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Irina Rabkina (irabkina @oxy.edu)
Occidental College, Los Angeles, CA

Clifton McFate (cjm@ec.ai)
Elemental Cognition, New York, NY

Abstract

Apperly and Butterfill (2009) argue that adult theory of mind
(ToM) requires two parallel systems. One system, efficient
but inflexible, enables rapid judgements by operating without
explicit modeling of beliefs, while a separate, effortful sys-
tem, enables richer predictions over more complex belief en-
codings. Here, we agree with their qualitative distinction but
propose a different model: a single process, but with effortful
re-representation leading to two phases of ToM reasoning. Ef-
ficient reasoning, in our view, occurs over representations that
include actions, but not necessarily explicit belief states. Ef-
fortful reasoning, then, involves re-representation of these ini-
tial encodings in order to handle errors, resolve real-world con-
flicts, and fully account for others’ belief states. We present an
implemented computational model, based in memory retrieval
and structural alignment, that illustrates our approach.

Keywords: Analogy; Theory of Mind; Computational Model-
ing

Introduction

While the precise trajectory of human theory of mind (ToM)
development continues to be debated (Onishi & Baillargeon,
2005; Wellman & Liu, 2004; de Villiers, 2021; Kovacs,
Téglas, & Csibra, 2021) it has been well established that
young children often fail to take into account the mental states
of others when predicting their actions. However, typically
developing adults (and older children) are generally consid-
ered to be proficient ToM reasoners.

Yet, there is substantial evidence that adults do not always
effectively utilize ToM, either—at least not automatically.
Keysar, Barr, Balin, and Brauner (2000) demonstrated that
adult participants in a diadic communication game often con-
sidered visual referents that their partner could not be aware
of. These failures were further explored by Keysar, Lin, and
Barr (2003), who required participants to give a director” an
object from a table. The names of the objects on the table
were polysemous (e.g., a roll of tape and a cassette tape), but,
prior to the direction, the participant themselves hid one of
the possible referents in a bag, leaving only one visible to the
director. Even so, the participants sometimes gave the direc-
tor the occluded object. This was the case even when they
were told the director had a false belief about the contents of
the bag that excluded the actual contents as a referent.

There is also evidence that ToM reasoning requires cogni-
tive effort. Apperly, Riggs, Simpson, Chiavarino, and Sam-
son (2006) found that adults were slower to answer questions

about another person’s false beliefs than about reality, but that1

this processing difference disappeared when the participants
were instructed to track beliefs explicitly. Lin, Keysar, and
Epley (2010) further found that working memory impairment
degraded ToM reasoning, suggesting that humans are “reflex-
ively mind blind”, only explaining behavior with regard to
mental states when cognitive resources allow.

These and other findings led Apperly and Butterfill (2009)
to argue that adult humans have two systems for theory of
mind. Per Apperly and Butterfill (2009), the first ToM sys-
tem—efficient but inflexible—enables real time goal recog-
nition but does not explicitly encode mental states. The sec-
ond system does encode mental states and enables full ToM
reasoning, but requires cognitive effort. They suggest that
the first system is shared by young children and potentially
non-human animals as well, while the latter develops with
maturation, thus explaining ToM’s developmental trajectory.

However, there is strong evidence that said trajectory is not
strictly maturational. It has been found that even very young
children can succeed at complex ToM tasks, given the right
scaffolding(e.g. Hale & Tager-Flusberg, 2003; Hoyos, Hor-
ton, Simms, & Gentner, 2020). Taken together, these findings
suggests that, instead of two separate ToM systems, ToM is
better thought of as a continuum, with effort, experience, and
cognitive control driving development.

We propose that both effortful and efficient ToM can be
explained by building on the Rabkina, McFate, Forbus, and
Hoyos (2017) Analogical Theory of Mind (AToM) frame-
work. AToM conceptualizes ToM reasoning as retrieval and
application of a person’s prior experiences via analogical in-
ference (Rabkina et al., 2017). We suggest that efficient ToM
arises from a single retrieval and inference via AToM, while
effortful ToM requires iterative re-representation of the situ-
ation being evaluated and re-retrieval of relevant analogical
comparisons. The distinction between efficient and effortful
ToM, then, is at the level of effort applied, rather than a qual-
itative difference in process.

As a child matures, they gain executive control, a richer
representational vocabulary, and a larger library of memories
to draw from, all of which contribute to improved ToM rea-
soning. The quick and efficient reasoning based on a single
retrieval, however, does not disappear. Thus, our account ex-
plains both developmental phenomena as well as the persis-
tence of efficient, but incomplete, ToM into adulthood.

In the following sections, we begin by discussing compet-
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ing developmental accounts of theory of mind with regard
to the phenomena described above. We then introduce our
framework, the Analogical Theory of Mind, and demonstrate
how we extend it to account for adult ToM failures and the ef-
ficiency trade-off proposed by Apperly and Butterfill (2009).
We conclude with a motivating example of efficient vs effort-
ful ToM reasoning and a corresponding simulation using the
extended implemented AToM computational model.

Developmental Accounts of Theory of Mind

Developmental accounts of theory of mind reasoning, broadly
speaking, fall under the umbrellas of “Theory Theories”,
”Simulation Theories”, and ”Hybrid Theories”. Theory theo-
ries propose that ToM reasoning occurs with respect to a set
of rules that can be applied to predict the beliefs, desires, and
mental states of others (Gopnik & Wellman, 1994). Many
Theory theories have been conceptualized as “child scientist”
theories. According to such a theory, a child might start with
a simple rule (e.g., everyone knows what I know). As inter-
actions with other individuals invalidate that hypothesis, the
child generates alternatives and eventually settles on a mature
rule-based model. Consistent with this account, Wellman and
Liu (2004) found that ToM development proceeds with con-
sistent phases across children which could correspond to dis-
crete updated hypotheses.

However, such accounts struggle to explain findings like
those of Keysar et al. (2000, 2003) which illustrate that even
adults sometimes rely on a more primitive egocentric ToM
model. If adults do develop abstract rules, they do not seem
to apply them consistently.

Conversely, Simulation theories do not rely on rule-like
models and instead argue that ToM requires simulation of an-
other person’s actions from a first person perspective, collo-
quially, ”putting yourself in someone’s shoes” (Goldman et
al., 2006). The first-person simulation account is consistent
with findings of an egocentric bias in ToM reasoning failures
(Goldman & Sebanz, 2005). Furthermore, simulation as a
cognitive process flexibly incorporates efficiency trade-offs.

On the other hand, simulation accounts struggle to explain
broad developmental shifts like those found by Wellman and
Liu (2004) and are inconsistent with findings that adults seem
to apply mental models of the intentions of others that they
would not apply to themselves (Saxe, 2005).

Hybrid theories (see Bach, 2011) combine elements from
both Theory theories and Simulation theories to explain both
developmental phenomena and adult ToM errors. In the fol-
lowing section we present one such model, the Analogical
Theory of Mind (AToM) model, and discuss how it can re-
solve the issues discussed above.

Analogical Theory of Mind

Analogical Theory of Mind (AToM; Rabkina et al., 2017) is a
computational cognitive model of human ToM reasoning and
development based on a theoretical model initially proposed
by Bach (2011, 2014). According to the AToM model, theory

of mind reasoning is the result of analogical inference from a
retrieved structurally similar memory.

As a motivating example, consider a situation where a per-
son sees a colleague, Sam, walk towards the office kitchen
without a coffee cup. AToM claims that, in order to predict
Sam’s beliefs, the person retrieves structural similar memo-
ries via analogical retrieval (Forbus, Gentner, & Law, 1995).
For example, they may recall that they themselves had been
surprised earlier to find no coffee cups in the kitchen, or a
time when another teammate, Alex, had walked through with
no identifiable purpose. These memories are then compared
to the current situation using structural alignment, with the
most similar memory being used to generate candidate ana-
logical inferences (e.g., perhaps Sam, like the person, expects
coffee cups in the kitchen).

Consistent with Simulation theories, a retrieved memory
could be encoded from a first-person perspective (e.g., what
would I do in a situation). However, memories may also be
encoded in a third-person perspective (e.g., what did someone
else do in a situation). Furthermore, they may not include ex-
plicit representations of internal beliefs at all if they weren’t
relevant at the time of encoding. For example, Rabkina et al.
(2017) trained AToM with stories using explicit representa-
tions of belief states to model how children learn ToM from
hearing stories about others’ true and false beliefs. On the
other hand, Rabkina, McFate, and Forbus (2018) modeled
how children gain ToM from learning a complex grammat-
ical structure; while the nested structure of representations
played an important role in that model, belief states were not
encoded at all.

AToM assumes that memories are retrieved, applied, and
generalized within long term memory, allowing for the for-
mation of rule-like schemas via analogical generalization
(McLure, Friedman, & Forbus, 2015). Over time, frequently
occurring ToM scenarios (e.g., object occlusion) become ab-
stracted from individual objects or agents and function more
like a rule (Gentner & Medina, 1998). Thus, AToM is capable
of generating both simulation-like and rule-like judgements
depending on retrieval.

Analogical Retrieval and Inference

Retrieval and alignment follow the principles of Structure
Mapping Theory (SMT; Gentner, 1983). At a high level,
SMT proposes that analogy, and comparison more broadly,
involves a process of analogical alignment over structured
representations, called a base and target. This alignment is
governed by three hard constraints. The 1-1 constraint says
that each item in the base can align to at most one item in the
target. The parallel connectivity constraint requires that for
any aligned relationship, its arguments are also aligned. Fi-
nally, the identicality constraint aligns only identical relation-
ships unless their alignment is supported by participation in a
larger structure. SMT also argues for a preference for aligned
higher-order (e.g., causal) structure over shared lower-level
features (e.g., size or shape). Given an alignment, parallel
structure that is present in one case but absent in the other to
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Figure 1: Analogical Alignment and Inference

be projected as an analogical inference.

As an example, we return to our colleague, Sam, walking
to the kitchen (depicted in Figure 1). In the base case (top),
Sam goes to the kitchen, and the retrieved memories (Self vs
Alex) act as the targets. Formally, we could represent the self
memory with the nested belief proposition (believes self
(locationOf cup kitchen) )1 and their state of surprise,
(surprised self). The other contains the fact of Alex’s
walking to the kitchen (walks Alex kitchen), but no rep-
resentation of a belief or goal.

If the representation of Sam going to the kitchen contains
both the walking and the assumption that there are cups, the
first memory will align better based on the shared nested be-
lief structure and should be retrieved. On the basis of the
alignment, it can be inferred that Sam will also be surprised.
On the other hand, if no belief representation is included, the
second memory will be retrieved and no ToM expectations
will be justified.

Different permutations of these facts in memories and sce-
nario representations will lead to different retrievals, and
therefore different reasoning outcomes. Note, too, that, while
in this toy example, representations of the scenario and re-
trieved memories are exactly the same, such exact matching
is not required.

Efficient and Effortful Reasoning in AToM

As discussed above, there is evidence that full ToM reason-
ing is not automatic and in fact requires substantial cognitive

'We use CycL-style representations (Lenat & Guha, 1991) with
the NextKB knowledge base (Forbus & Hinrich, 2017) in this work.

effort (Keysar et al., 2003; Lin et al., 2010; Apperly & But-
terfill, 2009). AToM provides a mechanism by which ToM
inference occurs, namely analogical retrieval of and mapping
from episodic memories. Here we propose that this process
underlies both efficient and effortful ToM reasoning, the lat-
ter being the result of an iterative sequence of retrieval and
re-representation.

When observing a potential ToM reasoning scenario (e.g.,
Sam going to the kitchen), a person initially encodes their
observation using sparse representations that do not include
belief and knowledge states. They then retrieve an analogi-
cal experience from memory and infer a potential goal. As
in Rabkina et al. (2017), this inference may be incompatible
with the real world which triggers a search for explanation
via further analogical retrieval.

In our proposed model, the incompatible inference leads
to re-representation of the scenario given the false expecta-
tions generated by the alignment. This process of inference
evaluation, re-representation, and retrieval requires additional
cognitive effort and is subject to executive control.

Returning to our example, in Figure 2 the person observes
Sam going to the kitchen. This prompts a search for ex-
planation using the person’s initial encoding of the situation.
The person recalls that teammates often go to the kitchen and
drink coffee. By aligning Sam to prior teammates, they can
infer that Sam is likewise getting coffee.

However, in the retrieved memory, the teammate needed to
bring a cup in order to drink coffee. Sam does not have a cup,
triggering what, in analogy literature, is called an alignable
difference (Markman & Gentner, 1996). This difference is
re-represented into the scenario and the person again searches
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Anomaly and Re-representation
Sam has no cup, and there are none in
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re-represent and re-retrieve: | expected

Action or Continued Search

Sam expects to find cups, but there are
none. Now the person can intervene.

By analogy, Sam is getting coffee.

cups in the kitchen earlier.

By analogy, Sam expects to find cups

They could also continue to re-
represent and re-retrieve: Sam doesn’t
like coffee, but teammates also enjoy
the view from the kitchen...

Figure 2: ToM through successive analogical retrieval and re-representation

for explanation. The person now retrieves the memory of
themselves being surprised to find the kitchen did not have
extra cups. So perhaps, by analogy, Sam is also expecting
there to be cups in the kitchen.

Now primed with Sam’s inferred beliefs, the person can
continue to elaborate. Maybe this belief is inconsistent with
reality (i.e., Sam knows there are no cups) or maybe the per-
son remembers that Sam does not like coffee. They can con-
tinue to re-represent and re-retrieve explanations until satis-
fied or decide that further effort isn’t worthwhile.

In Rabkina et al. (2017) the retrieved memories were en-
coded from a first person perspective (e.g., ’I once got cof-
fee”; see Meltzoff, 2007 for role of such “like me” encoding
in reasoning). In the automatic representations in Rabkina et
al. (2020), on the other hand, representations were allocentric
(e.g., "My teammate once got coffee”). We note here that,
due to analogical alignment, ToM reasoning can arise from
both egocentric and allocentric memories. The ToM target
could align to oneself or one’s mental model of another. In-
terestingly, this suggests that individual encoding biases as
well as alignability between the self and the target may play
a significant role in ToM prediction. If the target is easily
aligned to the self, a person may be more likely to ascribe
their own motivations and beliefs to the target. However if
viewed as different, they may be more likely to apply the per-
ceived mental model of a more similar analog or even fail to
model ToM entirely.

Simulation

Here we provide a computational proof of concept for how
the AToM model incorporates iterative re-representation to
overcome initial shallow ToM judgements and describe the
algorithmic changes made to the AToM model. Our simula-
tion is implemented as hierarchical task network (HTN; Erol,
1995) plans executable in the Companion cognitive architec-
ture (Forbus & Hinrich, 2017)2. For this simulation, we use
the running example from above: I observe my colleague,
Sam, walking to the kitchen.

Recall that the AToM model uses analogical retrieval and
inference for reasoning. In the previous implementation
(i.e., Rabkina et al., 2017, 2018), this was a single-shot pro-
cess. That is, a single a memory was retrieved and used for
reasoning. While re-retrieval was possible during learning,
there was no re-representation or re-retrieval during reason-
ing. Here, we have extended the reasoning stage to allow
for both re-representation and re-retrieval when indicated by
an executive. For the purposes of this proof of concept, re-
representation and re-retrieval occurred when a contradic-
tion was observed between an inference and the real world,
so long as a retrieval depth limit (corresponding to working
memory limitations and intended effort level) had not been
reached. This depth limit was set to allow up to 5 re-retrievals
in our simulation.

Cases corresponding to Figure 2 were encoded in predicate

ZPlease contact the authors for original plans
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calculus using using the NextKB knowledge base (Forbus &
Hinrich, 2017). This included the initial observation of Sam
walking to the kitchen, the allocentric memory of teammates
often going to the kitchen to get coffee, and the egocentric
memory of expecting to find coffee cups in the kitchen and
not finding them there. We assumed that such appropriate
memories would be available and did not include distractor
memories. Note that distant distractors would not be retrieved
by analogical retrieval, while close distractors may lead to
different ToM conclusions (e.g., if a memory of wanting tea
was retrieved, the model would infer that Sam wants tea,
rather than coffee).

The initial retrieval returned the memory of teammates get-
ting coffee in the kitchen. By analogical inference, AToM
predicted that Sam had the goal of getting coffee and that
they should be carrying a cup as a pre-requisite for this goal.
AToM then compared that prediction to the real world (in this
case, another predicate calculus representation that included
the fact that Sam is not carrying a cup), and found a contra-
diction. Given this contradiction, AToM re-represented the
observation of Sam to include the fact that they are not car-
rying a cup. Using the updated observation, it retrieved the
memory of expecting to find cups in the kitchen. This gener-
ated three analogical inferences:

1. Sam is walking to the kitchen to get coffee.

2. Sam is not carrying a cup because they believe there are
cups in the kitchen.

3. Sam will be surprised that there are no cups.

Because the depth limit was not yet reached, AToM
checked these inferences against the real world for contradic-
tions and, because no contradictions were found, accepted the
inferences. Thus, the ToM model inferred Sam’s goal, knowl-
edge, and future emotional state, allowing for the executive to
act upon these inferences.

When the depth limit was lowered to 1, allowing only
a single retrieval and indicating disinterest in Sam’s activi-
ties or limited working memory capacity (e.g., due to con-
centrating on another task), only the memory of teammates
drinking coffee was retrieved. In this case, AToM also in-
ferred Sam’s goal (drinking coffee), but did not recognize that
Sam had a mistaken belief about the location of cups. Thus,
the executive did not receive this information and would not
have been able to act upon it. However, efficient ToM rea-
soning—known to be error-prone (e.g., Keysar et al., 2000,
2003)—was achieved.

Discussion

In our proof of concept model, we extended the AToM com-
putational model to iteratively retrieve memories, generate
ToM inferences, and refine its representation in order to re-
solve inconsistencies. In our proof of concept example,
AToM successfully generated the expected ToM inferences,
and when constrained to be less effortful produced shallow

albeit incomplete inferences —consistent with the phenom-
ena found in Apperly and Butterfill (2009).

In our model, the level of effort used corresponds to
AToM’s depth limit which would be controlled externally as
a part of a broader cognitive architecture based on attention
and available resources. Here we have demonstrated perfor-
mance at the shallowest level (depth 1) and with significant
effort (depth 5), but appropriate settings are likely situation-
specific and the upper limit remains an empirical question.

Aside from allowing efficient and effortful reasoning in a
common framework, our model makes testable predictions
about the development of theory of mind. In AToM, ToM
performance is dependent on available memories. As such,
we predict that childhood (and adult) ToM failures will not
be uniform and, in fact, that young children may be able to
demonstrate higher-order theory of mind reasoning given a
situation that closely aligns to their experience. Similarly,
both children and adults should make slower and less accu-
rate predictions when the situation or model of the person
under consideration have structural differences from their ex-
perience. That is, when reasoning about the mental state of
a person in a situation that is structurally very different from
anything we have experienced or observed, several rounds of
re-retrieval and re-representations will be necessary in order
to make accurate predictions. For example, we predict that
it is harder for a high school student to predict what their
teacher is thinking when handing back a paper (because they
have never taught) than what an employee is thinking when
receiving their annual review.

Related Work

To the best of our knowledge, no other computational cogni-
tive models of ToM reasoning have attempted to model the
two-systems (Apperly & Butterfill, 2009) account of ToM.
However, it is possible that some could be extended to ac-
count for this phenomenon.

For example, Hiatt and Trafton (2010) model ToM as a
two-step process that first generates several hypotheses and
then uses inhibition to select the appropriate choice. A possi-
ble extension that would allow them to model the distinction
between efficient and effortful ToM might be a change to the
inhibition function: perhaps initial efficient judgements are
less inhibited than later effortful ones. Much like our model,
this would suggest that a single process can account for both
types of ToM reasoning. Unlike our model, however, this
would imply that the effort falls on inhibition of possible in-
ferences, rather than on their generation.

Similarly, the Bayesian Theory of Mind (Baker, Saxe,
& Tenenbaum, 2011), which models ToM reasoning as
Bayesian inference over a joint distribution of possible be-
liefs/desires integrated with a prior distribution of mental
states, could be adapted to model the two-systems account
by modifying the prior or abstracting the system’s represen-
tations. The distinction, then, would come from the types of
assumptions made about people’s mental states (i.e., via the
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prior) or from the generality of the hypothesis space, and not
from the process itself. It is important to note, however, that
as a computational level model (cf. algorithmic level; Marr,
1982), the Bayesian Theory of Mind is intended to model be-
havior; differences in the model’s processes may not be in-
dicative of differences in the processes of human reasoning.

Others have modeled aspects of the two-systems theory.
Nakos, Rabkina, Hill, and Forbus (2020) model a study
by Epley, Keysar, Van Boven, and Gilovich (2004), which
showed that children have an initial egocentric bias in a per-
spective taking task. Nakos et al. modeled the perspective tak-
ing as reference resolution (the process of identifying which
entities a speaker is referring to) via analogy, and assumed
that a ToM rule would be available to drive corrections in
representations. That is, their model initially retrieved a refer-
ent without taking the interlocuter’s knowledge into account,
then corrected its representation upon identifying an error.

This is similar to our approach, both in the use of analogy
and in correction upon finding an error (in our case, a contra-
diction between an inference and the real world). However,
whereas Nakos et al. used representations of verbal referents
(e.g., ’the big truck”) to determine which object was being
referenced, we use observations of a person’s actions to de-
termine their goals, desires, and beliefs. Furthermore, we
retrieve against a library of memories and make inferences
based on those retrievals. Nakos et al., on other hand, re-
trieve against a library representing real-world objects and do
not make additional references. Despite the differences in the
two models, the corrective behavior that they are modeling is
similar. Both also must account for another individual’s men-
tal states, if at different levels. As suggested by Nakos et al.’s
use of ToM rules, it is likely that the processes modeled by
the two models are related.

Another computational approach similar to the model pro-
posed here is the Refinement via Analogy for Goal Recogni-
tion (RAGeR; Rabkina, Kantharaju, Wilson, Roberts, & Hi-
att, 2022) algorithm. RAGeR is not a cognitive model, but
it is also based on the Analogical Theory of Mind (Rabkina
et al., 2017) and also uses re-retrieval to update an observa-
tion in order to make predictions about an observed agent’s
goals. Re-representations in RAGeR, however, are effectively
walking up a hierarchical task network (Erol, 1995). It itera-
tively recognizes tasks in the initial observation and replaces
their components (subtasks and actions) with the recognized
task. On the other hand, the model presented in this work
re-represents to improve its representation of the current ob-
servation and re-retrieves to improve its inferences about a
compatriot’s mental states. It is a computational cognitive
model that makes predictions about the processes involved in
people’s ToM reasoning.

Conclusion

While typical adults are capable of impressive theory of mind
reasoning, they fail to reliably apply said reasoning in every-
day situations. These and other findings led Apperly and

Butterfill (2009) to propose a two-system model of theory
of mind. One system, efficient but inflexible, arises in early
childhood and does not require explicitly represented beliefs.
The other, which emerges with maturation, allows deep the-
ory of mind reasoning but requires considerable cognitive ef-
fort.

In this paper, we have instead argued that efficient and ef-
fortful theory of mind could be the result of a single iterative
process, with effort corresponding to re-representation of the
situation under consideration and re-retrieval of relevant ana-
logical comparisons to generate ToM inferences. We present
an extension to the computational implementation of the Ana-
logical Theory of Mind model, and demonstrate how AToM
is capable of producing the intended behavior (Rabkina et al.,
2017).

In future work, we plan to simulate additional behavioral
experiments and investigate how autonomous agents can use
such reasoning to interact in real-time environments (e.g.,
Rabkina et al., 2020). Finally, to date, AToM has relied on
manually constructed episodic memories or domain-specific
training data. We are also interested in examining how other
models of long term memory, including large generative neu-
ral models, may be used to simulate episodic memory. As
an example, Mostafazadeh et al. (2020) collected a large cor-
pus of semi-structured natural language causal explanations
which they used to train neural models for causal prediction.
Such models may be able to generate plausible beliefs and
causal chains as a stand-in for real-life experiences.

References

Apperly, 1. A., & Butterfill, S. A. (2009). Do humans have
two systems to track beliefs and belief-like states? Psycho-
logical review, 116(4), 953.

Apperly, I. A., Riggs, K. J., Simpson, A., Chiavarino, C., &
Samson, D. (2006). Is belief reasoning automatic? Psy-
chological Science, 17(10), 841-844.

Bach, T. (2011). Structure-mapping: Directions from simu-
lation to theory. Philosophical Psychology, 24(1), 23-51.
Bach, T. (2014). A unified account of general learning mech-
anisms and theory-of-mind development. Mind & Lan-

guage, 29(3), 351-381.

Baker, C., Saxe, R., & Tenenbaum, J. (2011). Bayesian the-
ory of mind: Modeling joint belief-desire attribution. In
Proceedings of the annual meeting of the cognitive science
society (Vol. 33).

de Villiers, J. G. (2021). The role (s) of language in theory
of mind. In The neural basis of mentalizing (pp. 423-448).
Springer.

Epley, N., Keysar, B., Van Boven, L., & Gilovich, T. (2004).
Perspective taking as egocentric anchoring and adjustment.
Journal of personality and social psychology, 87(3), 327.

Erol, K. (1995). Hierarchical task network planning: formal-
ization, analysis, and implementation. Unpublished doc-
toral dissertation, University of Maryland, College Park.

1614



Forbus, K. D., Gentner, D., & Law, K. (1995). Mac/fac:
A model of similarity-based retrieval. Cognitive science,
19(2), 141-205.

Forbus, K. D., & Hinrich, T. (2017). Analogy and relational
representations in the companion cognitive architecture. A/
Magazine, 38(4), 34-42.

Gentner, D. (1983). Structure-mapping: A theoretical frame-
work for analogy. Cognitive science, 7(2), 155-170.

Gentner, D., & Medina, J. (1998). Similarity and the devel-
opment of rules. Cognition, 65(2-3), 263-297.

Goldman, A. 1., et al. (2006). Simulating minds: The philoso-
phy, psychology, and neuroscience of mindreading. Oxford
University Press on Demand.

Goldman, A. 1., & Sebanz, N. (2005). Simulation, mirroring,
and a different argument from error. Trends in cognitive
sciences, 9(7), 320.

Gopnik, A., & Wellman, H. M. (1994). The theory theory.
In An earlier version of this chapter was presented at the
society for research in child development meeting, 1991.

Hale, C. M., & Tager-Flusberg, H. (2003). The influence of
language on theory of mind: A training study. Develop-
mental science, 6(3), 346-359.

Hiatt, L. M., & Trafton, J. G. (2010). A cognitive model of
theory of mind. In Proceedings of the 10th international
conference on cognitive modeling (pp. 91-96).

Hoyos, C., Horton, W. S., Simms, N. K., & Gentner, D.
(2020). Analogical comparison promotes theory-of-mind
development. Cognitive Science, 44(9), e12891.

Keysar, B., Barr, D. J., Balin, J. A., & Brauner, J. S.
(2000). Taking perspective in conversation: The role of
mutual knowledge in comprehension. Psychological Sci-
ence, 11(1), 32-38.

Keysar, B., Lin, S., & Barr, D. J. (2003). Limits on theory of
mind use in adults. Cognition, 8§9(1), 25-41.

Kovics, A. M., Téglas, E., & Csibra, G. (2021). Can infants
adopt underspecified contents into attributed beliefs? rep-
resentational prerequisites of theory of mind. Cognition,
104640.

Lenat, D. B., & Guha, R. V. (1991). The evolution of cycl, the
cyc representation language. ACM SIGART Bulletin, 2(3),
84-87.

Lin, S., Keysar, B., & Epley, N. (2010). Reflexively mind-
blind: Using theory of mind to interpret behavior requires
effortful attention. Journal of Experimental Social Psychol-
0gy, 46(3), 551-556.

Markman, A. B., & Gentner, D. (1996). Commonalities and
differences in similarity comparisons. Memory & cogni-
tion, 24(2), 235-249.

Marr, D. (1982). Vision.

McLure, M., Friedman, S., & Forbus, K. (2015). Extending
analogical generalization with near-misses. In Proceedings
of the aaai conference on artificial intelligence (Vol. 29).

Meltzoff, A. N. (2007). ‘like me’: a foundation for social
cognition. Developmental science, 10(1), 126—134.

Mostafazadeh, N., Kalyanpur, A., Moon, L., Buchanan,

D., Berkowitz, L., Biran, O., & Chu-Carroll, J. (2020,
November). GLUCOSE: Generalized and COntextu-
alized story explanations. In Proceedings of the 2020
conference on empirical methods in natural language
processing (emnlp) (pp. 4569—4586). Online: Associ-
ation for Computational Linguistics. Retrieved from
https://aclanthology.org/2020.emnlp-main.370
doi: 10.18653/v1/2020.emnlp-main.370

Nakos, C., Rabkina, I., Hill, S., & Forbus, K. D. (2020).
Corrective processes in modeling reference resolution. In
Cogsci.

Onishi, K. H., & Baillargeon, R. (2005). Do 15-month-old
infants understand false beliefs? science, 308(5719), 255—
258.

Rabkina, 1., Kantharaju, P., Roberts, M., Wilson, J., Forbus,
K., & Hiatt, L. M. (2020). Recognizing the goals of unin-
spectable agents. Advances in Cognitive Systems.

Rabkina, 1., Kantharaju, P., Wilson, J. R., Roberts, M., & Hi-
att, L. M. (2022). Evaluation of goal recognition systems
on unreliable data and uninspectable agents. Frontiers in
Artificial Intelligence, 211.

Rabkina, I., McFate, C., Forbus, K. D., & Hoyos, C. (2017).
Towards a computational analogical theory of mind. In
Proceedings of the 39th annual meeting of the cognitive
science society.

Rabkina, 1., McFate, C. J., & Forbus, K. D. (2018). Boot-
strapping from language in the analogical theory of mind
model. In Cogsci.

Saxe, R. (2005). Against simulation: the argument from
error. Trends in cognitive sciences, 9(4), 174-179.

Wellman, H. M., & Liu, D. (2004). Scaling of theory-of-mind
tasks. Child development, 75(2), 523-541.

1615





