2017], as also shown in the Gorkha dynamic rupture model.

The kinematically inverted source models [e.g., Galetzka et al. 2015; Wei et al. 2018; Yue et al.

2017] vary somewhat in their estimates of the slip-pulse duration but typically give estimates

near 6 s, close to the slip-weighted simulation mean (Figure 3.7). In simple dynamic models

where neither heterogeneities (in, e.g., stress state and near-fault rock stiffness) nor dynamic

weakening effects strongly affect rupture duration, pulse duration is controlled principally by the

ratio of fault width to rupture velocity, as suggested by dimensional arguments and confirmed by

numerical simulations [Day 1982]. If that is a reasonable first approximation for the Gorkha event

(as it appears to be for our simulation), then the agreement between simulated and observationally

inferred pulse duration may be further evidence supporting the spatial bounds on rupture that we

have assumed (and which were, in turn, suggested by the underlying model for fault geometry

that we adopted). We further explore that idea in this section by examining the sensitivity of the

dynamic source model to downdip and updip geometrical bounds on the rupture. All other model

inputs are kept identical to those of our preferred Gorkha model, so that other potential effects

on pulse duration, such as the free-surface effects discussed above, are unchanged. Rupture

velocity is a simulation result, not an input, but we note that it is not significantly affected by

these geometric variations, remaining near the center of the 2.8- to 3.3-km/s range inferred by

backprojection analysis for the Gorkha earthquake [Avouac et al. 2015; Fan and Shearer 2015;

Lay et al. 2017; Meng et al. 2016; Yagi and Okuwaki 2015].

The 2015 Gorkha earthquake rupture surface on the MHT lies directly beneath a network

of high-samplerate (5 Hz) continuous GPS (cGPS) stations. The pulse-like characteristics of fault

slip are reflected in pulse-like ground motion recordings on this close-in network. A distinctly

95



pulse-like motion was recorded right above the rupture at the two cGPS stations, KKN4 and

NAST, as well as on an accelerometer at site KATNP [Galetzka et al. 2015], and it is especially

clear on the vertical components. The observed ground motion pulse at these stations is closely

related to the slip-rate pulses, so these recordings provide constraints on the rupture model. Of

these, stations NAST and KATNP are affected by strong oscillations centered at about 3- to

4-s periods and lasting for ∼20 s [Galetzka et al. 2015], due to the response of the subsurface

sediment within the Kathmandu basin. As our focus is on the inference of source effects, we

focus our analysis on the KKN4 station, which is on bedrock and is relatively free of such

structure-related oscillations. By comparing the synthetic ground motion at station KKN4 with

the observed GPS time history, we assess the factors controlling the simulated slip pulse and

obtain some constraints on the geometry of rupture.

Once the initial stress state and frictional parameter values are fixed, the principal remain-

ing factor affecting the simulation results is the location of the frictional transitions (velocity

weakening to velocity strengthening) limiting the spatial extent of rupture. We examine the

sensitivity of the simulated KKN4 ground motion to rupture geometry by adjusting the updip

and downdip limits of the rupture surface (but without altering the geometry of the downdip

asperity on the eastern part of the rupture surface). We consider a series of five cases. Case 1

is the preferred Gorkha dynamic rupture model that we have already described, in which we

place the upper limit of velocity weakening at the lower edge of the updip ramp (i.e., it precludes

rupture on the updip ramp), at a depth of 10.7 km, and the lower limit at 14.5 km. Case 2 is a

modification that raises the upper limit of velocity weakening to 9-km depth, permitting a portion

of the updip ramp to rupture. Cases 3 and 4 place the upper velocity-weakening limit at 8 and 7

km, respectively. Case 5 places the upper velocity-weakening limit at 10.7 km as in Case 1 but

extends the lower limit down to 20 km, permitting rupture on an extended portion of the downdip

ramp. These model variants are indicated in Figure 3.8a, where the blue segment indicates the

extent of the velocity-weakening zone and the red segment shows the velocity-strengthening
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zone.

Figure 3.8b is a free-surface snapshot illustrating the wing-like shape of the synthetic

ground motion pulse (vertical component) that sweeps across the KKN4 station. The KKN4 GPS

vertical-component time series (unfiltered) is shown by the gray curve in Figure 3.8c, along with

the corresponding synthetic ground motions for the five cases. More detail about the synthetics

can be found in Figure S3.2. The latter figure also shows that the vertical component has the

highest sensitivity to the rupture extent, and we use that component as our primary indicator

of model fitness. Our optimal dynamic rupture model, Case 1 (solid dotted curve), shows a

very close agreement in shape and amplitude with the recorded KKN4 time series. In Cases 2

through 4 (dashed lines), a very distinct second peak has developed that is absent in the recorded

data. This bifurcation of the pulse appears to be related to rupture stepping onto the updip ramp,

with the change of dip angle between the flat decollement and shallow ramp complicating the

radiation pattern in a manner inconsistent with the recorded waveform. The degradation of the

waveform fit for Cases 2-4 suggests that little or no coseismic slip occurred on a shallow ramp

during the Gorkha event. Adjustments to the lower rupture limit, in comparison, have a more

minor effect on pulse shape but make the ground motion pulse wider than the recorded pulse

(due to the extended fault width). In summary, the synthetic from our preferred model (Case 1)

agrees closely in amplitude, duration, and shape with the recorded pulse (a good agreement in the

frequency domain between the observed and synthetic ground velocity is also obtained below

the maximum acceptable high-frequency limit beyond which the preevent noise level exceeds

observed spectrum containing the velocity pulse; Figure S3.2), the comparisons favor our original

choice of downdip rupture limit, and they strongly disfavor models with significant coseismic

rupture of an updip ramp. These constraints on rupture extent, combined with aforementioned

constraints from matching seismic moment (further supported by the resultant agreement with

rupture velocity estimates), leave a very limited range to vary the average stress drop, which is ∼

8 MPa in our preferred model.
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3.4 Discussion

3.4.1 Rupture Extent on the Fault Surface

As shown in section 3.3.3, the shape and amplitude of the KKN4 time series favor a

rupture that is limited in extent to the flat decollement and a portion of the deeper ramp (i.e.,

limited to the depth range 10.7 to 14.5 km). The synthetic second peak developed in Cases 2

through 4 strongly disfavors coseismic rupture on the shallower (i.e., southwestern) ramp, at least

in the area to the west of the KKN4 station. That inference is further supported by the fact that

sources of high-frequency seismic radiation have been imaged in the area near the lower kink but

not near the upper kink where the shallow ramp and the flat decollement intersect [e.g Avouac

et al. 2015; Yin et al. 2017]. KKN4 was the only bedrock-based recording sufficiently free of

path and site effects for our purposes, and its recorded ground velocity pulse mainly reflects the

rupture occurring below and to the west of KKN4. For that reason, there is more uncertainty in

the updip rupture extent southeastern of KKN4, where we cannot rule out some rupture of the

shallower ramp. Given a sufficiently realistic seismic velocity profile (e.g., for the Kathmandu

basin), more near-field recordings (such as KATNP strong ground motion station) and SNDL

(high-rate GPS station) might be exploited to infer the rupture extent in more detail. Such an

effort might also shed some light on the origin of the longperiod secondary pulse in the KKN4

recording that immediately follows the main pulse and is unexplained in our model.

Compared with the fairly sharp results for the updip limit, the down-dip limit of rupture

is rather weakly constrained by matching the KKN4 pulse width, but we can provide a rough

estimate of sensitivity. As shown in Figure 3.8c (Case 5), moving the deeper limit from 14.5- to

20-km depth modifies KKN4 pulse width by about 2 s, corresponding (assuming a roughly linear

relationship) to about 2.8-km variation in inferred depth extent per 1-s variation in pulse width.

The preferred model (Case 1) fits the observed time series within a few tenths of a second, and

rejection of models that predict pulse widths that differ from the preferred case by more than, say,
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0.5 s would permit the downdip rupture extent to vary from the preferred model by at most 1.4 km

in depth, or 3.2 km along dip. Of course, this estimate only considers one source of uncertainty,

so it is no more than a lower bound on that uncertainty.

These findings suggest that the extent of the Gorkha earthquake rupture was limited

by the geometry of the MHT fault surface, although that geometrical effect in our model was

realized indirectly, by adopting a frictional parameterization compatible with fault topography.

The along-dip and along-strike extents of the simulated rupture, and its oval-shaped coseismic

slip distribution, in addition to being consistent with most published source models [e.g., Avouac

et al. 2015; Galetzka et al. 2015; Wei et al. 2018], also closely correlate with the model of a flat

decollement bounded by two ramps along the dip and two pinch points along the strike. The result

is that only a small portion of the MHT ruptured during this event, unlike the nearby, devastating

1934 Mw 8.4 Nepal-Hihar earthquake that occurred nearby to the east and that ruptured all the way

up to the ground surface. Although the updip limit of the Gorkha event coincides with transition

from the decollement to upper ramp in the Hubbard model, the actual mechanism stopping the

upward progress of the rupture across this transition is not known. A better understanding would

improve our assessment of future seismic hazards from the shallow part of the fault. The partial

rupture could result from the structural control of the fault geometry, statically (by modifying

initial resolved stresses, as assumed in our model setup) and dynamically (by affecting the

localized stresses associated with a kink in the rupture path, as occurs at the lower kink; Kase

and Day [2006]. In addition, rupture barrier could arise from spatial variations of frictional or

stress properties. The hypothesis that rupture was confined due to a frictional transition from

velocity weakening to velocity strengthening at the upper edge of rupture does not appear to be

supported by postseismic observations [Gualandi et al. 2017; Wang and Fialko 2018]. As an

alternative, Michel et al. [2017] propose that ruptures tend to stay confined within a high-prestress

zone near the transition from velocity strengthening to velocity weakening at the lower edge of

the locked area, generating pulse-like ruptures that propagate along strike. The implications for
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future earthquakes and ground motion require exploration through rupture simulations informed

by a better understanding of the fault segmentation and mechanics, geological structure, seismic

velocity structure, seismicity, and long-term crustal deformation.

3.4.2 Sensitivity of Ground Motion to Slip-Rate Function

Our preferred Gorkha earthquake simulation reproduces the observed near-field ground

velocity pulse (at a site where path effects can be neglected) in both amplitude and shape, without

any assumptions about the nature of the fault slip. We now consider the significance of that

quantitative agreement by examining the sensitivity of the ground motion to the earthquake slip

function.

Analytical formulations of a kinematic source typically consider slip onset time (i.e.,

rupture velocity, taking into account its spatial variations) and three important parameters of the

slip-rate function: peak time (the time between onset and peak of the slip rate, which may in

turn be dynamically related to a critical slip distance associated with loss of cohesion), rise time

(synonymous with pulse duration, the time between onset and arrest of the slip rate, which may be

dynamically related to rupture velocity and rupture extent), and total slip (or time integral of the

slip-rate function, which may be related to stress drop and whose spatial integral is proportional

to seismic moment). Our strategy here is to (1) extract these parameters (rupture velocity and

the three slip-rate parameters) from our dynamic simulation, (2) construct a range of standard

kinematic sources that preserve these parameters (which we will call “equivalent kinematic

sources”), and then (3) examine the extent to which the equivalent kinematic sources produce

ground motion distinguishable from that of the dynamic model (we illustrate this procedure in

Figure S3.6). The representative kinematic sources employed here are those developed in [e.g.,

Graves and Pitarka 2004; Liu and Archuleta 2004; Tinti et al. 2005; Liu et al. 2006; Dreger

et al. 2007]. In those sources, we fix onset time, peak time, rise time, and total slip to the
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values extracted from our dynamic simulation, and we follow the authors’ recommendations for

other parameters derived from those four, (e.g., for the Liu and Archuleta [2004] source, the

p controlling asymmetry in the slip-rate function is p = 5Tp/Tr as suggested in Crempien and

Archuleta [2015], where Tp and Tr are the peak and rise time, respectively). For the analysis,

we used the slip rate at a fault point near the center of the rupture area (directly below the

point halfway between sites A and B in Figure 3.6a), which is a good representative of the

slip over much of the rupture surface (see, e.g., Figure 3.6b). The slip-rate functions for the

equivalent kinematic sources are displayed in Figure 3.9, where they are compared with the

representative dynamic slip-rate function. As seen in Figure 3.9a2, the equivalent kinematic

slip-rate functions differ in their time-domain shapes and in their spectra, especially at high

frequency. Comparing Figures 3.9a1 and 3.9a2, it is evident that the equivalent kinematic sources

differ from the dynamic simulation at high frequency, despite having the same peak time, rise

time, and total slip. This result contrasts with that shown in Figures 3.9b1- 3.9b3, where we

plot the corresponding synthetic ground velocities at KKN4 along with the recorded motion

(both synthetic and recorded motion are presented without filtering) in the time and frequency

domain. The equivalent kinematic sources reproduce the recorded motion about as well as does

our original dynamic source (once the latter has been used to establish the rupture velocity and

slip-rate parameters).

Moreover, we still obtain good agreement even if we relax the constraint that peak time

agrees with the dynamic source, and instead apply the prior, empirically defined ratios of peak

time over rise time that are recommended by Liu et al. [2006] and Graves and Pitarka [2004] for

their respective kinematic sources, for example, 0.13 for Liu et al. [2006] and 0.2 for Graves and

Pitarka [2004]. In that test, shown in Figure 3.9a3, we only require the rupture velocity, rise time,

and total slip to agree with our dynamic model. The essential point is that the very sharp onsets

of the slip-rate functions (as well as the spurious high-frequency oscillations of the dynamically

simulated slip rate) are all filtered out by propagation to the KKN4 site, an effect also pointed out
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by Wei et al. [2018]. The result is that, as shown in the last row in Figure 3.9, at this distance

(∼15 km), the near-field ground velocity pulse exhibits very weak sensitivity to high-frequency

variations of sources, provided we keep the rupture velocity, rise time, and total slip fixed. Of

course, in the dynamic Gorkha simulation, these are not free parameters but are all coupled and

controlled by the dynamics of the rupture and the initial geometrical constraints.

The fact that ground motion in the near field of a steadily propagating, subshear rupture is

a low-passfiltered image of the slip rate is well known and just reflects the fact that only evanescent

waves are excited in that limit. This issue is discussed in detail by Dunham and Archuleta [2005],

who also contrast this behavior with the supershear case, and they anticipate precisely the result

we noted above (“the slip velocity function will have little effect on the ground motion, so long as

the final slip and rise time are preserved”). In their notation, the attenuation factor for wavelength

λ, at distance y, is e−2παy/λ, where α =
√

1−V 2/c2
s (V is the rupture pulse speed and cs is S

wave speed). For 15-km distance (approximately the Gorkha rupture depth), and our inferred

rupture velocity of ∼0.9cs, wavelengths of the slip function shorter than about 10 km will be

attenuated by a factor of at least e−4 (roughly a factor of 50). Therefore, estimates of rupture

parameters such as the critical weakening slip Dc that require resolution of slip-rate features at a

smaller spatial scale than that (e.g., the ∼5-m Dc estimate of Galetzka et al., 2015) are likely to

represent, at best, only very weak upper bounds. To illustrate this limitation in the case of Dc,

for example, we note that its estimation relies upon resolution of wavelengths comparable to the

dimension Λ of the cohesive zone at the rupture front, which, for Mode III rupture, is of order

αµDc/τ, where µ is the shear modulus and τ the stress change across the cohesive zone (see, e.g.,

Equation 30a of Day et al. [2005]). We can insert a reasonable minimum wavelength requirement

of ∼ 2Λ into the foregoing distance-attenuation factor, obtaining e−πτy/(µDc), and make the rough

approximations µ/τ≈ 4×103 and y = 15 km (approximate nearest distance at which the Gorkha

event is recorded). If we assume that resolution is lost when distance attenuation is a factor

of ≈10, then the minimum resolved Dc is −πτy/µln(0.1) = 5.1m, and a lower Dc would be
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undetectable at this station.

3.4.3 Terminal Rupture Velocity in Elastoplastic Antiplane Rupture

In our simulation, rupture velocity accelerates to 0.9 of the S wave speed and then

maintains approximately that speed over most of the rupture length. This terminal rupture velocity

is lower than the terminal rupture velocity (equal to the S wave speed) that would be approached

asymptotically by an elastodynamic antiplane (Mode III) rupture. Moreover, when we suppress

plastic yielding in the model, we recover the asymptotic Mode III result to high precision (terminal

velocity ∼0.98 of S wave speed). Thus, we can unambiguously attribute the simulated rupture

velocity to the additional rupture-front dissipation (over and above the modeled frictional losses)

supplied by off-fault plastic yielding. Our rupture velocity is an independent (in the sense that

it is a modeling result, not an input) and quite robust prediction of the simulations once we

impose both the geometric bounds and prestress consistent with the seismic moment and include

plastic yielding in the model. The simulated rupture velocity is also consistent with observational

estimates (section 3.3.1) and contributes to a good agreement between the recorded and synthetic

ground velocity pulses at KKN4 (section 3.3.3). The robustness of the simulation prediction for

rupture velocity, its sensitivity to off-fault inelastic dissipation, and its apparent agreement with

multiple observational inferences appear to support the validity of including a model that permits

off-fault dissipation in our dynamic rupture simulation.

The physical rationale for modeling off-fault material as an elastoplastic solid is to

accommodate concentrated strain at the rupture front that otherwise would imply very high

stresses exceeding rock strength [Andrews 1976]. The consequent energy loss off the fault is

known to modify the cohesive zone size and rupture velocity [Andrews 2005]. Figure 3.10 shows

the time- and space-dependent nature of these effects in our Gorkha event simulation. As seen

in Figure 3.10a, at an early phase (2 s) in the northwest (labeled as a), the difference in shear
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stress and slip rate between elastic and elastoplastic simulations is negligible, indicating that

stresses have remained below the yield surface. But at the later phase (25 s, Figure 3.10b) in the

southeast (labeled as b), an appreciable difference is seen. The plastic-case rupture front has been

left behind by the elastic-case rupture front, and the plastic-case peak slip rate is capped at about

15 m/s, while the elastic-case slip rate has reached 30 m/s. The rupture velocity for the plastic

case has saturated to 90% of the S wave speed (near the center of the range of observational

estimates), while that for the elastic case is still accelerating and subsequently saturate at 98% of

S wave speed (above the range of observational estimates). Figure 3.10c shows the accumulated

plastic strain magnitude (defined in Appendix A) in the upper material block adjacent to the

fault, along with the slip contours for comparison. The plastic deformation generally increases

with hypocentral distance, so that it is concentrated in the eastern patch (left side in Figure

3.10c) where the major slip and downdip asperity are located. This pattern correlates with the

region where most aftershocks are clustered, including the biggest aftershock (Mw7.3), east of

the Gorkha rupture (Figure 3.1). A possible interpretation of this association is that the inelastic

deformation predicted by the simulation is realized as a distribution of near-fault microfractures

that promote macroscopic aftershocks.

3.4.4 Free Surface Effects on Rupture Dynamics

We believe that section 3.3.2 makes a credible, though speculative, case that there was

interaction between the free-surface reflections and the rupture dynamics in the Gorkha earthquake,

and we suggest that such interactions would potentially be very significant in a future, shallower

event. In the Gorkha simulation, free-surface interaction, on average, extends the slip duration

(rise time) by 30% or more, acting preferentially on the low dip-angle segment. In the supplement

(Figure S3.3), we also show that this conclusion is not sensitive to the precise way in which

duration is defined. This interaction effect may increase in importance with increased ratio of
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the spatial slip-pulse width to the rupture depth, because increase of that ratio enables waves

from the rupture front to return to the fault surface, as free-surface reflections, before passage of

the healing front. Additional analysis can be found in the supporting information [Guatteri et al.

2004; Tinti et al. 2005]. Text S1 confirms that the free-surface effect on slip-pulse duration is

insensitive to the way we define that duration.

3.5 Conclusions

The Gorkha earthquake was dominated by a slip pulse that ruptured the lower edge of

the MHT as it propagated along strike from the northwest to the southeast. Dynamic rupture

modeling in an elastoplastic medium clarifies the principal physical factors controlling this slip

pulse. The preferred model gives earthquake parameters consistent with published observational

estimates (seismic moment 6.4×1020N ·m, maximum slip ∼8 m, average stress drop ∼8 MPa,

rupture velocity ∼3.1 km/s, average slip-pulse width ∼6 s). The agreement for slip-pulse width

supports an interpretation that the pulse duration is principally controlled by the narrow dimension

of the oval-shaped rupture, and the bounds of that rupture surface appear to reflect geometric

features of the underlying fault model that we adopted. An important role for fault geometry is

further suggested by comparison of the synthetic near-source velocity waveform with a high-rate

GPS recording, which strongly disfavors the extension of significant rupture onto the shallow

ramp portion of the model and instead favors confinement of rupture to the flat decollement and a

limited, uppermost portion of the deeper ramp, plus a more extended asperity on the northeast

portion of that ramp. After its initiation, the rupture front accelerates rapidly to a steady state

velocity that is ∼ 90% of the S wave speed, which we interpret as the maximum Mode III rupture

velocity consistent with the plastic yielding model (because, when plastic yielding is suppressed

in the model, the rupture velocity instead approaches within 2% the theoretical maximum for

elastodynamic Mode III rupture). In the dynamic simulation, reflected seismic waves from the
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free surface generate time-dependent normal stress perturbations, prolonging the slip pulse by

∼ 30% (compared with whole-space comparison tests), raising the possibility of potentially

significant free surface effects on both rupture propagation and slip in shallow events of similar

geometry.

3.6 Appendix A: Formulations of Drucker-Prager Yield Cri-

terion and Inelastic Deformation

The Drucker-Prager plasticity model [Drucker and Prager 1952] has been widely applied

in geomechanics to incorporate inelastic yielding of materials such as rocks and concretes. The

Drucker-Prager yield criterion is a smooth approximation to the Mohr-Coulomb yield criterion.

The Drucker-Prager yield criterion employed in this study is given by

τ≤ τ
y, (3.2)

τ =

√
1
2

Si jSi j, (3.3)

τ
y =−1

3
σkksinφ+ ccosφ, (3.4)

where Si j is the deviatoric stress component Si j = σi j− 1
3σkkδi j, c is the cohesion, and

φ is the internal friction angle, which together define the yield surface. Elastically calculated

increments of Si j are adjusted at each time step, in equal proportions, as required to bring stress

back to the yield surface. During this process, there is no volumetric plastic strain. A measure of

106



accumulated plastic deformation, termed the plastic strain magnitude, is defined as

η =
∫ 2

3
dε

P
i jdε

P
i j, (3.5)

dε
P
i j =

dsi j

2µ
(3.6)

where dεP
i j is the plastic strain increment in each time step, related by (1.6) to the deviatoric

stress adjustment dsi j
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Tables and Figures

Table 3.1: Models Parameter Values
Parameter Symbol Value
Bulk Properties
P wave speed α 5,850 m/s
S wave speed β 3,400 m/s
Density ρ 2,640 kg/m3

Cohesion C 5 MPa
Internal friction coefficient tan(φ) 0.5
Initial stress state
Initial stress tensor components σxx -142.5 MPa

σyy -190.0 MPa
σzz -95.0 MPa
σyz 19.0 MPa

Initial shear stress τb Variable
Initial normal stress τn Variable
Frictional properties
Direct-effect parameter a Variable
Evolution-effect parameter b 0.014
Reference slip rate V0 1µ m/s
Steady state coefficient at slip rate V0 f0 Variable
Evolution distance of state variable L Variable
Weakening slip rate Vw 0.1 m/s
Fully weakened friction coefficient fw Variable
Initial fault slip rate V ini 6×10−10m/s
Nucleation parameters
Nucleation radius R 7,500 m
Overstress ∆τb 0.5× τb
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Figure 3.1: Map of the 2015 Gorkha earthquake source region. The fault geometry of the Main
Himalayan Thrust (MHT; Hubbard et al., 2016) is illustrated. Wang et al. [2017] indicated that
the focal mechanism and locations of relocated large aftershocks (the focal mechanisms are
colored by the focal depths) delineate a double-ramp fault geometry that agrees with that in
Hubbard et al. (2016; this is indicated by the correlation of the colors between 3-D locations
of aftershocks and the Hubbard fault geometry). Black thin solid and dashed lines show the
depth contours of adopted MHT geometry. Gray dots denote the location of aftershocks over
magnitude 4 within the first 2 months (from the National Seismological Center, Kathmandu,
Nepal). The dark red contour lines indicate the coseismic slip profile [Avouac et al. 2015]
whose shape is in agreement with the confining edges of this MHT model. The blue triangle and
the pink square symbols are the highrate GPS receiver KKN4 and the capital city Kathmandu,
respectively.
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Figure 3.2: Computational domain and geographic map (200 km × 80 km × 60 km), showing
schematically the discretization of this area by an irregular structural hexahedral mesh. The
coordinate axes are indicated, with the origin in the southeast. (a) The contour lines show the
geometry of the Main Himalayan Thrust (MHT) as given by the Hubbard model. (b) Schematic
of the 3-D structured hexahedral mesh is shown, with a cutaway of the fault surface. This
schematic mesh is downsampled for illustration purposes.
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Figure 3.3: Model setup of the projected initial shear and normal stress on fault and four of
the frictional parameters (the remaining frictional parameters are constant over the entire fault
and are listed in Table 1). The nucleation zone and a lower ramp asperity each show up as
intrusive bulges into the lower ramp. The red dashed line shows the lower kink line of the flat
decollement. The very narrow white contour band along the downdip edge of the decollement
in (c) results from the rapid transition from velocity weakening to velocity strengthening that
we have assumed to occur over the depth range between the edge of the decollement and the
14.5-km depth contour.
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Figure 3.4: Snapshots of the simulated dynamic rupture model of the 2015 Gorkha earthquake
at (a) 1, (b) 5, (c) 20, (d) 25, (e) 30, and (f) 35 s. They illustrate the multiple phases of the
rupture propagation: the initiation on the lower ramp, the eastward unilateral rupture on the
flat segment, the bifurcation of the rupture, and the termination. The light blue star denotes the
hypocentral location.
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Figure 3.5: Earthquake parameters of simulated dynamic rupture model of the 2015 Gorkha
earthquake: (a) coseismic slip, (b) shear stress change, (c) normal stress change, and (d) rupture
velocity. Black solid lines enclose the simulated area, and gray dots depict the locations of
aftershocks within 4 months of the mainshock. The light blue star denotes the hypocentral
location.
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Figure 3.6: Effects of free surface on the rupture evolution. (a) Dark blue straight line shows
where the slip-rate and stress histories are extracted. Two sample points on this line, A and B,
will highlight the interactions between reflected seismic waves and rupture evolution. (b) The
comparison between the model with and without free surface is shown in time-distance plots of
the slip rate. The horizontal axis corresponds to the blue cross section from the northwest to the
southeast in Figure 6a. (c) The comparison of slip-rate and normal stress histories for models
with and without free surface, at point A (closer to the hypocenter). (d) The comparison of
slip-rate and normal stress histories for models with and without free surface, at B point (further
from the hypocenter).
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Figure 3.7: Rise time distributions on Main Himalayan Thrust rupture surface and a statistical
comparison. (a) Rise time distribution of the half-space model. (b) Rise time distribution of the
whole-space model. (c) Rise time histogram for each of the models.
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Figure 3.8: (a) The downdip rupture extent (blue and red segments are velocity weakening and
strengthening, respectively) along a vertical (cross-section A-B shown in frame (b)) for each
of the five simulations used to examine sensitivity to rupture geometry. Case 1 is our optimal
model with the upper (10.7 km deep) and lower (14.5 km deep) rupture limits on the middle flat
stage. Cases 2-4 are modifications of Case 1 in which the upper limit is raised to 9, 8, and 7
km in depth, respectively. Case 5 is a modification of Case 1 in which the lower limit is moved
downward to 20 km. (b) A snapshot of the vertical ground motion at 20 s, along with a dashed
line indicating the location of cross-section A-B. The light blue star and black triangle are the
locations of the hypocenter and the GPS station (KKN4), respectively. The contours of the
depth of the MHT and simulated coseismic slip are plotted by black and brown lines. (c) The
simulated (red dotted line is the optimal dynamic rupture model; the blue, purple, orange, and
green dashed lines are from other four alternative models) and recorded (gray solid line) vertical
ground velocity at the site of KKN4.
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Figure 3.9: (left) Dynamic and equivalent kinematic slip rates, with (right) observed and
synthetic vertical ground velocity at KKN4. The dynamic slip rate is from our preferred Gorkha
simulation, on the fault surface directly below the point centered between sites A and B in
Figure 6a. Equivalent kinematic slip rate is defined in section 4.2. (a1) The slip rate and Fourier
amplitude spectrum of the dynamic model. (b1) The synthetic vertical ground velocity for
dynamic model, compared with KKN4 record, with the corresponding spectra. (a2) The slip
velocities and spectra of equivalent kinematic models (with rise-time, peak-time, and total-
slip constraints). (b2) The synthetic vertical ground velocities at KKN4 from the equivalent
kinematic models (with rise-time, peak-time, and total-slip constraints). (a3) The slip velocities
and spectra of equivalent kinematic models (with rise-time and total-slip constraints only). (b3)
The synthetic vertical ground velocities at KKN4 from equivalent kinematic models (rise-time
and total-slip constraints only).
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Figure 3.10: Effects of plasticity on the dynamic rupture model. (a) Snapshot, at 2 s, of the slip
rate (dashed lines) and shear stress (solid lines with circles) at a local segment (labeled as a) of
the cross section (pink dashed line from the northwest to the southeast in Figure 10c), for elastic
(blue) and elastoplastic (red) cases. (b) Snapshot of slip rate and shear stress at 25 s at a local
segment labeled as b. (c) The plastic strain magnitude (defined in Appendix A) above the MHT
fault surface and synthetic coseismic slip on the Main Himalayan Thrust. Two triangles, labeled
a and b, indicate the locations of stresses and slip rates plotted in Figures 10a and 10b.
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Supplementary Material

3.6.1 Text S3.1

We investigate the robustness of the free surface effects illustrated in Section 3.2 by

assessing their dependency on how slip rise time is defined. That sensitivity is related to the shape

of slip-rate function. For example, the truncated Kostrov slip-rate function, with a sharp onset and

arrest, is less sensitive to the rise time definition than is the Yoffe function, with its very smooth

arrest. Our simulated dynamic slip-rate function shape is similar to the Yoffe function, and thus

rise-time estimates for it are fairly sensitive to the rise-time definition. Denoting as Method 1 the

0.1 m/s threshold definition used in the main text, we test two other definitions of the rise time.

Method 2 defines the rise time as the period when the time-dependent slip is in a range between

5% and 95% of the total slip (similar to Guatteri et al. [2004]). Method 3 defines rise time as

the duration given by the best-fitting regularized Yoffe function [Tinti et al. 2005] constrained

to match both the peak time (the time between onset and peak of slip rate) and final slip of our

simulated model.The normalized slip rate for a representative point on the fault for the Gorkha

simulation (with free surface) is shown in Figure S3.4a, and the corresponding slip-rate function in

Figure S3.4b. As shown in the figures, the range of rise time estimates based on the three methods

is a little more than 1 s. For the simulation with the free surface removed (Figures 3.3c and 3.3d),

the range is roughly half that. But, regardless of rise-time definition, the effect of the free surface

is, systematically, to increase the rise-time estimate. This systematic effect is more evident in

Figure S5. Combined with Figure S3.7, S3.5 shows that the spatial pattern of rise time variations

is similar for all three rise-time definitions, and that the corresponding rise-time histograms are

affected by free-surface interactions in a similar manner. Those interactions prolong the rise times

associated with slip on the decollement (i.e., the right-side peak in each histogram, which is also

associated with the bulk of the slip) by ∼1sec. The slip-weighted average rise-time shift is ∼2 s.

In summary, the rise-time definition has a significant effect of the numerical estimate, but little
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effect on the estimate of pulse elongation due to free-surface interactions.
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Figure S3.1: Snapshot showing the simulated slip rate on the MHT fault and seismic wavefields
on the vertical cross-section from the free surface down to the fault. a) and b) show the horizontal
component along dip (in the Y, i.e., southwest-northeast direction) and the vertical component
of synthetic wavefields, respectively.
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Figure S3.2: Synthetic seismic waveforms at the KKN4 site and snapshots corresponding to
four scenarios in which only upper limit of rupture extent is varied. The four rows, from (a) to
(d), show Cases 1 to 4, with the upper limit moved progressively upward. For each case, the three
columns show, respectively, a schematic map of rupture extent, the 3 components of synthetic
GPS time histories (with each corresponding KKN4 recording, in gray, for comparison) and a
snapshot of the simulated seismic wavefield at the ground surface, at t = 20 s. The contours of
the depth of MHT and simulated coseismic slip are plotted by black and brown lines.
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Figure S3.3: Observed and synthetic vertical ground velocity at KKN4 in time and frequency
domain. a1) pre-event noise (gray line), recorded ground velocity (black line) and synthetic
ground velocity (red line) of identical durations (45 s). b1) Fourier spectra of the noise, observed
and synthetic ground velocity. c1) The spectral ratio of the observed and synthetic ground
velocity over the noise level. The convergence of observed ground velocity pulse and pre-event
noise indicates that the maximum acceptable high-frequency limit is about 0.5 Hz.
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Figure S3.4: Different methods defining the slip rise time are applied to reevaluate the rise
time across the fault. Representative slip rate (a and c) and slip (b and d) time histories (each
normalized to unit maximum value) are sampled at the same site on the fault. In (a) and (b), the
time histories are from the preferred Gorkha simulation, while in (c) and (d) results are for the
test simulation without a free surface (discussed in Section 3.2). Red solid lines are from the
simulations and blue solid lines are the best-fitting regularized Yoffe function [Tinti et al. 2005].
The different dashed lines pick the onset and finish time points based on various methods
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Figure S3.5: Slip rise time distributions from the simulations with and without a free surface,
based on Methods 2 and 3 (for comparison with Method 1, shown in Figure 7). Method 2 defines
the rise time as the period when the slip is between 5% and 95% of its final value (similar to
Guatteri et al. [2004]). (a1) and (b1) show the Method 2 results, with and without a free surface,
respectively, and (c1) show the corresponding histograms. Method 3 defines rise time as the
duration given by the best-fitting regularized Yoffe function [Tinti et al. 2005] constrained to
match both the peak time (the time between onset and peak of slip rate) and final slip of our
simulated model.. (a2), (b2) and (c2), show the Method 3 results in the same format used for
Method 2.
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Figure S3.6: A chart of work flow to show how we compare ground motions from the dynamic
source and equivalent kinematic sources. Once we obtain the slip-rate functions of our optimal
dynamic rupture, we (1) extract these parameters (rupture velocity and the three slip-rate
parameters) from our dynamic simulation, (2) construct a range of standard kinematic sources
(equivalent kinematic source) that preserve these parameters, and then (3) examine the extent to
which the equivalent kinematic sources produce ground motion distinguishable from that of the
dynamic model.
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Chapter 4

Effects of off-fault inelasticity on near-fault

directivity pulses

Near-fault motion is often dominated by long-period, pulse-like particle velocities with

fault-normal polarization that, when enhanced by directivity, may strongly excite mid- to high-rise

structures. We assess the extent to which plastic yielding may affect amplitude, frequency content,

and distance scaling of directivity pulses at points very close to the rupture surface. Dynamic

simulations of strike-slip ruptures in 3D reveal significant plasticity effects, and these persist when

geometrical fault roughness (with consequent increase in rupture complexity and incoherence) is

added to the model. With and without off-fault yielding, these models (scaled to approximately

magnitude 7) predict fault-normal pulse behavior similar to that of observed pulses (periods in

the range 2-5 second, amplitudes increasing with distance in the forward-directivity direction

but approaching a limiting amplitude), but yielding systematically reduces pulse amplitude and

increases the dominant period. Yielding causes near-fault (<∼ 2 km) peak ground velocity (PGV)

to saturate with respect to increases in both stress drop and epicentral distance, i.e., PGV becomes

insensitive to increases in either parameter when that parameter exceeds a threshold (but with

the thresholds and the affected distance range dependent on the cohesive strength), and at small
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rupture distance, yielding may contribute significantly to the observed magnitude saturation of

PGV. The results support the following elements for functional forms in empirical pulse models:

(i) a fault-normal distance saturation factor, (ii) a period-dependent and along-strike distance-

dependent factor representing directivity, and (iii) an along-strike saturation factor to truncate

growth of the directivity factor. In addition to the foregoing effects on long-period fault-normal

pulses, the model with off-fault plasticity is very efficient in suppressing the high-frequency

fault-parallel acceleration pulses that otherwise develop when local supershear rupture transients

occur. The latter result may explain, at least in part, the absence (to date) of an observable Mach

wave signature from supershear rupture.

4.1 Introduction

Near-fault ground motions featuring strong pulse-like velocities are of great interest in

earthquake seismology and engineering. Pronounced low-frequency, pulse-like fault-normal (FN)

ground motions have been widely recorded for earthquakes in strike- (e.g., the 1966 Parkfield, the

1971 San Fernando, the 1992 Landers and the 1994 Northridge earthquakes) and dip-slip (e.g.,

the 1999 Chi-Chi, the 2009 L’Aquila and the 2016 Meinong earthquakes) fault systems. The

engineering effects of near-fault pulse-like ground motions were strikingly exhibited during the

1994 Northridge earthquake in which great structural damage was attributed to large, impulsive

ground shaking [Strasser and Bommer 2009] of this type. Such pulse-like ground motions can

have high elastic spectral acceleration, imposing a higher demand on building structures than non-

pulse-like motions [Hall et al. 1995]. The ground motion models used to perform probabilistic

seismic hazard analysis (PSHA) and inform building codes, if they do not fully consider this

near-source effect, may underestimate potential seismic hazards.

The high intensity and damage potential of near-fault pulse-like ground motions is a result

of the proximity to the fault and directivity effects [Hall et al. 1995; Somerville et al. 1997;
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Makris and Black 2004; Mavroeidis et al. 2004; Day et al. 2008, e.g.,], and, as a consequence,

they are frequently referred to as directivity pulses. In this context, directivity (or, more precisely,

forward directivity) refers to the amplification of ground motion at sites whose direction from

the hypocenter is aligned with (i.e., forms a small angle with) the rupture propagation direction.

In this paper, we concentrate on near-fault directivity, namely the directivity effects occurring

within a horizontal distance of the rupture surface that is less than, roughly, the seismogenic depth

(∼20 km). Forward rupture directivity effects occur when 1) the rupture front propagates towards

the site, and 2) the direction of slip on the fault is consistent with the site direction [Somerville

et al. 1997]. These two conditions are readily met for the fault-normal ground motion component

in strike-slip faulting (Figure 4.1, based on Figures 2 and 3 of Somerville, et al. 1997). As

depicted in Figure 4.1, radiation patterns of SV and SH waves imply that the dominant motion

near the fault will be the fault-normal direction as a result of cumulative SH waves ahead of the

propagating rupture. On the other hand, even when those conditions are met for a particular

earthquake, the characteristic forward directivity effects are not always observed (e.g., the 2014

South Napa, California earthquake that is a unilateral rupture with a weak directivity effect)

probably owing to three-dimensional heterogeneities and incoherent rupture fronts [Gritz 2009;

Gallovic 2016]. Note also that, if far-field conditions were pertinent, the predominant frequency

of directivity-enhanced seismic energy would be shifted in a manner analogous to the Doppler

effect [Douglas et al. 1988], whereas in the near-fault region, especially adjacent to the rupture

surface, that simple picture is overwritten by near-field and source-finiteness effects. The result is

that so-called directivity pulses are predominantly a low-frequency (< 1 Hz) phenomenon.

There has been substantial effort over the last couple of decades to develop adjustments to

empirical ground-motion models (GMMs, also known as ground motion prediction equations

(GMPEs)) to capture near-fault directivity effects. Adjustment approaches have been based on

fitting empirical ground motion data to simple functional forms [e.g., Somerville et al. 1997]

and/or theoretical models (e.g., isochrones theory, [Bernard and Madariaga 1984] that account for
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the radiation pattern and general behaviors expected for near-fault seismic waves [e.g., Spudich

and Chiou 2008]. These directivity adjustments mostly vary with the azimuthal angle and distance

of an observing site to the fault, typically predicting amplifications distributed as a wedge centered

along the fault trace, as illustrated in Figure 4.1. Typically, the functional forms in these models

include tapers that reduce the predicted directivity effect at smaller magnitude (M < 6.5) and

larger distance to the fault (>30 km), and sometimes assume that the directivity effect is saturated

(i.e., ceases to increase) for rupture distances (along-strike) exceeding some threshold [Somerville

et al. 1997; Abrahamson 2000; Bozorgnia and Campbell 2004; Donahue et al. 2019]. In this

paper, we do not focus on gross azimuthal dependence (forward- and backward-directivity), but

instead we concentrate on characterizing pulse-like ground motion within the near-fault forward-

directivity zone, within a few km of the rupture surface, using the expressions “directivity pulse”

and “near-fault pulse” synonymously. We use numerical simulations to investigate potential

variabilities of forward directivity (e.g., spatial taper and saturation) with distance to epicenter

(recalling that we restrict consideration to rupture-adjacent sites, so this is essentially the same as

rupture distance toward the site), predominant period and source complexity. The results shed

some light on physical mechanisms limiting pulse growth, and may prove useful in adjusting

functional forms for the representation of pulse-like near-fault effects in empirical models.

Because of the nonlinearity of structural response to high-amplitude ground pulses,

reliable analysis of the performance of a target structure requires characteristic constraints on

the pulse waveform, particularly estimates of its amplitude and duration [Hall et al. 1995]. The

peak ground velocity (sometimes exceeding 1m/s) and dominant period of the pulse are important

features of high relevance to ground motion models and building design codes. A typical range

of pulse duration in a magnitude range of Mw 5∼8 is 1∼10 s [Baker 2007; Shahi and Baker

2014; Fayjaloun et al. 2017] and expected value of this duration is also magnitude-dependent

[Somerville 2003; Baker 2007; Shahi and Baker 2014].

Primary factors affecting the amplitude and shape of the pulse-like ground motions are,
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as stated in Scala et al. [2018], the rupture velocity, hypocentral depth and the station location

relativity to the fault (if in a framework of dipping fault, whether the station is on the hanging

wall or on the footwall is also relevant–but our focus will be on vertical strike-slip faults). If

the rupture velocity exceeds the shear wave speed (a supershear rupture), the near-fault ground

motion changes character. In that case, the low-frequency fault-normal pulse commonly seen in

subshear ruptures is substantially reduced, and the fault-parallel component becomes dominant

[e.g., Aagaard and Heaton 2004; Dunham and Bhat 2008; Bizzarri et al. 2010]. Thus, the

observation of a dominant fault-normal directivity pulse usually implies a rupture velocity below

the local shear wave speed. Waveform modeling indicates that pulse duration is influenced by

the average slip rise time [Fayjaloun et al. 2017; Scala et al. 2018]. Small-scale heterogeneity of

coseismic frictional stress affects the amplitude and frequency dependence of pulse-like ground

motions by weakening the coherence of the rupture front [e.g., Gritz 2009; Gallovic 2016].

Moreover, surface ruptures differ from buried ruptures in their excitation of pulse-like ground

motions. For example, Somerville [2003] proposes that, while in both cases fault-normal pulses

are recognizable, surface-rupturing earthquakes systematically generate weaker near-fault ground

motion in a period range of around 0.3-3 sec than buried earthquakes. In addition, material

heterogeneity tends to reduce the pulse period [Withers et al. 2018a], and the presence of a

low-rigidity shallow layer can change the rupture front shape and thereby affect pulse shapes

[Kaneko and Lapusta 2010].

Off-fault inelasticity (usually in the form of an elastoplastic model) has received consid-

erable attention in model-based studies of rupture. Plastic yielding during rupture redistributes

stresses near the rupture front, in turn affecting the subsequent rupture history and associated

ground motion. These effects have been modeled in the framework of continuum plasticity (e.g.,

3D Drucker-Prager, 2D Mohr-Coulomb, End-cap and Masing type) in recent studies [Andrews

2005; Duan and Day 2008; Dunham et al. 2011a; Shi and Day 2013; Roten et al. 2014; Hirakawa

and Ma 2016; Roten et al. 2017b; Wang et al. 2019; Wollherr et al. 2018; Wollherr et al. 2019;
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Esmaeilzadeh et al. 2019]. These models suggest that inelastic deformation can not only reduce

peak ground motions [Dunham et al. 2011a; Roten et al. 2012; Roten et al. 2017b], but also par-

tially filter out high-frequency radiation [Duan and Day 2008; Ma and Hirakawa 2013]. Moreover,

inelasticity may influence the high-frequency attenuation of the acceleration spectra [Shi and Day

2013]. Rupture velocity, to which high-frequency seismic radiation is sensitive [Madariaga 1977],

can also be modified due to off-fault plastic yielding, with consequences for the spectral shape of

ground motions.

In this work, we explore the effects of off-fault inelasticity on the near-fault directivity

pulse, with particular attention to effects on pulse amplitude and duration. Initially, we revisit

the wavefield components contributing to directivity pulses and review their dependence on

rupture velocity and rise time, using simplified 2D in-plane kinematic ruptures (Section 2). Next,

we simulate fully dynamic unilateral rupture on a vertical strike-slip fault, considering depth-

dependent pre-stress and rate-and-state friction (Section 3). Then, we compare the synthetic

near-fault ground motions that travel through elastic and inelastic off-fault media, characterizing

the results in terms of near-fault directivity, peak ground velocity, and dominant pulse period

(Section 4). To test the robustness of the inferred effects, we also examine simulations that

incorporate fault surface roughness (with accompanying heterogeneous pre-stress) (Section 5).

4.2 2D kinematic rupture model

Before we consider fully dynamic unilateral ruptures, we first examine a simplified 2D

in-plane kinematic rupture. The objective is to elucidate the relationship between near-fault

directivity pulses and on-fault slip in a simplified context (e.g., without free surface interactions,

and without dynamic spontaneous varying rupture velocities, rise times, and slip velocities)

supplementing similar kinematic analyses [e.g., Haskell 1969; Boore et al. 1971; Boore and

Zoback 1974; Boatwright and Boore 1975]. For each subfault element, our slip velocity function
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is a Brune source time function given by Equation 4.1

S(t) = (
π

τ
)2t exp(−π

τ
t)H(t), (4.1)

where t is time, H(t) is the Heaviside step function and τ controls the rise time of the

slip rate function (representative slip velocity functions are illustrated by green solid lines in

Figure 4.2). We generate a kinematic steady-state rupture pulse in which rise time and static slip

are constant along the strike except for tapering at the ends of the line fault (to reduce strong

stopping phases in near-fault ground motions), as shown in Figure 4.2. The model parameters and

discretization of these 2D kinematic ruptures (e.g., domain size, bulk properties, and space/time

step) are listed in Table SS4.1. By varying the rupture velocity and rise time, we construct in total

5 scenarios to illustrate how on-fault rupture behaviors modify the near-fault directivity pulse.

For Cases 1 to 3, velocities and rise times are fixed along the strike (Figure 4.2a), while Cases

4 and 5 have rupture velocities that are linearly increasing and decreasing functions of distance

from the hypocenter, respectively (Table SS4.2 and Figure 4.2b).

As seen in Figure 4.3a, a representative fault-normal wavefield (generated from Case

1) forms a broad pulse accompanying the rightward propagating rupture. This positive-phase

pulse (for the right-lateral slip case) is shown in red, denoting motion directed away from the

fault. The pulse is bounded by two negative-phase (blue) regions. The fault-normal ground

velocities 3km from the fault and 40 km along strike from the hypocenter (dark red triangle in

Figure 4.3a) are vertically aligned and plotted in Figure 4.3b. Beginning with the hypocentral

P wave arrival (denoted by a blue dashed line in Figure 4.3b), the fault-normal components are

negative, and grow in amplitude until the arrival of the hypocentral S wave (denoted by a red

dashed line). The long-period negative motions between hypocentral P and S waves come from

the near- and intermediate-field terms of the P wave [e.g., Aki and Richards 2002]. Similar near-

and intermediate-field terms are seen in the TTRH02 record of the 2000 Tottori earthquake (see
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Figure 6 of [2011b]). The directivity pulses begin with the hypocentral S wave and end with

smooth decaying phases that are associated with arresting of earlier ruptures [Boore and Zoback

1974].

The directivity pulse is sensitive to the rupture velocity and rise time (Figure 4.3b). By

comparing the time histories of Case 1 and Case 2, we see that the faster rupture velocity (Case 2)

narrows the fault-normal pulse and both amplifies its peak and shifts it to the left (nearer the S

arrival time). The shorter rise time in Case 3 leads to near trapezoid-shaped pulse. In Cases 4 and

5, increasing (decreasing) rupture velocity focuses (defocuses) the later peak, because that final

peak is associated with very local rupture behavior (e.g., rupture velocity and rise time) as rupture

passes by the station. In general, then, the first increment after the hypocentral S wave arrival

time results from cumulative S waves arriving from preceding rupture, and the latter part of the

pulse is mainly sensitive to the passage of rupture (highlighted by the dashed circles in Figure

4.3b). In the aforementioned scenarios in which stations are not far from the hypocenter, the total

duration of the pulse is related to the overall preceding rupture time. Considering an extreme

case (Figure SS4.1) in which a rupture unilaterally propagates along a 200-km long fault (other

parameters remain the same as in Case 1), for a station at large (120 km) along-strike distance

(but still adjacent to the rupture), the directivity pulse splits into two pulses: a small one arriving

with hypocentral S wave and a later large one related to the passage of rupture. To sum up, in

the simplified 2D cases, within modest along-strike hypocentral distances, rupture acts to form

a fault-normal pulse whose amplitude, duration and shape are cumulatively controlled by the

preceding rupture velocity and rise time (and preceding slip distribution, which we neglect for the

sake of simplicity in this section).

Figure 4.3c shows 13 stations at varying hypocentral distance but fixed distance of 3 km

from the fault (hypocentral distance is color coded, with purple curves for the station closest to

the hypocenter, ranging to red at the largest distance). We compute fault-normal velocities and

fault-normal pseudospectral velocities (PSV) (5% damping). As seen in Figure 4.3c, durations
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of directivity pulse and fault-normal PSV of all 5 models are broadened and intensified over the

long-period band (period >8 s) with increasing distance from the hypocenter. This resembles

the prediction of directivity effects in ground-motion models [e.g., Bayless and Somerville 2013;

Chiou and Spudich 2013; Shahi and Baker 2013; Spudich and Chiou 2013] as seen in background

color of Figure 4.1, in which amplification is increased with the epicentral distance at small angles

between the receiver direction and the rupture propagation direction.

However, in the intermediate- and high-frequency band, the distance effect departs, to

varying degrees, from the simplified, monotonically increasing directivity model. In Case 1 with

a constant rupture velocity of 0.8 times the S wave speed, the apparent durations (represented

by the period at peak PSV) of fault-normal pulses increase from 2 to 6 s and their peak PSVs

vary from about 1 to 2 m/s. However, in that 2-6 second period range, the PSV is not necessarily

monotonically intensified with distance (purple being the nearest and red the furthest station), as

typically assumed in directivity adjustments to ground-motion models; the Case 1 simulation is

only consistent with the latter simplified picture at periods exceeding 6 s, and the amplifications at

shorter period are rather complicated. Somerville [2003] introduced the concept of “narrowband

directivity”, in which the spectral period of peak directivity amplification scales with earthquake

magnitude. As we show in Figure 3, spectral period of peak PSV (at points very near the

rupture surface) additionally scales with epicentral distance because the overall duration of a

fault-normal pulse is roughly confined by the hypocentral S wave and the rupture passing by the

observer. This scaling, even in the very simplified 2D steady-state slip-pulse scenario, introduces

additional complexity in peak PSVs, such that the maximal peak PSV may occur within the span

of the rupture rather than at maximal along-fault distance. While it is inconsistent with current

directivity amplification adjustment models, as stated in Spudich et al. [2014], large ground

motion records such as the Lucerne record of the Landers earthquake, are observed within the

ends of the causative fault. Spudich and Chiou [2008] explain this phenomenon using isochrone

synthetics, which inherently includes the scaling of peak period with epicentral distance, leading
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to a complex pattern of peak PSV.

A faster rupture velocity (0.9 S wave speed, close to the terminal velocity of an inplane

rupture), as seen in Case 2, further contracts ground pulses and leads to a narrower range of pulse

durations, from 4 to 2 s. In this case, the range of monotonically amplified directivity effects with

epicentral distance is extended downward to 2 s, which is consistent with the common observation

that directivity is apparent at periods longer than 1s. While a shorter rise time, as seen in Case

3, does not much vary the range of pulse durations compared to Case 1, the trend of peak PSV

from 2 to 6 s becomes complex, with the maximum peak PSV somewhere in the middle-distance

range (due to the shorter rise time, the peak PSVs in Case 3 in the range of 2-4 s are intensified

compared to those in Case 1). In even more complicated Cases 4 and 5, the long-period directivity

effects are observed as expected but the lowest period at which amplification with distance is

monotonic goes up to 8 s. In short, in the period band of primary engineering interest (up to, say,

∼5 s), the directivity predictions of the simple rupture models are very complex relative to the

monotonic distance-amplification at longer period.

In a 3D strike-slip framework, especially in the presence of a free surface that accom-

modates surface waves (e.g., Rayleigh waves) and surface-reflected secondary ruptures, the

composition of the directivity pulse becomes more complex. Moreover, due to the sensitivity

to rupture velocity and rise time illustrated in the foregoing simulations, the directivity pulse is

likely to be affected by the spontaneity of the earthquake rupture. In subsequent sections, we will

explore how the directivity pulse is shaped by a 3D spontaneous rupture, emphasizing how the

pulse may be further modified by off-fault plastic yielding.

4.3 Model setup of 3D spontaneous rupture

Building on understanding gained from the simplified 2D kinematic rupture models (and

previous studies), we model 3D spontaneous dynamic rupture scenarios on a vertical right-lateral
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strike-slip fault embedded into elastic and elastoplastic half-space media (Figure 4.4a). We retain

the previous model setups the dimensions, elastic parameters and discretization. Table 4.1 and

Figures 4.4b-e describe the elastic/plastic bulk properties, initial stress tensor, and frictional

parameters. The parameters of the plasticity model are such that the rupture behaviors, seismic

moment and static stress drop in elastic and elastoplastic scenarios are very similar, simplifying

the interpretation of the results.

The off-fault inelasticity follows the Drucker-Prager elastoplastic model [Drucker and

Prager 1952] that contains a pressure-dependent yield surface, the parameters of which are

listed in Table 4.1. Elastoplastic simulations are subject to contamination by both spurious

high-frequency oscillations and inaccuracies due to strain localization. To control these artifacts,

as suggested in Duan and Day [2008], we implement two schemes of numerical regularization

in our computations: one is to introduce artificial Kelvin-Voigt viscosity η in the media [Day

and Ely 2002]; the other is to add Maxwellian viscoplasticity that introduces a relaxation time

Tv to the adjustment of stress to the yield surface [Andrews 2005] A value of 0.1∆t times the

shear modulus for the former viscosity [Day et al. 2005; Dalguer and Day 2007] and ∆x/β for the

characteristic time scale of the latter viscosity [Andrews 2005; Duan and Day 2008] have been

found effective in reducing high-frequency noise, and those values are adopted here (Table 4.1).

Other regularization schemes [e.g., Dunham et al. 2011a; Hirakawa and Ma 2016] have been

similarly introduced to effectively stabilize solutions in elastoplastic models.

As seen in Figure 4.4b, the initial effective normal stress is given by σ = min(3+(ρ−

ρw)gZ,80) MPa, where Z is a depth in kilometers. That is, effective normal stress increases

with depth at a rate given by the excess of lithostatic pressure over hydrostatic pore pressure, to

a depth of 4.7 km, below which it is constant, reflecting an assumption that fluid overpressure

compensates continued lithostatic pressure increase with depth [Rice 1992]. The ratio between

shear stress and effective normal stress is illustrated in Figure 4.4c.

The fault constitutive relation is regularized rate-and-state friction with a strong rate-
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weakening feature [e.g., Lapusta et al. 2000; Dunham et al. 2011a; Shi and Day 2013; Wang and

Day 2017]. As shown in Figure 4.4d and 4.4e, we add a shallow velocity-strengthening (a−b> 0)

layer with a slightly larger weakened velocity Vw. This feature is important in that its effect is

to prevent (or minimize) supershear rupture propagation near the free surface [e.g., Aagaard

et al. 2001; Day et al. 2008; Kaneko et al. 2008; Kaneko and Lapusta 2010], and physically

justified, in that the presence of a shallow velocity-strengthening layer has support from laboratory

experiments [e.g., Marone 1998] and observational findings of interseismic shallow creep [e.g.,

Lindsey et al. 2014], afterslip of large earthquakes [e.g., Marone et al. 1991; Perfettini and Avouac

2007], and the seismicity deficit[e.g., Shearer et al. 2005].

We numerically solve the 3D elastoplastic spontaneous rupture propagation problem with

the Support Operator Rupture Dynamics (SORD) code [Ely et al. 2008; Ely et al. 2009]. This

generalized finite-difference method has been used in numerous studies of spontaneous dynamic

rupture simulation and strong ground motions [Ely et al. 2010; Ben-Zion et al. 2012; Shi and

Day 2013; Song et al. 2013; Baumann and Dalguer 2014; Song 2015; Vyas et al. 2016; Mai et al.

2017; Passone and Mai 2017; Song and Dalguer 2017; Wang and Day 2017; Vyas et al. 2018;

Wang et al. 2019]. The code used here has been verified through tens of elastic and elastoplastic

benchmarks in the Southern California Earthquake Center/United States Geological Survey

dynamics earthquake rupture code validation exercise [Harris et al. 2009; Harris et al. 2018].

Guided by results in Day et al. [2005], we estimate that the discretization interval employed

here (50 m) provides accurate waveform solutions for frequencies up to roughly 7 Hz. The

computations were performed on MIRA at the Argonne Leadership Computing Facility (Argonne

National Laboratory).
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4.4 Results of a 3D spontaneous dynamic rupture on a planar

fault

In this section, we examine some effects of off-fault nonlinearity on the rupture process

and near-fault ground motion pulses. The elastic and inelastic cases compared here have very

similar seismic moments (7.3×1019Nm (Mw 7.21) and 6.7×1019Nm (Mw 7.19), respectively)

and stress drops (5.23 MPa and 5.15 MPa, respectively). Rupture histories are similar in the

two cases, except that the plastic case has a somewhat lower overall rupture speed. Figure 4.5

illustrates a typical example of the contrasting depth profiles (averaged along strike) of coseismic

slip with and without off-fault nonlinearity (Figure 4.5a). There is a systematic decrease in slip

for the plastic case in the upper ∼3 km, perhaps related to the geodetically observed phenomenon

of shallow slip deficit [e.g., Simons et al. 2002; Fialko et al. 2005]. Shallow slip in both models

is affected by the velocity-strengthening layer that accommodates afterslip or fault creep over

an interseismic period [Marone et al. 1991; Rice 1993], but an extra deficit is accounted for by

shallow off-fault inelastic deformation, as also suggested by earlier dynamic rupture propagation

models [e.g., Ma 2008; Kaneko and Fialko 2011; Roten et al. 2017a].

In Figure 4.5b, we illustrate rupture behaviors in the form of space-time plots of slip

velocity at the free surface. As in Kaneko and Lapusta [2010], there is a weaker slip pulse

preceding the main rupture front that becomes recognizable on a logarithmic scale. It is smaller

in amplitude (∼ 0.1 m/s) than the dominant main rupture front (∼1 m/s), and it is supershear

(i.e., travels faster than the S wave, as indicated by the occurrence of this pulse prior to the white

dashed line in Figure 4.5b). In contrast, velocities of the main rupture fronts in both elastic and

plastic cases are slower than the Rayleigh wave speed (white dotted lines), with the plastic case

slightly slower than the elastic case [e.g., Andrews 2005]. Moreover, plastic yielding suppresses

a very narrow, low-amplitude slip pulse that, in the elastic case, emerges between the initial

supershear slip pulse and the main rupture front (thin red streak just above the white dotted line in
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Figure 4.5b1). The green dashed lines encircle another brief supershear rupture episode occurring

in both elastic and plastic cases. That transient supershear phase is related to rupture reflection

at free surface, and under certain conditions it may develop into a persistent supershear rupture

front, as in Kaneko and Lapusta [2010].

Figure 4.5b also shows that the initial supershear pulse heals precisely when the hypocen-

tral S wave arrives. This healing is a result of the “forbidden regime” of rupture velocity, enhanced

by stress conditions near the free surface. Rupture velocity in the range between Rayleigh and

shear wave speed is not possible for Mode II cracks [Broberg 1996; Broberg 1999] because

in this regime the energy flux into the rupture front is negative (i.e., such a rupture would not

absorb elastic strain energy but create it [Das 2015]). There is thus a stress shadow (Figure SS4.2)

initiated by the S wave, strengthened and complicated near the free surface (Figure SS4.2d) as

similarly seen in Fig 5b of Kaneko and Lapusta [2010]. Also as pointed out in Kaneko and

Lapusta [2010], a transition from SV wave to P wave boosts the shear stress (Figure SS4.2)

leading to a supershear slip pulse (more details are in Text S4.1 and Figure SS4.2).

Figure 4.6 compares fault-parallel and fault-normal ground velocities for elastic and

plastic cases. A relatively strong fault-normal directivity pulse is present (Figure 4.6a3, 4.6a4,

4.6b3 and 4.6b4) in both elastic and plastic cases. The directivity pulse is bounded by a preceding

near-field P wave and a trailing rupture-arrest phase as suggested by the 2D kinematic simulations

in Section 3. The shapes of the directivity pulses are very similar in both cases. In Fourier

amplitude spectra (FAS) and 5%-damping pseudospectral velocity (PSV), low frequencies show

an enhanced directivity pattern in the form of progressive amplitude increase along the rupture

direction (Figure 4.6c3, 4.6c4, 4.6d3 and 4.6d4). This pattern applies to both elastic and plastic

cases, and is, again, in qualitative agreement with the 2D kinematic ruptures. The elastic pulse

durations increase with the distance away from the epicenter, in the range of 2 to 5 s (quantified,

as before, by the period of maximal PSV). For comparison, an empirical relationship [Baker 2007;

Shahi and Baker 2014] based on regression analysis predicts a pulse duration of about 5 s for an
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earthquake with a magnitude of 7.2, consistent with our calculations. Peak PSV at the most distant

station in the forward-directivity direction shows a nearly 20% reduction when plastic yielding is

introduced (and, in contrast, the peak PSV at the leftmost station is essentially unchanged). That

is, the amplification of fault-normal velocity pulses induced by directivity is weakened due to

plasticity. This can be understood by reference to the spatial distribution of accumulated plastic

strain magnitude (Figure SS4.3), an effect that might also be approximated by introducing a

gradually increasing critical slip distance Dc with distance to the epicenter [Andrews 2005]. In

addition, the plastic-case pulse widths become wider (Figure 4.6b4 and 4.6d4), mainly because

plasticity lowers the overall rupture velocity, to which pulse duration is sensitive (as suggested in

2D kinematic simulations Case 1 and 2 in Section 2).

On the other hand, near-fault fault-parallel velocities do not contain low-frequency pulses

comparable to those of fault-normal components, and show little if any along-strike enhancement.

In Figure 4.6a1 and 4.6b1 of the elastic case, a strong, high-frequency fault-parallel velocity (a

Rayleigh wave) is very clearly seen trailing the rupture front, and we associate this feature with

the transient supershear rupture induced by free surface interactions near the epicenter (indicated

by dashed green oval in Figure 4.5b). Such high-frequency Rayleigh waves related to the transient

supershear near the point where the rupture hits the free surface are similarly reported in other

models of predominantly subshear rupture (e.g., Figure 4 of Bizzarri et al. [2010]). However,

in the plastic case, this high-frequency phase is strongly attenuated (Figure 4.6a2 and 4.6b2),

such that the high-frequency fault-parallel velocity field decays very sharply with a distance

from the epicenter, as shown in the FAS plots of Figure 4.6c2. Plastic response also strongly

attenuates fault-parallel short-period PSV (see Figure 4.6d2, showing∼ 80% reduction at a period

of 0.5 s, relative to elastic case in Figure 4.6d1). Thus, due to the existence of off-fault plasticity,

high-frequency Mach S and Rayleigh waves induced by a localized supershear rupture are subject

to very strong absorption by near-fault non-linearity. This effect is likely to inhibit the occurrence

of observable Mach waves from shallow, transient supershear ruptures of this sort.

150



Figure 4.7 compares ground motions (acceleration and velocity) for the elastic and plastic

cases 40 km from the epicenter (rightmost triangle in figure 4.6a1), which is the station located

in the region of maximum plastic strain. In Figure 4.7a and 4.7b, the fault-normal accelerations

and velocities (solid curves) in the two cases are very similar in timing of the near-field P

wave, hypocentral S wave and S wave radiated during rupture toward the site, reflecting the

similarity in rupture histories noted earlier. The large troughs in fault-normal accelerations

and peaks of fault-normal velocities (∼ 14s) show characteristic effects of plasticity, with, in

the plastic case, a reduction of peak velocity due to non-linear deformation of the surrounding

medium and an increased pulse width due to an overall slower rupture velocity (Figure 4.5b).

The pulse broadening for the plastic case agrees with the behavior suggested by the rupture-

velocity dependence in the 2D kinematic rupture simulations presented earlier. As already

noted, off-fault non-linearity greatly attenuates the high-frequency Rayleigh wave peaks in the

fault-parallel acceleration (compare blue and orange dashed curves in Figure 4.7a), resulting

in a fault-normal pseudospectral acceleration (PSA, orange solid line in Figure 4.7b) that is

systematically larger than the fault-parallel PSA (orange dashed line). This predominance of the

fault-normal component in the plastic case is consistent with recordings containing directivity

pulses [e.g., Somerville et al. 1997; Day et al. 2008]. In contrast, the elastic case has larger

fault-parallel (blue dashed line) than fault-normal (blue solid line) PSA at a short period, which is

disfavored by observations. The PSA and PSV (Figure 4.7b and 4.7d) are reduced by the off-fault

plasticity over a broad period range.

Figure 4.8 shows the spatial pattern of plasticity effects on the fault-normal directivity

pulse. Figure 4.8a illustrates the distribution of peak horizontal velocity (PGV) of the elastic and

plastic cases, along with the fractional reduction of PGV due to plasticity. Both cases have spatial

distribution of PGV that is roughly wedge-shaped, reflecting forward directivity effects, but in the

plastic case PGV is systematically lowered (Figure 4.8a3). The largest reduction ratios, sometimes

exceeding 50%, are concentrated near the fault trace [Roten et al. 2014; Withers et al. 2018b].
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We quantify pulse durations, by the method of Shahi and Baker [2014], and these durations are

plotted in Figure 4.8b. The pulse-period predictions resemble those from the simplified equation

(the prediction of pulse period scales with along-strike and normal-to-fault distance) proposed by

Fayjaloun et al. [2017] (see their Figure 8), which in turn was shown by Fayjaloun et al [2017] to

agree with kinematic rupture simulations. The exceptionally short pulses concentrated from 5 to

20 km away from the epicenter are related to the aforementioned transient supershear associated

with free-surface reflection of the main rupture front. The off-fault plasticity extends pulse widths

by an average of about 30% near the fault trace, and by up to 100% in a very localized region

affected by the transient supershear rupture. As was the case for amplitudes, the pulse-duration

effects of the supershear transient are also much diminished by plastic yielding.

Seismic hazard analyses are typically performed for the RotD50 orientation-independent

measure of horizontal pseudospectral acceleration introduced by Boore et al. [2006]. RotD50 is a

median value of a set of geometric means computed from the as-recorded orthogonal horizontal

motions rotated though all period-dependent non-redundant rotation angles, which is adopted in

the ground-motion models of Enhancement of Next Generation Attenuation Relationships for

Western US (NGA-West2) [Bozorgnia et al. 2014]. We therefore examine the effects of off-fault

plasticity on this ground-motion measure (for periods 0.5 s, 1.8 s and 4.8 s). A principal goal is to

provide improved (relative to elastodynamic analyses) guidance for the construction of functional

forms for representing the spatial distribution of pulse amplitude and duration. As shown in

Figure 4.9a, in the elastic case, at short and intermediate period, amplification of RotD50 in

the forward-directivity region is mainly concentrated along the fault trace, while long-period

amplification follows the classic wedge-shaped directivity models (see Figure 4.1 and Donahue et

al. [2019]) whereby near-fault amplification increases with epicentral distance (for sites adjacent

to the coseismic faulting segment). The simulated amplification in the forward-directivity region

supports the feature of the Somerville et al. [1997]’s empirical model that the directivity slope

(rate of amplitude increase with propagation distance toward site) is greater at long period than
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at short period. In Figure 4.9b, off-fault plasticity essentially attenuates short- and intermediate-

period amplifications of RotD50 concentrated near the fault trace, and saturates the long-period

amplification, in the sense that it truncates the expansion of the wedge-shaped amplification

contours for epicentral distances exceeding 20 km. That saturation effect is consistent with a

similar truncation in the empirical directivity model proposed by [Abrahamson 2000].

The foregoing results demonstrate that off-fault plasticity can reduce the amplitude

and broaden the widths of the directivity pulse weakening the tendency for amplification to

increase with propagation distance in the forward-directivity region (i.e., promoting the along-

strike saturation of directivity suggested by, e.g., the model of Abrahamson, 2000). However,

interpretation of the effects shown in Figure 4.8 and 4.9 is complicated by the fact that yielding

affects ground motion directly by limiting shear stress levels at the rupture front, and indirectly,

by (usually) reducing the average rupture velocity. To obtain further insight into the effect of

plasticity, we isolate former effect by artificially fixing the rupture velocity through a simplified

friction model, but without change to any other model or numerical-implementation parameters,

(e.g., fault dimension, initial stress and discretization). The friction adopted here is employed

by Dunham and Bhat [2008]. The shear strength, τs, weakens linearly with distance within a

cohesive zone:

τs(x, t) = max{τr,τr +A(| x | −vrt)} (4.2)

where τr is dynamic friction (equals to−µrσn, dynamic frictional coefficient times normal

stress), is the forced rupture velocity (we set 0.9 shear wave speed), A is weakening rate (chosen

to ensure at least 5 mesh points within resulting cohesive zone), x is a spatial distance and t is

time. The fault is locked until stress reaches the fault strength (computed by Equation 4.2) and

stress remains constant after fully weakening. By modifying , we can prescribe the static stress

drops (here we neglect overshooting caused by stopping phases). We select 3 values of stress drop:
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1.6 MPa, 3.2 MPa and 6.4MPa, and implement them in both elastic and plastic media (Figure

4.10a). Thus, in total, 6 cases are simulated and their PGVs along 3 lines normal to the fault trace

(located at 15 km, 30 km and 45 km along-strike distance from the epicenter, respectively) are

illustrated in Figures 4.10b1 to 4.10b3, on a logarithm scale. As seen in Figure 4.10b, plasticity

induces a saturation of the growth of PGV with respect to fault distance, along-strike distance,

and stress drop. Within 1 km of the fault trace, plasticity essentially eliminates the growth of

PGV with along-strike distance beyond Line 1 (at 15 km), and greatly reduces its stress-drop

dependence (which was linear in the elastic case). The maximum near-fault PGV is thereby

capped at 2 m/s (reduction by up to a factor of ∼3 at some sites, relative to the corresponding

elastic model) despite the stress drop and magnitude having been changed from 1.6 MPa and Mw

6.9 to 6.3 MPa and Mw 7.3, respectively.

Empirical data suggest that near-fault peak ground velocity (PGV) saturates as a function

of magnitude for large magnitude earthquakes [Boore and Atkinson 2008] and the largest observed

PGVs from strike-slip earthquakes are below 2 m/s. Previous suggested explanations are centered

on finite fault effects [Schmedes and Archuleta 2008; Baltay and Hanks 2014]. This is consistent

with our models for off-fault distance greater than 1-2 km. However, in our models, plastic

yielding appears to impose a stronger limit on PGV at closer distance. Ground motion intensities

(e.g., PGV), which are often extrapolated from a farther ground motion prediction equation due

to near-fault sparseness of data, can be overestimated if the near-fault plasticity limit is neglected.

Thus, in addition to a finite-fault effect dominating in an intermediate-distance range (1-10 km),

physics-based plasticity is alternatively responsible for the observed magnitude saturation in the

near-fault range (∼1-2 km). While it is suggestive that the limiting value of 2 m/s seen in Figure

4.10 roughly coincides with the largest strike-slip PGVs recorded to date, the result is sensitive

to our chosen cohesion model and influenced by the absence of complexities in geometry and

material properties. For example, Roten et al. [2017b] performed elastoplastic simulations with a

range of cohesion and elastic-properties models and found similar near-fault saturation due to
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plasticity, but with occasional exceedances of 2 m/s PGV in some models (albeit only at a small

fraction of sites and for magnitude exceeding ∼7.5).

4.5 Results of a 3D spontaneous dynamic rupture on a rough

fault

The foregoing models are smooth, both in the geometry of the fault surface and the

propagation of rupture. Since near-field pulses reflect interference of arrivals associated with

rupture finiteness, it is appropriate to investigate the extent to which the effects of plasticity

noted in the previous section persist when these simplifications are relaxed. In this section,

we do so by introducing a rough fault surface. Natural faults manifest varying degrees of

geometrical complexities spanning from large-scale branching and segmentation [e.g., Ben-Zion

and Sammis 2003] to small-scale variations on the fault surface [e.g., Power and Tullis 1991;

Renard et al. 2006; Candela et al. 2009; Sagy and Brodsky 2009]. Recent studies show that

geometrical variations of the fault surface lead to ensembles of complex rupture with varying

directionalities and magnitudes [e.g., Fang and Dunham 2013], modifying the radiated seismic

spectrum and radiation pattern. In particular, those complexities boost high-frequency ground

motions [Dunham et al. 2011b], bringing them into general accord with the aggregated statistics

of recorded motions, as reflected in ground-motion prediction equations[e.g., Shi and Day 2013;

Kieling et al. 2014; Withers et al. 2018a]. The previous rough-fault modeling studies have not

focused on the dynamics of low-frequency pulses, nor on the degree to which those pulses are

sensitive to off-fault plasticity.

We specify fault roughness using an approach closely following Shi and Day [2013]. The

fault roughness model (Figure 4.11a) follows a self-similar (Hurst exponent 1) fractal distribution

up to a wavelength cutoff of 200 m. The distribution of deflection distances from a plane is
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generated in the wavenumber domain (as in Andrews and Barall, [2011]) and, after transformation

to the spatial domain, the amplitudes of the perturbations are scaled by a specified amplitude-to-

wavelength ratio α defined as α= hrms/L, where L is the total length of the fault in the along-strike

direction and hrms is the root-mean-square roughness of the 2-D perturbation profile (more details

to see Appendix A of Shi and Day, 2013). Power and Tullis [1991] estimate in a range from 10−3

to 10−2 for natural faults. We select an intermediate roughness, α = 10−2.3 ≈ 0.005 in subsequent

analysis. Apart from fault geometry, we keep the rest of the model inputs (including elastic and

plastic parameters) identical to those of the planar fault scenario of the last section. Comparison

of the elastic and plastic cases is facilitated by the similarity of the resultant seismic moments

and stress drops in the two cases: moments of 5.0×1019Nm (Mw 7.10) and 4.5×1019Nm (Mw

7.1), respectively, and static stress drops of 5.33 MPa and 5.32 MPa, respectively (see also Figure

SS4.4, comparing average static slip and ground-surface slip velocity). Comparison of Figure

SS4.4 with Figure 4.5 for the planar fault scenario shows some of the complexities introduced by

fault roughness, including transient supershear ruptures between the first supershear pulse and the

main, sub-Rayleigh rupture front (especially between about 20 to 40 km along-strike distance).

The off-fault plasticity leads to 1) smaller average slip at shallow depth (Figure SS4.4a), and 2) a

weakened SV-to-P conversion (Figure SS4.4b2), both of which are consistent with the plasticity

effects in the planar-fault scenario.

Figure 4.11 shows simulated ground velocities, Fourier amplitude spectra and pseudospec-

tral velocities for the same station set used in Figure 4.6. Fault-parallel and fault-normal ground

velocities (Figure 4.11b and 4.11c) are more complex than in the planar-fault case (Figure 4.6)

but the fault-normal velocities still show the long-period pulse-like character, in both elastic and

plastic cases. Pulse duration scales with epicentral distance as in the planar fault case (Figure

4.11(cde)3, 4.11(cde)4, compared with the corresponding panels in Figure 4.6). The effects of

plasticity noted earlier for the planar fault case persist in the rough-fault case. These including the

strong nonlinear damping of high-frequency Rayleigh waves associated with supershear rupture
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episodes, especially on the fault-parallel component (Figure 4.11b1 and 4.11b2); broadening of

fault-normal pulse widths; and weakening of directivity-enhanced amplifications (Figure 4.11e3

and 4.11e4). In contrast, for the rough fault case, near-fault high-frequency motion does not

diminish with epicentral distance as it does in the planar fault case. This feature is especially clear

in the plastic case (compare Figure 4.11d2 and 4.11d4 and Figure 4.6c2 and 4.6c4). Roughness

systematically strengthens high-frequency seismic energy (both fault-parallel and fault-normal

components in Figure 4.11d and 4.11e), compensating losses caused by plasticity. Nonlinear

losses decrease the peak fault-normal PSV at the largest along-strike distance (dark red line)

by nearly 40% (from 1.1 m/s to 0.7 m/s) while increasing the period corresponding to the peak

PSV from 5 to 6 s (Figure 4.11e3 and 4.11e4). The near-fault normal-component pulses are

particularly susceptible to this type of nonlinear loss, but we would expect similar nonlinear

damping for ground motion whenever comparably high shear-strain levels are reached. For

example, comparable amplitude reductions of long-period ground motions due to plasticity were

found by Roten et al. [2014], who found up to 70% reductions in Los Angeles Basin for computer

simulation of large (M > 7.8) southern San Andreas Fault earthquakes.

Figure 4.12 shows ground motions (acceleration and velocity) for the elastic and plastic

cases at the rightmost (farthest along-strike distance) station, for comparison with corresponding

planar-fault results in Figure 4.7. Ground accelerations are far more complex than in the planar-

fault case, but the main effects of plasticity are similar: strong nonlinear damping of peak ground

acceleration (associated with the supershear phase) and a reduction of the peak fault-normal

velocity combined with an increased pulse width. Figures 4.12b and 4.12d again show the

predominance of the fault-normal component over fault-parallel, for both PSA and PSV and

in both elastic and plastic cases. Plasticity has a larger effect on the fault-normal component

than the fault-parallel component, reflecting the larger strains accompanying the former (apart

from the high-strain supershear phase of the latter). In Figure 4.12d, plasticity lowers the peak

of fault-normal pulse by 30% and stretches the pulse width from 5 to 6 s, while selectively
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attenuating some frequency bands of ground motion (periods shorter than 1 s and longer than

3 s). The strong, short-period impulse in the fault-parallel component is largely absorbed by

off-fault plasticity (just as it was in the flat-fault case), as seen in Figures 4.12a and 4.12b. It

displays a second characteristic time scale related to the localized rupture time history (e.g., the

secondary pulses starting at around 13 second and 15 second). This time scale associated with

rupture passage stands out more distinctly in the rough fault simulation than in the planar case

(Figure 4.7d). This difference occurs because, in the rough-fault case, the reduced coherence of

the accumulated SH arrivals from the full length of the irregular fault weakens their contribution

compared with that of the localized slip pulse near the station.

Figure 4.12e and 4.12f compares The TTRH02 (borehole) fault-normal velocity in the

2000 Tottori earthquake and our simulated fault-normal velocity pulses in elastic and plastic case

at a similar epicentral (∼ 7km) and off-fault distance (∼ 2km). At this distance, plasticity effects

are small, and both simulations follow the recorded velocity closely with respect to the timing

of arrivals, and even their shapes (apart from the high simulated amplitude at the S wave onset,

perhaps related to the artificial rupture initiation). These arrivals include the prominent near-field

P wave, the hypocentral S wave, and the pulse termination associated with healing following

rupture passage, and result is close agreement with the recorded pulse duration at this distance.

The simulated pulse at 40 km distance has longer duration, reflecting the correlation of duration

with distance noted before, and at this distance there is also about a 1-second duration difference,

again illustrating a plasticity effect on pulse duration that is cumulative with propagation distance

and that becomes pronounced at a large epicentral distance (for, we emphasize again, our restricted

focus on sites adjacent to the rupture).

Figure 4.13 shows plasticity effects on the spatial pattern of PGV and duration for the

fault-normal directivity-induced pulses. The durations are quantified by the method of Shahi

and Baker [2014]. The general wedge shape of near-fault PGV contours, reflecting directivity

effects, occurs in both elastic and plastic cases, has superimposed upon it multiple localized
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concentrations of PGV that are correlated to the fault geometry (Figure 4.13a). PGV in the plastic

case is systematically lowered, with reduction factor up to 70% at some locations. There is a very

localized exception (greenish patch) where PGV is actually increased in the plastic case (Figure

4.13a3), apparently related to a patch of fast rupture (around distances of 30 - 35 km and after 10 s

in Figure SS4.4b2) in the plastic case. The pulse durations are distributed roughly as in the planar

fault case, and are similar to the pulse-period prediction in Fayjaloun et al. [2017], which scales

with along-strike and normal-to-fault distance. The anomalously small durations caused by the

transient supershear rupture that we noted earlier for the planar fault case are largely removed by

fault roughness in both elastic and plastic cases (Figure 4.13b1 and 4.13b2). Plasticity broadens

the pulse durations by about 30%, on average, in the directivity-induced wedge of high amplitude.

Figure 4.14 shows the spatial distribution of RotD50 (for periods 0.5s, 1.8 s and 4.8 s). In

both elastic and plastic cases, high values of RotD50 are concentrated near the fault in the short-

and intermediate-period bands (Figure 4.14a1, 4.14a2, 4.14b1 and 4.14b2). Roughness adds

fluctuations to the relatively simple distribution of RotD50 in the planar fault case (Figure 4.9).

Off-fault plasticity effects are period-dependent. Plasticity attenuates short-period amplification

of RotD50 and constrains the directivity-induced short-period amplification area to a zone very

close to the fault trace, while only minimally impacting the spatial pattern of intermediate-period

RotD50. Long-period RotD50 largely reflects the amplitude and period of the fault-normal pulse,

and is strongly affected by plasticity. In the elastic case, directivity induces a wedge-shaped

forward-directivity region (Figure 4.14a3) within which the near-fault RotD50 increases with

epicentral distance for rupture-adjacent sites (i.e., those between the rupture endpoints). This

behavior is very similar to that of the planar fault case (Figure 4.9). For the plastic case (figure

4.14b3), in contrast, the along-strike increase of the long-period RotD50 ceases at distance of

about 25 km from the epicenter. If we measure a fault-normal width by the fault-normal distance

to a given (say 1.2 m/s2) RotD50 contour, for example, that reaches a maximum of roughly 8 km

at 25 km from the epicenter, after which it remains essentially constant, as seen in Figure 4.14b3.
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In summary, losses from plasticity both diminish the overall intensity of the directivity-induced

amplification wedge and cause the effect to saturate, i.e., truncate its growth along strike and

in the fault-normal direction. In this respect, our simulations with plasticity favor empirical

models for near-fault directivity (GMPE directivity factors) that include a distance saturation

effect [Abrahamson 2000], and the simulations may also provide guidance for improving distance

tapers used in those models, which are otherwise relatively poorly constrained.

4.6 Discussion

4.6.1 Directivity pulse in self-healing rupture

In addition to the pulse induced by directivity in fault-normal ground motions, another

commonly noted but conceptually distinct pulse is a pulse-like rupture that, in contrast to a

crack-like rupture, is characterized by a slip-velocity rise time much shorter than the total duration

of the rupture process. The pulse-like rupture has been broadly recognized in many seismological,

analytical, computational, and experimental studies [e.g., Heaton 1990; Zheng and Rice 1998;

Nielsen and Madariaga 2003; Lu et al. 2010; Melgar and Hayes 2017]. Numerous mechanisms

have been hypothesized to account for pulse-like rupture, including dynamic (velocity) weakening

friction such as that expected from flash heating [e.g., Goldsby and Tullis 2011] and thermal

pressurization [e.g., Noda et al. 2009] mechanisms, heterogeneity of fault strength/stress [e.g.,

Beroza and Mikumo 1996], fault zone compliance [e.g., Huang and Ampuero 2011], and minimum

rupture dimension [e.g., Day 1982]. These can roughly be classed as local effects, which we

term self-healing (slip duration at a point controlled by local frictional resistance), and non-local

wave-mediated interactions (slip duration controlled by wave-induced perturbations to the stress

field) which we term geometrical. These would by no means be expected to operate independently,

but one class may dominate if it has a characteristic time much shorter than the other. For example,
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Wang et al. [2019] show that the rupture pulse duration in the 2015 Nepal Gorkha earthquake

is strongly associated with a geologically plausible model of MHT (Main Himalayan Thrust)

fault geometry, on the basis of modeling that matches the near-field high-rate GPS recording

directly (15 km) above the fault. Similarly, the spontaneous rupture models in Sections 4 and 5,

although they can support a self-healing behavior, all were set up with parameter choices such

that slip duration principally controlled by down-dip fault width (and to some extent by fault

roughness effects, in the case of Section 5), i.e., they are geometrically controlled. In contrast,

Aagaard and Heaton [2008] show that self-healing dominated rupture can potentially compact

the directivity-induced fault-normal ground-velocity pulse. We therefore supplement the results

of Sections 4 and 5 by considering self-healing rupture in order to further assess how plasticity

affects directivity-induced ground motion pulses.

As noted by Wang and Day [2017], a transition to self-healing dominated rupture can be

achieved by tuning the weakening slip rate Vw so as to vary the critical stress level τpulse defined

in Zheng and Rice [1998]. We retain all the model setups of the planar fault scenarios but use a

higher weakening slip rate (0.1m/s) than that adopted in preceding sections (0.05 m/s in Table

4.1), so that the average rise time (measured by the period when slip velocity exceeds 0.01 m/s)

now is systematically decreased, from about 3 s in the previous cases to 1 s (Figure SS4.5), giving

self-healing ruptures in both elastic and plastic cases. Resultant seismic moments of elastic and

plastic cases are 4.6×1019Nm (Mw 7.08) and 4.0×1019Nm (Mw 7.03), respectively. The static

stress drops of elastic and plastic cases are 3.98 MPa and 3.84 MPa, respectively.

We perform an analysis of ground motions along the same fault-parallel station line as in

Section 4. Results in Figure 4.15 (using the same color convention as in Figure 4.6 to associate

stations with spectral plots) are qualitatively very similar to those seen for the longer rise-time

cases in Sections 4 and 5. The prominence of the fault-normal directivity-induced pulse, the

dominance of fault-normal pseudospectral velocity relative to the fault-parallel component, and

the increase of fault-normal pulse duration with along-strike distance resemble the earlier results,
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in both elastic and plastic cases. There are some quantitative differences due to the smaller rise

time in the self-healing model. In the elastic case, results are in good agreement with expectations

from the work of Aagaard and Heaton [2008]. However, the modifications due to plastic yielding

remain much the same as we found in Sections 4 and 5. Figure 4.15c1, compared with Figure 4.7c,

shows more localized smaller peaks preceding the largest one (and also a lower peak amplitude,

as expected in light of the lower moment for the self-healing model). Figure 4.15b shows that

multiple prominent short-period peaks (especially around 2 s) in the PSV start to develop with

increasing along-strike distance (over 25 km of epicentral distance) and at the most distant station

(40 km away) these shorter-period peaks approach the level of the primary peak corresponding to

the dominant pulse duration ( 5 s). This behavior is consistent with what we found in the rough

fault scenario (Section 5), and is likewise in agreement with the results of Aagaard and Heaton

[2008] that self-healing rupture compacts and splits the directivity-induced fault-normal pulse,

enriching the short-period content (see their Figure 4.8) while preserving the long-period pulse.

Moreover, the fault-parallel pseudospectral velocity starts to display a systematic peak (also at

∼ 2 s, see Figure 4.15a), which is associated with a relatively impulsive fault-parallel velocity

(Figure 4.15c1). The prominent short-period peaks corresponding to the localized short rise time

from self-healing procedures are similarly found in the rough fault scenario.

Off-fault plasticity influences the directivity pulse in self-healing rupture in essentially

the same manner as was the case for the planar and rough fault models discussed earlier. As seen

in Figure 4.15c1 and 4.15c2, the directivity pulse in the plastic case becomes weaker and broader,

and short- and long-period PSV peaks (1.5 s, 2 s and 5 s) are accordingly shifted in period and

reduced in amplitude at the more distance stations, where relatively large strains occur. That is,

the stations with greater epicenter distance experience more attenuation of the long-period motion

that controls the PSV peak (Figure 4.15b2), which again results in an along-strike saturation of

near-fault directivity-induced amplification in the long-period band (Figure SS4.6).
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4.6.2 Implications for directivity models used in ground-motion estima-

tion

A number of modifications to empirical GMPE have been proposed to account for rupture

directivity and the strong fault-normal pulse [e.g., Spudich and Chiou 2008; Rowshandel 2010;

Somerville et al. 1997; Spudich et al. 2014]. As an example for this process, Somerville et al.

(1997) introduced (e.g., in the strike-slip case) directivity parameter (Xcosθ), with X representing

the proportion of the fault rupture distance that is towards a site of interest and θ representing

the effect of the radiation direction relative to the fault strike. Abrahamson [2000] later modified

the model such that the predicted effect saturates for directivity parameters larger than 0.4 and

the directivity effect is further reduced through the use of tapers for off-fault distance > 30

km (distance taper) and magnitude < 6.5 (magnitude taper). With far larger datasets available

(e.g., NGA-West2), more recent models have introduced a number of improvements. The

parameterization using normalized rupture length X is now recognized as non-physical [e.g.,

Bayless and Somerville 2013]. In the NGA-West2 directivity models [Bayless and Somerville

2013; Chiou and Spudich 2013; Rowshandel 2013; Shahi and Baker 2013; Spudich and Chiou

2013], the absolute rupture dimension (toward the site) in km is adopted instead. Moreover, all

models except the model of Bayless and Somerville [2013] are now explicitly “narrow-band”

models in which the directivity-induced amplification (of response spectra) peaks at a specific

period and decreases away from the peak on both sides of the peak. The peak period roughly

scales with magnitude, which is consistent with the dependence of pulse period on earthquake

magnitude in the NGA-West2 dataset [Somerville 2003; Shahi and Baker 2011].

Our simulation results in the foregoing sections essentially support the two aforemen-

tioned features of recent empirical directivity models. That is, the simulated directivity-induced

amplification wedge (i.e., the amplified zone in the acute angle about the rupture propagation

direction) mirrors the empirical-model dependence on the fault rupture length, and the period-
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dependence of that amplification is narrow band. However, our models of directivity-induced

amplification, in both 3D elastic and plastic scenarios, demonstrate greater along-strike and

off-fault distance- and period-dependent variability of directivity effects and these dependences

are inherently intertwined.

First, we discuss the spatial features of directivity-induced amplification. Contours of the

directivity amplification adjustment in ground-motion models are wedge-shaped in the near-fault

area, as shown in background color of Figure 4.1, in which the directivity-induced amplification

increases with along-strike distance. A result is that all directivity models tend to predict that big

ground motions occur in a broad zone off the end of fault. However, as found in the 1992 Landers

earthquake, the big ground motion records that excited interest in the directivity pulse in ground

motions, like the Lucerne recording, are likely to occur at short rupture distances relative to the

total rupture length. Our elastic and plastic simulations possibly shed some lights on this issue.

In all of our elastic scenarios (including those where the slip pulse is geometrically induced on

planar (Section 4) or rough (Section 5) fault surfaces, and those where the rupture is self-healing

(Section 6.1)), the spatial pattern of directivity-induced amplification is period-dependent. The

long-period contours are wedge-shaped, consistent with directivity models recently developed. In

contrast, the maximal motions in the short- and intermediate-period band are very localized near

the fault trace and controlled by short-period behaviors of the passing rupture.

The off-fault plasticity as we discussed before can prevent growing of the long-period PSA

with the along-strike distance, predicted by directivity amplification adjustment in ground-motion

models. As in Figure 4.14b3, the maximal long-period pseudospectral acceleration is located

nearly 25 km from the epicenter. The fault-normal width measured by the fault-normal distance

to a given PSA contour reaches a maximum (roughly 8 km in Figure 4.14b3) and then remains

essentially constant, which in our simulations demonstrates that the plasticity yielding truncate

the along-strike and fault-normal growth of directivity amplification. Thus, our simulations may

provide guidance for parameterizing distance tapers used in ground-motion models.
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In directivity models, the fault-normal width of high-directivity zones is controlled by

rather poorly constrained distance tapers. As suggested by the foregoing simulations, this taper

should be a function of period, but very few models currently consider this issue (of those cited

above, only Rowshandel, [2013] addresses this issue). On the other hand, due to insufficient

near-fault (within 10 km) data coverage, the empirical directivity models thus derived may

overestimate ground motion in near-fault area. Our plastic simulations in Section 4 imply that

PGV saturates (as a function of fault-normal distance) at a level below 2 m/s, an effect not

captured by elastic simulations (which can continue to increase above that level at distances less

than 2 km or so). Simulations with plasticity also show PGV saturating as stress drop increases,

and this stress-drop saturation may be a component of magnitude saturation seen in the near-fault

PGV [Schmedes and Archuleta 2008; Baltay and Hanks 2014]. We caution that the quantitative

results just cited (i.e., for both the saturation level and fault-normal distance range in which it

applies) will require refinement through better constrained cohesion models and more extensive

parameter studies. But other recent work supports the concept of stress-drop insensitivity of

PGV within a near-fault range of the order of several km, and with a velocity saturation level

within about 50% of our 2 m/s estimate [e.g., Roten et al. 2017b]. Further development of

dynamic rupture simulations that include inelastic yielding can supplement near-fault constraints

on directivity-induced amplification and have the potential to advance development of GMPE

directivity models.

Next, we explore the dependence of pulse period on typical GMPE parameters. Several

empirical models have related the pulse period to earthquake magnitude, typically inferring

almost a linear relationship [Somerville 2003; Shahi and Baker 2011], as seen in Figure 4.16b

(where we replot the data from Fayjaloun et al., 2017). However, as suggested by Fayjaloun

et al. [2017], the increase of pulse period with magnitude is implicitly expressed though the

parameter D, defined as the length of the fault that ruptures toward the site (Figure 4.16a). The

idea is that, for the strike-slip earthquakes that are the subject of this study, earthquake magnitude
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scales with rupture length, and therefore near-rupture recordings at large values of D can only

occur for sufficiently long ruptures. Small values of D can also occur for long ruptures, but, for a

random sample of near-rupture records, the mean D of the sample will be proportional to rupture

length, and therefore to the event magnitude (Figure 4.7 in Fayjaloun et al. 2017). The D effect

on pulse width is consistently present in our 2D kinematic (Section 2), 3D planar (Section 4)

and rough fault (Section 5) scenarios. In each case, the pulse period scales with rupture distance

toward the site (D), in agreement with the proposed relationship of Fayjaloun et al. [2017]. The

suggestion that the apparent magnitude dependence of pulse period actually reflects a dependence

on rupture distance toward site (i.e., D) is highlighted in the comparison of Figure 4.16b with

Figure 4.16c. In Figure 4.16b, the pulse-period data points for the 10 strike-slip earthquakes in

Table 1 of Fayjaloun et al. [2017] are plotted versus magnitude, whereas in Figure 4.16c the same

data have been plotted versus D. In Figure 4.16c, the pulse periods for each individual earthquake

can be interpreted to follow a common scaling with D, most noticeably in the case of the 1999

Kocaeli and 1979 Imperial Valley earthquakes, for which the scatter of pulse periods with respect

to a regression line D is smaller than with respect to one on magnitude. This comparison supports

the view that the apparent magnitude scaling in Figure 4.16b results physically from scaling of

period with D, combined with the natural correlation of magnitude with D.The scaling of pulse

period with D is common to each type of rupture model that we have considered, despite some

variations in pulse width among those models. For example, our 3D plastic simulations indicate

that the off-fault plasticity can broaden the pulse to varying degrees, depending on the cumulated

plastic strain. Moreover, in our simulated self-healing rupture, additional short-period pulses

emerge, while nonetheless preserving the primary pulse dominated by D.

The scaling of pulse period with D is common to each type of rupture model that we

have considered, despite some variations in pulse width among those models. For example,

our 3D plastic simulations indicate that the off-fault plasticity can broaden the pulse to varying

degrees, depending on the cumulated plastic strain. Moreover, in our simulated self-healing
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rupture, additional short-period pulses emerge, while nonetheless preserving the primary pulse

dominated by D.

The inelastic effects seen in the simulations have their greatest effect at distances to the

rupture of roughly 2 km or less. Therefore, inelastic effects will be especially important when

rupture simulations are used to extrapolate directivity-pulse behavior to sites very near the rupture

surface. Roten et al. [2014] suggests that a typical simulation assuming a linear response of

rock will overpredict ground motions during potential large earthquakes on the southern San

Andreas Fault (e.g., Cybershake). The effects of plasticity depend on the cohesion values used,

are also sensitive to a presence of a low-velocity fault damage zone [Roten et al., 2017b]. The

results we have presented can provide guidance on the general spatial and period dependencies

to be expected for pulses in the near-rupture regime, while much scope remains to use rupture

simulations to better quantify those dependencies and their variability.

Conclusion

Rupture directivity strongly modifies ground-motion amplitude and duration, thus leading

to the commonly observed dominant pulse-like fault-normal horizontal ground motions, near

fault trace where off-fault inelasticity is likely to impact their amplitudes and waveforms. In this

paper, we primarily assess the extent to which plastic yielding, which is absent in conventional

kinematic models, may systematically affect the amplitude, frequency content and distance

scaling of directivity pulse. Simple 2D kinematic modeling is performed to learn that shape of

directivity-induced pulse is sensitive to rupture velocity, slip rise time and epicentral distance.

From 3D strike-slip ruptures with and without plastic yielding, on a flat and rough fault plane,

we find that each of the four 3D models (flat and rough faults, with and without off-fault

yielding), scaled to approximately magnitude 7, predicts a fault-normal pulse with characteristic

behavior of observed pulses (periods in the range 2-5 second, amplitudes increasing with distance
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in the forward-directivity direction but approaching a limiting amplitude). Plastic yielding

systematically reduces amplitude and increase dominant period of directivity pulse, compared to

models excluding off-fault inelasticity. Plasticity induces a saturation of the growth of PGV with

respect to off-fault distance, along-strike distance, and stress drop. Plasticity yielding also prevents

along-strike increase of long-period PSA and fault-normal width of wedge-shaped directivity

amplification. In addition, off-fault plasticity substantially suppresses the otherwise very strong

high-frequency acceleration pulses that otherwise appear in the fault-parallel acceleration when

local supershear rupture transients occur. The consideration of nonlinear materials in analysis

of seismic pulse dynamics can better understand and more accurately predict near-fault ground

motions.
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Tables and Figures

Table 4.1: Model bulk properties, initial stress tensor, frictional properties and nucleation
parameters. The values of parameters labeled as “Depth dependent” can be found in Figure 4.4.
τb is a local shear stress at the hypocenter, which is derived from the initial stress tensor.

Parameter Symbol Value
Bulk Properties
P wave speed α 6,000 m/s
S wave speed β 3,464 m/s
Density ρ 2,670 kg/m3

Kelvin-Voigt Viscosity η 4×10−4s
Maxwellian time scale Tv 0.014 s
Cohesion c 3 MPa
Internal friction coefficient tan(φ) 0.75
Initial stress state
Initial stress tensor components σxx Depth dependent

σyy Depth dependent
σzz Depth dependent
σxz Depth dependent

Frictional properties
Direct-effect parameter a Depth dependent
Evolution-effect parameter b 0.014
Reference slip rate V0 1µ m/s
Steady state coefficient at slip rate V0 f0 0.6
Evolution distance of state variable L 0.2
Weakening slip rate Vw Depth dependent
Fully weakened friction coefficient fw 0.3
Initial fault slip rate V ini 1×10−9m/s
Nucleation parameters
Nucleation radius R 3,000 m
Nucleation depth D 9 km
Overstress ∆τb 1× τb
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Figure 4.1: Schematic plan view showing near-fault directivity effects of a vertical right-lateral
strike-slip event, modified from Somerville et al. (1997). Representative ground velocities of
forward- and backward-directivity sites are extracted from Lucerne and Joshua Tree stations in
the 1992 Landers earthquake (Source: Somerville, P. G. et al. (1997). “Modification of Empirical
Strong Ground Motion Attenuation Relations to Include the Amplitude and Duration Effects of
Rupture Directivity”. In: Seismological Research Letters 68.1, pp. 199–222. Radiation patterns
of SV and SH waves are plotted along the fault trace, respectively. The background colored
map is a directivity adjustment in ground-motion models (GMMs). This particular directivity
correction is based Bayless and Somerville [2013], which generally illustrates near-fault wedge-
shaped amplifications in forward-directivity regions.
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Figure 4.2: Representative generated spatial-temporal slip velocities (Case 1 and 4). Green
curves show slip velocity time histories at different stations on fault.
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Figure 4.3: a) Spatial distribution of 13 stations aligned with the fault trace (black line),
superimposed on a wavefield snapshot of fault-normal velocity for Case 1. b) Fault-normal
velocity time histories and c) pseudospectral velocities (PSV) of stations in the 5 cases described
in the text and in Table SS4.1.
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Figure 4.4: Computational domain size and depth profile of initial stress and friction. These
profiles illustrate the parameters labeled as “Depth dependent” in Table 4.1. Colored triangles
are locations of ground motion samplers used for subsequent analysis
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Figure 4.5: a) Along-strike averaged slip profiles versus depth and b) space-time plot of surface
slip velocities, in elastic and plastic cases. White dashed lines indicate travel-time curves of the
hypocentral S wave. White dotted lines indicate Rayleigh wave speed. Green dashed circles
enclose transient supershear phases occurring when ruptures reflect at free surface in both elastic
and plastic cases.
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Figure 4.6: a) Snapshots of fault-parallel and fault-normal velocities in elastic and plastic cases.
A white star locates the epicenter and a black solid line shows the fault trace. The stations are
3 km away from the fault trace. b) Time series of fault-parallel and fault-normal velocities of
stations denoted by colored triangles in Figure 4.6a1. Numbers on the right side indicate PGV
of each trace. c) Fourier amplitude spectra (FAS) of times series in Figure 4.6b. d) 5%-damping
pseudospectral velocities (PSV) corresponding to those time series.
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Figure 4.7: a) Fault-parallel and fault-normal accelerations at the distant (dark red rightmost
triangle in Figure 4.6a1) station in elastic and plastic cases. b) 5%-damping pseudospectral
acceleration of fault-parallel and fault-normal components in elastic and plastic cases. c) Fault-
parallel and fault-normal velocities and d) 5%-damping pseudospectral velocities in elastic
and plastic cases. Solid and dashed lines denote fault-normal and fault-parallel components,
respectively. Blue and orange colors denote elastic and plastic cases, respectively.
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Figure 4.8: a) Peak horizontal velocity (PGV) of the a1) elastic and a2) plastic cases, and their
a3) difference as a percentage. b) Pulse duration of the b1) elastic and b2) plastic cases, and
their b3) difference as a percentage.
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Figure 4.9: a) RotD50 maps of 5%-damping Pseudospectral acceleration (PSA) at a1) 0.5 s,
a2) 1.8 s and a3) 4.8 s in the elastic case. b) RotD50 5%-damping Pseudospectral acceleration
(PSA) at b1) 0.5 s, b2) 1.8 s and b3) 4.8 s in the plastic case
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Figure 4.10: a) Quasi-dynamic rupture model setup. Rupture-front time contours are plotted
on the fault plane, showing the prescribed constant rupture velocity (90% shear wave speed).
6 elastic and plastic cases with 3 variable prescribed stress drops are simulated. Resultant
magnitudes are labeled. b) Peak horizontal velocity (PGV) along the normal-to-fault lines at
along-strike distances of b1) 15 km, b2) 30 km and b3) 45 km from the epicenter.
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Figure 4.11: a) Fault roughness realization (α = 10−2.3 and minimum wavelength, λmin=200
m). b) Fault-parallel and fault-normal velocity snapshot at t = 11.6 s in elastic and plastic
cases. c) Fault-parallel and fault-normal velocity time series at stations denoted by triangles
in b1. The colors of subsequent synthetic recordings and stations are consistent hereafter. d)
Fourier amplitude spectra (FAS) of fault-parallel and fault-normal velocity time series in elastic
and plastic cases. e) Fault-parallel and fault-normal pseudospectral velocity (PSV) with a 5%
damping. Locations of station line in Figure 4.11b1 are identical to Figure 4.6a (3km to the
mean fault trace).
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Figure 4.12: a) Fault-parallel and fault-normal accelerations at the distant (dark red rightmost
triangle in Figure 4.11b1) station in elastic and plastic cases. b) 5%-damping pseudospectral
acceleration of Fault-parallel and fault-normal components in elastic and plastic cases. c) Fault-
parallel and fault-normal velocities and d) 5%-damping pseudospectral velocities in elastic
and plastic cases. Solid and dashed lines denote fault-normal and fault-parallel components,
respectively. Blue and orange colors denote elastic and plastic cases, respectively. e) Location
map for 2000 Tottori earthquake. f) Gray solid line indicates an observed fault-normal velocity
trace at a site of TTRH02 (borehole) in the 2000 Tottori earthquake.

191



Figure 4.13: a) Peak horizontal velocity (PGV) of the a1) elastic and a2) plastic cases, and their
a3) difference as a percentage in the rough fault scenario. b) Pulse duration of the b1) elastic
and b2) plastic cases, and their b3) difference as a percentage in the rough fault scenario.
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Figure 4.14: a) RotD50 maps of 5%-damping pseudospectral acceleration at a1) 0.5 s, a2) 1.8
s and a3) 4.8 s near a rough fault in the elastic case. b) RotD50 5%-damping pseudospectral
acceleration at b1) 0.5 s, b2) 1.8 s and b3) 4.8 s near a rough fault in the plastic case.
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Figure 4.15: a) Fault-parallel and b) fault-normal pseudospectral velocities in both elastic and
plastic cases in the self-healing rupture scenarios. c) Fault-parallel and fault-normal velocities at
the most distant station (dark red triangle in Figure 4.6a), and their pseudospectral velocities.
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Figure 4.16: a) Conceptual definition of rupture length parameter D, the length of the fault
that ruptures toward the site. b) The relationship between pulse periods and magnitudes of
10 strike-slip earthquakes. c) The relationship between pulse periods and D for 10 strike-slip
earthquakes.
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Supplementary Material

4.6.3 Text S4.1

As seen in Figure S4.1a (also Figure 4.5b), the earlier supershear slip pulse is concurrently

arrested by hypocentral S wave (white dashed lines in Figure S4.1). Seen in Figure S4.1b, a stress

shadow between preceding supershear slip pulse and main rupture front emerges, which even

lower than initial shear stress (also see Figure S4.1d). This stress shadow behind S wave is due to

a “forbidden regime” of rupture velocity that the rupture velocity between Rayleigh and shear

wave speed is not energetically permitted for Mode II crack. This shadow is more preeminent near

free than in depth (Figure S4.1d). Additionally, the free surface incurs a conversion from S wave

to P wave (Figure S4.1c and S4.1e), which increase shear stress leading to the aforementioned

very shallow supershear slip pulse. Thus, the rupture forbidden regime and free surface together

form the rupture behaviors preceding the main rupture front.
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Table S4.1: Model setup and discretization of 5 kinematic rupture models
Parameter name Value
Fault-parallel length 60 km
Fault-normal length 20 km
P wave speed 6,000 m/s
S wave speed 3,464 m/s
Density 2,670 kg/m3

Static slip 5 m
Viscosity 4×10−4s
Discretization Value
∆x 50 m
∆t 0.004s
Duration 25 s
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Table S4.2: Parameter values for the 5 models. For Cases 1 to 3, the rupture velocity and rise
time are set constant. In Case 4, the rupture velocity increases from 0.6 S wave speed at the
hypocenter to 0.9 S wave speed at the rightmost end of the fault. In contrast, the rupture velocity
in Case 5 decreases from 0.9 to 0.6 S wave speed. In both cases, the rise times are invariant.

Model name Rupture velocity (× S wave speed) Rise time (s)
Case 1 0.8 2
Case 2 0.9 2
Case 3 0.8 1
Case 4 Linearly increase from 0.6 to 0.9 1
Case 5 Linearly decrease from 0.9 to 0.6 1
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Figure S4.1: a) Fault-parallel and b) fault-normal velocity time series (at 3 km distance normal
to fault line) radiated from a long strike-slip fault. Rupture velocity and rise time are identical
to Case 1 in Figure 4.3. Numbers labeled at the ends of traces are peak amplitudes of the time
series in m/s
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Figure S4.2: a) Space-time plot of slip velocity at free surface in the elastic case (identical to
Figure 5b1). b) Space-time plot of shear stress at free surface in the elastic case. c) Slip velocity
snapshot at a shallow depth (0-3 km deep). d) Shear stress snapshot at a shallow depth (0-3
km). In foregoing figures, white dashed lines denote hypocentral S wave and white dotted lines
denote Rayleigh wave speed. e) Slip velocity and shear stress along strike at time = 4 s. A black
dashed line denotes the location of the hypocentral S wave front at free surface and when time is
4 s.
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Figure S4.3: Accumulated plastic strain on the free surface. The calculation of plastic strain
can be found in Appendix of Wang et al. [2019]
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Figure S4.4: a) Along-strike averaged slip profiles versus depth and b) space-time plot of
surface slip velocities on a rough fault plane, in elastic and plastic cases. White dashed lines
indicate travel-time curves of the hypocentral S wave. White dotted lines indicate the Rayleigh
wave speed. Blue dashed circles enclose an enhanced rupture feature associated with off-fault
plasticity.
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Figure S4.5: Rise time distribution on the fault plane in a) geometry-induced rupture pulse on
a planar fault, b) geometry-induced rupture pulse on a rough fault, and c) self-healing rupture
pulse on a planar fault.
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Figure S4.6: a) RotD50 maps of 5%-damping PSA at a1) 0.5 s, a2) 1.8 s and a3) 4.8 s near a
self-healing rupture in the elastic case. b) RotD50 5%-damping PSA at b1) 0.5 s, b2) 1.8 s and
b3) 4.8 s near a self-healing rupture in the plastic case.
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