UCLA

Papers

Title
Campaignr: A Framework for Participatory Data Collection on Mobile Phones

Permalink
https://escholarship.org/uc/item/8v01m8wj

Authors

Joki, August
Burke, Jeffrey A
Estrin, D

Publication Date
2007-10-26

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/8v01m8wj
https://escholarship.org
http://www.cdlib.org/

Campaignr
A Framework for Participatory Data Collection on Mobile Phones

No Author Given

No Institute Given

Abstract. Participatory sensing takes advantage of the pervasive nature of mobile
phones to collect data about the urban environment using the available sensors. Cam-
paignr makes collecting this data as simple as a few button pushes. It provides access
to the sensors in a robust and flexible way that hides the complexities of the mobile
embedded phone environment. This paper describes the design choices and provides
some numerical evaluation of Campaignr. Campaignr has been and is being actively
used as the data collection method for many research projects, both internally and
externally.

1 Introduction

Data. collection for the urban environment is difficult. The user, although a veoluntary par-
ticipant, does not want to be encumbered by heavy, expensive, special purpose equipment
that constantly gets in the way of normal behavior. Additionally, high variability and nolse
makes the use of static sensors difficult. Scientists interested in being able to examine specific
information generated by users have previously had to expend significant effort creating ap-
plications and/or designing hardware that are used only a handful of times at most, and are
often difficult to modify when new types of data are required[1]. What is needed iz an appli-
cation that requires no programming for the party interested in the data, is flexible enough
to change functionality with minimal effort, is robust enough to handle non ideal conditions,
and supports a wide range of sensing modalities.

This paper presents Campaignr, a software framework for mobile phones that enables own-
ers of smartphones (specifically Symbian S60 3rd Edition phones) to participate in data gath-
ering campalgns. Campaigns are set up by individuals or groups of people that are interested
in exploring a specific piece of the urban environment [2]; both social[3] and environmental[4]
concerns. Campailgnr can upload the data collected by a smart mobile phone to any online
storage that supports a specific XML format, or can store the information on the phone's
memory for later retrieval when internet connectivity is unavailable. Because Campaignr is
designed to work without a connection it can support data collections In areas of poor or
no connectivity, enabling collection in more rural or wilderness settings. Campaignr provides
easy access to the hardware sensors such as camera, microphone, cell tower information, and
GPS (both internal and external via bluetooth). It also can access metadata that provides
relevant and useful information, such as the current time of the phone, the globally unique
serlal number of the phone, and user generated text input. A campalgn is defined by an XML
file that contains options on which sensors to collect, how to collect data from those sensors,
where to put the collected data, and how the user interface behaves. For example an author
of a campalgn could have the user push a button on the phone to have Campaignr take a
picture that the user can frame in a viewfinder, and attach the time and location coordinates
the picture was taken and then upload it to SensorBase[5]. Or, with just a few quick changes
of the XML, the author can have Campaignr automatically take the picture every minute

without involving the user after the campaign has been started on the phone. No changes to
the underlying code are needed. No recompiling, testing, debugging, or reinstalling is needed,
except for putting the modified XML campaign file back on the phone. Development is signif-
icantly harder than for desktop applications as the smartphone is an embedded environment
with its own language, run time environment, and a more involved process of getiing the code
guccessfully installed onto the phones[d].

The next section expands on why Campaignr was written from the ground up, rather than
making use of preexisting technology, the third section explains how Campalgnr works, the
fourth section discusses related work, the fifth section presents data relating to the operation
of Campaignr, and the sixth section discusses the direction that Campaignr is headed.

2 Motivation

The state of the art when it comes to using mobile phones for taking measurements of the
environment, be it urban or rural is largely undeveloped. Static, limited-configurability, and
small number of sensing modalities is the norm. This often makes the applications essentially
“one-offs” because 1t 1s easler to create another application to suit the needs of the new sensing
objective than modify the old application. Which leads to reimplemented code, reimplemented
ideas, and wasted time spent creating applications from scratch.

There are several programming languages available for writing software for mobile phones.
However those languages are limited in both features and performance. J2ME! is a version of
Java specifically designed for resource-constrained devices such as mobile phones. But J2ME is
designed for what are called “feature phones”, mobile phones that have very limited hardware
and software (i.e. not smartphones). Since the common base is so low, the more advanced
features needed by richer data collection campalgns are either implemented in optional APIs
that are not supported in all phones or poorly implemented, or are not supported by any part
of J2ME at all. One example of a feature that is useful to have and is a basic part of all GSM
phones, is the ID of the cell tower that the phone is currently connected to. It is currently
impossible to obtain the cell tower ID in J2ME without having to write custom Symbian C-++
and socket code. The efficiency of J2ME is, as well, inherently lower than natively compiled
Symbian code; the Java byte code is interpreted and then run through the JVM. J2ME does
provide the advantage of being able to be run across multiple operating systems to reach a
wider number of phones. However, trying to make a complex application work using the core
provided J2ME APIs may not be possible.

Python is another language that is able to leverage previous experience on the mobile
embedded device platform. However i, is not as feature rich nor as eflicient as native Symbian
C+H+ code. Python, as implemented on Symbian (and on the desktop), iz a wrapper for calls to
the native code base. That makes it much easier to write code and provides more functionality
than does J2ME. However everything in Python for S60 phones[7] iz implemented directly
on top of Symbian classes. One example is base-64 encoding. The function is implemented in
pure Python and will take a longer amount of time. However the learning curve for Python
is lower and provides a simpler programming model. Taking a picture with the camera takes
3 lines of Python code, but takes multiple large classes and lots of testing and debugging in
Symbian C++ to provide the same functionality.

Gathering information about the urban environment, be it detailed location traces to use
in pollution exposure assessment, or hazardous sidewalks, or food eaten, holds transformative
for many fields of research from urban planning to medicine. So far there have been no easy

! Java 2 Platform, Micro Edition

FileListview

Internal WEmery.

=

Fig. 1. The flow control diagram for Campaignr. Single line arrows are control lines and double line
arrows are data lines. Campaignr starts with reading the XML files from memory and displaying
a list of them. Then once one is selected, the main controller will create all the other parts based
on what is in the XML. Data is then collected from the sensors, stored in the database, and then
uploaded over WilFi or EDGE.

ways to take advantage of the commodity sensors and communication devices that people
carry around with them all day, every day. These small, well packaged hardware devices
have already proved invaluable in information exchange. The basic mobile phone inherently
provides two sensing modalities and a means to extract readings. The microphone can record
audio, the cell tower can provide coarse location, and the radio can send out information.
Many modern mobile phones also provide one more sensing modality by including a camera.
In addition to the hardware sensors, there are also metadata that are easy to collect such as
the current time and the International Mobile Equipment Identity? (IMEI) number of the
mobile phone. It is also possible to prompt the current user of the mobile phone to provide
information, be it text that they manually enter or a choice from a list of options. Mobile
phones will continue to become more sophisticated providing more reasons and options with
which to collect data.

Campaignr has to provide access to all the possible sensors and has to work well in
challenging network environments without needlessly exposing the user to the complexities of
mobile phone programming or endlessly pestering the user for input or direction. People who
have had no programming experience should also be able to take the same advantage of the
sensing capabilities offered by a mobile phone as those versed in mobile phone programming.
Campaignr is completely controlled by a campaign XML file that tells it what sensors to use,
how to capture the data, and where and how to upload the data. The XML file can also
control the look and function. XML was chosen because it is easy for a human to read and
create or modify and yet also easy for a machine to generate and parse. XML’s usability has
already proven itself on the web.

3 Implementation

Campaignr is written in Symbian C+4++ for the Symbian Operating System, which predates
the ANSI C++ standard. This helps, in part, to explain why Symbian C-+- is hard to pick up,

2 The IMEI number is globally unique amongst all mobile phones. No two phones can have the same
number, making it a useful way to distinguish phones.

] Sample. xml |

«<Ccampaign name="Sample™ startOnLoad="trus"=

<hide_status/=

=hide_options/=

<dutomatics

S =sensor type="image"=
<s1zex=1280:960«</size>

=/sensors=
=sensor type="timestamp"/=
=sensor type="imei" name="1d"»

1a: =upload type="sensorbase.org"s
<project id="1"»
=table name="meal_capture "=

=field name="1image" sensor="image"/ >
=field name="timestamp™ sensor="timestamp”/ =
15% =field name="user" sensor="1d"/=
=/table=
< /projects=
=/uploads=
=interval=10=/1nterwval=
20 </automatics

</campaign:s
T ——

Fig. 2. Sample XML campaign file that iz used to task Campaignr. In this cage, an image iz collected
every 10 seconds along with the current phone time and the unigque phone serial number. Then the
data are uploadsd to the meal_capturs table in SsnsorBass. The campaign will start right away after
being chosen and the top section will be hidden and the Options menu will be disabled az ssen in
Figure 3.

even with knowledge of ANSI C++4. There are many notable differences that make nesding
to learn Symbian C4+ for creating a campaign highly undesirable.

Instead of throw and catch® there is TRAP and User::Leave()[23]. The TRAP and TRAPD
macros carry other baggage that Is otherwise automatically handled in ANSI C4-4-. Since the
error handling code is not part of the syntax of C++ there Is no way for the compiler to check
that leawes are handled properly; consequently it s up to the programmer. The programmer
has to push and pop heap objects on and off of a CleanupStack in case a function call leaves
and there are still open handles or heap memory in use. The user has to explicitly keep track
of all pisces of data in case a function call leaves, although it may not. Yet the cleanup stack
does not work for all possible cases. It iz possible that instantiating a class could cause a
leave if the phone were to run out of memory and if the constructor itself put something on
the heap that would cause a memory leak, since Symbian can not clean up the uninitialized
class iteelf. Therefore class instance construction is split into two stages. The first stage 1s the
standard C4++ constructor, but that must not contain any code that could possibly leawve.
The second stage constructor called ConstructL is used to execute any setup code that could
leaye.

The use of threads is heavily discouraged due to the extra resources threads taken up and
decreased efficiency caused[24]. Symbian OF provides a class that encapsulates a wait loop so
that asynchronous calls are still supported but in a more efficient, yvet confusing way.

5 Which did not gain decent compiler support until after Symbian C++ was created.

e sample
Idle b 4

[14:1956]: Image Saved.
{14:15:50]; Uploadd 1 rom for meal capture Ready Idle
[14:49:46]: Image Saved.

[14:19:39]: Uploaded 1 roy meal capture

[14:119:35]; Image Saved.
11411925}, Uploaded 1 o
[14:19:24]: Image Saved.
[14:19:15]: Uploaded 1 rox meal capture.

(141944 Image Saved.
[14:19.05]: Uploade
[44:15:04]: Inage
[14:1858]: Uploade Upload Count: 0

Upload Count & Options Done

Fig. 4. Screenshot of what Campaignr looks
like before starting the collection process and
with the default UT settings.

Fig. 3. Screenshot of what Campaignr looks
like while running the code from Figure 2

All these factors together make it difficult to learn Symbian C+4+. At the same time
there are many deployed and planned mobile phones that are Symbian based that should
be leveraged. So instead of making the end user have to program in this difficult language,
Campaignr was developed to hide the complexities of the underlying system from the users
who should not have to learn or deal with its idiosyncrasies. Campaignr provides a simple
interface and method of configuring that only takes minutes to learn. It is a testament to
how easy Campaignr is to use that it has been heavily used by research groups already, both
internally and externally.

The XML given by Figure 2 tells Campaignr to run the Sample campaign that will take an
image, add a timestamp and the phone’s imei, and upload it to a table called meal_capture
every 10 seconds. The campaign will also start right away without the user having to manually
start it, and the upper part of the display will be hidden and the Options menu disabled to
prevent turning off the collection or upload processes as shown in Figure 3.

Campaignr can be thought of as consisting of five key components: the main controller
(3.1), the sensors (3.2), the database (3.3), the upload controller (3.4), and the user interface
(3.5), which are described below.

3.1 Main Controller

The main controller is the glue that connects everything together and contains the logic that
makes Campaignr work. After the user selects a campaign from the list that is presented to
the user upon Campaingr startup, the filename is passed to this controller which then parses
the XML file to determine what sensors to instantiate, how to collect from them, what the
database table(s) should look like (creating them if they do not already exist), and where
and what to upload. There are also options in the XML for the user interface and overall
campaign behavior. This controller knows how to instantiate each type of sensor and keeps
track of all the ones needed for the given campaign. It then creates the database and upload
controllers and passes the specified options to them. This controller controls the lifecycle of
everything it creates, controls the flow of execution for data collection, storage, and upload,
and handles the basic user interface as described in 3.5.

There are two ways in which to collect data from the sensors, manually or automatically.
In manual mode Campaignr waits for the user to push the center directional pad button to
begin a collection run. In automatic mode Campaignr will collect data from the specified
sensors on the interval specified. Campaignr can also handle a manual and automatic mode
in the same campaign.

After everything is instantiated and set up properly, this controller then waits for the user
to start the data collection and upload processes. Or if so specified in the XML, the campalgn
will start as soon as Campaignr finishes loading. It iterates through one of its list of sensors
depending on whether it is performing an automatic or manual capture and informs each
sensor 1n turn to take a sample. This process Is implemented asynchronously because a single
sample from a sensor could potentially take a non negligible amount of time to collect and
the software should not freeze and become unresponsive to the user at any point. Since this
controller will not know when the current sensor will finish collecting its data, it waits for the
sensor to notify it that the sensor has finished. The main controller passes a pointer to itself
to the current sensor so that the sensor can call a method to inform the main controller when
it has finished collecting its sample. When the sensor is done and notifies the controller, the
main controller tells the next sensor in the queue to take its turn. And when that one is done,
the next, and so on until all sensors in the list have had a chance to collect data. This process
also has the benefit of allowing other processes to run, such as manipulating the database or
uploading data, since the processor is not tied up with busy walting.

Both an automatic set of sensors and a manual set of sensors can be specified in a single
XML campalgn file. They are maintained separately and go to different tables in the same
database so that they do not get in each other’s way. However it is only possible to collect
from one set of sensors at a time. If one of the sets of sensors 1s currently collecting, the other
set 1s unable to do its own collecting. Even if the automatic collection process is taking a
longer time to go through than its interval is set for, Campaignr will still wait for the current
one to finish. How Campailgnr deals with this request for data while, already collecting data,
differs depending on whether the request is for an automatic or for a manual data capture.
Currently automatic requests are dropped because otherwise if they were queued up, that
queue could become unbounded if the automatic interval is smaller than the amount of time
it takes to collect data. It is up to the creator of the campaign to set a reasonable interval.
The worst that could happen in Campalgnr is that any automatic sample that occurs while
one is already running will get dropped.

If there is an automatic collection process running and the user pushes a button to have
a manual sample taken, then that request is queued up and will be handled as scon as the
automatic one is done. If the manual request was ignored the user would not understand why
pushing the button sometimes worked and sometimes did not, and that would lead to the user
mistrusting the application. However if the person tries to take a sample while there already
Is a manual collection going on, it currently is dropped since the user has more context about
what Campaignr is doing than in the automatic case and can easily determine the reason for
the request being ignored.

The azynchrony iz implemented using Symbian C++'s Active Objects[25]. Active Objects
are implemented by Inheriting from a special class that defines some instance variables and
methods that are used to make and handle asynchronous calls. A subclass can make itsell
“active” tolet the underlying framework know that it wants its request handling method to be
called at some point in the future. That point comes after the class’s status variable is set from
pending to active. The variable can be set by the class itself when splitting up long running
processing or it can be passed to another class that will then toggle the variable to let the
calling class know 1t is done fulfilling the request. This way of doing asynchronous processing
is preferred over threads since it saves stack space and no locking has to be implemented. But
Active Objects are difficult to understand and the learning curve for Symbian programming.
This iz yet another complex issue that Campaignr is able to hide.

When all the sensors have finished their collections, and if uploading is enabled, the main
controller tells the upload controller to attempt to upload the saved data. This process is
described in more detail in section 3.4

3.2 Sensors

Campaignr started with just four sensors (two hardware and two metadata) when it was first
released and has now grown to twelve sensors with more planned for the near future. The
sensors cover a wide variety of possible inputs, from the onboard camera and microphone to
time stamps and text input by the user. There are even sensors for discovering what bluetooth
devices or wifl access points can be seen by the phone.

Sensors all follow the same process of collecting data. After they are instantiated, the
main controller calls their SetattrsL* method. This method is used to set the name of the
sensor (since it is possible to have multiple of the same type of sensor sensed from multiple
times in one data collection run and there needs to be a way to identify exactly which one
is which) as well as set any sensor specific options that were specified in the XML file. The
main controller does not try to parse sensor specific options, 1. passes the whole sensor tag to
the corresponding sensor. For example the size tag on line 6 of Figure 2 is not seen by the
main controller, but is instead parsed by the image sensor.

When a sensor 1s required to collect data, the main controller calls the sensor’s GetData
method, passing a pointer to itself and to the database controller. The sensor then gathers
its specific data. This can be either an immediate value determined at set up time or by a
background process or a value that could potentially require a non trivial amount of time to
complete and therefore need to be executed asynchronously. In either case the sensor uses the
database pointer to call its AddValuel method, passing the sensor’s unique name and data.
(The reason for pasging the name iz explained in section 3.3.) Then the sensor cleans up its
temporary processing data (if any) and calls the main controller’s® GetDataDone method if the
data was successfully collected or the main controller’s GetDataError method if something
went wrong to alert the main controller to abort the current data collection run and not
commit the new row to the database. The details of how the sensor works is sensor specific.
The sensor can be as simple as passing a string, that was defined during setup, to the database
and signal the main controller that it’s done collecting data all within the GetData method so
that the sensor doesn’t need to be an Active Object. Or, on the other extreme, the sensor can
do an asynchronous query of the MAC addresses of what bluetooth devices are within range
of the mobile phone and also then query each for it’s name and finally send that queried data
to the database at some later point in time after the data has all been collected.

Campaignr can, without much difficulty, be extended to include more sensors as can be
seen by the rapid increase to date. New sensors can be attached via bluetooth, infrared, or
even the serial port or can be associated with new metadata. Symbian C+} classes can be
created that implement the proper interfaces discussed above and only two files need to be
modified to tell Campalgnr about the new sensors. Creating the skeleton class, changing those
two files and compiling takes just a few minutes. Actually implementing the logic of the sensor
is the hard part. Currently all the sensors have to be predefined and compiled into Campaignr

* the L suffix is a Symbian O+ convention that means that the function might leave. Yet another
detail that Campaignr is able to hide.

5 Actually it is designed that it doesn’t have to be the main controller, but anything that imple-
ments the proper mixin class. A mixin or M class is an abstract class that defines methods that
the implementing class has to handle, essentially using C+-+’s multiple inheritance like Java’s
interfaces.

to work. But the goal, in the future, is to be able to create a plugable architecture for sensors
so that anyone can create a sensor without needing to modily any files within Campalgnr nor
recompile. The new sensors could even be installed separately if the situation calls for it.

3.3 Database

The database controller is a wrapper around Symbian’s proprietary database implementation
to provide access and integrity control and to easily set. up the properly formatted tables for
the campalgn. It makes sure that the data persists across multiple runs of the same campalgn
and that it is not lost when or if the battery complete drains, the network connectivity drops,
or Campalgnr unexpectedly quits. Campalgnr was designed from the very beginning to be
highly robust when it comes to dealing with the collected data. Data is written into the
database before anything else. The only data that could be lost the data that is currently
being sensed.

The database controller started off as a very simple wrapper with a few helper methods.
But it quickly became obvious that the underlying database APIs could not handle arbitrary
reading, writing and deleting from the database. The database entered into a bad state if rows
were deleted while in the middle of adding one. Originally a table was opened and left open
across multiple calls to the database controller while collecting data. But the database imple-
mentation did not handle that mode of access; it corrupted the database. So the controller
was changed to store each sensor reading in memory until all sensors had had a chance to
collect data, and then the data was added to the database with a single SQL insert statement.
The databage controller aleo currently implements row querying, row deletion, and arbitrary®
SQL executlon In an asynchronous manner so that queries can be queued up and not tie
up the processor waiting for previous queries to complete nor interfere with each other. The
database is heavily used by different competing classes that have no (and should not need to
have) knowledge of each other and therefore the database protects itself from conditions that
could cause data loss. The upload controller accesses the database frequently to upload rows
and then delete those rows upon successful transmission, and if a row was being added at the
same one of those queries happen, the data in the database becomes irretrievable.

Sensors add their data to the database by calling the database controller’'s AddValuel
method. Each value is converted and temporarily stored as a string in an array while the rest
of the sensors add their own values. Once all the sensors have finished the main controller
commits the row by calling the FinishAddingRowL method which asynchronously generates
the properly formated SQL insert statement and executes it. The proper statement requires
the name of the columns In the table in case any of the values are missing. The proper column
names are easy to discover since they are the unique names of the sensors. So to know which
value maps to which sensor, a second array that contains the sensor names is also required.
When a sensor adds its value to the row, it also passes 1ts name to support the more flexible
row insertion.

3.4 Upload Controller

The upload controller handles everything that pertains to sending the data to somewhere
and removing the safely uploaded data. The controller handles connecting to the internet via
GSM or WiFi (if the phone supports it), packaging up the data in a way the destination
expects, handling responses from the destination, and then telling the database which rows

 Arbitrary as in SQL that other parts of Campaignr use, not arbitrary as in input from an unknown
source.

to delete. There is currently only one format for uploading and that is XML formatted data
and a few other credentials in the application/x-www-form-urlencoded MIME type. The
upload controller first asks for a few rows of data from the database. If there are none, the
controller does not continue. When the database has notified the upload contreller that the
data 1s ready, the upload controller extracts the data that has been specified to upload by
the XML campaign file from each returned row and sticks it in its own XML tag, with the
binary data base 64 encoded for transmission over HT'TP POST. Then the generated XML,
as a string, and the other credentials, such as where exactly the data should go and who is
uploading the data, are put into a form that is then url encoded. After the form is ready, a
connection to the internet is created, if one is not already active, and the data is POSTed
to the url specified in the XML file or the default location if none is specified. The upload
controller then wailts for the server to respond. If the destination responds with a confirmation
that the data was successfully uploaded, then and only then are the rows that were uploaded
deleted from the database. This may cause data to be upleaded multiple times if there is bad
connectivity, but no data will ever get lost because of unscheduled interruptions. It is much
more desirable to have data get repeated on the backend than have data go missing. And
the repeated data points can easily be accounted for and properly handled by a client with
greater resources, such as a PC or server. The upload controller Is also implemented using
Active Objects so that it can be run concurrently with the sensing so as not to prevent data
from being collected.

The upload controller selects which access point to connect to based on an ordered list of
predefined access points on the mobile phone In the order of last used. There is a high chance
that the last access point that the phone used was a good one and that it will still work. But
if not, the next one on the list has the next highest probability. However, if nothing can be
connected to, or no known access points exist, Campaignr will pop up a dialog asking the
user if they would like to choose one themselves. And if they would, another dialog will popup
displaying the access polnts available on the phone and an option to scan for Wikl points
if the hardware supports such. If a Symbian S60 phone is in offline moede, it will pop up a
dialog asking the user if they want to allow anything that would emit radiation over a radio
every time any connection wishes to be established, with no way of disabling the prompt.
That makes trying to connect a phone with no SIM card to a WiF1i access point problematic.
Therefore Campaignr pops up a dialog at the first attempt to connect to the internet asking
whether the user does want to continue connecting in Offline Mode. If not, Campaignr will not
continue to connect until the user enables uploading themselves so as to reduce the number of
annoying popups. The algorithm for handling connections is not the most optimal, but proper
handling of connections and disconnection in a robust and automatic way is a research topic
all its own.

If the user or author of the campaign knows that data are going to be collected in an area
that will never have network coverage, they can specify that Campaingr either start with
not trying to upload any data or write the XMLs that would’ve been sent over the internet
to the phone memory so that they can then be later transfered to a PC and examined if
that is all that is needed, or uploaded when a connection is finally established, since they are
already in the proper format for uploading. This expands the working range of Campaingr
greatly without much modification to Campaingr or special purpose code on the PC. There
is a Python script that will extract the binaries from the XML files and base 64 decode them
for easy viewing/listening. Since it is written in Python, it would even be possible to run the
script on the phone itself in a pinch using the Python implementation for S60 phones.

. F‘. (ampaignr
7 oo

Sample.xml
Sample \J

Test.xml

Enable Upload
Upload Everything

Fig. 5. The File List View displaying a couple Fig. 6. The Main Menu showing options to

of XML that Campaignr found. start collecting data, start uploading data,
and an option to quickly upload whatever is
left in the database.

e, Image View
o

¥ @9 Slogging..

Readv
[05:43:14]: Image Saved.
[05:43:04]: Uploaded 2 rows for Images
[05:43:04]: Image Saved.
[05:42:54]: Image Saved.
[05:42:44]: Image Saved.
[05:42:37]: Uploaded 1 row for Images
[05:42:34]: Image Saved.

............

Options Done

Fig. 7. The Main View after some data has Fig.8. The Image View that appears when
been collected and uploaded. the viewfinder tag is passed to the image
Sensor.

3.5 User Interface

The user interface is almost all handled by the main view, which talks directly to the main
controller. The first screen that a user sees is a separate view from the main view that handles
finding and displaying the campaign XML files in two specific directories, one on the internal
memory and one on the external memory card. It is possible to have the same file in both
places and they will not interfere with each other since the database that is created based
off of the XML file is created in the same directory that the XML file lives. The user is able
to scroll through the list of available campaigns and choose one to run. However if there is a
file called autoload in either directory (with the external memory being accessed first) then
that file is read and the campaign XML file it names is automatically loaded, bypassing the
file list view completely. Normally, when the user is done with a particular campaign, they
are taken back to the file list to be able to choose another one or exit Campaignr. But this
behavior is changed to exit Campaignr from the main view if the campaign was selected by
the autoload file. This is a very handy feature, along with the startOnLoad option in the
XML, for when the phones are given to other people to use during a campaign. The user does
not have to deal with remembering which campaign it is that they are supposed to run, as
well as not having to push as many buttons to start collecting data.

After a campaign is parsed and loaded, the main view appears. It starts out with a blank
screen where the name of the campaign is on the top as seen in Figure 4, unless the whole top
part of the screen has been hidden by the hide_status tag specified in the XML file as seen
in Figure 3. As data is collected or uploaded the status bar changes its text to provide status
information (in the case of Figure 7: “Slogging...” (i.e. Uploading)). As actions occur, such as

taking a picture, recording audio, or successfully uploading data, they are prepended to the
white text area in the main middle part of the screen with timestamps of when they happened
go that the user can see whether things are still up and running and behaving properly. The
Options and Done on the bottom of Figure 7 are labhels for softkeys on the phone that are just
below the labels. Pressing the right softkey will stop the campalgn to allow the user to choose
another, with the exception described above. The left softkey brings up a context sensitive
list of options as seen in Figure 6. There is an option for either turning the data collection
on or off, another option for turning on or off uploading. And another option appears only if
the campaign is stopped. This option puts Campaignr into a mode that will uplead all the
data in the database through a series of upload cycles without collecting any new data. This
feature allows the user to turn off uploading, if it has not already been disabled by an XML
option, when the user knows there will be no connectivity, and then let the phone upload
everything it has collected when the user has finally entered an area with connectivity.

The image sensor can bring up its own view when the viewfinder tag is specified for
the image sensor as seen in Figure 8. The viewfinder allows the user to preview what the
camera is seeing to frame their own shots and it treats the button thats used for initiating
a manual data collection run as the shutter button since the phone is in all respects acting
exactly like a digital camera. After the image is taken the camera view destroys itself and the
main view is once again shown.

As discussed before and shown in Figure 3, the top status portion of the view can be
hidden te give more room to the text area. The text area’s font size can be increased for ease
of reading. The Options label can be hidden, the left softkey disabled, and the right softkey
functionality changed to completely exit Campaignr so that a user can not change anything
if the campaign creator so desires when the hide options tag is present in the XML file.

The microphone sensor has been given the ability to vibrate and/or beep when the record-
ing starts and stops to experiment with providing extra and novel modalities of feedback to
the user. The non visual cues help when the screen of the phone is not readily viewable. This
is a nice feature that will eventually be implemented in the other sensors such as the image
sensor. Une common way that Campalgnr has been used is to hang the phone around the
neck of the user and let it automatically take pictures. If the phone were to vibrate every
time it took a picture, it would remind the user that images are being taken so that they will
be more conscious of their surroundings so they do not, for instance, accidentally go into the
restroom while images are still being actively captured.

4 Related Work

In the past few years there has been a fair bit of previous work to provide a way of gathering
data by mobile device[8-11] and lots of work utilizing mobile devices to gather datal3,4,
12-19).

An application written in Symbian C+-+ that has been previcusly used for participatory
gensing campaigns called Mobile Web Server, also known as Raccoon[20]. Raccoon is a port of
the Apache web server to the Symbian S60 platform. It provides external access to the phone
via standard protocels, allowing the phone to take and send images by visiting the mobile
phone’s url. This symplifies image collection. However the phone has to have connectivity,
which limits the operating scope.

StarScape[21] iz a J2ME based participatory sensing application that can be set up to
collect data from a number of mobile phone sensors and automatically upload them to Sen-
sorBase. Because it is written in J2ME, it has the ability to be installed on a much wider set of

Table 1. Lifetimes while capturing and up- Table 2. Number of button presses required

loading an image every 30 seconds (as tested to start collecting data (counted from the ap-
on the same Nokia N80 device). plication’s start screen).
StarScape|Raccoon|Campaignr StarScape|Raccoon‘Campaignr
2h 31lm | 7h 44m 8h 53m Minimum
1 | 3] 0
Maximum
10+ [3] 4

Table 3. Time to base 64 encode an image

tested on th Nokia N80 devi
(s testindlaon thesmnreilslon e Table 4. Time to capture and save an image

Int. Mem.|Ext. Mem.‘RAM (as tested on the same Nolkia N80 device).
14 |Pyt};§; ‘ g StarScape|Raccoon|Campaignr
SSymbian CS++ - 19.08s 5.73s 6.04s
033s | 034s [0.011s

mobile phones than applications written for Symbian OS[22]. However it hag some significant
limitations as described below.

5 Results

The creation of Campalgnr was Inspired by the use of Raccoon and StarScape as data collec-
tion applications. Raccoon was never intended to be used in this way but it is so well written
that it could easily handle the heavy use. StarScape was rapidly developed to provide easy
access to the native hardware sensors and helped to show what would and would not work
with mobile devices.

These two predecessors were chosen to compare against Campalgnr because they both
have been used in situations typical to what Campaignr is designed for and they both also
run on Symbian S60 3rd Edition mobile phones.

Campailgnr performs on par with Raccoon and outperforms StarScape with regards to en-
ergy consumption and sensing speed as can be seen In Tables 1 and 4. One reason StarScape
has such a lower lifetime than the other two applications is that the image capture function-
ality would keep getting into a bad state and not produce any more images which means
that the application had to be restarted a few times during the experiment. That restarting
required using the phone GUI and so the StarScape test had the backlight on for a much
longer time than the other two. Being written in Java and having to run on a JVM also could
account for some of the decreased lifetime.

Raccoon performs better than Campaignr because it never access the file system. Raccoon
never stores any data locally, while Campalgnr access the file system on every data collection.
However the difference of 69 minutes in lifetime is not worth the trade off of lost samples
when the connectivily Is poor or no samples at all when it Is nonexistent.

Another option for collecting data from mobile phones would be to write Python as dis-
cussed before. However the Python implementation for S60 phones was discovered to have a
major defect when used in [1]. Trying to base 64 encode an image takes a significant amount
of time; over two minutes in the worst case, eight seconds in the best case as seen in Table 3.
The RAM time is implicitly included in the first two columns as the extra time is reading from

Table 5. Available sensors for each application. (All sensors for Raccoon, except for the camera,
provided by Python Server Pages.)

StarScape | Raccoon ‘ Symbian C++
Hardware
Camera Camera Camera
GPS GPS GPS
Microphone Microphone Microphone
Video Video

Bluetooth Stumbler
Cell Tower 1D
Battery Level and Status
Motion Band
Wilki Stumbler

Software
Timestamp Timestamp Timestamp
Text (username only)| Text Text

IMEI

the file system to memory. Encoding also has the side effect of locking up the entire phone
during the process, even the screen is unable to refresh. That precludes sending binary data
as an url encoded form over HT'TP POST in Python. In Symbian C4++ the same encoding
takes only one hundredth of a second.

Campaignr can take from no button pushes to at most four to start collecting data as
can be seen in Table 2. It takes one more button push is the worst case than Raccoon
because Campailgnr provides the ability to temporarily disable data collection without having
to exit the application, and will then take less pushes to restart. Since StarScape always starts
configured the same way it. was when 1t quit, starting the collection process can be very quick,
vet when a new campaign is run it takes a large amount of button pushes to configure.

StarScape can provide more feedback about what the application is doing, but the user
interface is slow to respond to user input. Raccoon is very quick to respond to user input, but
provides very little feedback. It is not possible to determine whether data is being successfully
collected. Campaignr has both a low latency user interface and provides feedback into how it
is performing.

Campalgnr makes a few small trade offs In power and processing efficiency to provide
robust data collection from a greater number of sensors than either StarScape or Raccoon
provide. Campaignr has at least twice as many sensors ags can be seen in Table 57.

6 Future

Campaignr is still under heavy development with new sensors and new functionality being
added all the time. But at the same time Campaignr is under heavy use In many research
projects, generating new feature requests and discovering un-before discovered bugs. Due to
the anonymity requirements it cannot be exactly sald who is using Campaingr since most of
it 1s within the same research group.

" The Motion Band is a 3-axis accelerometer, 3-axis gyroscope, and 3-axis magnetometer sensor that
communicates via bluetooth

Table 6. Partial list of campaigns that have been run to date. (PEIR stands for Personal Environ-
mental Impact Report. Monumento was an interactive art exhibition.)

Name Sensors Used Dates Run
Walkability Camera, GPS, Timestamp, Cell 1D, IMET 2007.10.13
Rewind Camera, Text, Microphone, Timestamp 2007.10.10
Lifeblogging | Camera, Bt Stumbler, Timestamp, Text, Cell ID| 2007.09.15 - present
DietSense Camera, IMEI, Battery Info 2007.08.06 - present
PEIR GPS, Cell ID, IMEI, Timestamp 2007.07.20 - 2007.07.27
Monumento Camera, GPS, IMEI, Text 2007.06.15
Sidewalk | Camera, GPS, IMEIL Cell ID, Timestamp, Text [2007.04.30 - 2007.05.06

Some of the upcoming features and sensors planned are: local processing of the data for
such things as saving transmission costs, database and transmission encryption for privacy
conscicus campaigns, a Wili stumbler sensor (which actually has already been implemented
gince the writing of this paper), and SMS integration.

To enable more flexibility, an upload controller that supports uploading in the JSON
format will be written. The new format will allow the returned data to be less rigidly defined
as well as make 1t easier provide extra metadata about what is being uploaded. It also opens
up the possibility of uploading to more than just SensorBase.

Python would make an excellent wrapper around the work already done in Campalgnr to
provide more flexibility and expressiveness for campaign creation and execution.

Campaignr currently can only run on Symbian S60 3rd Edition devices which does limit the
reachable audience. But there are no current plans to support other mobile device operating
systems since the Symbian smartphone OS market share for Q2 2007 is 72% and 18.7 million
Symbian smartphones were shipped by licensees in (32 2007, up 52% from Q2 2006 (12.3
million)[26] There are millions of Symbian smartphones already deployed out in the world
and their number is constantly growing. Right now porting Campaignr to other platforms is
not worth the effort.

7 Conclusion

Having average everyday people collect information about their surroundings (participatory
genging) is becoming a hot topic. Campaingr provides a platform for easily collecting that data.
It is flexible enocugh to handle many different kinds of data collection campalgns, supports a
wide variety of sensors, and robust enough to be used by many groups while still in heavy
active development. Campalgnr was released on April 10, 2007 and was used for data collection
for a separate research project within that first month and is still being widely used as can be
seen in Table 6. Campaignr fills the need of wanting a way to collect data in a participatory
sensing manner without having to learn how to program for the complex, and sometimes
convoluted mobile embedded platform. Instead of creating throwaway applications that work
for a single Instance but break as soon as they need to be modified, Campalgnr provides a
way to collect data from different. campaigns without having to deal with frustrating and time
consuming development cycles.

Campaignr is an open source project[27] and more information about where to get, how
to create campaigns for, and how to run Campaignr is available online[28].

References

1.

2.

3.

o ~1 Oy O

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.
23.
24.
25,
26,
27.
28.

Reddy, S., Schmid, T., Parker, A., Porway, J., Chen, G., Joki, A., Burke, J., Hansen, M., Estrin,
D., Srivastava, M.: Urbancens: Sensing with the urban context in mind. In: UbiComp ’06
Burke, J., Estrin, D., Hansen, M., Parker, A., Ramanathan, N., Reddy, S., Srivastava, M.B.:
Participatory sensing. SenSys (2006)

Paulos, E., Goodman, E.: The familiar stranger: Anxiety, comfort, and play in public places.
CHI (2004)

. Reddy, S., Parker, A., Burke, J., Estrin, D., Hansen, H.: Tmage browsing, processing, and clus-

tering for participatory sensing: Lessons from a dietsense prototype. EmNets (2007)

. http://sensorbase.org

. Symbian: How Do I Get My Symbian OS Application Signed? Version 2.5. (June 2007)

. http:/ /wiki.opensource.nokia.com/ projects/PyS60

. Froehlich, J., Chen, M.Y., Consolvo, 5., Harrison, B., Landay, J.A.: My experience: A system

for In situ tracing and capturing of user feedback on mobile phones. MobySys (2007)

. Tuulos, V., Scheible, J., Nyholm, H.: Combining web, mobile phones and public displays in

large-scale: Manhattan story mashup. Pervasive (2007)

Roduner, C., Langheinrich, M., Floerkemeier, C., Schwarzentrub, B.: Operating appliances with
mobile phones - strengths and limits of a universal interaction device. Pervasive (2007)

Paulos, E., Joki, A., Vora, P., Burke, A.: Anyphone: Mobile applications for everyone. DUX
(2007)

Sohn, T., Varshavsky, A., LaMarca, A., Chen, M.Y., Choudhury, T., Smith, 1., Consolvo, S.,
Hightower, J., Griswold, W.G., de Lara, E.: Mobility detection using everyday gsm traces.
UbiComp (2006)

Froehlich, J., Chen, M.Y., Smith, [.E., Potter, F.: Voting with your feet: An investigative study
of the relationship between place visit behavior and preference. UbiComp (2006)

Hodges, S., Williams, L., Berry, E., Izadi, S., Srinivasan, J., Butler, A., Smyth, G., Kapur, N,
Wood, K.: Sensecam: a retrospective memory aid. UbiComp {2006)

Matthews, T., Carter, 5., Pai, C., Fong, J., Mankoff, J.: Scribedme: Evaluating a mobile sound
transcription tool for the deaf. UbiComp (2006)

Kindberg, T., Jones, T.: “merolyn the phone”: A study of bluetooth naming practices. UbiComp
{2007)

Bell, M., Hall, M., Chalmers, M., Gray, P., Brown, B.: Domino: Exploring mobile collaborative
software adaptation. Pervasive (2006)

Burke, J., Estrin, D., Bell, G., Reddy, S., Ramanathan, N.: Sensing on everyday mobile phones
in support of participatory research. SenSys (2007)

Srivastava, M., Hansen, M., Burke, J., Parker, A., Reddy, 5., Saurabh, G., Allman, M., Paxson,
V., Estrin, D.: Wireless urban sensing systems. Technical report, Center for Embedded Networked
Sensyng, UCLA (April 2006)

Wikman, J., Dosa, F., Tarkiainen, M.: Personal website on a mobile phone. Technical report,
Nokia Research Center (2006)

http://wikiurban.cens.ucla.edu/index.php7title=StarScape

http://symbian.com

Nokia: 560 Plaftorm: Comparison of ANST C+4+ and Symbian C++. Version 2.0. (May 2006)
Nokia: Symbian OS: Threads Programming. Version 1.0. (March 2005)

Nokia: Symbian OS: Active Objects And The Active Scheduler. Version 1.0. {August 2004)
Symbian: Symbian fast facts. Technical report, Symbian Ltd. {2007)
http://svn.urban.cens.ucla.edu/projects /campaignr/

http://campaignr.com

