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A Novel Method for Identifying a Parsimonious and Accurate 
Predictive Model for Multiple Clinical Outcomes

L. Grisell Diaz-Ramireza,b,*, Sei J. Leea,b, Alexander K. Smitha,b, Siqi Gana,b, W. John 
Boscardina,b

aDivision of Geriatrics, University of California, San Francisco, 490 Illinois Street, Floor 08, Box 
1265, San Francisco, CA 94143, United States

bSan Francisco Veterans Affairs (VA) Medical Center, 4150 Clement Street, 181G, San Francisco, 
CA 94121, United States

Abstract

Background and Objective: Most methods for developing clinical prognostic models focus on 

identifying parsimonious and accurate models to predict a single outcome; however, patients and 

providers often want to predict multiple outcomes simultaneously. As an example, for older adults 

one is often interested in predicting nursing home admission as well as mortality. We propose and 

evaluate a novel predictor-selection computing method for multiple outcomes and provide the 

code for its implementation.

Methods: Our proposed algorithm selected the best subset of common predictors based on the 

minimum average normalized Bayesian Information Criterion (BIC) across outcomes: the Best 

Average BIC (baBIC) method. We compared the predictive accuracy (Harrell’s C-statistic) and 

parsimony (number of predictors) of the model obtained using the baBIC method with: 1) a subset 

of common predictors obtained from the union of optimal models for each outcome (Union 

method), 2) a subset obtained from the intersection of optimal models for each outcome 

(Intersection method), and 3) a model with no variable selection (Full method). We used a case-

study data from the Health and Retirement Study (HRS) to demonstrate our method and conducted 

a simulation study to investigate performance.

Results: In the case-study data and simulations, the average Harrell’s C-statistics across 

outcomes of the models obtained with the baBIC and Union methods were comparable. Despite 

the similar discrimination, the baBIC method produced more parsimonious models than the Union 

method. In contrast, the models selected with the Intersection method were the most parsimonious, 

but with worst predictive accuracy, and the opposite was true in the Full method. In the 

simulations, the baBIC method performed well by identifying many of the predictors selected in 
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the baBIC model of the case-study data most of the time and excluding those not selected in the 

majority of the simulations.

Conclusions: Our method identified a common subset of variables to predict multiple clinical 

outcomes with superior balance between parsimony and predictive accuracy to current methods.

Keywords

backward elimination; Bayesian Information Criterion; prognostic models; survival analysis; 
variable selection

1. Introduction

One of the first steps in building a regression model is selecting a subset of predictors from a 

pool of many available predictors. Clinicians and researchers alike desire a model that 

explains the data in the simplest way–namely, a parsimonious model–with appropriate 

predictive accuracy. Parsimonious models offer the potential to save the time it takes to 

gather unnecessary predictors, and expense, either in visit time or in money.

Most current model development methods focus on accurate and parsimonious prediction of 

single outcomes. Popular methodologies that are easy to use and interpret include stepwise 

methods like backward elimination or criterion-based selection like the Akaike Information 

Criterion (AIC) [1] or the Bayesian Information Criterion (BIC) [2]. However, obtaining the 

most parsimonious and accurate model is more complex for the simultaneous prediction of 

multiple outcomes, a common scenario in clinical settings.

Several studies have demonstrated that older adults care not only about mortality, but also 

about their quality of life, specifically their ability to function independently [3,4]. In the 

realm of anticoagulation for atrial fibrillation, for example, clinicians may want to 

simultaneously predict risk of stroke and risk of a major gastrointestinal bleed [5,6]. In 

primary care, clinicians may want to balance risk of microvascular complications from 

diabetes against the risks of hypoglycemia and falls [7,8]. Yet, there is limited research on 

how best to develop clinical prognostic models that predict multiple outcomes 

simultaneously with accuracy and parsimony.

In this paper, we propose and evaluate a novel computing method for predictor selection in 

prognostic models of multiple clinical outcomes using the minimum average normalized 

BIC across outcomes, which we call the Best Average BIC (baBIC). To develop the 

proposed method, we use the Health and Retirement Study (HRS) data and a common set of 

health-related and demographic variables to predict time to: 1) Activities of Daily Living 

(ADL) Dependence, 2) Instrumental Activities of Daily Living (IADL) Difficulty, 3) 

Mobility Dependence, and 4) Death. We present the algorithm to compute the baBIC in both 

stepwise selection and LASSO settings. We compare the parsimony and predictive accuracy 

of this model with the models obtained using traditional approaches for variable selection in 

the clinical field. The proposed methodology provides a strategy to assess the incidence (i.e. 

probability of occurrence) of multiple outcomes simultaneously with appropriate predictive 

accuracy, while at the same time saving the clinical time and expense associated with 
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collecting unnecessary predictors. The data and SAS and R code for reproducing the results 

of this article are freely available at a Github repository [9].

This paper is organized as follows. Section 2 describes existing methods for variable 

selection and introduces the baBIC method. Section 3 presents the proposed baBIC 

methodology in details. Section 4 describes the case-study data and the implementation of 

our algorithm using these data. Section 5 presents the simulation study used to evaluate the 

performance of our method. The experimental results of the implementation of the baBIC 

method in the example data and simulations are described and discussed in Sections 6 and 7. 

Finally, we draw some conclusions in Section 8.

2. Background

Much of the research on variable selection for multiple outcomes has been done in the high-

dimensional multivariate regression setting, where the number of predictors and, sometimes, 

the number of outcomes exceed the number of observations. Under this setting, the 

implementation of shrinkage or regularization methods is common [10–13]. Other authors 

have addressed variable selection for multivariate modelling using a Bayesian framework 

[14–16]. However, in clinical settings, where the sample size is frequently large relative to 

the number of predictors and outcomes, a simpler and easy-to-implement procedure that 

does not require complex software solutions could be of great utility. In this way, a recent 

clinical study identified a common set of predictors across several adverse outcomes, one of 

them being a composite of the other outcomes [17]. This method allowed the optimization of 

clinical resources by focusing on a single-combined outcome.

More broadly, outside biomedical studies, other authors have approached the issue of 

common variable selection using variations of orthogonal forward regression. For example, a 

study in the engineering field described the extended forward orthogonal regression (EFOR) 

algorithm to select a parsimonious common-structured model that would save time and 

money in system analysis and design [18]. In another study, these authors also developed an 

improved methodology where a common-structured model was identified using random 

subsampling and a multifold modelling (RSMM) approach with a multiple orthogonal 

search (MOS) algorithm [19].

An obvious approach (which we label Individual Outcome method) to address the multiple 

outcomes problem is to simply select a different subset of variables to predict each of the 

outcomes using selection methods for single outcomes. Although straightforward, this 

method could be time-consuming, expensive (due to the cost of acquiring multiple 

predictors), and potentially lead to overfitting and high variability [10,13].

A slight modification to this approach is the Union method. In this method, we take the 

separate models from the Individual Outcome method, and then force the union of the 

predictors from each model into the predictor set for each outcome. Like the Individual 

Outcome method, the Union method has the advantage of being a simple approach, and, 

additionally, it allows patients and clinicians to focus on a common subset of variables that 

can accurately predict their outcomes of interest simultaneously. Nevertheless, the Union 
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method could lack parsimony as it includes all variables that predict all outcomes well, 

including those that are only important for some of the outcomes.

On the other hand, to improve parsimony one could envision a method that only selects 

those common predictors obtained in all individual subset selections, namely the Intersection 

method. This method will likely be more parsimonious than the Union method, as only the 

variables important for all outcomes might be selected, but having too few predictors may 

not adequately describe the relationship between outcomes and predictors.

Finally, in the clinical field, sometimes researchers do not perform variable selection and 

instead choose a list of predictors defined a priori based on clinical reasons (which we call 

the Full method). This would be the simplest approach; however, when there are many 

candidate predictors, it may produce a non-parsimonious model that has redundant 

predictors and shows overfitting problems.

Our proposed method, the Best Average BIC (baBIC) method, selects the best subset of 

common predictors for M outcomes according to the baBIC. We compare our method with: 

1) a method that selects individual subsets of predictors for each outcome (Individual 

Outcome method), 2) an enhanced method that creates a best subset of common predictors 

based on the union of individual subsets obtained in the Individual Outcome approach 

(Union method), 3) a method that selects a common subset based on the intersection of 

individual subsets (Intersection method), and 4) a method with no variable selection (Full 

method).

3. The Best Average BIC (baBIC) method

In the baBIC method, we averaged the normalized BIC (nBIC) across outcomes. 

Normalization was important to ensure that a change in BIC from a complex to a simpler 

model meant roughly the same across multiple outcomes; that is, the BICs were in a 

comparable scale. The nBIC was computed by dividing the absolute difference between the 

BIC of a particular model for a specific outcome and the BIC for the “best” individual model 

for that outcome by the difference between the BIC in the full model (i.e. with all candidate 

predictors) and the BIC in the best individual model:

nBIC k = BIC k − BIC best individual model
BIC full model − BIC best individual model

Where:

BIC k = − 2logL + k log number of uncensored observations

L: the maximized value of the likelihood function of the fitted model

k: number of parameters estimated by the fitted model

The nBIC thus ranges between 0 (for the best individual model) and 1 (for the model that 

contains all candidate predictors), with smaller being better. The nBIC can be larger than 1 
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for models that have a worse BIC value than the full model, but these models are typically 

not of interest in our setting. This normalization allowed us to average the nBIC across 

different outcomes and, at the same time, made this metric more interpretable.

Explicitly, we defined the baBIC for a model with k parameters as:

baBIC k = 1
M m i

M
nBIC k mtℎ outcome

Where:

m: enumerates the M total outcomes

The baBIC criterion has the flexibility to be incorporated into selection methods already 

available for single outcomes. Therefore, this method is not intrinsically linked to any 

particular method of variable selection and can be used to compare arbitrary sets of 

candidate models. In fact, a statistic similar to the baBIC was described in Wei and Billings’ 

work [19] mentioned previously in Section 2. These authors proposed a statistic called the 

weighted average BIC (WABIC) to determine the number of common model terms across 

multiple regression models after using their random subsampling and multifold modelling 

approach. In their work, the WABIC included two main terms corresponding to the WABIC 

for the training and validation data sets, which were defined in a similar way as our baBIC 

equation above. However, one important difference between baBIC and WABIC is that the 

latter requires choosing and optimizing a weight coefficient, which does not appear to be 

trivial.

In order to compute the nBIC for specific outcome and then the baBIC across outcomes, we 

need to obtain the BIC of the full model and the BIC of the best individual model. The BICs 

of the full and best individual models can be found using stepwise regression methods like 

backward elimination or more current selection methods like the Least Absolute Shrinkage 

and Selection Operator (LASSO) [20]. Comparison of various methods for variable selection 

including best subset, stepwise, and LASSO remains an area of active investigation in the 

statistical literature, with no one method dominating the others across a variety of settings 

[21].

In software implementations of stepwise regression, the BIC is output at each step of the 

selection process so it is straightforward to find the BIC for the full model as well as the best 

individual model BIC value (see further details in Section 4.3). Similarly, selection based on 

minimum BIC can be directly incorporated into the LASSO setting [22,23]. LASSO 

regression shrinks the regression coefficients toward zero by penalizing the regression model 

with the sum of the absolute coefficients (L1 penalty). A tuning parameter called lambda (λ) 

controls the strength of the L1 penalty, so selecting a good value for λ is critical. After doing 

LASSO selection, we can compute BIC for each possible λ (as shown above), select the one 

that gives the minimum BIC as the optimal λ, and extract the corresponding BIC as the BIC 

of the best individual model. The BIC of the full model corresponds to the model with λ=0.
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4. Implementation of the baBIC method in the case-study data

4.1. Description of the case-study data

To demonstrate our baBIC method, we created a nationally representative cohort of 5,531 

community-dwelling seniors enrolled in the HRS, who were 70 years old or older at the time 

of their baseline interview in 2000. The HRS is an ongoing longitudinal survey of a 

representative sample of all persons in the United States over age 50 that examines changes 

in health and wealth [24]. Before each interview, HRS participants are provided with a 

written informed consent information document and give oral consent for their participation 

in the HRS. The institutional review boards of the University of California, San Francisco 

approved the present study.

The pool of predictors included 39 health-related and demographic categorical variables 

measured at baseline. We used 4 clinical outcomes encompassing 14 years of follow-up: 1) 

time to first ADL dependence (including five ADLs: bathing, dressing, toileting, 

transferring, and eating), 2) time to first IADL difficulty (including two IADLs: managing 

money and medication), 3) time to first mobility dependence, and 4) time to death.

The BICs used in the baBIC method were obtained from survival models. For time to death, 

we fitted Cox proportional hazards regression models [25]. For times to first ADL 

dependence, IADL difficulty, and mobility dependence, we fitted Fine and Gray competing-

risk regression models to appropriately account for the risk of death [26].

4.2. Measures used to evaluate parsimony and predictive accuracy

In the final models, we evaluated parsimony with the number of predictors selected, and we 

measured predictive accuracy using Harrell’s C-statistic [27]. Harrell’s C-statistic is a 

goodness of fit measure for survival models, and it is calculated based on risk scores 

obtained after fitting the model. If the model has good predictive accuracy, subjects with 

higher risk scores have a shorter time-to-event. To compute the C-statistic, subjects are 

grouped in pairs and classified as concordant or discordant. Briefly, in concordant pairs, 

subjects with the event of interest have higher risk scores and shorter time-to-event. Then, 

the C-statistic is computed as the proportion of concordant pairs among all pairs. A value of 

C-statistic = 0.5 indicates a model with non-informative prediction, whereas C-statistic = 1 

indicates perfect prediction.

Reporting predictive accuracy in the same data set used to develop the model can lead to an 

overestimate of model performance, termed “model optimism.” A well-regarded approach 

[28,29] is to estimate and correct for the degree of optimism using bootstrapping. This is 

strongly preferable to single split sample validation and somewhat preferable to cross-

validation.

We generated 500 bootstrap samples with replacement from the case-study data, each with 

the same sample size. We reported the average number of predictors with their 2.5th and 

97.5th percentiles. We computed the bootstrap-based optimism-corrected C-statistic as 

follows:
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1. Obtain final model and corresponding C-statistic on the case study data, namely 

C-statistic-apparent

2. Obtain final models of each bootstrap sample and compute the C-statistic of each 

bootstrap model, namely C-statistic-boot

3. Compute the C-statistic of each bootstrap model evaluated in the original case-

study data, namely C-statistic-original

4. Calculate the optimism in the fit of each bootstrap sample as:

C-statistic-boot - C-statistic-original

5. Average the optimism across 500 bootstrap sample, namely O

6. Compute the optimism-corrected C-statistic of the case-study data as:

C-statistic-apparent - O

We then computed the location-shifted bootstrap confidence intervals of the optimism-

corrected C-statistic by subtracting the optimism estimate from the 2.5th and 97.5th 

percentiles of the C-statistic-bootstrap distribution [30].

4.3. Implementation of the baBIC method

We compared the bootstrap average number of predictors and the optimism-corrected C-

statistic of the models obtained with the Individual Outcome and Union methods using BIC 

backward elimination vs. LASSO selection based on optimal λ at the minimum BIC. We 

found that backward elimination based on minimum BIC produced more parsimonious 

models than LASSO selection, while maintaining very similar predictive accuracy 

(Appendix A). Consequently, we chose the BIC backward elimination to further illustrate 

the baBIC method in this setting.

We implemented the baBIC algorithm using BIC backward elimination as follows. The 

method started with all 39 (p) predictors and selected the subset of 38 (p-1) predictors with 

minimum baBIC. To select the subset of predictors with minimum baBIC, we fitted for each 

outcome all possible combinations of predictors obtained by removing 1 predictor at a time. 

We then computed the average of the nBICs across the 4 outcomes within each subset of 

predictors and selected the subset of 38 (p-1) with the minimum baBIC (Fig 1). The same 

process continued until there were only 2 variables left (i.e. “Age decile groups” and 

“Female”), which were forced in. Lastly, the method selected the final subset of predictors 

that had the minimum baBIC across all subsets of different number of predictors from p-1 to 

2 (Fig. 2).

For the comparative methods, Individual Outcome, Union, and Intersection methods, we 

followed a similar approach as described above. The only difference being that the backward 

elimination was based on the minimum BIC for each individual outcome instead of the 

minimum baBIC across the 4 outcomes. We then obtained the final models of the Union and 

Intersection methods. The Union method produced a model that contained all the predictors 

that were in at least 1 of the 4 best subsets selected by the Individual Outcome method, 

whereas the model obtained by the Intersection method contained only a few predictors 
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selected in all four outcomes (Fig. 3). Fig. 4 shows the selection performance in terms of the 

baBIC and Individual Outcome selection against the number of predictors using the case-

study data.

5. Simulation study

We conducted a simulation study to assess the performance and feasibility of the proposed 

baBIC method in the selection of a common subset of variables to predict multiple clinical 

outcomes with accuracy and parsimony.

The simulated survival times were generated using Harden and Kropko [31] method to 

simulate survival data for the Cox model. In brief, this method generates at each iteration of 

the simulation a unique baseline hazard by fitting a cubic spline to randomly-drawn points. 

This yields baseline hazards that can vary considerably and consequently simulated data 

with great heterogeneity. We used R version 4.0.3 random number generator with the default 

Mersenne Twister algorithm. The input seed was “20210109.”

We considered three data-generating mechanisms or scenarios. For each of the scenarios, the 

values of the non-zero β were set to be equal to those estimated in the case-study data. In 

scenario 1, for all the outcomes, we assumed the β=0 except for the ones corresponding to 

the 15 predictors selected with the baBIC method for the case-study data. On the other hand, 

in scenario 2, for each outcome we assumed the β=0 except the ones corresponding to the 

predictors selected with each Individual Outcome method for the case-study data. For 

example, to simulate time to first ADL dependence, we used β from the 10 predictors 

obtained with the Individual ADL Outcome method and set rest of β=0; whereas to simulate 

time to death we used 16 non-zero β and set rest of β=0 (Fig. 3). Finally, in scenario 3 we 

used the β corresponding to all 39 candidate predictors, thus all the β were non-zero. 

Appendix B shows the relationships between predictors and outcomes under the three 

scenarios.

The estimated betas used in the three scenarios were obtained from fitting Cox models 

instead of Competing-risk regression models. To do this, we used a modified version of the 

case-study data where those who died were treated as being censored at the longest possible 

time that any respondent was followed (i.e. 14 years) [32]. Of note, we obtained the same 

final subset of predictors for the case-study data set in all selection methods with and 

without this simplification.

Within each scenario we simulated 4 survival times with the same censoring as the case-

study data (i.e. ADL= 66.55%, IADL=64.98%, WALK=81.90%, DEATH=31.87%) and with 

25% censoring. For the three scenarios, the data were simulated on 5,531 respondents which 

was the sample size of the case-study.

We generated two sets of 500 training and 500 test simulated data for each scenario with the 

case-study censoring and 25% censoring. The training set was used for model selection and 

the test set was used to assess predictive accuracy. This number of simulations gave us a 

good balance between feasible computing time and acceptably small Monte Carlo Standard 
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Errors (SEs). After obtaining the simulated survival times, each simulated outcome data set 

was merged with the design matrix of 39 predictors of the case-study data set.

Appendix C shows the medians [IQR] and percentages of incidence for the marginal 

distributions of the survival outcomes in the case-study data and across simulations. As 

expected, the marginal distributions of the outcomes across scenarios showed great 

heterogeneity since at each iteration of the simulation we used a unique baseline hazard with 

a variety of shapes (e.g. unimodal, multimodal, monotonically increasing or decreasing) 

[31]. Fig. 5 and Fig. 6 show the predicted cumulative incidence by outcome at the mean of 

the predictors selected with the baBIC method in the case-study data using simulations of 

Scenario 1. The predicted cumulative incidence for the other two scenarios are shown in the 

Appendix D (Fig. D.1, D.2, D.3, D.4).

For each training data, we obtained the final models corresponding to the baBIC, Individual 

Outcome, Union, and Intersection methods. Then, each of the final models was fitted on the 

test set, and the averages, Monte Carlo SEs, and 2.5th and 97.5th percentiles of the Harrell’s 

C-statistic computed across simulations (adding the Full method). For the number of 

predictors, we computed the averages, Monte Carlo SEs, and 2.5th and 97.5th percentiles 

over the 500 training data sets for each model. Additionally, for the final models obtained 

with the baBIC method in the simulations, we calculated the percentage of times that each of 

the variables selected with the baBIC for the case-study data appeared in the simulations, 

and the percentage of times that each of the variables that were not selected with the baBIC 

for the case-study data appeared in the simulations. Finally, we computed the average 

percentage of inclusion of predictors selected and not selected with the baBIC for the case-

study data, and the percentages of models with 3 to 10+ selected predictors.

All the analyses were performed with SAS/STAT® 15.1 (Copyright © 2016 by SAS Institute 

Inc., Cary, NC, USA) and R version 4.0.3 (Copyright © 2020 The R Foundation for 

Statistical Computing). The data and SAS and R code for reproducing the results of this 

article are freely available at a Github repository [9].

6. Results

Fig. 3 shows the selection of the common subset of predictors of the Union method using the 

predictors obtained in the Individual Outcome method for the case-study data. The number 

of predictors selected in the Individual Outcome method ranged from 7 to 16. The model 

obtained with the Union method, which contained all the predictors found in at least 1 of the 

4 best individual models, had 23 predictors, and most of them came from 1 or 2 individual 

models. By contrast, the model obtained with the baBIC method with 15 predictors was 

more parsimonious than the one selected with the Union method, and all the predictors 

selected by the baBIC were also obtained with the Union method. The Intersection method 

that selects a final subset of predictors that were in all four individual subsets produced the 

most parsimonious model with only 3 predictors, from which 2 of them were forced by all 

selection methods into the final models.
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The results above were also confirmed in the case-study bootstrap samples and simulation 

study. In these data, the Union method consistently produced models with a higher average 

number of predictors than the baBIC method, whereas the Intersection method always 

produced the most parsimonious models (Fig. 7). As expected, regardless of the selection 

method the number of predictors obtained was significantly smaller than the initial pool of 

candidate predictors in the Full method. The difference in the average numbers of predictors 

obtained between the Union and baBIC methods was more subtle in scenario 1 where the 

simulated survival times were generated using the common set of predictors from the baBIC 

model in the case-study data (Appendix E; e.g. case-study censoring Union method 15 

[2.5th, 97.5th : 12–17] vs. baBIC method 10 [2.5th, 97.5th : 7–13]; 25% censoring Union 

method 15 [2.5th, 97.5th: 14–16] vs. baBIC method 13 [2.5th, 97.5th: 11–15]). In contrast, 

scenario 2 and 3–where the survival times were obtained using the individual best sets of 

predictors or all the 39 candidate predictors of the case-study data–showed a more evident 

difference between the Union and baBIC methods.

In the case-study bootstrap data and simulations, the C-statistics of the models obtained with 

the Individual Outcome, Union, and baBIC methods were clinically similar within each 

outcome. By contrast, the final models of the Intersection and Full methods had the lowest 

and highest C-statistics respectively (Fig. 8). The average optimism-corrected C-statistics 

across outcomes of the Union and the baBIC methods were very similar in the case-study 

data (both 0.65). Likewise, in the simulations the average predictive accuracies of the Union 

and baBIC methods were alike regardless of the scenario and censoring (e.g. scenario 2 with 

case-study censoring, Union method: 0.62 vs. baBIC method 0.61) (Appendix F).

When using the baBIC method in the simulations, many of the predictors present in the 

baBIC model of the case-study data were correctly identified. On average in scenario 1, this 

method selected the same predictor obtained with the baBIC in the case-study data 58.3% 

and 83.9% of the times for case-study censoring and 25% censoring respectively. In 

simulation scenario 2, the baBIC method selected on average these predictors 50.5% of the 

times for case-study censoring and 64.1% of the times for 25% censoring; whereas in 

scenario 3 these percentages were 34.4% and 56.7% respectively. Of the 15 predictors 

selected by the baBIC method in the case-study data, a range of 3 to 15 of these predictors 

were present in the baBIC models of the simulations, and the percentage of models with 10 

or more of these predictors ranged from 2.6% (scenario 3, case-study censoring) to 99.8% 

(scenario 1, 25% censoring). Finally, the percentage of predictors not included in the baBIC 

model of the case-study but present in the baBIC models of the simulations was less than 

19% across scenarios (Table 1).

7. Discussion

The baBIC selection method produced a model with a good balance between parsimony and 

predictive accuracy. In both the case-study data and the simulations, this model was more 

parsimonious than the one obtained with the Union method or the Full method, and it 

showed minimal loss of predictive discrimination, as opposed to the Intersection method. A 

good compromise between parsimony and accuracy is important since models that are 

simpler to understand and explain and that predict outcomes well are more likely to be 
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implemented. Models with too few predictors cannot adequately describe the relationship 

between outcomes and predictors, whereas those with too many predictors can cause 

overfitting problems. Moreover, as the number of predictors in the model increases, the time 

and cost of collecting them could also increase. From a practical perspective, busy clinicians 

are unlikely to use a prognostic model with a daunting list of predictors to collect and enter. 

Although we did not formally incorporate a penalization associated with the cost of the 

predictors, other authors have explicitly balanced predictive accuracy against cost of the 

predictors [14,33].

In scenario 1, where the simulated survival times were generated using only the common set 

of predictors from the original baBIC model, the simulated baBIC models were still more 

parsimonious than those obtained with the Union method (by about 2–5 predictors on 

average). The selection method intrinsically favored the predictors that were used during the 

data-generating mechanism. Consequently, during the individual selection process, the 4 

outcomes ended up having more common predictors, which in turn reduced the overall 

number of predictors selected with the Union method. On the other hand, scenario 2 

assumed that each outcome had an individual best set of predictors, whereas scenario 3 

incorporated all 39 candidates predictors for all outcomes. This markedly increased the 

number of predictors in the simulated models with the Union method while maintaining 

comparable parsimony in the simulated baBIC models to those from scenario 1.

In the simulations, we found that the baBIC method performed well by selecting on average 

a high percentage of the predictors included in the final baBIC model of the case-study data, 

while keeping a low percentage of the predictors that were not in the baBIC model. Overall, 

scenarios with 25% censoring included more predictors (both selected and not selected in 

the baBIC model of case-study data). This suggested that we had higher power in the 

selection of the predictors used during the data-generating mechanism with lower censoring 

rates (i.e. 25% censoring). Others have found similar results [34].

As noted in Section 2, several studies have used penalized regression under the high 

dimensional multivariate regression setting, where the numbers of predictors and outcomes 

may be large compared to the sample size. Regularization methods are particularly suitable 

for the study of genetic pathways or genome-wide association analysis, where high 

dimension, low sample size settings are very common [13,35,36]. In clinical settings, 

researchers are usually interested in interpretable effect estimates in addition to good 

predictive performance. Regression coefficients estimated by regularization schemes like 

those that are an extension of LASSO can be biased, making their interpretation more 

difficult [37]. Furthermore, in our case-study data we obtained less parsimonious models 

with the Individual and Union LASSO selection methods compared to backward 

elimination, while maintaining very similar predictive accuracy. Likewise, in an extensive 

simulation study, Hastie et al. [21] have recently noted that neither LASSO nor best subset 

selection nor stepwise regression was dominant across a variety of problem settings, and that 

no method had a large difference in variation explained. Thus, they suggested favoring 

methods that are easy to compute.
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Consequently, we believe that in the clinical practice where the sample size is usually large 

compared with the number of outcomes and predictors, our baBIC method, which extends 

the use of popular (non-regularized) variable selection methods to the multivariate settings, 

has the benefit of easier implementation and interpretation as well as good predictive 

performance and parsimony.

It is worth mentioning that our method focused on the selection of a common set of variables 

to predict multiple outcomes accurately based on the assumption that all the outcomes 

should be associated (to some degree) with some of the predictors used in the pool of 

candidate predictors. We envision our method to be particularly useful in the clinical field 

where practitioners collect a number of health-related and demographic variables known to 

be important in the prediction of related outcomes. The extent to which the correlation 

between the outcomes impacts the selection of the predictors could be investigated in future 

projects. In this way, several studies have developed methods for variable selection explicitly 

accounting for the correlation among multiple outcomes [11,12,15,35,36].

In this study, we aimed to select a common subset of variables from a pool of many available 

predictors rather than identify a final predictive model. Thus, we assumed that all aspects of 

model building are fixed, except the selection of the predictors. In the actual application of 

this method, researchers will need to consider the rest of the aspects involved in model 

building; for example, possible inclusion of non-linear terms, interaction and multi-

collinearity between predictors, and for survival models, validity of the proportional hazard 

assumption. Additionally, it will be important to assess the performance of the final model 

using both calibration and discrimination techniques, as well as conducting model validation 

by using a training-test split, internal cross validation (bootstrapping), and external 

validation [28]. In a real life application, our method could be fully incorporated during the 

process of model development and validation.

There are some limitations to our baBIC method. In the case-study data with a sample size 

of 5,531 observations, 4 outcomes, and 39 candidate predictors, the baBIC method took 

approximately 19 hours to complete. This is mainly because of the computational constraint 

of fitting hundreds of competing-risk regression models. Competing risk models have longer 

convergence time than Cox models. For example, a competing-risk model with 39 predictors 

and 5,531 observations takes approximately 40 seconds to converge, whereas a Cox model 

only takes less than 1 second. Thus, when we fit hundreds of Cox models in the baBIC 

method, the run time reduced significantly to 21 minutes. We recommend that for 

exploratory and simulations studies researchers use Wolbers [32] approximation to the 

Competing-risk setting to fit Cox models instead. In fact, as mentioned previously for model 

selection we obtained the same predictors using Competing-risk regression or Cox 

regression. Additionally, to avoid instability of selection, the number of candidate predictors 

relative to the effective sample size is an important consideration. A ratio of 50 events per 

variable (EPV) has been suggested by some authors for reliable selection [38]. Finally, our 

method will be more useful in a setting where the number of predictors and outcomes are 

small to moderate (e.g. less than 10 outcomes and less than 50 candidate predictors) which is 

usually the case in the clinical field. In high-dimension setting, where the number of 
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predictors and outcomes is much larger than the sample size, regularization methods are 

preferable.

8. Conclusions

Our baBIC method implemented a straightforward approach to obtain a common set of 

variables for the prediction of several outcomes. Researchers will be able to use our 

algorithm and code to develop prognostic models that are both accurate and parsimonious, 

potentially saving the clinical time and expense associated with gathering additional 

unnecessary predictors.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Overview of Algorithm for the Selection of Subset of (p-1) Predictors with Minimum 

Average Normalized BIC across 4 Outcomes.

ADL: time to first Activities of Daily Living (ADL) dependence.

DEATH: time to death.

IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.

nBIC: normalized Bayesian Information Criterion.

p: number of predictors.
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Subset1, Subset2, Subset37: combination of predictors obtained by removing 1 predictor at a 

time.

*Subset37: Maximum number of subsets of predictors fitted in the first step of backward 

elimination. In the first step, the full model has 39 predictors, and there are 2 predictors that 

are forced into all models. Thus, the maximum number of subsets fitted by removing one 

predictor at a time is 37 since the initial pool contains 37 available predictors.

WALK: time to first mobility dependence.
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Fig. 2. 
Overview of Algorithm for the Selection of Final Subset of Predictors with Minimum 

Average Normalized BIC across 4 outcomes.

nBIC: normalized Bayesian Information Criterion.

p: number of predictors.
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Fig. 3. 
Subsets of Predictors selected with Individual Outcome, Union, baBIC, and Intersection 

Methods using the Case-study Data.

ADL: time to first Activities of Daily Living (ADL) dependence.

baBIC Method: best Average BIC method, selects best subset of predictors based on the 

minimum average normalized BIC across the 4 outcomes.

BIC: Bayesian Information Criterion.

COGDLRC3G: number of words from 10-word list recalled correctly after 5 minutes.
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dAGE: age deciles groups.

DEATH: time to death.

DIABETES: whether has diabetes with and without medicine.

DRIVE: whether able to drive.

EDU: education 12+ years.

EXERCISE: exercise frequency.

FEMALE: whether female.

HEARAID: whether wears hearing aid.

HEARTFAILURE: whether has heart failure or others heart problems (e.g. angina, heart 

attack, heart disease).

HYPERTENSION: whether has hypertension.

IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.

INCOTINENCE: whether has incontinence.

Individual Outcome Method: selects final subset of predictors based on the minimum BIC 

for each individual outcome.

Intersection Method: selects final subset of predictors that were in all 4 final subsets based 

on the minimum BIC for each individual outcome.

LUNG: chronic lung disease.

MSTAT: marital status.

OTHERARM: having difficulty reaching above shoulder.

OTHERCLIM3G: having difficulty climbing stairs.

OTHERLIFT: having difficulty with lifting weights over 10 pounds.

OTHERPUSH: having difficulty with pushing large objects.

OTHERSIT: having difficulty with sitting for 2 hours.

OTHERSTOOP: having difficulty with stooping, kneeling, or crouching.

OTHERWALK: having difficulty with walking one block or in the room.

p: number of predictors.

qBMI: quintile groups.

SMOKING: whether smokes.

Union Method: selects final subset of all the predictors that were in at least 1 of the 4 final 

subsets based on the minimum BIC for each individual outcome.

VOLUNTEER: whether helps as volunteer.

WALK: time to first mobility dependence.
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Fig. 4. 
Selection with the baBIC Method and Individual Outcome Methods in the Case-study Data.

ADL: time to first Activities of Daily Living (ADL) dependence.

baBIC Method: best Average BIC method, selects best subset of predictors based on the 

minimum average normalized BIC across the 4 outcomes.

BIC: Bayesian Information Criterion.

DEATH: time to death.

IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.
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Individual Outcome Method: selects final subset of predictors based on the minimum BIC 

for each individual outcome.

nBIC: normalized Bayesian Information Criterion.

WALK: time to first mobility dependence.
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Fig. 5. 
Predicted Cumulative Incidence by Outcome at the Mean of the Predictors Selected with the 

baBIC Method in the Case-study Data using simulations (lighter color) of Scenario 1 with 

Case-study Levels of Censoring (darker color: mean of simulations).

ADL: time to first Activities of Daily Living (ADL) dependence.

Case-study levels of censoring: ADL= 66.55%, IADL= 64.98%, WALK=81.90%, 

DEATH=31.87%.

DEATH: time to death.
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IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.

Scenario 1: simulated data generated using 15 non-zero coefficients corresponding to the 

common subset of predictors obtained with the baBIC method in the case-study data.

WALK: time to first mobility dependence.
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Fig. 6. 
Predicted Cumulative Incidence by Outcome at the Mean of the Predictors Selected with the 

baBIC Method in the Case-study Data using simulations (lighter color) of Scenario 1 with 

25% Censoring (darker color: mean of simulations).

ADL: time to first Activities of Daily Living (ADL) dependence.

DEATH: time to death.

IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.

Scenario 1: simulated data generated using 15 non-zero coefficients corresponding to the 

common subset of predictors obtained with the baBIC method in the case-study data.
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WALK: time to first mobility dependence.
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Fig. 7. 
Comparison of Number of Predictors Selected (mean, 2.5th -97.5th percentiles) Across Case-

study Bootstrap Data and Simulations with Case-study Levels of Censoring and 25% 

Censoring.

ADL: time to first Activities of Daily Living (ADL) dependence.

baBIC Method: best Average BIC method, selects best subset of predictors based on the 

minimum average normalized BIC across the 4 outcomes.

Case-study levels of censoring: ADL= 66.55%, IADL= 64.98%, WALK=81.90%, 

DEATH=31.87%.
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DEATH: time to death.

BIC: Bayesian Information Criterion.

DEATH: time to death.

Full Method: includes all 39 candidate predictors of the case-study data.

IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.

Individual Outcome Method: selects final subset of predictors based on the minimum BIC 

for each individual outcome.

Intersection Method: selects final subset of predictors that were in all 4 final subsets based 

on the minimum BIC for each individual outcome.

Scenario 1: simulated data generated using 15 non-zero coefficients corresponding to the 

common subset of predictors obtained with the baBIC method in the case-study data.

Scenario 2: simulated data generated using the outcome specific non-zero coefficients 

corresponding to those obtained with the Individual Outcome method in the case-study data.

Scenario 3: simulated data generated using non-zero coefficients for all 39 candidate 

predictors using estimates from the case-study data.

Union Method: selects final subset of all the predictors that were in at least 1 of the 4 final 

subsets based on the minimum BIC for each individual outcome.

WALK: time to first mobility dependence.
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Fig. 8. 
Comparison of Mean Harrell’s C-statistic Across Case-study Bootstrap Data and 

Simulations with Case-study Levels of Censoring and 25% Censoring.

ADL: time to first Activities of Daily Living (ADL) dependence.

baBIC Method: best Average BIC method, selects best subset of predictors based on the 

minimum average normalized BIC across the 4 outcomes.

BIC: Bayesian Information Criterion.
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Case-study levels of censoring: ADL= 66.55%, IADL= 64.98%, WALK=81.90%, 

DEATH=31.87%.

DEATH: time to death.

Full Method: includes all 39 candidate predictors of the case-study data.

IADL: time to first Instrumental Activities of Daily Living (IADL) difficulty.

Individual Outcome Method: selects final subset of predictors based on the minimum BIC 

for each individual outcome.

Intersection Method: selects final subset of predictors that were in all 4 final subsets based 

on the minimum BIC for each individual outcome.

Scenario 1: simulated data generated using 15 non-zero coefficients corresponding to the 

common subset of predictors obtained with the baBIC method in the case-study data.

Scenario 2: simulated data generated using the outcome specific non-zero coefficients 

corresponding to those obtained with the Individual Outcome method in the case-study data.

Scenario 3: simulated data generated using non-zero coefficients for all 39 candidate 

predictors using estimates from the case-study data.

Union Method: selects final subset of all the predictors that were in at least 1 of the 4 final 

subsets based on the minimum BIC for each individual outcome.

WALK: time to first mobility dependence.
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