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Global climate change is driving the rapid redistribution of plant species, and, in 

dryland ecosystems in particular, we lack an understanding of how species have and will 

continue to respond to novel abiotic conditions. This gap exists largely because, while the 

performance of plant species is influenced by abiotic conditions, interactions with co-

occurring species at the community level are also key determinants of their persistence 

and success. Thus, to predict the novel plant assemblages of the future, we require a more 

mechanistic understanding of how plant species respond to variation in both abiotic and 

biotic conditions simultaneously. In this dissertation, I investigate how plant functional 

traits of populations can explain interspecific responses to long-term climate change 

(Chapter 1), how biotic interactions at the level of the community interact with abiotic 

drivers to structure the functional composition of plant assemblages (Chapter 2), and how 

the plant functional diversity of the surrounding neighborhood influences the interaction 

outcome of a focal species across drought conditions (Chapter 3). To address these 
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questions, I utilized fine-scale observational plant community data from a steep 

elevational gradient in the desert mountains of southern California and a greenhouse 

experiment manipulating community trait diversity across contrasting abiotic conditions. 

In Chapter 1, I documented substantial range shifts among perennial species across a 

large aridity gradient and showed that functional traits related to resource use and biotic 

interactions are predictive of range dynamics spanning the last forty years. In Chapter 2, I 

discovered that both competition and facilitation are ubiquitous in plant communities and 

that their relative prevalence varies with abiotic conditions to structure the functional trait 

composition of plant communities. In Chapter 3, I show that both the community 

functional composition of neighboring species, the trait values of a focal species, and the 

distance between the two are all important determinants of the net interaction outcome of 

a focal species when growing in diverse assemblages. Overall, my dissertation highlights 

that plant functional traits sampled at the appropriate scale can lend predictability to 

species’ distributions and community-level interspecific interactions and that patterns of 

functional trait composition can be explained by accounting for diverse interactions and 

how they change across environmental gradients. 
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Introduction 

 Anthropogenic climate change is causing shifts in the distributions of plants 

around the world. As species try to cope with rapidly changing conditions, a general 

upward shift to higher elevations and latitudes has been observed in many instances 

(Chen et al., 2011; Kelly & Goulden, 2008; Lenoir et al., 2008). However, there is 

substantial variability in species’ responses—in the rate, magnitude, and even direction 

from that expected due to global warming trends -- with some species even moving 

downslope to warmer climates (Crimmins et al., 2011; Lenoir & Svenning, 2015; 

Rapacciuolo et al., 2014). To forecast long-term dynamics for terrestrial ecosystems, it is 

critical to better understand the mechanisms governing plant species’ range 

redistributions. In general, climate influences species’ geographical ranges by restricting 

which plant species can persist under a given set of climatic conditions. This can broadly 

be predicted based on the functional traits (morphological and physiological 

characteristics) of plant species which allow them to establish and persist in a given 

environment (Violle et al., 2014). Climate change is expected to reorganize vegetation 

patterns by imposing novel limitations on these traits, which will have cascading impacts 

on the functioning of ecosystems (Madani et al., 2018).  

Furthermore, while temperature and precipitation are widely understood to be 

important drivers of plants' distribution and performance (e.g., Humboldt & 

Bonpland,1805; Adler et al. 2014), recent pioneering studies have shown that interactions 

among plant species are critical to determining patterns of plant diversity under novel 

climatic conditions (Alexander et al., 2015; Catford et al., 2020). However, since these 
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critical species interactions are context-dependent, it is unclear how their outcomes might 

be altered along with shifts in climate, what their relative importance will be compared to 

direct abiotic changes, and what the consequences of both will be for future biodiversity 

patterns. Therefore, there is an urgent need to understand how community-level plant-

plant interactions influence patterns of functional diversity, and how their variation across 

abiotic gradients might contribute to turnover in community taxonomic and functional 

composition. To more realistically predict how vegetation patterns will respond to 

ongoing climatic variation, we need to shift our focus to the level of the community—the 

nexus of species interactions—and refine our understanding of how both biotic and 

abiotic factors interactively structure the diversity of plant communities (Cazelles et al., 

2016; Hillerislambers et al., 2012; Lavergne et al., 2010). 

While climate change is rapidly altering ecosystems worldwide, our 

understanding of the impact on dryland ecosystems is notably sparse compared to more 

mesic ecosystems, which is concerning given that dryland ecosystems constitute >40% of 

the global terrestrial landmass—the largest of any single biome—and are a dominant 

driver of global biogeochemical cycling (Ahlström et al., 2015). This knowledge gap is 

additionally concerning given that dryland ecosystems are already experiencing extensive 

drought-induced plant mortality of stress-tolerant species, due to anthropogenic-driven 

elevated temperatures and increased chronic and extreme drought (Williams et al., 2020), 

which is leading to widespread ecosystem-type conversion (Batllori et al., 2020; Berdugo 

et al., 2020; Breshears et al., 2005). Indeed, while drylands have been perceived as 

resilient to heat and drought, a growing body of literature shows the high sensitivity of 
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dryland ecosystems to climate change (Burrell et al., 2020; Schlaepfer et al., 2017; 

Shriver et al., 2022). This could partially be due to the unique mechanisms of plant 

community organization among dryland plant species, such as facilitation-mediated 

recruitment that breaks down with the mortality of dominant stress-tolerant species 

(Shriver et al., 2022). Given that the ecological mechanisms that uniquely govern dryland 

ecosystem functioning—such as drying-wetting cycles, photodegradation, and plant-plant 

facilitation—will likely govern other ecosystems under globally warmer conditions 

(Berdugo et al., 2020; Grünzweig et al., 2022), it is critical that we increase our 

mechanistic understanding of how plant species in dryland ecosystems respond to abiotic 

and biotic changes that will accompany a rise in global average temperatures.  

 A recent conceptual synthesis in community ecology recognizes that, like alleles 

in a population, the functional diversity of species in a regional species pool provides the 

template for niche selection (changes in presence or abundance of species owing to 

deterministic fitness differences), which, in combination with ecological drift (random 

fluctuations in species’ relative abundances with respect to their identities), dispersal 

(movement of individuals from one place to another), and ongoing speciation (divergence 

of former discrete entities into multiple new discrete entities), produce the patterns of 

biodiversity in nature (Spasojevic et al., 2018; Vellend, 2010). This synthesis has led to a 

revised model of the theory of community assembly which considers species’ functional 

traits, rather than taxonomic identity, as determinants of their differential success in 

contrasting environments (Fukami et al., 2005; Keddy, 1992; McGill et al., 2006). Within 

this framework, abiotic niche selection on species’ traits comprises the primary filter, 
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which restricts membership in a community, followed by biotic niche selection 

comprising the next successive filter operating at the scale of local assemblages, which 

then determines species’ relative abundances. However, trait-based approaches to 

community assembly have yet to appropriately account for three key issues incommunity 

assembly theory: 1) species within communities interact in a variety of ways, not 

exclusively via resource competition, 2) the outcome of interactions is contingent on the 

entire neighborhood, not just on pairwise relationships; and 3) the strength, outcome, and 

importance of interactions are mediated by abiotic conditions. 

First, while community assembly theory has often focused on competitive 

interactions, positive interactions also occur among plants and can play a central role in 

mediating patterns of plant community diversity (Brooker et al., 2008; Kikvidze et al., 

2015). Plant-plant facilitation can occur through direct mechanisms, such as through the 

amelioration of environmental stressors such as heat or drought, or indirectly, by 

providing defense against herbivory or suppressing competitors (Mcintire & Fajardo, 

2014). While facilitative interactions have previously been assumed to occur only under 

conditions of severe environmental stress, recent work suggests a more ubiquitous nature 

of facilitative interactions in plant communities (Bimler et al., 2024; Wright et al., 2015). 

Importantly, recent work has shown that facilitative interactions, by modifying abiotic 

conditions that attenuate the larger abiotic filter, may increase taxonomic, functional, and 

phylogenetic community diversity (Chacón‑Labella et al., 2016; Madrigal-González et 

al., 2020; Schöb et al., 2012). 
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Second, while modern coexistence theory (Chesson, 2000) has provided a robust 

demographic framework to study long-term species interactions, and led to refined 

models of community assembly theory (Hillerislambers et al., 2012), it often is limited in 

practice by a focus on pairwise interactions, ignoring the complex indirect and higher-

order interactions that often emerge in real-world communities (Levine et al., 2017). For 

instance, stronger environmental filtering with drought may intensify competitive 

interactions among species pairs, whereas indirect interactions could increase coexistence 

opportunities in multispecies assemblages (Aschehoug & Callaway, 2015; Levine et al., 

2017). Indeed, emerging work analyzing multispecies coexistence shows that results from 

pairwise interactions are not always applicable in diverse communities (Zepeda & 

Martorell, 2021; Granjel & Allan, 2023). Thus, accurately predicting the impact of 

climatic changes on plant communities depends critically on our understanding of species 

interactions within diverse communities (Gilman et al., 2010) rather than just between 

species pairs. 

Third, the strength and outcome of species’ interactions can vary according to 

environmental conditions  (Chamberlain et al., 2014; Wainwright et al., 2019), which 

challenges classic ideas of separate and sequential abiotic and biotic filters in community 

assembly. For instance, a large body of work suggests that interactions among co-

occurring plant species have shown to shift from competitive (negative) to facilitative 

(positive) with increasing environmental stress (stress gradient hypothesis SGH) 

(Bertness & Callaway, 1994; Callaway et al., 2002). Similarly, changes in the strength of 

competition across abiotic gradients have been attributed to shifting competitive 
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mechanisms, where productive environments are characterized by stronger hierarchical 

competition and more harsh environments are characterized by “flatter” competitive 

hierarchies or non-hierarchical competition (Maestre et al., 2009; Soliveres & Allan, 

2018). Thus, abiotic and biotic processes may operate as interactive, rather than separate 

and sequential, filters structuring trait diversity (Kraft et al., 2015; Thakur & Wright, 

2017). 

In this dissertation, I address how contemporary climate change is reorganizing 

the distribution of plant species and additionally address the above shortcomings of 

community assembly theory to increase our understanding of ecological assembly in an 

era of rapid global change. For my first chapter, I resurveyed a long-term vegetation 

dataset spanning over forty years to investigate how species have responded to climate 

change by analyzing changes in their distribution and abundance across a large elevation 

gradient. For my second chapter, I used the same survey data to create spatial association 

networks to disentangle how diverse interspecific interactions vary across a large abiotic 

gradient to influence community functional structure. For my third chapter, I conducted 

an experiment manipulating the functional diversity of communities to understand how 

the functional diversity of a community influences the outcome of net interactions for a 

focal species. These combined results reveal the overall importance of plant functional 

traits in determining species’ responses to both abiotic and biotic conditions, and how 

consideration of diverse interactions at the community level can lend more realistic 

insight into community reorganization mechanisms. 
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Chapter 1 

Plant functional traits predict heterogeneous distributional shifts in response to 

climate change 

 

Abstract 

Climate change is causing the rapid redistribution of vegetation as plant species 

move to track their climatic optima. Despite a global trend of upward movement in 

latitude and elevation, there is extensive heterogeneity among species and locations, with 

few emerging generalizations. Greater generalization may be achieved from considering 

multidimensional changes in species’ distributions as well as incorporating ecologically 

relevant functional traits into studies of range shifts. To better understand how recent 

changes in climate are influencing the elevational distribution of plant species and how 

species’ functional traits mediate distributional changes, we resampled a 2,438 meter 

elevation transect spanning a distance of 16 kilometers which encompasses desert scrub, 

pinyon-juniper woodland, chaparral, and coniferous forest plant communities. Over the 

last 42 years, total perennial cover and species’ average cover increased at lower 

elevations and decreased at higher elevations while average elevational leading-edge 

increased 116 m and elevational rear edge decreased 84 m. Notably, these changes were 

mediated by species’ functional traits, where species exhibiting more conservative traits 

(lower SLA, greater δ13C, larger seed mass) and taller height shifted upward in their 

leading-edge range limit, average elevation, and trailing edge range limit, while declining 

in abundance at the median and trailing edge of their range. Species possessing more 
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acquisitive traits (higher SLA, lower δ13C, smaller seed mass) and shorter height shifted 

downward and increased in abundance at their trailing edge, with increases in their total 

range size. Our results provide clear evidence that heterogeneous range dynamics under 

recent climate change can be generalized by considering ecologically relevant plant 

functional traits, and how they respond to localized climate exposure. Further, by 

documenting changes across a steep elevational gradient comprising a large aridity 

gradient, we show divergent patterns for plants occupying contrasting positions along the 

global spectrum of plant form and function, which provides critical insight into how trait-

mediated changes under increasing aridity will impact ecosystem functioning.  

 

Keywords: biodiversity change, range shifts, functional diversity, aridification, climate 

change, drylands, Boyd Deep Canyon 

 

Introduction 

Global climate change is causing rapid modifications to terrestrial biodiversity 

(Díaz et al., 2019). Among plants, there is a global trend of upward movement in latitude 

and elevation as species track their optimum conditions under accelerated warming 

(Kelly & Goulden, 2008; Lenoir et al., 2008; Rumpf et al., 2018). However, numerous 

recent long-term studies have also found either lagged responses of species failing to 

track their shifting climatic optima (Alexander et al., 2018; Zhu et al., 2012) or 

unexpected directional changes such as downward elevational and latitudinal shifts 

(Crimmins et al., 2011; Lenoir et al., 2010; Rumpf et al., 2019). These distributional 
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changes will scale up to influence ecosystem productivity, nutrient cycling, carbon 

storage, and land-atmosphere feedbacks (Anderegg et al., 2019a; Madani et al., 2018; 

Pecl et al., 2017), however, three major limitations have hindered generalizations. First, 

most existing studies have only assessed changes to one dimension of species’ 

geographic ranges—typically leading-edge or average elevation (Lenoir & Svenning, 

2015). Second, there has been a failure to incorporate ecologically relevant functional 

differences among species undergoing distributional shifts. Lastly, the majority of long-

term studies of plant redistributions have been conducted within temperate alpine and 

boreal ecosystems, which has limited our understanding of more xeric ecosystems, which 

as a biome collectively comprise the largest proportion of terrestrial surface (Cherlet et 

al., 2018). 

Despite decades of research, most studies have primarily assessed distributional 

changes over time at the leading range edge (high elevation or latitudes) (Chen et al., 

2011; Pauli et al., 2012) or at the center of the range (Crimmins et al., 2011; Kelly & 

Goulden, 2008; Lenoir et al., 2008). However, a recent metanalysis showed that trailing 

edge range margins have comparable rates of movement (Rumpf et al., 2019). Critically, 

understanding the response of plant species to changing climate requires examination of 

change in not only species’ range limits, but also changes in abundance across species’ 

entire distributions (Ehrlén & Morris, 2015; Lenoir & Svenning, 2015). Lags in dispersal, 

establishment, and extinction are expected to be widespread among species shifting along 

elevation gradients, and the magnitude of these lags – captured by range-wide population 

abundance changes – will likely vary among populations throughout individual species’ 
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ranges (Alexander et al., 2018; Peterson et al., 2019). For instance, different life stages 

and/or locally adapted populations can show divergent demographic responses to the 

same climate drivers (Hargreaves & Eckert, 2019; Valladares et al., 2014), and the 

importance of different demographic rates to population growth can vary across a 

species’ range (Oldfather et al., 2021).  

Ultimately, while multiple factors will influence the rate and direction of range 

redistributions, a species’ ability to respond to changing climate will depend on the extent 

that its functional traits enable persistence under novel climate regimes or enable 

movement to favorable climatic conditions (Angert et al., 2011; Damschen et al., 2012; 

Dawson et al., 2011; MacLean & Beissinger, 2017). Plant functional traits reflect species’ 

morpho-physiological strategies to optimize fitness under a given suite of environmental 

conditions (Lavorel & Garnier, 2002; Violle et al., 2014) and have strong theoretical 

support for predicting range dynamics under contemporary climate change (Estrada et al., 

2016; Funk et al., 2016). However, functional approaches for predicting range dynamics 

have historically focused on dispersal traits (Estrada et al., 2016; Zhu et al., 2012) or 

categorical plant functional types (Lenoir et al., 2008; Rumpf et al., 2018), while largely 

ignoring that establishment potential and competitive ability in new habitats as well as 

survival in existing habitats will be dependent on traits relating to resource acquisition 

and utilization (Griffin-Nolan et al., 2018; Liancourt et al., 2020; MacLean & Beissinger, 

2017), which are often orthogonal to dispersal traits (Laughlin, 2014; Westoby et al., 

2002). Furthermore, traits within species are often coordinated (i.e., the plant economics 

spectrum), with global patterns of plant resource-use and acquisition strategies 
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represented by a continuum from ‘fast’, resource-acquisitive strategies that optimize 

carbon gain by constructing cheap tissues with shorter lifespan, taking advantage of brief 

periods of resource availability, while resource conservative strategies invest more in 

longer-lived tissues with greater construction costs for enhanced survival in more 

stressful conditions (Reich, 2014). While resource-use traits conferring tolerance to 

drought and heat stress (e.g., high water use efficiency (WUE), lower specific leaf area 

(SLA)) are typically adaptive under the warmer and drier conditions expected with 

climate change, these conservative strategies become maladaptive under increasing 

aridity given their susceptibility to hydraulic failure (Bennett et al., 2015; Berdugo et al., 

2022; Carvajal et al., 2019).  

Finally, while fine-scaled longitudinal data documenting species’ range and 

abundance dynamics has been collected from a variety of ecosystems, most of these 

studies are confined to temperate alpine and boreal ecosystems. Mountainous regions 

exhibit high heterogeneity of abiotic factors over short distances, and subsequently host 

high elevational variation in plant communities (Körner, 2007). Such high rates of 

turnover along compressed climatic gradients in mountainous systems serve as a natural 

laboratory for assessing long-term responses to climate change (Sundqvist et al., 2013), 

especially given that transition zones between habitat types will likely facilitate novel 

species’ interactions and subsequent unexpected and/or accelerated range dynamics 

(Beckage et al., 2008; Solarik et al., 2020). Here, we resampled the Deep Canyon 

Transect, a long-term dataset spanning a steep elevational gradient in Southern 

California, to understand how recent climate change is influencing the distributions of 
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plants and to ask what role species’ functional traits play in mediating their responses. In 

2019, we resampled 20 400-m long vegetation sub-transects by identifying all perennial 

plant species that intercepted each sub-transect at every centimeter (80,000 data points) 

and compared our findings to surveys in 1977 (Zabriskie, 1979) and 2008 (Kelly & 

Goulden, 2008). We calculated changes in range edges and abundances across species’ 

entire elevational distributions for all species that were recorded in the original survey. 

We additionally measured key morphological traits of abundant species and related them 

to individual species’ response to four decades of climate change. Specifically, our goals 

were to determine the direction and extent of range redistributions of diverse species 

across multiple ecological zones—including patterns of abundance throughout each 

species’ range—and to assess whether long-term responses are mediated by interspecific 

functional traits. Given the higher evaporative demand from anomalously dry and warm 

conditions in our study region throughout the late 20th and early 21st centuries 

(Overpeck & Udall, 2020; Williams et al., 2020), we predicted that species exhibiting a 

conservative strategy would show more pronounced upward shifts with decreases in 

cover at the lower part of their range, while more acquisitive species would show 

increasing cover and range expansions at their trailing edge margins. 

 

Materials and Methods 

Study site. The Deep Canyon Transect, part of the Boyd Deep Canyon Desert Research 

Center, is a steep elevational gradient gaining 2,438 meters over a distance of 16 

kilometers (Fig. 1). The gradient encompasses nine distinctly described plant 
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communities represented by over 600 species documented in the original survey of 1976-

1977 (Zabriskie, 1979). In 2008, Kelly and Goulden (Kelly & Goulden, 2008) 

documented extensive range shifts in the ten most widely distributed species attributed to 

recent climate change (although fire history has subsequently been argued as a significant 

factor, (see Schwilk & Keeley, 2012)).  

 

Climate data. To determine if climatic variables in the area have changed significantly, 

we used local weather station data from stations within 75 km of the study site, 

representing the elevation range within the transect, and containing nearly continuous 

records since 1947. For these stations, we analyzed changes in the following climatic 

variables: mean annual temperature, mean annual maximum and minimum temperatures, 

mean annual precipitation, interannual precipitation variability using the coefficient of 

variation of monthly precipitation, number of days with maximum temperature less than 

0°C, number of days with maximum temperature exceeding 32.2° C, and number of days 

receiving 2.54 mm in each month. We also analyzed site-specific weather station data 

from the Boyd Deep Canyon Desert Research Center, which is the only climate dataset 

available from the study site which includes years preceding the first survey in 1977. 

Further, to compare how climatic variables across the elevation gradient have changed in 

direction and rate, we analyzed changes in 800-m resolution gridded climate data 

(PRISM; PRISM Climate Group 2014) using the location of transects at the lowest, 

highest, and middle elevations. PRISM data are interpolated from nearby climate station 

data that are physiographically similar by calculating a local climate-elevation regression 
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that also uses six other topographic predictors; they accurately characterize topoclimate 

in mountainous areas of the western US (Daly et al., 2008). For these data, we evaluated 

trends in annual minimum, maximum, and mean temperature, along with annual 

precipitation and vapor pressure deficit (VPD). Climatic changes across survey intervals 

were compared between each survey period using t-tests. 

 

Vegetation surveys. To understand how vegetation has responded to ongoing climatic 

changes, we resurveyed the plant communities following the same protocol used in the 

original surveys by Zabriskie (Zabriskie, 1979) also followed by Kelly and Goulden 

(Kelly & Goulden, 2008). The original survey consisted of 22 linear transects along the 

elevation gradient, equally spaced at 122-meter intervals beginning at 24 meters elevation 

and following 400 m isocontours. Due to urban development in the Coachella Valley, the 

lowermost transect was lost forever beneath an irrigated golf course subdivision, and 

therefore we only resurveyed 21 of the original transects. We surveyed all transects at 

peak biomass across the elevational gradient, from March 2019 at the lowest elevation, to 

August 2019 at the highest elevation. At each 400-m transect, we identified all perennial 

plant species, and abundance was estimated as the amount of foliage intercepted by the 

tape to the nearest centimeter. Permits were obtained for sampling on the Boyd Deep 

Canyon reserve and no permits were needed at other locations. 

  

Functional trait data. Since the raw transect data were not available for the 1977 survey, 

we retained the 36 species with published abundance values (Zabriskie, 1979) for 
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subsequent analyses assessing long-term elevational trends. The 36 species were chosen 

by the original author to be published given their widespread distribution and dominance 

across the ecological communities spanning the gradient. From ten individuals of each of 

these 36 species, we collected functional trait data but only collected leaf trait data on the 

31 non-CAM species following standard protocols (Pérez-Harguindeguy et al., 2013; 

Table S2). For species spanning multiple habitat types we collected 10 individuals from 

each habitat type to account for intraspecific trait vacation along the gradient. We focused 

on ten commonly measured traits that reflect well-documented tradeoffs in plant 

ecological strategies and are all known to affect the ability of plants to establish, persist 

and reproduce in variable environments (Westoby et al., 2002) including plant height, 

SLA, leaf dry matter content (LDMC), leaf area (LA), leaf water content (LWC), seed 

mass, chlorophyll content, foliar δ13C, leaf nitrogen content, and foliar δ15N. Plant height 

is related directly to growth rates and resource availability, and along with SLA has been 

shown to reflect biotic interactions in dryland communities (Gross et al., 2013). 

Additionally, plant height influences the extent of decoupling between free air 

temperature and leaf or canopy temperature (Frenne et al., 2021; Körner, 2007). SLA, 

chlorophyll content, and LDMC are traits related to a plant’s ability to acquire and use 

nutrients, while LA and LWC are related to light availability and water use (Pérez-

Harguindeguy et al., 2013). Seed mass influences a plant’s dispersal potential and 

establishment success (Moles & Westoby, 2004). Intrinsic water use efficiency (WUEi), 

measured as δ13C, reflects the relative efficiency of carbon gain through photosynthesis, 

in regard to water transpired (Farquhar et al., 1989), and can capture site water 
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availability (Livingston & Spittlehouse, 1996). Leaf nitrogen content is associated with 

higher photosynthetic capacity (Evans, 1989) and foliar δ15N can shed light on short-term 

dynamics of the N cycle (Craine et al., 2015). 

Upon collecting leaves in the field, we placed them in water picks to hydrate for 

24 hours before processing. We measured leaf area (cm2) by scanning fresh leaves with a 

flat-bed digital scanner and then calculated leaf area using ImageJ (Schneider et al., 

2012). After scanning, fresh leaf mass (g) was determined using a digital balance, and 

subsequently dried at 60°C for at least 72 hours prior to determining dry mass (g). Leaf 

dry matter content was calculated as dry mass divided by fresh mass. Chlorophyll content 

was measured using a digital chlorophyll meter (Konica Minolta) and averaged across 

three measurements per leaf. We measured plant height as the distance from the ground 

to the highest photosynthetically active tissue. We used seed mass data retrieved from the 

TRY database (Kattge, 2020). Leaf δ13C and δ15N were measured at the University of 

Wyoming Stable Isotope Facility (http://www.uwyo.edu/sif/) where samples were ground 

with a steel ball mil and analyzed for δ13C and δ15N on a Carlo Erba 1110 Elemental 

Analyzer coupled to a Thermo Delta V IRMS. Isotope ratios were calculated as  

𝛿[ C 
13 , N 

15 ]𝑠𝑎𝑚𝑝𝑙𝑒𝑠 = (
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
− 1) 𝑥 1000 

where Rsample and Rstandard are the δ
13C/12C or δ15N/14N molar abundance ratios of samples, 

with 36-UWSIF-Glutamic 1 and 39-UWSIF-Glutamic 2 used as reference samples. 

 

Data analysis. We tested for temporal changes in community-level attributes of total 

perennial plant cover, species richness (alpha diversity), and Shannon diversity by 
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building linear mixed effect models with fixed effects of elevation, year, their interaction, 

and habitat. We used transect ID as a random effect to account for the non-independence 

of our observational units (transects). We expressed coefficients of determination as both 

marginal and conditional R2, where the former is the variation explained by fixed effects, 

and the latter the variation explained by both fixed and random effects. Models were 

conducted using the ‘lme4’ package (Bates et al., n.d.), and tests of significance were 

assessed with the package ‘lmerTest’ (Kuznetsova et al., 2017) using Satterthwaite’s 

method.  

We assessed changes in individual species’ elevational distributions over time 

based on changes in leading edge range limits, rear edge range limits and average 

elevation for each species (Fig. 3A). Leading edge and rear edge limits were defined as 

the highest and lowest transects of occurrence across the elevation gradient. We also 

calculated the average abundance-weighted elevation for each species per survey year 

because range shift detection can potentially be misleading for species’ upper and lower 

boundaries compared to changes in mean elevation (Shoo et al., 2006). To capture the 

complex changes in abundance across each species’ entire range, we calculated 

probability density functions for each species spanning the entire gradient separately for 

each survey year using the density function with Gaussian kernel smoothing and 

weighing by species’ cover values at each elevation (Rumpf et al., 2018). We used 

density estimation rather than comparing changes in abundance at each transect over time 

due to substantial range limit and abundance fluctuations between both survey intervals. 

Abundance was therefore defined as the integral of density functions. We then used the 
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sum of modified density functions to calculate absolute changes in abundance across 

survey years, as well as changes in elevation optima defined as the peak of the density 

distribution and changes in maximum density to account for abundance changes at 

optimum range positions. Since abundance changes of individual species can differ 

substantially among range positions (leading versus rear edge), we assessed abundance 

changes at the 25% and 75% quantiles of density functions between original and most 

recent surveys. To account for changes at the median of species’ distributions, we 

additionally evaluated the 50% quantiles. Additionally, we tested whether species’ range 

limits, including average and optimum elevation, were contingent upon their original 

elevation for each survey interval. Changes in individual species’ range dynamics were 

assessed using linear mixed effect models with survey year as a fixed effect and species 

as a random effect. To assess differences among survey intervals, we used paired t-tests 

for all the above range attributes. 

 To understand how functional traits might be related to observed range dynamics, 

we performed linear regressions using changes in range attributes as response and each 

individual trait as a predictor. Individual traits were tested for normality using Shapiro-

Wilk normality tests, and traits not conforming to normality were log-transformed. In 

addition to individual traits, we conducted a principal components analysis (PCA) after 

scaling trait variables, retaining the first two principal components, and obtained scores 

on these two components for each species to use as predictors. Composite trait predictors 

from our PCA were only available for 26 species due to missing traits. Individual trait 

regressions were performed using trait data for 36 species, with some species missing 
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traits either due to their physiology (cactus species were not collected for leaf traits) or 

due to missing data. 

 

Results 

Climatic changes. Nearby weather station data showed pronounced changes since 1947, 

with general increases in nearly all temperature variables (Table S1). Gridded climate 

data from the lowest, middle, and highest elevation transects showed substantial warming 

trends, with annual minimum temperature increasing by 2.77℃ at the lowest, 3.84℃ at 

the middle, and 2.3℃ at the highest elevation between the years preceding the first and 

most recent surveys (Fig. 2; Table S2). Notably, there were heterogeneous changes 

among different elevations, where rate and magnitude of warming was generally highest 

at the middle elevation, while the lowest elevation exhibited increases in precipitation (54 

mm) and decreases in VPD (-2.17 kPa) and maximum temperature (-2.17℃) between the 

first and second surveys (between the third and fourth quarters of the 20th century). Long-

term climate data dating to 1961 from the Boyd Deep Canyon center station (Table S1), 

showed a trend toward increased interannual precipitation variability (measured as the 

coefficient of variation, F=2.84, p=0.091), and no overall significant changes in mean 

annual or seasonal (winter and summer) precipitation (MAP: F=0.02, p=0.884; winter 

precipitation: F=0.01, p=0.93; summer: F=0.44, p=0.506). However, there was a 

significant increase in average minimum temperature (0.98℃; F=10.5, p=0.001) and 

average maximum temperature (3.61℃; F=108.8, p<0.001) over the same time period 

(see SI for details). 
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Range dynamics. We found evidence for both species range edge shifts and population 

abundance changes, and that these changes were predicted by interspecific differences in 

functional traits. First, we found substantial changes in leading edge distributions, with an 

average elevation increase of 116.1 meters from 1977 to 2019 (1977 mean: 1612 ± 34.6 

(SE) m; 2019 mean: 1728.1 ± 34.6 (SE) m, t=3.44, p=0.001, Fig. 3B) and substantial 

changes in rear edge range limits with an average downward shift of 84.9 meters (1977 

mean: 1389.4 ± 28.12 (SE) m; 2019 mean: 1304.49 ± 28.12 (SE) m, t=3.01, p=0.004, Fig. 

3C). Species with higher δ13C, indicating higher intrinsic WUE, showed greater upward 

shifts (F=5.08, p=0.034, Fig. 4A; Table 1) and species exhibiting higher SLA (F=11.55, 

p=0.002) and shorter species (F=6.66, p=0.016) shifted downward in their lower edge 

elevation range (Table 1). Moreover, principal component axis 1 (PC1 accounting for 

37.8% of total trait variation and associated with seed mass (0.49), SLA (-0.40), δ13C 

(0.38), and height (0.37) (Fig. 4B)) showed a positive relationship with lower elevation 

margin changes (F=8.25, p=0.008), where species with lower PC1 scores showed 

downward shifts (Fig. 4D; Table 1). In addition, total elevational range size increased 

across sampling years (t=4.28, p<0.0001), owing to a large increase in average range size 

from 1977-2008 (1977 mean: 222.62 ± 50.9 (SE) m; 2008 mean: 485.46 ± 50.9 (SE) m, 

t=5.15, p<0.0001) where shorter statured species increased their range span while taller 

species exhibited range contractions (F=6.95, p=0.01; Table 1). However, like maximum 

elevation limits, there was a reversal where average range size contracted from 2008-

2019 by an average of 61.8 m (2008 mean: 485.46 ± 25.4 (SE) m; 2019 mean: 423.65 ± 
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25.4 (SE) m, t=-2.43, p=0.020). Range contractions during the most recent survey 

interval were positively associated with LDMC, where lower LDMC species showed 

greater range contractions (F=4.94, p=0.034) (Table 1). Changes in overall range size 

was correlated with rear edge elevation changes (F=23.3, p<0.001), where species that 

shifted downward in their rear edge showed the greatest increases in range size while 

species shifting upward showed range contractions.  

In addition to distributional changes, we found that interspecific differences in 

functional traits predicted patterns of population abundance change. There was an upward 

shift in species’ optimum elevation as defined by the peak of density distributions (1977 

mean: 1491.8 ± 69.8 (SE) m; 2019 mean: 1547 ± 64.1 (SE) m, t=-2.8, p=0.006) (Fig. 3D) 

where species possessing lower chlorophyll content shifted their optima downward, and 

vice versa (F=4.91, p=0.035; Table 1). Due to divergent responses among species 

correlated with directional changes in range margins, average abundance-weighted 

elevation showed no overall change from 1977 to 2019 (1977 mean: 1504.49 ± 17.8 (SE) 

m; 2019 mean: 1521.04 ± 17.8 (SE) m, t=1.05, p=0.297). However, the divergent 

responses were captured by differences in functional traits, where species showing an 

upward shift in abundance-weighted elevation had lower SLA (F=7.55, p=0.010) and 

higher δ13C (F=7.25, p=0.012) (Table 1) and had higher PC1 scores (F=8.39, p=0.008; 

Fig. 4C). While average leading-edge abundance (75% quantiles of density functions) 

among species showed no change overall (F=-0.83, p=0.411; Fig. S3), average 

abundance at median elevation (50% quantiles of density distributions) decreased (t = -

2.98, p = 0.038), and trailing-edge abundance (25% quantiles of density functions) 
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decreased (t=-2.22, p=0.029; Fig. S4). Importantly, species with higher LDMC (F=4.3, 

p=0.046), lower SLA (F=6.09, p=0.019), higher seed mass (F=6.86, p=0.014), higher 

δ13C (F=7.2, p=0.011), and taller stature (F=4.12, p=0.052) tended to decrease in median 

elevation abundance across the survey period (Table 1). Consequently, PC1 was the 

strongest predictor of median elevation abundance change, where species scoring higher 

declined the most (F=9.46 p=0.005). However, PC1 was a weaker predictor of abundance 

changes in rear edge abundance, where species scoring lower (smaller seed mass, shorter 

stature, and lower LDMC) showed increases (F=4.22, p=0.051) and no other trait being 

predictive. Lastly, species showing declines in abundance at the leading edge were 

associated with higher δ13C (F=5.07, p=0.029), larger seeds (F=13.5, p=0.004), and 

greater LDMC (F=7.04, p=0.018; Table 1).  

Finally, changes in leading and rear edge abundance were positively related 

(F=4.51, p=0.041), where species increasing at one range margin tended to increase at the 

other, and likewise, species that declined at one margin declined in the other. Species that 

increased their overall range size likewise showed significant increases in their 

proportional abundance (F=6.43, p=0.016). Similarly, species shifting upward at their 

leading-edge range margins showed a decreasing trend in abundance at their median 

(F=4.82, p=0.035) and rear edge (F=3.07, p=0.089). Species occupying a lower historic 

average elevation showed more pronounced upward shifts in their leading edge, and vice 

versa, from 1977-2008 (F=4.215, p=0.047). Similarly, historic leading-edge elevation 

was predictive of leading-edge range shifts, where species with historically lower 

elevation margins showed more pronounced upward leading-edge shifts (F=9.81, 
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p=0.003). A similar pattern was found for optimum elevation, where species with 

historically lower elevation optima showed greater upward shifts in their optimum 

elevation (F=7.64, p=0.009). However, while these range redistributions were correlated 

with historic elevation, only one trait—chlorophyll content—showed systematic variation 

with historic range attributes, where species occupying lower elevations tended to have 

higher chlorophyll content and vice versa (Table S6). Species that were historically more 

abundant showed stronger decreases in total abundance, and vice versa, from 1977-2008 

(F=8.47, p=0.006). Changes in total perennial plant cover remained relatively stable 

across the survey period, but habitat-specific changes reflected changes in species 

abundance patterns, where cover increased at the lowest elevation transects and decreased 

at the highest elevations (Fig. S1; Table S3). 

 

Discussion  

While recent work has identified plant functional traits associated with growth 

and survival under climate warming and drying within species’ current distributions 

(Kühn et al., 2021; Soudzilovskaia et al., 2013), few studies have consistently predicted 

distributional responses of species across ecosystems. Here, we find strong support for 

the ability of plant functional traits associated with resource use and acquisition to predict 

plant distributional responses to long-term climate change (Fig. 4), especially when 

considering the multidimensional nature of species’ distributions. Concordant with global 

average rates across other biomes (i.e., 5-30 m/decade (Kelly & Goulden, 2008; Lenoir et 

al., 2008), we found a 29 m/decade average upslope shifts for species’ leading edge and 
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that taller species exhibiting more conservative traits (lower SLA, greater δ13C, larger 

seed mass) shifted upward in their leading-edge range limit as well as their average 

elevation, and trailing edge range limit. However, we also find substantial downward 

shifts where shorter species with more acquisitive traits (higher SLA, lower δ13C, smaller 

seed mass) shifted downward, increased in abundance at their trailing edge, and increased 

their total range size, adding to accumulating long-term studies showing downward shifts 

in elevation or latitude (Abella et al., 2019; Fei et al., 2017; Kopp & Cleland, 2014). 

Critically, our results suggest that these divergent responses among species in 

distributional shifts can be understood by examining the variation in coordinated 

functional traits among species. 

Dryland ecosystems are experiencing anthropogenic-driven elevated temperatures 

and increased chronic and extreme drought (Williams et al., 2020) which has and will 

continue to decrease soil moisture (Bradford et al., 2020), disproportionately impacting 

species reliant on deeper soil water (Schlaepfer et al., 2017). Our results are consistent 

with recent work showing that this is already happening in southern California (Goulden 

& Bales, 2019), as taller species with more conservative traits which typically rely on 

deeper water sources show upward shifts and decline at their lower and median 

elevations. Specifically, our results show that across the entire survey period (1977-2019) 

species possessing traits scoring higher on PC1 (taller height, lower SLA, greater δ13C, 

and larger seed mass) shifted upward in their leading-edge range limit, average elevation, 

and rear edge range limit, while declining in trailing edge abundance and range median 

abundance. If extreme drought is an important driver of the observed range 
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redistributions, these results are contrary to what would be expected for seed mass and 

δ13C, since seed mass plays a critical role in enhancing seedling survival under drought 

stress (Moles & Westoby, 2004), and higher δ13C values are associated with greater 

intrinsic water use efficiency (Farquhar et al., 1989). However, taller plants have wider 

water-conducting conduits, which make taller species more susceptible to embolisms, and 

therefore increase their vulnerability to drought (Olson et al., 2018). Thus, the observed 

declines in rear edge and center abundance are potentially due to drought-induced 

embolism, while the same species have increased in abundance at their leading edge 

owing to their larger seed mass and higher iWUE conferring increased survival of 

juveniles.  

Interestingly, we found that species in this system are highly responsive to recent 

climatic changes, which adds to the growing body of literature showing high sensitivity 

of dryland ecosystems to climate change (Burrell et al., 2020; Schlaepfer et al., 2017; 

Shriver et al., 2022). Both local weather station data and gridded climate data showed 

long-term patterns consistent with warming temperatures, where substantial increases in 

winter minimum temperatures showed the most dramatic increases, which were more 

pronounced at lower and mid  elevations These results support recent work highlighting 

elevational differences in warming rates (Pepin et al., 2015), and our findings of 

elevational differences in climate helps explain some of the heterogeneity of range 

redistributions. For instance, the downward shift in lower elevation range margins 

occurred following a period of cooler and wetter conditions at the lowest elevation, while 

the upward shifts in leading edge margins occurred over the same interval, where the 
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middle and highest elevations showed pronounced increases in temperature and VPD. 

Additionally, we found a downward shift in leading edge margins between the second 

and most recent survey, which was characterized by anomalously warm regional drought 

which caused extensive mortality (Dong et al., 2019; Goulden & Bales, 2019), and which 

likely caused mortality in newly establishing juveniles of species that had previously 

shown upward leading-edge shifts. Furthermore, we found that lower-elevation species 

tended to exhibit more substantial upward range shifts, consistent with recent long-term 

trends from other mountainous ecosystems (Mamantov et al., 2021; Rumpf et al., 2018). 

While prevailing explanations include trait covariation with elevation and higher-

elevation species having a broader thermal tolerance being adapted to greater diurnal and 

seasonal temperature fluctuations, only one trait—chlorophyll content—varied with 

elevation, and wasn’t predictive of any range attribute changes, while our elevation 

gradient shows an opposite pattern of lower elevations experiencing greater temperature 

fluctuations than higher elevations. Thus, in contrast to more temperate mountain 

ecosystems (Pepin et al., 2015), our findings of elevation-dependent range shifts likely 

reflect that our dryland system is experiencing more rapid warming at lower elevations, 

consistent with recent work highlighting the potential for differences in climate exposure 

to drive geographic variation in species’ responses (Kling et al., 2020; Oldfather et al., 

2019). Despite this heterogeneity in climate change exposure, species showed responses 

consistent with increasing aridification, where more variable precipitation and hotter 

drought periods across southern California have promoted the replacement of stress- 

 



 

32 

 

tolerant species with more resource-acquisitive species that possess drought-avoidant 

traits (Berdugo et al., 2020).  

While recent work examining trait-mediated fitness responses to climate change 

have found that lower SLA and higher iWUE tend to show positive responses to 

increasing temperatures (Kühn et al., 2021), our long-term results provide contrasting 

evidence. Intriguingly, while species inhabiting resource-poor environments tend to 

exhibit more conservative traits than species in resource rich environments (Reich, 2014), 

recent studies suggest that there is a reversal in the plant economics spectrum under more 

arid conditions (Carvajal et al., 2019). Specifically, resource acquisitive strategies may 

allow plants to exploit more sporadic and seasonal precipitation, while conservative traits 

require greater energy expenditure (Mooney & Dunn, 1970). This reversal might also be 

partially explained by recent work on leaf thermoregulation which has shown that plant 

species strategize along a spectrum of leaf thermal stability and photosynthetic thermal 

stability, with more acquisitive species having larger thermal photosynthesis range 

(Michaletz et al., 2016). Furthermore, plants on the leaf economic spectrum exhibit 

contrasting extent of decoupling of leaf temperature from ambient air temperature during 

carbon assimilation, where species with shorter stature and lower WUEi (lower δ13C) 

show greater temperature decoupling, allowing them to have cooler leaves while 

inhabiting low-elevation arid sites (Liancourt et al., 2020). Ultimately, since most long-

term vegetation monitoring has occurred in temperate ecosystems, our results likely 

reflect the differences in trait selection between arid and temperate biomes. However, our 

results have important implications more generally, as species with drought-adapted, 
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conservative traits are experiencing extensive mortality worldwide at their driest range 

margins in response to climate stress exceeding their physiological limits (Anderegg et 

al., 2019b), and such drought-induced mortality is leading to widespread ecosystem-type 

conversion (Batllori et al., 2020). 

Finally, recent work has questioned the reliability of “snapshot resampling” when 

inferring climate change impacts, owing largely to the potential for interannual variation 

to obscure long-term trends (McCain et al., 2016; Stuble et al., 2021). Interannual 

fluctuations in population abundance, as well as a high frequency of local extinctions and 

recolonization events could both lead to inaccurate detection through over- or 

underestimation of range dynamics through time (McCain et al., 2016). However, several 

aspects of our study make our results robust. First, the plants in our long-term study are 

all dryland perennial species, which have notoriously slow population dynamics - the 

median longevity of several of our species is greater than a century (Cody, 2000). 

Second, while species’ range edges are often characterized by high population variability 

(Sexton et al., 2009), we assessed multiple dimensions of species’ distribution dynamics, 

which all showed consistent patterns based on the synchronous species’ responses 

strongly correlating with their functional traits. Importantly, long-term vegetation data 

collected at high spatial resolution and spanning decades provides a unique opportunity 

for understanding biodiversity response to rapidly changing climatic conditions 

(Magurran et al., 2010) and can overcome many of the issues associated with “snapshot 

resampling”.  
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In conclusion, our results suggest that idiosyncrasies in range shifts can be 

understood by pursuing a more comprehensive focus on multiple dimensions of species’ 

ranges and by considering functional traits associated with resource use. We found a clear 

pattern of species’ distributional responses to contemporary climate change being 

mediated by their functional traits, where species possessing more conservative resource-

use traits shifted upwards and declined in abundance, while species with more resource-

acquisitive traits shifted downward and increased in abundance. Ultimately, the high 

incidence of range-shifting species within our study has the potential to result in novel 

biotic interactions, including both the gain in antagonistic interactions (novel competitors, 

pathogens, and herbivores) as well as the loss of mutualists (soil microbes and 

pollinators), which could either facilitate or hinder species’ distributional changes 

(Alexander et al., 2015; Hagedorn et al., 2019; Keeler et al., 2021). Moreover, as dryland 

ecosystems have a disproportionate role in the global carbon budget (Ahlström et al., 

2015), the replacement toward more acquisitive leaf traits in response to climate change 

should alter nutrient cycling and carbon sequestration (Buzzard et al., 2019). The 

increasing prevalence of acquisitive leaf traits in dryland ecosystems may, furthermore, 

be associated with the beginning of an “ecosystem breakdown” threshold of aridification, 

where the mortality of resource conservative species occurs as they are no longer able to 

cope with increasingly scarce water and nutrient availability (Berdugo et al., 2020). 

Indeed, NDVI patterns across southern California’s Sonoran desert region show declining 

vegetation cover (particularly in the more xeric areas) suggesting that the region may 

already be crossing this threshold (Hantson et al., 2021). Given the paucity of long-term 
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vegetation data from dryland ecosystems, and that more than 20% of the Earth’s 

terrestrial surface is expected to cross at least one threshold of aridification by 2100 

(Berdugo et al., 2020), our results provide critical insight into the distributions of dryland 

plant species under rapidly changing conditions and how trait-mediated changes might 

impact future ecosystem functioning. 
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Figures and Tables

 
Figure 1.1. Study location of elevation gradient in southern California. A) elevational 

distribution of sub-transects where each paired dots represent east and west boundaries of 

a 400 m sub-transect. Start depicts general location of the deep canyon transect. B) View 

from sub-transect 1 looking to sub-transect 20, marked with a “B” and an arrow depicting 

direction of view in A. C) View from sub-transect 20 looking to sub-transect 1, marked 

with a “C” and an arrow depicting direction of view in A. 
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Table 1.1 Plant functional traits describing long-term changes in distributional range attributes across multiple survey periods between 

1977 and 2019.  

 

Range 

attribute 

Trait Change 1977-2008 Change 2008- 2019 Change 1977-2019 

  
Coefficient R2 p-

value 

Coefficient R2 p-

value 

Coefficient R2 p-

value 

Average 

elevation  

Chlorophyll 

content 

34.08 0.164 0.014 
      

 
Leaf area 27.11 0.133 0.025 

      

 
Specific 

leaf area 

-0.88 0.118 0.033 
   

-1.14 0.179 0.01 

 
13C 

      
102.73 0.168 0.012  

PC1 
      

31.13 0.228 0.008 

Optimum 

elevation 

Chlorophyll content 
     

62.9 0.115 0.025 

Leading 

edge range 

limit 

13C 27 0.147 0.018 
   

187.94 0.16 0.013 

Rear edge 

range limit 

Chlorophyll 

content 

48.4 0.108 0.04 -37.69 0.106 0.042 
   

 
Specific 

leaf area 

-1.94 0.233 0.004 
   

-1.83 0.308 0.001 

 Height 70.52 0.29 0.001 
   

45.5 0.162 0.016  
seed mass 31.44 0.172 0.012 

      

 
13C 167.86 0.196 0.007 

      

 
PC1 

      
39.08 0.26 0.008 

Total range 

size 

LDMC 
   

589.7 0.116 0.034 
   

 
Height -90.41 0.17 0.014 

      

Leading 

edge 

LDMC -1.13 0.178 0.018 
      

3
7
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abundance 

(75% 

quantile)  
13C -0.03 0.15 0.029 

      

 
seed mass -0.05 0.27 0.004 

      

Rear edge 

abundance 

(25% 
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Figure 1.2 Annual minimum temperature and annual maximum vapor pressure deficit (VPD) in 

the years preceding each survey (Survey 1 in 1977: 1946-1976; Survey 2 in 2007/8: 1977-2006; 

Survey 3 in 2019: 2007-2018) from the lowermost (low), middle (mid), and highest (high) 

elevation transects across the sampled gradient.  
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Figure 1.3 (A) Schematic describing elevational range attributes. (B)changes over time in 

species’ leading edge, (C) trailing edge, and (D) optimum elevational distributions. N = 

37 species. Each data point represents a single species. Diagonal (1:1) line represents no 

elevational change. Points above the line indicate X and points below the line indicate Y. 
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Figure 1.4 Functional traits predict range dynamics in response to 42 years of climatic 

change. A single trait, 13C, explained changes in leading edge elevational changes (A), 

while multidimensional traits associated with PC axis 1 (B) explained changes in average 

(abundance-weighted) elevation (C) and trailing edge range limits (D). Lines and their 

shades represent significant linear regression models (Table 1) with shading depicting 

95% confidence intervals. Species’ codes: Abies concolor = ABICON, Adenostoma 

sparsifolium = ADESPA, Ambrosia Dumosa = AMBDUM, Amorpha fruticosa = 

AMOFRU, Arctostaphylos glauca = ARCGLA, Arctostaphylos patula  = ARCPAT, 

Arctostaphylos pringlei = ARCPRI, Artemisia ludoviciana = ARTLUD, Bernardia 

incana = BERINC, Calocedrus decurrens = CALDEC, Ceanothus greggii = CEAGRE, 

Encelia farinosa = ENCFAR, Eriogonum nudum var. pauciflorum = ERINUD, 

Eriogonum wrightii var. subscaposum = ERIWRIS, Fouquieria splendens = FOUSPL, 

Galium parishii = GALPAR, Hilaria rigida = HILRIG, Larrea tridentata = LARTRI, 

Lupinus formosus = LUPFOR, Nolina parryi = NOLPAR, Pinus jeffreyi = PINJEF, Pinus 

monophyla = PINMON, Poa fendleriana = POAFEN, Prunus fremontii = PRUFRE, 

Psorothamnus schottii = PSOSCH, Purshia tridentata = PURTRI, Quercus chrysolepis = 

QUECHR, Quercus cornelius-mulleri = QUECOR, Rhus ovata = RHUOVA, Ribes 

cereum = RIBCER, Symphoricarpos rotundifolius var. parishii = SYMPAR, Yucca 

schidigera = YUCSCH. 
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Chapter 2 

  ant interaction networks structure the functiona  co position of p ant 

co  unities across a steep en iron enta   radient 

 

 bstract 

The structure of plant communities has long been conceptualized as arising from 

primarily abiotic and secondarily biotic filters acting upon the traits of colonizing species. 

However, despite the increasing recognition of the dual importance of biotic and abiotic 

drivers of community composition, it is still unclear how both competitive and facilitative 

interactions vary with abiotic conditions, and how biotic interactions influence 

community trait patterns relative to abiotic factors. Here, I investigated the direct and 

indirect influence of plant-plant interactions and abiotic heterogeneity across a steep 

environmental gradient by analyzing species co-occurrences as plant interaction 

networks. I found that positive spatial associations (facilitative interactions between 

species) were common across the entire gradient and played a relatively minor role in 

explaining trait patterns. In contrast, while negative spatial associations (competitive 

interactions) were less common than expected by chance, they played a large role in 

promoting species richness and functional diversity. Further, I found that network metrics 

capturing emergent properties of the community—such as the ratio of positive to negative 

interactions and the average number of interactions per species—were the strongest biotic 

drivers of trait patterns. Taken together my results suggest that biotic interactions must be 
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examined at the level of the entire community if our goal is to elucidate the processes 

structuring the trait composition of communities.  

 

Introduction 

The functional trait composition of plant communities has demonstrably 

important consequences for ecosystem-level processes (e.g. Anderegg et al., 2018; Wu et 

al., 2016), yet it remains unclear how multiple processes interact to drive functional trait 

patterns. Classic models of plant community assembly suggest that the composition of a 

local community is a result of sequential abiotic and biotic filters acting on species’ traits 

in the regional species pool (Hillerislambers et al., 2012; Keddy, 1992; Mittelbach & 

Schemske, 2015). Under this model, once species can disperse to a local site, they must 

first be able to survive and grow under the local abiotic conditions. This abiotic filter is 

thought to impose selection on the traits of species in the community such that those 

possessing trait values close to an environmentally determined optimum will have the 

highest fitness causing abundance-weighted mean trait values to vary across abiotic 

gradients (Cornwell & Ackerly, 2009; Kandlikar et al., 2022; Kraft et al., 2008; Laughlin 

et al., 2012). Plant species adapted to abiotic conditions must then be able to survive and 

grow in the presence of biotic interactions, which are classically predicted to cause trait 

dispersion within assemblages, under the assumption that species with similar traits 

compete more intensely (Chesson, 2000; MacArthur & Levins, 1967; Weiher & Keddy, 

1995). However, advances in trait-based community assembly theory have questioned 

these classic predictions and suggested that multiple processes can produce similar trait 
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patterns (Mayfield & Levine, 2010; Spasojevic & Suding, 2012). For instance, in addition 

to abiotic filtering, trait-based competitive hierarchies can lead to trait clustering 

(Carmona et al., 2019; Holden & Cahill, 2024; Kraft et al., 2014; Weigelt et al., 2007; Yin 

et al., 2021) and facilitation between functionally dissimilar species and can increase 

community functional diversity (Schöb et al., 2012). While a large body of research has 

focused on inferring processes from patterns (e.g. Ramachandran et al., 2023), few of 

these frameworks consider how the outcome and importance of plant-plant interactions 

are contingent on abiotic conditions (Germain et al., 2018; Van Dyke et al., 2022), and, 

therefore, abiotic filters may indirectly filter functional traits by altering species 

interactions.  

Indeed, a growing body of work suggests that biotic interactions depend on 

abiotic context (Bertness & Callaway, 1994; Callaway et al., 2002), which challenges the 

community assembly model of separate and sequential abiotic and biotic filters. 

However, most studies to date addressing context-dependent interactions have primarily 

focused on a single type of interaction (competition or facilitation) involving only a small 

subset of species in a given community. For example, robust tests of the stress gradient 

hypothesis—which predicts that facilitative interactions replace competitive interactions 

under high abiotic stress (Bertness & Callaway, 1994; Callaway et al., 2002)—have 

tended to solely examine facilitative interactions (Soliveres & Maestre, 2014) or diverse 

outcomes among single pairs of species (He et al., 2013). Given this narrow focus, we 

lack an understanding of how diverse interactions at the level of the entire community 

vary across environmental gradients. Similarly, previous work addressing the impact of 
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competition and facilitation on functional trait patterns have narrowly focused on either 

competitive or facilitative interactions among a subset of species in the community to 

infer their effect on community-level trait composition (e.g. Chacón‑Labella et al., 2016; 

Schöb et al., 2017; Vega-Álvarez et al., 2019). Given that facilitation and competition 

occur simultaneously in many communities (Callaway and Walker 1997; Callaway et al. 

2002) it is likely that the functional structure of communities can only be understood by 

accounting for both types of interactions among all species in a community, and how 

their frequency and balance change across abiotic gradients.  

One promising approach to account for emergent interaction patterns within and 

across plant communities is the application of network theory. By accounting for all 

pairwise interactions among locally occurring species, network metrics can describe 

emergent patterns of species interactions, such as the the relative dominance of 

facilitation vs competition (link ratio; Alados et al., 2017) and the average number of 

interactions per species (link density), which have shown to improve predictions of 

biodiversity patterns (Losapio et al., 2019; Saiz, Gómez-Gardeñes, et al., 2018). For 

example, a recent global study found that community network metrics contributed 

significantly to explaining richness and evenness patterns across dryland plant 

communities worldwide (Saiz et al., 2018). While the impact of plant interaction 

networks on community composition has recently been incorporated in community 

assembly studies (Alados et al., 2017; Losapio et al., 2018, 2021; Saiz et al., 2018), no 

study to date has assessed how plant-plant interaction networks contribute to the 

functional structure of communities across large environmental gradients where both 
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biotic and abiotic filters likely determine the composition and structure of plant 

communities interactively.  

Here, I sought to disentangle abiotic and biotic drivers of functional trait patterns 

by examining how plant interaction networks vary across a steep environmental gradient. 

Since abiotic conditions often mediate biotic interactions, I tested for the influence of 

both direct and indirect effects of abiotic drivers on trait composition, in addition to the 

direct effects of biotic interaction networks (Figure 1). I predicted not only that 

facilitation would be more common under more stressful conditions (Bertness & 

Callaway, 1994; Callaway et al., 2002) and competition would be more common under 

more benign conditions (Grime 1977), but that the overall ratio of the two interaction 

types and other metrics (such as how connected species are through positive and negative 

interactions) would be more informative in explaining functional trait patterns than 

simply the number of positive or negative interactions. While mixed results have been 

found for the influence of facilitation on functional traits, I predicted that a higher 

proportion of facilitative interactions would generally have a positive effect on trait 

diversity and that this might be mediated by an increase in species richness, while 

competitive interactions would have the opposite effect on trait diversity. Finally, I 

predicted that abiotic variables would be more important drivers of community-level 

mean traits, while interaction networks would be more important drivers of functional 

diversity. 
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Methods  

Study site. Our study was conducted at the Deep Canyon Transect, a large elevation 

gradient in Southern California spanning an elevation gain of 2,438 m, from 202 m to 

2563 m, over a distance of 16 kilometers (33°40'15.6"N 116°22'00.3"W to 33°31'32.1"N 

116°25'51.9"W). The study site was primarily located within the Boyd Deep Canyon 

Desert Research Center, encompassing nine distinctly described plant communities 

represented by over 600 species documented in historical vegetation surveys in 1976-

1977 (Zabriskie 1979) which were resurveyed in this study. The lowest elevations lie 

within the Colorado desert region, which is the westernmost extent of the greater Sonoran 

desert (Belnap et al., 2016) where average annual temperatures range from a low of 17.9 

°C to a high of 29.6 °C. Precipitation is highly biseasonal, where extreme precipitation 

events can be common during the summer monsoon season, in which most water is lost 

to surface runoff or evaporation, whereas winter precipitation from frontal winter storms 

results in deeper water percolation (Belnap et al., 2016). The Colorado desert subsection 

is characterized by having the lowest summer precipitation and high potential 

evapotranspiration, making it the hottest and driest desert region in North America 

(Belnap et al., 2016; Walter, 1971). The substrate of much of the Colorado desert is fine-

grained alluvium as a result of runoff from the Transverse ranges and the Colorado River 

(Belnap et al., 2016). While there is extensive overlap among plant species of the 

adjacent Mojave and Arizona Sonoran deserts, the Colorado desert harbors extensive 

unique plant diversity which includes many genera of South American lineages (Thorne 

et al. 1986). The most common vegetation type throughout the Colorado desert is 
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creosote bush scrub, dominated by Larrea tridentata (Zygophyllaceae) and Ambrosia 

dumosa (Asteraceae), with a cactus scrub community dominating xeric slopes including 

Fouquieria splendens (Fouquieriaceae), Encelia farinosa (Asteraceae), Agave deserti 

(Agavaceae), and numerous cacti species (Schoenherr and Burk 2007 in Barbour et al. 

2007). Slightly higher elevations receiving more moisture and having lower temperatures 

transition into pinyon-juniper woodland with Pinus monophyla (Pinaceae) and Juniperus 

californica (Cupressaceae). The higher elevations of our study site lie within the Santa 

Rosa Mountains where the mid elevation slopes consist of chaparral communities, with 

dominant species such as Adenostoma sparsifolium (Rosaceae) and Ceanothus greggii 

(Ramnaceae) and the highest elevations are dominated by Abies concolor (Pinaceae), 

Quercus chrysolepis (Fagaceae), and Pinus jeffreyi (Pinaceae). 

 

Community vegetation surveys. In 2019, I re-surveyed 22 linear transects across the 

elevation gradient spaced at roughly 122-meter intervals. Transects were 400 m in length 

following isocontours at each elevation. All transects were surveyed at peak biomass 

from March to August. For each transect, I identified all annual and perennial plant 

species intercepting the transect to the nearest centimeter, recording the specific location 

on the transect of each occurrence. Thus, our data on species composition was spatially 

explicit and able to account for the exact amount of overlap among co-occurring species 

to the nearest centimeter. Due to the large amount of data contained in each transect 

(40,000 cm), I subdivided the first and last 100 m segments to create interaction 

networks, and I refer to these 100 m segments as transects (for a total of 42 transects). 
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Abiotic factors. Abiotic filtering can drive community assembly at multiple scales, and 

therefore, I accounted for both macro- and micro-environmental variables within each 

community. In particular, a recent global analysis reveals that climate and soil fertility 

jointly explain global patterns in the two main axes of plant functional trait variation 

(Joswig et al., 2022), and therefore, I focused on these two categories of abiotic variables. 

Climatological data were derived from long-term PRISM (Daly et al., 2008) dataset at 

800-m resolution and included average precipitation, average mean temperature, average 

maximum temperature, average minimum temperature, and average maximum vapor 

pressure deficit. I additionally calculated precipitation seasonality as the coefficient of 

variation (CV) of annual precipitation. Soil samples were collected from four locations 

(every 100 meters) across each of 21 elevations in 2019 and analyzed for organic matter, 

phosphorous, potassium, magnesium, calcium, sodium, pH, and cation exchange capacity 

(CEC) at A & L Western Agricultural Laboratories (Modesto California). For each 

transect, I averaged the soil variables from both ends of the (100-m) linear transect. To 

reduce collinearity among soil variables, I conducted a principal components analysis 

(PCA) and retained the first two PC axes which explained 37% and 19% total variation 

respectively. PC axis 1 was negatively associated with pH, CEC, and calcium and 

positively associated with hydrogen, sodium, and potassium (Figure S1). PC axis 2 

captured a positive association with organic matter content and magnesium. In addition to 

climate and soil variables, topographic heterogeneity can also contribute to functional 

diversity and the outcome of biotic interactions (Vernham et al., 2023). Thus, I extracted 
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topographic variables from a digital elevation model from the NASA Shuttle Radar 

Topographic Mission (SRTM) at 90-meter resolution. Variables included aspect, slope, 

Topographic Ruggedness Index (TRI), Topographic Position Index (TPI), and roughness 

(Amatulli et al., 2018). TRI is the mean of the absolute differences between the value of 

the cell and its 8 surrounding cells, while TPI is the difference between the value of a cell 

and the mean value of its 8 surrounding cells, and roughness is the difference between the 

maximum and the minimum value of a cell and its 8 surrounding cells. Topographic data 

were downloaded and extracted using the R packages “terra”, “raster”, and “sf”. To 

reduce collinearity in our abiotic variables, I calculated correlations among 

environmental variables and removed highly correlated (Pearson r>0.7) variables (Figure 

S2). For correlated variables, I chose to retain those known to be important drivers of 

plant community organization in dryland ecosystems. For our final analyses, I used the 

following uncorrelated variables: average maximum temperature, precipitation 

seasonality, soil PC2, and topographic roughness. 

 

Functional traits measurements. Functional trait measurements for species comprising 

over 80% (Pakeman & Quested, Helen, 2007) of cover across the gradient (92 species) 

were collected in 2019 (collected as part of Chapter 1 – see above), and included traits 

related to resource acquisition and known to influence biotic interactions in dryland 

ecosystems. For ten individuals from each of the most abundant annual and perennial 

species from each distinct habitat, I measured the following traits according to 

standardized protocols (Pérez-Harguindeguy et al., 2013): vegetative height (cm), leaf 
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area, specific leaf area (SLA), leaf dry matter content (LDMC), and chlorophyll content. 

Plant height is related directly to growth rates and resource availability, and along with 

SLA has been shown to reflect biotic interactions in dryland communities (Gross et al., 

2013). SLA, leaf area, LDMC, and chlorophyll content are related to the tradeoff between 

the acquisition and conservation of resources as captured by the leaf economic spectrum 

(Wright et al. 2004). In dryland ecosystems, co-occurring species often exhibit either 

drought-tolerant strategies characterized by low SLA, high LDMC, longer-lived tissues, 

and lower rates of photosynthesis, or drought-avoidant strategies characterized by the 

opposite trait syndromes and accelerated phenology which allows for the rapid 

acquisition of resources during short windows of favorable conditions (Carvajal et al., 

2019; Poorter et al., 2009; Reich, 2014).  

 

Functional trait indices. I calculated community functional trait diversity for each 100 m 

transect using three indices shown to capture different dimensions of community 

functional diversity of each transect: functional richness (FRic), functional dispersion 

(FDis), and functional evenness (FEve) (Mouchet et al., 2010). Functional richness 

(FRic) captures the total functional trait space occupied in a community without regard 

for differences in abundance and captures the most extreme trait values comprising a 

community. Functional evenness (FEve) refers to the uniformity of species abundances in 

functional trait space, where a high FEve reflects all trait values having a similar 

abundance in a community (Mouchet et al., 2010). Functional dispersion (FDis) is the 

mean distance from the centroid of each community in multidimensional trait species 
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weighted by species abundance. I calculated FEve and FDis for individual traits, in 

addition to the multivariate indices, since different traits can show contrasting 

relationships to abiotic gradients and biotic interactions (Spasojevic & Suding, 2012). 

Trait indices were calculated using the dbFD function in the FD R-package (Laliberté & 

Legendre, 2010). 

 

Interaction networks. Spatial associations among plants have been successfully used as a 

proxy for species interactions when measured at a fine resolution (Soliveres & Maestre, 

2014; Tirado & Pugnaire, 2005). While this approach has been criticized, interactions 

derived from abundance data, rather than presence-absence, and collected at ecologically 

relevant scales, can provide more reliable proxies for plant interactions (Blanchet et al., 

2020). Since plants are sessile organisms, species that aggregate in space more frequently 

than would be expected by random chance are assumed to benefit from their co-

distribution, and therefore may represent the existence of a positive interaction (Pugnaire 

et al., 2004; Tirado & Pugnaire, 2005). Likewise, if species tend to not spatially co-occur, 

it can be assumed that there is a negative interaction that prevents co-occurrence. 

Particularly in dryland ecosystems, species interactions have shown to govern the spatial 

patterning of plant communities, and thus have been inferred from spatial data to 

successfully address questions in community ecology (Saiz, Gómez-Gardeñes, et al., 

2018). Thus, I constructed association networks for each transect using the above 

described spatially explicit dataset, where nodes are plant species and links are the spatial 

associations between species.  
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For each of twenty-one transects, two paired association networks spanning the 

first and last 100 meters were constructed by calculating the total centimeter overlap of 

each pair of species. Since one transect did not have any species occurring in the first 100 

meters, I ended up creating 41 networks. Spatial associations between species were 

determined using the method developed by Saiz and Alados (2012) by comparing the 

number of times species i and j co-occurred at the same place (cij) to the expected number 

of co-occurrences based on species abundances (eij = ni/T × nj/T × T, probability of i 

appearing at a single point multiplied by the probability of j appearing at a single point 

multiplied by the total number of points). Since I collected spatially explicit data (every 

exact centimeter accounted for), overlap between each species pair represents the total 

number of centimeters that included both species, and species abundances were the total 

number of centimeters that each species occupied across each transect. To determine 

whether each pairwise association was significant, I compared each cij to a Poisson 

distribution with eij as parameter, where cij was considered significant if it fell outside of 

the 95% confidence interval of eij. If cij was significantly higher than eij, a positive 

association between plant species was assumed, and set to +1, while if significantly 

lower, the association was assumed to be negative and set to -1. The absence of a 

significant association was set to 0.  

 

Network metric calculations. The plant-plant association matrix using the above signs 

were used to calculate the total number of links in the network (L); the ratio of positive to 

negative links (Ratio = (L+–L¯)/(L++L¯)), where positive Ratio values indicate the 
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greater frequency of positive associations and negative values indicate the greater 

frequency of negative associations (Saiz et al. 2017); link density, which is the average 

number of links per node, and describes how prevalent significant interactions are in the 

community; link weight heterogeneity, which is the kurtosis of the link weight 

distribution and indicates the variety of spatial patterns found in the community; node 

link heterogeneity, which is the kurtosis of species with links in the community, where 

lower values indicate that the links of each species tend to be more heterogeneous; and 

isolation, which represents the percentage of species with no links in the community 

(Pelliza et al., 2021). Prior to analyses, I tested for collinearity among all network metrics 

and did not remove any variables for initial analyses due to low correlation (Figure S3). 

To test the significance of network metrics, I constructed null models for each network 

which randomized the spatial cover of each species’ occurrence while keeping the length 

of occurrence constant—thus, changing the connectivity of the networks for the indices 

used which incorporate the number, sign, and structure of positive and negative 

interactions. For each real network, I generated 999 randomized networks and then 

compared the real values of network metrics to the 95% confidence intervals of the 

simulated networks.   

 

Statistical analyses 

Since abiotic and biotic drivers of community structure can often covary across abiotic 

gradients, I sought to disentangle the direct and indirect influences of the environment 

and network variables on trait composition using structural equation modeling (SEMs). 
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SEMs are causal models that allow for the modeling of direct and indirect relationships 

among variables by estimating a global variance-covariance matrix (Grace 2006, 2008). 

Since our relatively small sample size constrained the number of pathways in our models 

(10 data points per observed variable; Bentler & Chou, 1987). I first identified the 

strongest variables predicting each trait metric using a model selection procedure and 

retained the predictor variables that were included in the best-fitting linear models, 

defined by having ∆AICc values less than two (Burnham and Anderson 2004). For these 

models, I first used a linear mixed effect model structure with transect as a random 

variable to account for potential spatial autocorrelation from the paired design of the 

networks. I compared models with and without transect as a random effect since in nearly 

all models the variance explained was close to zero and resulted in convergence issues 

and a poorer model fit (higher AIC). Therefore, I fit models as linear regressions without 

the random effect structure. I fitted both linear and quadratic terms for abiotic factors to 

account for potential nonlinear relationships. Based on our metamodel predicting 

functional composition (Figure 1), I then constructed an initial SEM for each functional 

diversity metric (FDis, FEve, Fric) that included all predictor variables appearing in the 

top models using the above procedure. Additionally, since patterns of multivariate trait 

metrics can be obscured due to individual traits showing opposing patterns across 

environmental gradients (Spasojevic & Suding, 2012), I also constructed SEMs for each 

trait CWM and FDis. I used a stepwise elimination process to remove pathways with the 

lowest coefficients and retained non-significant variables that improved the overall model 

fit for each focal trait metric and retained the strongest network indices for each trait to 
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test for indirect abiotic effects. Model fit was assessed using the chi-square (χ2) statistic, 

the root mean squared error of approximation (RMSEA), and the comparative fit index 

(CFI). χ2 values with a P value >0.05 suggest that observed and expected covariance 

matrices are not different and therefore adequately describe the data. RMSEA values less 

than 0.1 and CFI scores greater than 0.9 are considered good-fitting models. All statistical 

analyses were conducted using R version 4.3.2. Linear models were fitted and selected 

using the lme4 (Bates et al. 2014) and MuMIN packages (Barton 2020). SEMs were 

constructed using the lavaan package (Rosseel, 2012). 

 

Resu ts 

Elevational patterns of functional diversity and network metrics. Overall, FDis, Fric, and 

species richness all exhibited a unimodal distribution with peaks at the lower to mid 

elevations coinciding with desert scrub and pinyon-juniper woodland habitats (Figure 2a, 

2b, 2d), while FEve showed no elevational trend (Figure 2c). Negative links and link 

density showed unimodal patterns across the gradient with similar peaks at lower to mid 

elevations, with link density having a broader peak extending into the chaparral habitat 

(Figure 3b and 3d). Positive links were generally higher across the lower to mid-

elevations, with a slight increase at the highest elevations. The ratio of positive to 

negative links exhibited a U-shaped distribution with higher ratio at lower and higher 

elevations, indicating that there were more positive links relative to negative links at 

these elevations. Results from our null models showed that nearly all transects exhibited 

significantly more positive associations than expected by chance, and significantly less 
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negative associations (Table 1). Similarly, nearly all networks had a significantly higher 

ratio than the null model, indicating that positive-to-negative associations were nearly 

always higher than expected by chance. Most networks across the elevation gradient were 

less dense and more isolated than expected by chance, indicating that individual species 

had fewer total positive and negative associations and that a greater number of species 

had no significant associations, respectively. Finally, node link heterogeneity was higher 

than expected by chance at the lower elevations, suggesting that individual species tended 

to have more uniform interaction types (primarily positive, negative, or neutral). 

 

Direct and indirect drivers of functional diversity. The best-fit SEMs for all multivariate 

and individual traits had a good fit (in all cases: χ2 P > .05; GFI > 0.9, and RMSEA less 

than 0.1), and relatively high R2 values for all traits except for FEve (Table 2). 

Multivariate FDis was more strongly driven by direct biotic variables (ratio and negative 

links), with negative links being the strongest direct driver (Figure 4). Maximum 

temperature was a strong indirect driver of FDis via its positive effect on network ratio, 

promoting more positive relative to negative interactions. Precipitation seasonality was 

the strongest direct abiotic driver of both FDis and FRic and was overall the strongest 

driver of FRic. In contrast to FDis, FRic was primarily determined by abiotic variables 

rather than biotic variables, with maximum temperature, soil PC2, and precipitation 

seasonality all promoting FRic (Figure 4). Link density was the strongest biotic driver of 

FRic, though it had a minimal overall contribution. Topographic roughness was the 

strongest direct driver of FEve (Figure S4), though all direct pathways had low 
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explanatory power. Ratio, negative links, and node link heterogeneity were all direct 

positive drivers of FEve, with abiotic variables otherwise having indirect effects (Fig. 

S4).  

All CWM traits, with the exception of leaf area, were more strongly determined by 

abiotic variables compared to biotic interactions, with average maximum temperature 

being the strongest direct driver (Figure S5-S9). Maximum temperature had a strong 

positive effect on SLA (Figure S5) and CC (S8) and a strong negative effect on height 

(Figure S9) and LDMC (Figure S7). Link density was the strongest direct driver of CWM 

LA (Figure S6) and was indirectly promoted by temperature and precipitation seasonality 

having a positive effect on link density. Similarly, CWM height, CWM SLA, and CWM 

CC all were also driven by indirect effects of abiotic variables mediated by network ratio 

or network density. Network ratio was the strongest biotic driver of CWM SLA, CWM 

CC, and CWM height, while link density and node link heterogeneity were the strongest 

network drivers of CWM LA and CWM LDMC, respectively. FDis SLA, FDis LA, and 

FDis LDMC were all more strongly driven by biotic interactions relative to abiotic 

variables. FDis SLA was most strongly associated with ratio, followed by link density 

and negative links (Figure S10). Maximum temperature was a relatively strong indirect 

driver of FDis SLA via its positive effect on network ratio. Precipitation seasonality had 

direct and indirect effects on FDis LA (Figure S11) and FDis LDMC (Figure S12), 

through its positive impact on link density and negative links, respectively. Likewise, 

precipitation seasonality had positive direct and indirect effects on FDis CC (Figure S13). 
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Maximum temperature was the strongest direct and indirect driver of FDis height (Figure 

S14), with negative direct effects and positive indirect effects via network ratio. 

 

 iscussion 

The recognition of the complexity of variation in abiotic and biotic processes 

along abiotic environmental gradients has highlighted a critical need for understanding 

how both biotic and abiotic filters interactively determine the composition and structure 

of plant communities (Bimler et al., 2018; Borges et al., 2019; Thakur & Wright, 2017).  

The spatial structure of vegetation—captured by plant-plant association networks—has 

shown to be a significant predictor of species diversity, especially in dryland ecosystems 

(Alados et al., 2017; Saiz et al., 2018), and I show here that plant association networks 

also play an important role in structuring the functional composition of communities 

across a steep environmental gradient. Overall, I found that both abiotic conditions and 

biotic interactions were important drivers of community trait composition, with their 

relative importance differing for each dimension of trait composition. I also found that 

the direct influence of biotic interactions was mediated by environmental drivers, and 

therefore provide additional evidence that abiotic and biotic drivers must be considered 

jointly for their direct and indirect effects. Furthermore, our results highlight the 

importance of spatial association networks in structuring community trait composition, as 

I found that, in addition to the total number of positive and negative interactions in each 

community, network metrics accounting for the structure of those interactions—such as 
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the ratio of the two—were important predictors of different aspects of functional trait 

composition. 

An extensive body of literature has sought to understand how competition and 

facilitation among plant species change across environmental gradients, however, very 

few studies have examined interactions among all species occurring in a community, 

which has limited our understanding of how diverse interactions contribute to community 

composition. I found general support for the stress gradient hypothesis, where positive 

interactions prevailed under more abiotically stressful conditions at lower elevations, and 

competitive interactions were more frequent at higher elevations (Figure 3; Bertness & 

Callaway, 1994; Callaway et al., 2002). This result is surprising given that there has been 

inconsistent support for SGH predictions (Maestre et al., 2009), especially for longer 

gradients that encompass extensive species turnover (Soliveres & Maestre, 2014) where 

species replacement is likely to obscure the overall effects of stress due to corresponding 

turnover in niche optima (Liancourt et al., 2005). However, while total facilitative 

interactions were generally higher in communities at lower elevations, positive 

interactions occurred in all communities and were more prevalent than expected by 

chance in most communities, as shown by our null models (Table 1). Indeed, recent work 

has highlighted that facilitative interactions are likely ubiquitous in many communities 

(Bimler et al., 2018, 2024), even in more spatially continuous vegetation (Liancourt & 

Dolezal, 2020). While plant facilitation is generally expected to increase functional 

diversity at the community level (Butterfield & Briggs, 2011; Chacón‑Labella et al., 

2016; Schob et al., 2017; Schöb et al., 2012), I found that it played a relatively minor role 
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overall, primarily increasing the presence of species with extreme trait values—shown by 

the positive indirect effect of positive interactions on functional richness (Figure 4). 

Therefore, our results support the idea that rare or subordinate species are primarily 

impacted by facilitation (Bruno et al. 2003). However, I also found that facilitative 

interactions weakly promoted the functional dispersion (FDis) of LDMC (Figure S12). 

Since LDMC is related to the ability of a leaf to store and exchange heat with the 

environment (Michaletz et al., 2015, 2016), this finding likely reflects the role of 

facilitation in creating favorable microclimates which maintain species in the community 

with otherwise less adapted traits.  

Importantly, since our approach accounted for both positive and negative 

interactions in each community across a large environmental gradient, I was able to show 

that competitive interactions played a strong role in promoting taxonomic and functional 

diversity. Specifically, competitive interactions were the strongest direct driver of 

multivariate FDis (Figure 4), promoting FDis of nearly every trait measured, and 

indirectly influencing trait composition through direct effects on network ratio and link 

density. Thus, our results support classic predictions of the positive role of competition in 

driving trait differences among co-occurring species (Chesson, 2000; MacArthur & 

Levins, 1967; Weiher & Keddy, 1995) and are consistent with other work showing that 

spatial segregation as a proxy for competition increases trait dispersion in dryland 

communities (Gross et al., 2013). This is important since most tests of the SGH, 

including those conducted at the community level, have focused solely on facilitation and 

how it changes across relatively short gradients (Soliveres & Maestre, 2014), which has 
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likely resulted in an overlooking of the frequency of competition in abiotically harsh 

ecosystems. Indeed, the importance and even existence of competitive interactions in arid 

regions have long been a subject of debate (Fowler, 2008; Goldberg & Novoplansky, 

2009; J.P. Grime, 1973), though experimental approaches have confirmed that 

competition is common in drylands (Fowler, 2008; Maestre et al., 2009; Woods et al., 

2019), and observational approaches have found a positive role for competitive 

interactions in promoting functional diversity (Gross et al., 2013; Saiz, Le Bagousse-

Pinguet, et al., 2018).  

However, it’s also possible that the positive relationship between spatial 

segregation as a proxy of competitive interactions and functional diversity may be the 

product of niche differentiation in response to variation in the timing of precipitation 

since I found that precipitation seasonality was strongly correlated with functional 

dispersion and competitive interactions (Figure S15) and promoted the density of both 

types of interactions. Indeed, plant species in drylands often exhibit temporal and spatial 

niche partitioning for water resources, where coexisting species access water from 

different depths and/or at different times (Aschehoug et al., 2016; Guo et al., 2018; Ward 

et al., 2013), which contribute, through a variety of mechanisms, to their coexistence 

(Chesson et al., 2004). Across the southwestern US, there is a bimodal pattern of seasonal 

precipitation where pulse-driven convective precipitation events favor shallow-rooted 

species with acquisitive traits, and deeper percolation with frontal winter storms favors 

deeply-rooted species with more conservative traits (Guo et al., 2018; Schwinning & 

Ehleringer, 2001). Ultimately, the extent of competition between species exhibiting 
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divergent strategies for water uptake will depend on whether uptake during precipitation 

pulses is correlated with survival during interpulse periods (Goldberg & Novoplansky, 

2009) and requires experimentation to disentangle. Given that I used non-random patterns 

of spatial segregation as a proxy for competition, it is likely that a combination of long-

term competition among similar species (Fowler, 2008; King & Woodell, 1973) and 

differential resource utilization over time and space (e.g., storage effects) both have 

contributed to promoting diversity in our pulse-driven study system (Chesson et al., 

2004).  

While I found that biotic interactions, as captured by network metrics, were 

generally stronger predictors of functional diversity, I also found that abiotic factors were 

generally stronger drivers of CWM trait values. For instance, maximum temperature was 

the strongest direct driver of most CWM values, where higher temperatures at lower 

elevations were associated with shorter height, higher SLA, higher chlorophyll content, 

and lower LDMC (Figure S9, S5, S8, S7). These results are consistent with classic 

predictions and a large body of empirical evidence, which supports the idea of 

community trait convergence toward optimum values across abiotic conditions (Cornwell 

& Ackerly, 2009; Grime, 2006). In arid and semiarid ecosystems, stress-tolerant species 

investing in longer-lived, thicker leaves with lower rates of photosynthesis are generally 

favored, though, increasing levels of aridity tend to favor the presence of stress-avoidant 

and drought-deciduous strategies, leading to more acquisitive strategies with thinner 

leaves investing in more chlorophyll for increased rates of photosynthesis (Carvajal et al., 

2019; Niinemets, 2001; Poorter et al., 2009). Taller species are also disfavored under 
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conditions of increasing aridity, due to the increased risk of cavitation (McDowell et al., 

2008), which explains our negative temperature-CWM height relationship. While 

competitive interactions were the strongest biotic driver of multivariate functional 

dispersion (Figure 4)—through the strong positive effects of negative links on FDis CC 

and FDis LDMC—the functional dispersion of all other traits was most strongly driven 

by either link density or network ratio, indicating that the average number of competitive 

and facilitative interactions per species as well as the ratio of facilitative to competitive 

interactions, respectively, promoted functional diversity across our study site. Thus, the 

biotic interaction metrics most consistently explaining trait diversity were emergent 

properties of the interaction networks rather than simply the number of positive and 

negative interactions, which were only evident by analyzing plant communities as 

interaction networks. While network theory has advanced our understanding of the role of 

trophic interactions in community assembly (Ponisio et al., 2019), the application of 

network approaches in plant community assembly has been generally under-utilized 

(Losapio et al., 2019), though recent work has shown that plant-plant interaction 

networks can predict plant community diversity (Alados et al., 2017; Saiz, Gómez-

Gardeñes, et al., 2018). Since accumulating work is showing that both facilitation and 

competition often occur simultaneously in plant communities (Bimler et al., 2024), our 

results offer additional support to the idea that the balance of the two plays a key role in 

structuring communities (Losapio et al., 2021). 

While our results generally supported decades of theoretical expectations 

underlying community assembly theory, I recognize that our approach has important 
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limitations, which could have obscured the influence of other unmeasured factors. First, 

while spatial associations have been shown experimentally to reflect the outcome of 

biotic interactions (Tirado & Pugnaire, 2005), it is also possible that spatial aggregation 

and segregation patterns could be due to microhabitat variables not being measured since 

habitat heterogeneity at small spatial scales can also promote trait diversity in plant 

communities (Stark et al., 2017). Second, recent work on multispecies coexistence shows 

that interaction asymmetry is key for understanding long-term coexistence (Allen-Perkins 

et al., 2023) and is something I could not account for using an observational approach. 

Third, plant functional traits are known to be important drivers of plant-plant interactions, 

where others have often used traits to infer interactions in communities (Chalmandrier et 

al., 2021). Indeed, while there is extensive support for the environmental dependence of 

plant interactions, the strength and direction of species’ interactions have also shown to 

be dependent on the traits of interacting species (Butterfield & Briggs, 2011; Ochoa-

Hueso et al., 2018), and thus, causality could be opposite. Future experimental work 

should attempt to disentangle the causal relationships among traits and plant-plant 

interactions. 

In conclusion, I showed that accounting for biotic interactions at a fine scale 

across a large abiotic gradient can reveal the signature of biotic and abiotic processes. 

However, importantly, I showed that both biotic and abiotic drivers simultaneously 

contribute to structuring community trait patterns through both direct and indirect 

mechanisms. Therefore, I echo others’ call to abandon the conceptualization of separate 

and sequential filters driving community assembly, and instead continue to disentangle 
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how these filters interact  (Bimler et al., 2024; Borges et al., 2019; Cadotte & Tucker, 

2017; Germain et al., 2018; Loughnan & Gilbert, 2017; Thakur & Wright, 2017). While I 

found broad support for the stress-gradient hypothesis, I found that both positive and 

negative spatial associations—capturing facilitative and competitive interactions, 

respectively—occurred in all communities, and their ratio along with the average number 

of interactions per species were the most common biotic predictors of functional trait 

composition. Therefore, the relationship between biotic and abiotic filters is likely to be 

only understood by accounting for diverse interactions among all species in a community 

and the overall structure of those interactions. I suggest that interaction networks will 

continue to be an illuminating tool in understanding the drivers of plant community 

organization. 
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 ab es and fi ures 

 

 

 

Fi ure 2 1 Hypothesized causal relationships used as the meta-model for all structural 

equation models (SEMs). In addition to the direct effects of abiotic and biotic variables 

known to structure functional trait composition of communities, I also tested for potential 

indirect effects of abiotic variables mediated by interaction network metrics, as well as 

indirect effects of biotic interactions mediated by species richness.  
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Fi ure 2 2 Patterns of functional trait diversity and species richness across the study 

elevation gradient (m.a.s.l. = meters above sea level). While functional dispersion (a), 

functional richness (b), and species richness (d) showed similar unimodal relationships 

across elevation, functional evenness (c) exhibited no clear relationship with elevation. 
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Fi ure 2 3 Network metrics most strongly associated with functional traits exhibited 

diverse patterns across the elevation gradient (m.a.s.l. = meters above sea level). Positive 

links (a) were generally higher at lower elevations, while negative links (b) were higher 

in the mid to high-elevation communities, declining with elevation. Therefore, the ratio of 

the two (c) was highest at lower elevations with an increase again in the highest-elevation 

communities. Link density (d)—the average number of interactions (links) per species—

showed a unimodal relationship with elevation, peaking across the lower-middle 

elevations. 
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 ab e 2 1 Species richness and network indices for all transects across the elevation 

gradient and their associated significance as determined by null models. Positive and 

negative links are proxies of facilitation and competition, respectively. Ratio is the 

relative frequency of facilitative compared to competitive interactions. Density is the 

average number of interactions per species. Isolation represents the percentage of species 

with no links in the community, and node link heterogeneity, is the kurtosis of species 

with links in the community, where lower values indicate that the links of each species 

tend to be more heterogeneous. The significance of each metric is indicated by * for 

greater than 95% CI or *(-) for lower than 95% CI. 

 
transec

t 

inter a  species 

richnes

s 

 ositi 

e  inks 

Ne ati e 

 inks 

ratio densit

y 

iso atio

n 

Node  ink 

hetero eneit

y 

1 100 24 56* 2*(-) 0.93* 2.4 0.33 4.94 

1 400 26 172* 0*(-) 1.00* 6.6* 0.23 1.78* 

2 100 7 10* 4*(-) 0.42* 2.0*(-) 0.14* 1.75 

2 400 19 26* 6*(-) 0.62* 1.6*(-) 0.36 3.73* 

3 400 32 182* 48*(-) 0.58* 7.18*(-

) 

0.09* 6.01* 

  100 34 124* 76*(-) 0.24* 5.88*(-

) 

0.17 2.62* 

  400 43 198* 38*(-) 0.67* 5.48*(-

) 

0.16*(-) 5.77* 

5 100 44 94* 106*(-) -0.06* 4.54*(-

) 

0.34* 2.40* 

5 400 57 116* 164* -0.17* 4.91* 0.31 2.28 

6 100 45 174* 128*(-) 0.15* 6.71*(-

) 

0.20* 4.52* 

6 400 49 66* 206*(-) -0.51* 5.55* 0.22* 2.97 

7 100 36 90* 106*(-) -0.08* 5.44*(-

) 

0.13* 2.99* 

7 400 42 86* 216*(-) -0.43* 7.19*(-

) 

0.26* 3.30* 

  400 12 2* 18*(-) -0.80* 1.66*(-

) 

0.33* 3.10* 

  100 43 38* 238* -0.72* 6.41* 0.00* 14.14* 

9 100 33 42* 184*(-) -0.62* 6.84*(-

) 

0.18*(-) 1.69* 

9 400 34 130* 160*(-) -0.10* 8.52*(-

) 

0.14* 1.82* 

1  100 42 124* 128*(-) -0.01* 6.00*(-

) 

0.23* 2.00*(-) 

1  400 39 204* 104*(-) 0.32* 7.89*(-

) 

0.12*(-) 2.93* 

11 100 16 12* 66*(-) -0.69* 4.87*(-

) 

0.18* 1.32*(-) 

11 400 20 14* 108*(-) -0.77* 6.10*(-

) 

0.10 1.59*(-) 
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12 100 21 38* 90*(-) -0.40* 6.09*(-

) 

0.09 2.90* 

12 400 18 12* 48*(-) -0.60* 3.33*(-

) 

0.22 2.04 

13 100 16 10* 50*(-) -0.66* 3.75*(-

) 

0.37* 1.51 

13 400 15 12* 80*(-) -0.73* 6.13*(-

) 

0.06 2.07 

1  100 22 18* 124*(-) -0.74* 6.45*(-

) 

0.00 1.88 

1  400 11 0 80*(-) -1.00 7.27*(-

) 

0.09* 6.01*(-) 

15 100 6 0 28 -1.00 4.66 0.00 1.50 

15 400 10 0 34*(-) -1.00 3.40*(-

) 

0.30* 1.43*(-) 

16 100 29 22* 98*(-) -0.63* 4.13*(-

) 

0.24* 3.89* 

16 400 30 24* 90*(-) -0.57* 3.80*(-

) 

0.23* 2.20 

17 100 23 20* 42*(-) -0.35* 2.69*(-

) 

0.39* 2.41 

17 400 22 26* 42*(-) -0.23* 3.09*(-

) 

0.27* 3.04* 

1  100 16 2* 28*(-) -0.86* 1.87*(-

) 

0.43* 2.28 

1  400 21 4* 42*(-) -0.82* 2.19*(-

) 

0.42* 2.99 

19 100 25 38* 26*(-) 0.18* 2.56*(-

) 

0.36* 4.07 

19 400 20 44* 26*(-) 0.25* 3.50*(-

) 

0.30* 1.43*(-) 

2  100 18 38* 46*(-) -0.09* 4.66*(-

) 

0.11* 1.80 

2  400 17 46* 28*(-) 0.24* 4.35*(-

) 

0.11 2.43 

21 100 19 4* 26*(-) -0.73* 1.57*(-

) 

0.57* 2.55 

21 400 14 8* 14*(-) -0.27* 1.57*(-

) 

0.42* 3.23* 
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Fi ure 2   Structural equation models (SEMs) describing functional richness and 

multivariate functional dispersion through direct and indirect effects of abiotic and biotic 

variables. Overall, functional dispersion was more strongly influenced by biotic variables 

than abiotic ones, where negative (competitive) interactions and ratio (positive/negative 

interactions) were the strongest direct drivers, and maximum temperature was a strong 

indirect driver. Functional richness was primarily influenced by maximum temperature 

and precipitation seasonality. Arrows represent the inferred direction of causality, while 

the thickness of lines represents the strength of causal relationships. 
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 ab e 2 2 Model fit metrics for all structural equation models describing functional trait 

composition. Models with χ2 P-values greater than 0.05, GFI scores greater than 0.9, and 

RMSEA less than 0.1 were interpreted as providing a good fit for the data. Abbreviations: 

FDIS=functional dispersion, FEVE=functional evenness, FRIC=functional richness, 

CWM=community weighted mean, SLA=specific leaf area, LA=leaf area, 

CC=chlorophyll content, LDMC=leaf dry matter content 
 

 R I    Χ2   Χ2  -

V  UE 

GFI RM E   IC  R I  

R2 

F I  0.332 0.564 0.997 0.000 178.5 0.624 

FEVE 1.965 0.580 0.964 0.000 221.6 0.066 

FRIC 2.520 0.472 0.992 0.000 165.4 0.816 

CWM     0.117 0.732 0.999 0.000 170.9 0.658 

CWM    0.123 0.725 0.997 0.000 210.5 0.331 

CWM CC 0.358 0.949 0.998 0.000 161.7 0.772 

CWM   MC 0.536 0.911 0.994 0.000 196.6 0.634 

CWM  EIG   1.500 0.472 0.996 0.000 155.5 0.660 

F I      0.002 0.962 1.000 0.000 200.8 0.358 

F I     0.001 0.982 1.000 0.000 196.4 0.445 

F I  CC 0.105 0.746 0.999 0.000 153.6 0.803 

F I    MC 0.976 0.807 0.979 0.000 216.0 0.339 

F I   EIG   0.463 0.496 0.999 0.000 173.1 0.696 
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 upp e entary fi ures 

Fi ure 2  1 Loadings from principal component analysis of soil variables. 

Abbreviations: OM=organic matter, OM_ENR=organic matter estimated nitrogen 

release, K=potassium, Mg=magnesium, Ca=calcium, Na=sodium, CEC=cation exchange 

capacity, PCS=percent cation saturation.  
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Fi ure 2  2 Correlation matrix among all abiotic variables using Pearson correlation 

coefficients. Positive correlations are indicated by blue colors, while negative correlations 

are indicated by red colors. PC1 and PC2 are the first two PCA axes of soil variables. 

Abbreviations: avgppt=average precipitation, avgtmean, average mean temperature, 

avgtmin=average minimum temperature, avgtmax=average maximum temperature, 

avgvpdmax=average maximum vapor pressure deficit, precipseasonality=precipitation 

seasonality, totalprecip= total annual precipitation, precip_warm=warm season 

precipitation, precip_cool=cool season precipitation, TRI=Topographic Ruggedness 

Index 
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Fi ure 2  3 Correlation matrix among all network variables using Pearson correlation 

coefficients. Positive correlations are indicated by blue colors and negative relationships 

are indicated by red colors.  
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Fi ure 2    Structural equation model (SEM) describing functional evenness through 

direct and indirect effects of abiotic and biotic variables. Arrows represent the inferred 

direction of causality, while the thickness of lines represents the strength of causal 

relationships. Solid lines represent positive effects, while dashed lines represent negative 

effects. 
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Fi ure 2  5 Structural equation model (SEM) describing CWM SLA through direct and 

indirect effects of abiotic and biotic variables. Arrows represent the inferred direction of 

causality, while the thickness of lines represents the strength of causal relationships. Solid 

lines represent positive effects, while dashed lines represent negative effects. 
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Fi ure 2  6 Structural equation model (SEM) describing CWM leaf area through direct 

and indirect effects of abiotic and biotic variables. Arrows represent the inferred direction 

of causality, while the thickness of lines represents the strength of causal relationships. 
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Fi ure 2  7 Structural equation model (SEM) describing CWM LDMC through direct 

and indirect effects of abiotic and biotic variables. Arrows represent the inferred direction 

of causality, while the thickness of lines represents the strength of causal relationships. 

Solid lines represent positive effects, while dashed lines represent negative effects. 
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Fi ure 2    Structural equation model (SEM) describing CWM chlorophyll content 

through direct and indirect effects of abiotic and biotic variables. Arrows represent the 

inferred direction of causality, while the thickness of lines represents the strength of 

causal relationships. Solid lines represent positive effects, while dashed lines represent 

negative effects. 
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Fi ure 2  9 Structural equation model (SEM) describing CWM height through direct and 

indirect effects of abiotic and biotic variables. Arrows represent the inferred direction of 

causality, while the thickness of lines represents the strength of causal relationships. Solid 

lines represent positive effects, while dashed lines represent negative effects. 
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Fi ure 2  1  Structural equation model (SEM) describing functional dispersion of SLA 

through direct and indirect effects of abiotic and biotic variables. Arrows represent the 

inferred direction of causality, while the thickness of lines represents the strength of 

causal relationships. Solid lines represent positive effects, while dashed lines represent 

negative effects. 
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Fi ure 2  11 Structural equation model (SEM) describing functional dispersion of leaf 

area through direct and indirect effects of abiotic and biotic variables. Arrows represent 

the inferred direction of causality, while the thickness of lines represents the strength of 

causal relationships. Solid lines represent positive effects, while dashed lines represent 

negative effects. 
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Fi ure 2  12 Structural equation model (SEM) describing functional dispersion of leaf 

dry matter content (LDMC) through direct and indirect effects of abiotic and biotic 

variables. Arrows represent the inferred direction of causality, while the thickness of lines 

represents the strength of causal relationships. 
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Fi ure 2  13 Structural equation model (SEM) describing functional dispersion of 

chlorophyll content through direct and indirect effects of abiotic and biotic variables. 

Arrows represent the inferred direction of causality, while the thickness of lines 

represents the strength of causal relationships. 
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Fi ure 2  1  Structural equation model (SEM) describing functional dispersion of height 

through direct and indirect effects of abiotic and biotic variables. Arrows represent the 

inferred direction of causality, while the thickness of lines represents the strength of 

causal relationships. Solid lines represent positive effects, while dashed lines represent 

negative effects. 
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Fi ure 2  15 Precipitation seasonality positively influenced negative links (a) and 

functional dispersion (b). Statistics are the results of linear mixed effect models, where t-

tests were calculated using Satterthwaite's method. 

  



 

99 
 

References 

Alados, C. L., Saiz, H., Gartzia, M., Nuche, P., Escós, J., Navarro, T., & Pueyo, Y. 

(2017). Plant-plant interactions scale up to produce vegetation spatial patterns: 

The influence of long- and short-term process. Ecosphere, 8(8), e01915.. 

https://doi.org/10.1002/ecs2.1915 

Allen‐Perkins, A., García‐Callejas, D., Bartomeus, I., & Godoy, O. (2023). Structural 

asymmetry in biotic interactions as a tool to understand and predict ecological 

persistence. Ecology Letters, 26(10), 1647-1662. 

Amatulli, G., Domisch, S., Tuanmu, M.-N., Parmentier, B., Ranipeta, A., Malczyk, J., & 

Jetz, W. (2018). A suite of global, cross-scale topographic variables for 

environmental and biodiversity modeling Background & Summary. Scientific 

Data, 5, 180040. http://worldgrids.org/doku.php/wiki:dem_sources. 

Anderegg, W. R. L., Konings, A. G., Trugman, A. T., Yu, K., Bowling, D. R., Gabbitas, 

R., Karp, D. S., Pacala, S., Sperry, J. S., Sulman, B. N., & Zenes, N. (2018). 

Hydraulic diversity of forests regulates ecosystem resilience during drought. 

Nature, 561(7724), 538-541. https://doi.org/10.1038/s41586-018-0539-7 

Aschehoug, E. T., Brooker, R., Atwater, D. Z., Maron, J. L., & Callaway, R. M. (2016). 

The Mechanisms and Consequences of Interspecific Competition among Plants. 

Annual Review of Ecology, Evolution, and Systematics, 47, 263–281. 

https://doi.org/10.1146/annurev-ecolsys-121415-032123 

Belnap, J., Webb, R. H., Esque, T., Brooks, M., & James MacMahan. (2016). Deserts. In 

Ecosystems of California (pp. 635–662). 

Bentler, P. M., & Chou, C.-P. (1987). Practical Issues in Structural Equation Modeling. 

Sociological Methods and Research, 16(1), 78–117. 

Bertness, M. D., & Callaway, R. M. (1994). Positive interactions in communities: a post 

cold war perspective. Trends in Ecology & Evolution, 9(1990), 191–193. 

https://doi.org/10.1016/0169-5347(94)90088-4 

Bimler, M. D., Stouffer, D. B., Lai, H. R., & Mayfield, M. M. (2018). Accurate 

predictions of coexistence in natural systems require the inclusion of facilitative 

interactions and environmental dependency. Journal of Ecology, 106(5), 1839–

1852. https://doi.org/10.1111/1365-2745.13030 

Bimler, M. D., Stouffer, D. B., Martyn, T. E., & Mayfield, M. M. (2024). Plant 

interaction networks reveal the limits of our understanding of diversity 

maintenance. Ecology Letters, 27(2), 1–16. https://doi.org/10.1111/ele.14376 

Borges, I. L., Forsyth, L. Z., Start, D., & Gilbert, B. (2019). Abiotic heterogeneity 

underlies trait-based competition and assembly. Journal of Ecology, 107(2), 747–

756. https://doi.org/10.1111/1365-2745.13082 



 

100 
 

Butterfield, B. J., & Briggs, J. M. (2011). Regeneration niche differentiates functional 

strategies of desert woody plant species. Oecologia, 165, 477-487.Cadotte, M. 

W., & Tucker, C. M. (2017). Should Environmental Filtering be Abandoned? 

Trends in Ecology and Evolution, 32(6), 429–437. 

https://doi.org/10.1016/j.tree.2017.03.004 

Callaway, R. M., Brooker, R. W., Choler, P., Kikvidze, Z., Lortie, C. J., Michalet, R., 

Paolini, L., Pugnaire, F. I., Newingham, B., Aschehoug, E. T., Armas, C., 

Kikodze, D., & Cook, B. J. (2002). Positive interactions among alpine plants 

increase with stress. Nature, 417(6891), 844–848. 

https://doi.org/10.1038/nature00812 

Carmona, C. P., de Bello, F., Azcárate, F. M., Mason, N. W. H., & Peco, B. (2019). Trait 

hierarchies and intraspecific variability drive competitive interactions in 

Mediterranean annual plants. Journal of Ecology, 107(5), 2078–2089. 

https://doi.org/10.1111/1365-2745.13248 

Carvajal, D. E., Squeo, F. A., Serena, L., Serena, L., Loayza, A. P., Rios, R. S., & 

Delpiano, C. A. (2019). A hyper ‐ arid environment shapes an inverse pattern of 

the fast – slow plant economics spectrum for above ‐, but not below ‐ ground 

resource acquisition strategies. Journal of Ecology, 107(3), 1079–1092. 

https://doi.org/10.1111/1365-2745.13092 

Chacón‑Labella, J., Marcelino, L., Cruz, D., & Pescador, D. S. (2016). Individual species 

affect plant traits structure in their surroundings : evidence of functional 

mechanisms of assembly. Oecologia, 180(4), 975–987. 

https://doi.org/10.1007/s00442-016-3547-z 

Chalmandrier, L., Stouffer, D. B., Purcell, A. S., Lee, W. G., Tanentzap, A. J., & 

Laughlin, D. C. (2022). Predictions of biodiversity are improved by integrating 

trait‐based competition with abiotic filtering. Ecology Letters, 25(5), 1277-1289. 

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of 

Ecology and Systematics, 31, 343–366. 

https://doi.org/10.1146/annurev.ecolsys.31.1.343 

Chesson, P., Gebauer, R. L. E., Schwinning, S., Huntly, N., Wiegand, K., Ernest, M. S. 

K., Sher, A., Novoplansky, A., & Weltzin, J. F. (2004). Resource pulses, species 

interactions, and diversity maintenance in arid and semi-arid environments. 

Oecologia, 141(2), 236–253. https://doi.org/10.1007/s00442-004-1551-1 

Cornwell, W. K., & Ackerly, D. D. (2009). Community assembly and shifts in plant trait 

distributions across an environmental gradient in coastal California. Ecological 

Monographs, 79(1), 109–126. https://doi.org/10.1890/07-1134.1 

Daly, C., Halbleib, M., Smith, J. I., Gibson, W. P., Doggett, M. K., Taylor, G. H., & 

Pasteris, P. P. (2008). Physiographically sensitive mapping of climatological 

temperature and precipitation across the conterminous United States. 



 

101 
 

International Journal of Climatology, 28(March), 2031–2064. 

https://doi.org/10.1002/joc 

Fowler, N. (2008). The Role of Competition in Plant Communities in Arid and Semiarid 

Regions. Annual of Ecology, Evolution and Systematics, 17(1986), 89–110. 

Germain, R. M., Mayfield, M. M., & Gilbert, B. (2018). The ‘filtering’metaphor 

revisited: competition and environment jointly structure invasibility and 

coexistence. Biology letters, 14(8), 20180460.Goldberg, D., & Novoplansky, A. 

(1997). On the relative importance of competition in unproductive environments. 

Journal of Ecology, 409-418. 

Grime, J. P. (2006). Trait convergence and trait divergence in herbaceous plant 

communities: Mechanisms and consequences. Journal of Vegetation Science, 

17(2), 255. https://doi.org/10.1658/1100-9233(2006)17[255:tcatdi]2.0.co;2 

Grime, J.P. (1973). Competitive exclusion in herbaceous vegetation. Nature, 242, 344–

347. 

Gross, N., Soriano-morales, S. I., Bagousse-, Y. Le, Luca, B., Quero, L., García-gómez, 

M., Valencia-g, E., & Maestre, F. T. (2013). Uncovering multiscale effects of 

aridity and biotic interactions on the functional structure of Mediterranean 

shrublands. Journal of Ecology, 101(3), 637–649. https://doi.org/10.1111/1365-

2745.12063 

Guo, J. S., Hungate, B. A., Kolb, T. E., & Koch, G. W. (2018). Water source niche 

overlap increases with site moisture availability in woody perennials. Plant 

Ecology, 219(6), 719–735. https://doi.org/10.1007/s11258-018-0829-z 

He, Q., Bertness, M. D., & Altieri, A. H. (2013). Global shifts towards positive species 

interactions with increasing environmental stress. Ecology Letters, 16(5), 695–

706. https://doi.org/10.1111/ele.12080 

Hillerislambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. 

(2012). Rethinking Community Assembly through the Lens of Coexistence Theory. 

https://doi.org/10.1146/annurev-ecolsys-110411-160411 

Holden, E. M., & Cahill, J. F. (2024). Plant trait dissimilarity increases competitive 

interactions among co-occurring plants. Functional Ecology, 38(7), 1464–1474. 

https://doi.org/10.1111/1365-2435.14561 

Joswig, J. S., Wirth, C., Schuman, M. C., Kattge, J., Reu, B., Wright, I. J., Sippel, S. D., 

Rüger, N., Richter, R., Schaepman, M. E., van Bodegom, P. M., Cornelissen, J. H. 

C., Díaz, S., Hattingh, W. N., Kramer, K., Lens, F., Niinemets, Ü., Reich, P. B., 

Reichstein, M., … Mahecha, M. D. (2022). Climatic and soil factors explain the 

two-dimensional spectrum of global plant trait variation. Nature Ecology and 

Evolution, 6(1), 36–50. https://doi.org/10.1038/s41559-021-01616-8 



 

102 
 

Kandlikar, G. S., Kleinhesselink, A. R., & Kraft, N. J. B. (2022). Functional traits predict 

species responses to environmental variation in a California grassland annual 

plant community. Journal of Ecology, 110, 833–844. 

https://doi.org/10.1111/1365-2745.13845 

Keddy, P. A. (1992). Assembly and response rules: two goals for predictive community 

ecology. Journal of Vegetation Science, 3(2), 157–164. 

https://doi.org/10.2307/3235676 

King, T. J., & Woodell, S. R. J. (1973). The Causes of regular Pattern in Desert 

Perennials. Journal of Ecology, 61(3), 761–765. 

Kraft, N. J. B., Crutsinger, G. M., Forrestel, E. J., & Emery, N. C. (2014). Functional trait 

differences and the outcome of community assembly: An experimental test with 

vernal pool annual plants. Oikos, 123(11), 1391–1399. 

https://doi.org/10.1111/oik.01311 

Kraft, N. J. B., Valencia, R., & Ackerly, D. D. (2008). Functional traits and niche-based 

tree community assembly in an Amazonian forest. Science, 322(5901), 580–582. 

https://doi.org/10.1126/science.1160662 

Laliberté, E., & Legendre, P. (2010). A distance‐based framework for measuring 

functional diversity from multiple traits. Ecology, 91(1), 299-305. 

Laughlin, D. C., Joshi, C., van Bodegom, P. M., Bastow, Z. A., & Fulé, P. Z. (2012). A 

predictive model of community assembly that incorporates intraspecific trait 

variation. Ecology Letters, 15(11), 1291–1299. https://doi.org/10.1111/j.1461-

0248.2012.01852.x 

Liancourt, P., Callaway, R. M., & Michalet, R. (2005). Stress tolerance and competitive-

response ability determine the outcome of biotic interactions. Ecology, 86(6), 

1611–1618. https://doi.org/10.1890/04-1398 

Liancourt, P., & Dolezal, J. (2021). Community‐scale effects and strain: Facilitation 

beyond conspicuous patterns. Journal of Ecology, 109(1), 19-25. 

Losapio, G., Montesinos-Navarro, A., & Saiz, H. (2019). Perspectives for ecological 

networks in plant ecology. Plant Ecology and Diversity, 12(2), 87–102. 

https://doi.org/10.1080/17550874.2019.1626509 

Losapio, G., Schöb, C., Staniczenko, P. P. A., Carrara, F., Palamara, G. M., de Moraes, 

C. M., Mescher, M. C., Brooker, R. W., Butterfield, B. J., Callaway, R. M., 

Cavieres, L. A., Kikvidze, Z., Lortie, C. J., Michalet, R., Pugnaire, F. I., & 

Bascompte, J. (2021). Network motifs involving both competition and facilitation 

predict biodiversity in alpine plant communities. Proceedings of the National 

Academy of Sciences of the United States of America, 118(6), 1–6. 

https://doi.org/10.1073/pnas.2005759118 



 

103 
 

Loughnan, D., & Gilbert, B. (2017). Trait-mediated community assembly: distinguishing 

the signatures of biotic and abiotic filters. Oikos, 126(8), 1112–1122. 

https://doi.org/10.1111/oik.03945 

MacArthur, R., & Levins, R. (1967). The Limiting Similarity, Convergence, and 

Divergence of Coexisting Species. The American Naturalist, 101(921), 377–385. 

Maestre, F. T., Callaway, R. M., Valladares, F., & Lortie, C. J. (2009). Refining the 

stress-gradient hypothesis for competition and facilitation in plant communities. 

Journal of Ecology, 97(2), 199–205. https://doi.org/10.1111/j.1365-

2745.2008.01476.x 

McDowell, N., Pockman, W. T., Allen, C. D., Breshears, D. D., Cobb, N., Kolb, T., 

Plaut, J., Sperry, J., West, A., Williams, D. G., & Yepez, E. A. (2008). 

Mechanisms of plant survival and mortality during drought: Why do some plants 

survive while others succumb to drought? New Phytologist, 178(4), 719–739. 

https://doi.org/10.1111/j.1469-8137.2008.02436.x 

Michaletz, S. T., Weiser, M. D., Mcdowell, N. G., Zhou, J., Kaspari, M., Helliker, B. R., 

& Enquist, B. J. (2016). The energetic and carbon economic origins of leaf 

thermoregulation. Nature Plants, 2(9), 1–9. 

https://doi.org/10.1038/nplants.2016.129 

Michaletz, S. T., Weiser, M. D., Zhou, J., Kaspari, M., Helliker, B. R., & Enquist, B. J. 

(2015). Plant Thermoregulation: Energetics, Trait-Environment Interactions, and 

Carbon Economics. Trends in Ecology and Evolution, 30(12), 714–724. 

https://doi.org/10.1016/j.tree.2015.09.006 

Mittelbach, G. G., & Schemske, D. W. (2015). Ecological and evolutionary perspectives 

on community assembly. Trends in Ecology & Evolution, 30(5), 241–247. 

https://doi.org/10.1016/j.tree.2015.02.008 

Mouchet, M. A., Villéger, S., Mason, N. W. H., & Mouillot, D. (2010). Functional 

diversity measures: An overview of their redundancy and their ability to 

discriminate community assembly rules. Functional Ecology, 24(4), 867–876. 

https://doi.org/10.1111/j.1365-2435.2010.01695.x 

Niinemets, Ü. (2001). Global-scale climatic controls of leaf dry mass per area, density, 

and thickness in trees and shrubs. Ecology, 82(2), 453–469. 

https://doi.org/10.1890/0012-9658(2001)082[0453:GSCCOL]2.0.CO;2 

Pakeman, R. J., & Quested, Helen, M. (2007). Sampling plant functional traits : What 

proportion of the species need to be measured? Applied Vegetation Science, 10, 

91–96. 

Pelliza, Y. I., Fernandez, A., Saiz, H., & Tadey, M. (2021). Together we stand, divided 

we fall: Effects of livestock grazing on vegetation patches in a desert community. 

Journal of Vegetation Science, 32(2), 1–14. https://doi.org/10.1111/jvs.13015 



 

104 
 

Pérez-Harguindeguy, N., Díaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., 

Bret-Harte, M. S., Cornwell, W. K., Craine, J. M., Gurvich, D. E., Urcelay, C., 

Veneklaas, E. J., Reich, P. B., Poorter, L., Wright, I. J., Ray, P., Enrico, L., 

Pausas, J. G., De Vos, A. C., … Cornelissen, J. H. C. (2013). New handbook for 

standardised measurement of plant functional traits worldwide. Australian 

Journal of Botany. https://doi.org/10.1071/BT12225 

Ponisio, L. C., Valdovinos, F. S., Allhoff, K. T., Gaiarsa, M. P., Barner, A., Guimarães 

Jr, P. R., ... & Gillespie, R. (2019). A network perspective for community 

assembly. Frontiers in Ecology and Evolution, 7, 103. 

Poorter, H., Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). 

Causes and consequences of variation in leaf mass per area ( LMA ): a meta-

analysis. New Phytologist, 182(3), 565–588. 

Pugnaire, F. I., Armas, C., & Valladares, F. (2004). Soil as a mediator in plant-plant 

interactions in a semi-arid community. Journal of Vegetation Science, 15(1), 85–

92. https://doi.org/10.1111/j.1654-1103.2004.tb02240.x 

Ramachandran, A., Huxley, J. D., McFaul, S., Schauer, L., Diez, J., Boone, R., Madsen-

Hepp, T., McCann, E., Franklin, J., Logan, D., Rose, M. B., & Spasojevic, M. J. 

(2023). Integrating ontogeny and ontogenetic dependency into community 

assembly. Journal of Ecology, 111(7), 1561–1574. https://doi.org/10.1111/1365-

2745.14132 

Reich, P. B. (2014). The world-wide ‘ fast – slow ’ plant economics spectrum : a traits 

manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-

2745.12211 

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of 

statistical software, 48, 1-36. 

Saiz, H., Gómez-Gardeñes, J., Borda, J. P., & Maestre, F. T. (2018). The structure of 

plant spatial association networks is linked to plant diversity in global drylands. 

Journal of Ecology, 106(4), 1443–1453. https://doi.org/10.1111/1365-2745.12935 

Saiz, H., Le Bagousse‐Pinguet, Y., Gross, N., & Maestre, F. T. (2019). Intransitivity 

increases plant functional diversity by limiting dominance in drylands worldwide. 

Journal of Ecology, 107(1), 240-252. 

Schöb, C., Butterfield, B. J., & Pugnaire, F. I. (2012). Foundation species influence trait‐

based community assembly. New Phytologist, 196(3), 824-834. 

Schöb, C., Macek, P., Pistón, N., Kikvidze, Z., & Pugnaire, F. I. (2017). A trait‐based 

approach to understand the consequences of specific plant interactions for 

community structure. Journal of Vegetation Science, 28(4), 696-704. 

 



 

105 
 

Schwinning, S., & Ehleringer, J. R. (2001). Water use trade‐offs and optimal adaptations 

to pulse‐driven arid ecosystems. Journal of Ecology, 89(3), 464-480.Soliveres, S., 

& Maestre, F. T. (2014). Plant-plant interactions, environmental gradients and 

plant diversity: A global synthesis of community-level studies. Perspectives in 

Plant Ecology, Evolution and Systematics, 16, 154–163. 

https://doi.org/10.1016/j.ppees.2014.04.001 

Spasojevic, M. J., & Suding, K. N. (2012). Inferring community assembly mechanisms 

from functional diversity patterns: The importance of multiple assembly 

processes. Journal of Ecology, 100(3), 652–661. https://doi.org/10.1111/j.1365-

2745.2011.01945.x 

Stark, J., Lehman, R., Crawford, L., Enquist, B. J., & Blonder, B. (2017). Does 

environmental heterogeneity drive functional trait variation? A test in montane 

and alpine meadows. Oikos, 126(11), 1650–1659. 

https://doi.org/10.1111/oik.04311 

Thakur, M. P., & Wright, A. J. (2017). Environmental Filtering , Niche Construction , 

and Trait Variability : The Missing Discussion. Trends in Ecology & Evolution, 

32(12), 884–886. https://doi.org/10.1016/j.tree.2017.09.014 

Tirado, R., & Pugnaire, F. I. (2005). Community structure and positive interactions in 

constraining environments. Oikos, 111(3), 437–444. 

https://doi.org/10.1111/j.1600-0706.2005.14094.x 

Van Dyke, M. N., Levine, J. M., & Kraft, N. J. (2022). Small rainfall changes drive 

substantial changes in plant coexistence. Nature, 611(7936), 507-511. 

Vega-Álvarez, J., García-Rodríguez, J. A., & Cayuela, L. (2019). Facilitation beyond 

species richness. Journal of Ecology, 107(2), 722–734. 

https://doi.org/10.1111/1365-2745.13072 

Vernham, G., Bailey, J. J., Chase, J. M., Hjort, J., Field, R., & Schrodt, F. (2023). 

Understanding trait diversity: the role of geodiversity. Trends in Ecology and 

Evolution, 38(8), 736–748. https://doi.org/10.1016/j.tree.2023.02.010 

Walter, H. (1971). Natural savannahs as a transition to the arid zone. In Ecology of 

tropical and subtropical vegetation (pp. 238–265). 

Ward, D., Wiegand, K., & Getzin, S. (2013). Walter’s two-layer hypothesis revisited: 

Back to the roots! Oecologia, 172(3), 617–630. https://doi.org/10.1007/s00442-

012-2538-y 

Weigelt, A., Schumacher, J., Walther, T., Bartelheimer, M., Steinlein, T., & Beyschlag, 

W. (2007). Identifying mechanisms of competition in multi-species communities. 

Journal of Ecology, 95(1), 53–64. https://doi.org/10.1111/j.1365-

2745.2006.01198.x 



 

106 
 

 

Weiher, E., & Keddy, P. A. (1995). Assembly Rules, Null Models, and Trait Dispersion : 

New Questions from Old Patterns. Oikos, 74(1), 159–164. 

Woods, N. N., McCarthy, R., & Miriti, M. N. (2019). Non-hierarchical competition 

among co-occurring woody seedlings in a resource-limited environment. 

Ecosphere, 10(5). https://doi.org/10.1002/ecs2.2751 

Wu, J., Wurst, S., & Zhang, X. (2016). Plant functional trait diversity regulates the 

nonlinear response of productivity to regional climate change in Tibetan alpine 

grasslands. Scientific reports, 6(1), 35649. 

Yin, D., Liu, Y., Ye, Q., Cadotte, M. W., & He, F. (2021). Trait hierarchies are stronger 

than trait dissimilarities in structuring spatial co-occurrence patterns of common 

tree species in a subtropical forest. Ecology and Evolution, 11(12), 7366–7377. 

https://doi.org/10.1002/ece3.7567 

  



 

107 
 

Chapter 3 

 

 rait-based  echanis s of p ant interactions depend on the interp ay between 

co  unity traits  abiotic conditions  and traits of foca  species 

 

 bstract 

The degree of phenotypic differentiation among interacting species has long been 

recognized as an important determinant of their coexistence. Yet, we lack an 

understanding of how trait differentiation at the community level influences the net 

effects of neighbors, and to what extent phenotypic plasticity versus average trait 

differences are more important. Here, I established a mesocosm experiment manipulating 

the functional composition of desert annual plant communities under contrasting water 

regimes to assess how community functional traits interact with altered abiotic conditions 

and determine the interaction outcome of two focal species with divergent trait strategies. 

I tested whether the surrounding community's trait composition, the focal individuals' 

trait expression, or the distance between the two are more important in determining the 

outcome of interactions under contrasting abiotic conditions. As part of this experiment, I 

also tested whether the average trait differences among interacting species or accounting 

for intraspecific trait variation better predicted interaction outcomes. I used model 

comparison to identify the strongest predictors of the interaction intensity (log response 

ratio) for each of the focal species. I found that the trait composition of the surrounding 

community, the trait values expressed by focal species in response to diverse neighbors, 

and the distance between focal and neighborhood traits were all important predictors of 
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interaction outcomes. Moreover, I found evidence of both trait hierarchies and niche 

partitioning, where hierarchical competition was better captured by ITV, and niche 

partitioning was better captured by average trait values. Finally, I found that the trait 

composition of the community and the ITV of focal species were equally important 

determinants of interactions. Overall, these results support the idea that both the mean 

and variance of functional traits in a given community can predict the outcome of species 

interactions between a resident community and a focal species and that functional traits 

can generalize the effects of community composition on the coexistence and performance 

of a given species. 

 

Introduction.  

Trait differences and similarities among co-occurring, interacting species have 

long been recognized as important for understanding patterns of species coexistence 

(Chesson, 2000; Levine & HilleRisLambers, 2009; Weiher et al., 1998). In some cases, 

differences among interacting species stabilize their coexistence (Chesson, 2000), where 

segregation in resource acquisition strategies minimizes competition for shared resources 

(limiting similarity principle; MacArthur & Levins, 1967). In other cases, similarities 

among species can promote the coexistence of species with similar traits if a given 

phenotype is more competitive and trait-based competitive hierarchies are formed 

(Herben & Goldberg, 2014; Mayfield & Levine, 2010). Despite advances in coexistence 

theory incorporating trait differences (Adler et al., 2013; Kraft et al., 2015; Van Dyke et 

al., 2022), the relative importance of limiting similarity versus hierarchical competition in 
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determining species interactions is still unresolved and likely depends on environmental 

conditions (Carmona et al., 2019; Perez-Ramos et al., 2019). Furthermore, experimental 

approaches focused on understanding the net effects of neighbors suggest that the 

outcome of interactions in more realistic multispecies assemblages is contingent on the 

trait distance from that of the surrounding community (Holden & Cahill, 2024), rather 

than just pairwise trait distances. Additionally, in some cases, a focal species’ mean trait 

values were more important than their trait distance from the community in explaining 

species’ performance in diverse communities (Galland et al., 2019; Roscher, Gubsch, et 

al., 2018). Ultimately, the outcome of biotic interactions within multi-species 

assemblages is likely mediated through multiple pathways, including a combination of 

community functional traits, the traits of the focal species, and the distance between the 

two. 

Since both limiting similarity and trait hierarchies are mediated by trait 

dissimilarity between co-occurring species, the functional trait composition of 

neighboring species could predict the trait-based mechanisms governing the outcome of 

net interactions (Galland et al., 2019; Roscher, Buchmann, et al., 2018). For instance, if 

traits reflect stabilizing niche differences among species, assemblages with greater 

functional diversity (FD) could reduce the performance and survival of focal species if 

more complementary resource use results in niche saturation—consistent with widely 

observed negative diversity-invasibility relationships (Byun et al., 2013; Levine et al., 

2004; Li et al., 2022). However, another body of literature has found that resource 

partitioning might benefit species growing in more diverse assemblages (Barry et al., 
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2019; Loreau & Hector, 2001). Alternatively, if a given trait primarily reflects differences 

in fitness leading to competitive hierarchies, then the community average trait value 

(CWM) could be a stronger predictor of interaction outcome. For instance, shifts in the 

mean trait values of plant communities often reflect changes in environmentally 

determined optimum trait values (Kandlikar et al., 2022), which could favor a given 

phenotype over others and lead to competitive exclusion of species differing from the 

community mean.  

While community FD and CWM can simultaneously be important determinants of 

interactions acting on different traits (Galland et al., 2019), it is less clear whether the 

influence of community trait composition on interactions is contingent on a focal species 

traits or whether effects might be more generalizable. For instance, community functional 

composition could also affect the outcome of interactions regardless of a focal species’ 

traits if higher FD communities promote abiotic facilitation (Wright et al., 2021) or 

ameliorate strong intraspecific competition (Mahaut et al., 2020). However, since 

multiple traits likely determine niche differences, while fitness differences often depend 

on single traits (Kraft et al., 2015), it is likely that more than one mechanism operates 

simultaneously to structure the outcome of interactions (Hillerislambers et al., 2012; 

Mayfield & Levine, 2010).  

Critically, the outcome of net interactions can be influenced by the context-

dependent trait expression of co-occurring species, which might better predict 

interactions compared to average species trait differences. While plant functional traits 

vary more among different species than within species, intraspecific trait variation 
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accounts for a substantial portion of total community trait variability (25-30%) and can 

strongly influence the outcome of species interactions and community assembly (Albert 

et al., 2011; Siefert et al., 2015). Indeed, biotic interactions and abiotic conditions can 

influence an individual’s trait expression (Waterton et al., 2023), which can then affect 

that individual’s trait-based response to biotic interactions (Bennett et al., 2016; Burns & 

Strauss, 2012). For instance, several studies have shown that species’ trait values vary 

across gradients of community diversity (Bennett et al., 2016; Gubsch et al., 2011; Le 

Bagousse-Pinguet et al., 2015; Lipowsky et al., 2015), which could alter the estimates of 

limiting similarity and hierarchical competition by changing the distance among a focal 

species and its competitors. Similarly, the trait plasticity of the interacting community 

also likely influences the trait expression of a focal individual and the subsequent 

outcome of biotic interactions. However, given how time-consuming it is to measure the 

traits of all individuals in an experiment, this has rarely been investigated at the scale of 

the entire community. Thus, it is largely unknown to what extent species interactions in 

communities are regulated by average trait values or trait values expressed under varying 

biotic and abiotic conditions. 

Here, I sought to disentangle the role of community trait composition in 

regulating the trait-based mechanisms of species interactions. I designed a mesocosm 

experiment manipulating community trait diversity across two contrasting drought 

conditions to understand how traits mediate the outcome of net neighbor effects on two 

focal species. I ask: 1) How does the functional composition of a community influence 

species interactions under contrasting abiotic conditions; 2) What are the mechanisms 
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underlying interaction outcomes (trait hierarchies vs limiting similarity); and 3) how do 

they change under biotic and abiotic conditions? I answer these questions using both a 

species mean trait approach, as well as incorporating ITV to better understand the 

predictive power of each. 

 

Methods  Study species. To address the above questions, I designed a mesocosm 

experiment manipulating the functional diversity of communities of annual plant species 

from the Sonoran Desert under experimental drought and ambient conditions. I selected 

species of annual plants ranging in functional trait values (Table 1) since their lifetime 

fitness in response to abiotic and biotic conditions can be estimated from biomass 

accumulation in a single growing season. Seeds for the experiment were sourced from the 

California Botanic Garden, and accessions were chosen based on germination rates and 

availability, resulting in the following species for the experiment: Eriophyllum wallacei 

(Asteraceae), Phacelia distans (Boraginaceae), Calyptridium monandrum (Montiaceae), 

Cryptantha micrantha (Boraginaceae), Perityle emoryi (Asteraceae), Chaenactis 

fremontii (Asteraceae), Malacothrix glabrata (Asteraceae), and Plantago ovata 

(Plantaginaceae). To understand how the outcome of interactions differed among species 

with divergent resource-use strategies, I chose Phacelia distans and Eriophyllum 

wallacei, as focal phytometer species (referred to by genus hereafter) as these two species 

differed the most from each other in multivariate trait space among all species in the 

experiment that had sufficient germination to replicate among communities (Fig. S1). 
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Experimental design. The experiment was conducted at the University of California 

Riverside greenhouse under semi-controlled conditions. Seeds were sown and germinated 

in peat pellets (January 23-27, 2023) at 18 degrees Celsius, misted daily. Approximately 

three weeks later due to variation in germination timing (February 21-22, 2023), 

seedlings were transplanted into experimental communities in 5-gallon/12” pots with soil 

that consisted of approximately 55% sand and 42% peat moss. Pots with competition 

included one focal species in the center with five individuals of other species placed 

equally around the focal species at a distance of 4 cm (Figure 1) - a distance that has 

previously been established as capturing the effect of biotic interactions in desert annual 

plants (Pantastico-Caldas & Venable, 1993). I established a gradient of community 

functional diversity calculated from the FDis of species’ average specific leaf area (SLA), 

since SLA has shown to play a strong role in competitive outcomes among annual plants 

(Kraft et al., 2015). Within each watering treatment, ten different communities 

comprising a gradient of functional diversity were established and were replicated twice 

for each focal species (n=20), resulting in 40 total communities. To disentangle the effect 

of the abiotic treatment without interactions, I grew ten individuals of each focal species 

alone in both watering regimes (n=20). Due to mortality, the total number of each focal 

species grown alone was 14 for Eriophyllum and 19 for Phacelia. I also grew each focal 

species in monoculture to understand the response of each to intraspecific competition. 

Due to the limited germination of each focal species, I grew two monoculture replicates 

of Eriophyllum in each drought treatment (four total), and three replicates of Phacelia in 

each drought treatment (six total). 
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Three weeks after communities were established, when each plant had at least two 

true leaves, two watering treatments were established. A high-water treatment received 

approximately 3 mL of water daily, while low-water treatments received approximately 3 

mL of water twice a week. Pots were rearranged on greenhouse benches twice per week 

to account for variation in local environment across benches. The experiment was 

harvested when species began flowering (May 18-20, 2023), after growing for three 

months in the respective biotic and abiotic treatments. Each individual plant in the 

experiment was carefully removed from the pot and excess soil from the roots was rinsed 

off. Total plant biomass (above and belowground) for each individual was then dried at 

60 C for 4 days and weighed to ±0.001g.  

 

Trait measurements. To understand the role of functional trait expression at the 

community level on the outcome of interactions under contrasting abiotic conditions, I 

measured traits known to mediate the fitness of annual plant species in response to both 

biotic and abiotic conditions. Furthermore, since our goal was to disentangle the relative 

importance of both interspecific and intraspecific traits for community-level interactions, 

I measured relatively easy-to-collect functional traits on all individuals in the experiment 

(n=340 individuals). Maximum vegetative height is a key trait involved in regulating 

access to light and competitive interactions, while specific leaf area (SLA), leaf dry 

matter content (LDMC), and chlorophyll content (CC) are all important traits reflecting 

resource utilization and overall position across the global leaf economic spectrum (Díaz 

et al., 2015; Poorter et al., 2009; Reich, 2014; Westoby et al., 2002).  
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Vegetative height was measured before harvesting the experiment, and all other 

traits were measured after harvesting according to established protocols (Pérez-

Harguindeguy et al., 2013). I measured plant height as the distance from the soil to the 

highest photosynthetically active tissue. Three leaves per individual, once fully hydrated, 

were used to measure leaf traits in the lab. For leaf area (cm2), I scanned fresh leaves 

using a flat-bed digital scanner and then calculated leaf area using ImageJ (Schneider et 

al., 2012). Fresh leaf mass was then determined with a digital balance and then dried at 

60 C for 72 hours before determining leaf dry mass (g). Leaf dry matter content (LDMC) 

was determined by dividing dry leaf mass by fresh mass, and specific leaf area (SLA) 

was calculated as leaf area divided by leaf dry weight. Chlorophyll content was measured 

with a digital chlorophyll meter (Konica Minolta) by averaging across three 

measurements per leaf. Due to the loss of a small amount of individual trait data, I 

imputed missing trait measurements (27 trait measurements out of 1,700 total) using a 

random forest imputation algorithm implemented in the funspace R package (Carmona et 

al., 2024).  

 

Estimating interaction outcome. I estimated the outcome of interactions for each focal 

individual in the presence of all communities in each watering treatment by calculating 

the log response ratio (LRR) with the biomass of target individuals grown alone relative 

to the biomass produced when grown in interaction with other individuals. Negative 

values reflect competition where individuals experience reduced biomass production 

relative to when grown alone, while positive values reflect facilitation where individuals 
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achieve greater biomass production than when grown alone. Log response ratios are 

widely used to evaluate the outcome of competition among plants due to their 

approximately normal distribution and low potential for bias (Hedges et al., 1999).  

 

Community trait indices. Since individual mortality altered the FD values in the 

experimental design, I first calculated both functional diversity and community-weighted 

mean (CWM) trait values using species’ average trait values. I calculated functional 

diversity as functional dispersion (FDis), which is the average distance of each species to 

the community-weighted centroid (Laliberté & Legendre, 2010). FDis was calculated for 

each individual trait and using all traits simultaneously in a multivariate metric. I further 

calculated the community-weighted mean (CWM) of each trait as the mean trait value of 

each community as weighted by each species' abundance. To assess the importance of 

intraspecific trait variability, I additionally calculated the above trait metrics using the 

trait values of individuals measured in each community.  

In addition to evaluating the outcome of species interactions in response to 

different community functional metrics, I investigated the trait-based mechanisms 

underlying them by measuring three values shown to influence the outcome of plant 

interactions. First, the absolute value of the trait distance of trait values between focal 

individuals and their surrounding community (|Tfocal – Tcomm|; DIST), which assumes that 

the absolute distance between species’ traits determines the outcome of interactions, 

where, under the limiting similarity hypothesis, a focal individual or species performs 

better with increasing trait distance from the surrounding community—regardless of the 
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direction. Second, the directional dissimilarity between focal individuals and their 

surrounding community, where the closer a focal individual’s trait value is to an 

“optimum”, the better their performance (Tfocal – Tcomm; HIER). Third, the change in the 

trait values of focal individuals between their average when grown alone and when 

grown in the presence of other individuals in a community (Tfocal-AVG – Tfocal-ITV). For 

calculating DIST and HIER, I used the CWM and FDis of each community as the 

community trait values. 

For all the above trait metrics and dissimilarity indices, I calculated each value 

twice using both the average (AVG) traits for both the community and focal species, and 

the community-specific values accounting for intraspecific trait variability (ITV), which 

reflect the influence of community interactions under particular abiotic conditions. For 

dissimilarity indices using ITV values, ITV traits were used for both focal species and the 

surrounding community, and likewise for AVG dissimilarity indices.  

 

Statistical analyses. First, to understand how the background communities shifted their 

trait indices across abiotic and biotic conditions, I tested how the background community 

trait indices changed across our drought treatment and between AVG and ITV 

calculations using paired t-tests. Similarly, I used t-tests to determine how the response 

ratios and trait values differed between monoculture and mixture plots for each focal 

species. I then tested the effects of community traits, focal species traits, distance 

between focal and community traits, and focal species’ ITV on focal species’ interaction 

outcome by fitting linear mixed effect models using the LRR as the response variable 
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with trait metrics, focal species, and watering regime as fixed effects and including 

watering regime as an interaction. I included species richness as a random factor to 

account for differences in richness due to mortality within experimental communities 

(richness varied between 4 and 5 background species). Linear mixed models were fitted 

using the R package lmerTest (Kuznetsova et al., 2017). Since our watering treatment 

often did not result in differences in biomass (see below), I fitted the above models both 

with and without the water interaction and chose the simpler model by comparing AIC 

values. I then used multi-model inference to identify the best fitting models, based on 

minimizing the AICc, for species’ interaction response by fitting two separate global 

models. First, to assess whether interaction outcome is contingent upon average traits of 

interacting species or on ITV trait values, I built one global model of significant average 

species trait predictors and one using significant trait predictors reflecting ITV in 

response to biotic and abiotic conditions. Second, I included in each of these respective 

global models all significant predictor variables capturing trait distance from the 

community—both dissimilarity and hierarchical—to disentangle which mechanism might 

be important for interaction outcome as well as to compare the overall relative 

importance of trait distance from the community compared to community trait metrics 

alone. For both global models, trait predictors were included with a water interaction if 

the interaction was significant in individual models. For model selection, I used the 

dredge function in the MuMIn package (Barton, 2024) with trait predictors as fixed 

effects and species richness as a random effect. Since correlation among predictor 

variables can bias variable importance estimates, I first tested for collinearity among 
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variables in global models. If predictor variables showed high correlation (R > 0.5), I 

retained the variable which better predicted the response variable by comparing AIC 

values. I then performed a model-averaging procedure (Barton, 2024) on the top subset of 

models from these two global models based on their ranked AICc (deltaAICc <5) to 

determine the standardized coefficients for the best overall set of trait predictors. All trait 

predictors were log-transformed when necessary and standardized prior to analyses. 

Finally, since phytometer/target species frequently exhibited divergent responses, I 

performed the same model selection procedure separately for each phytometer.  

 

Resu ts 

Background community. Community FDisITV for multivariate and individual traits 

showed no significant differences among water treatments (Table S1, but several 

CWMITV values significantly differed where leaf area (t=-2.79, p=0.012), height (t=-2.12, 

p=0.04), and chlorophyll content (t=-2.46, p=0.02) were reduced while LDMCITV 

increased under drought conditions (t=2.21, p=0.04). Community functional dispersion 

differed significantly when calculated with average versus ITV traits (Table S2). Most 

individual trait FDis were significantly lower when calculated using ITV values rather 

than AVG trait values (height: t=-6.39, p=<0.000; SLA: t=-6.12, p=<0.000; LDMC: t=-

5.19, p=<0.000; leaf area: t=3.23, p=0.002; chlorophyll: t=-5.19, p=<0.000), while 

multivariate FDis and leaf area FDis were higher (FDis: t=3.34, p=0.002; LA FDis: 

t=3.23, p=0.002). CWM SLA was similarly lower when calculated with ITV traits rather  
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than averages (t=-7.74, p=<0.000), while other CWM traits showed no significant 

differences (Table S2). 

 

Drought effect on focal species. Overall, our drought treatment did not affect focal 

species’ LRR while growing in the presence of diverse communities (t=-0.58, p=0.564). 

The trait values of focal species also showed no response to the drought treatment when 

growing in diverse communities (Table S1). However, the trait values expressed by focal 

species growing alone differed among drought and ambient treatments for several traits, 

with lower SLA (t=-6.64, p=<0.000) and chlorophyll content (t=-7.76, p=<0.000), and 

higher LDMC (t=9.08, p=<0.000) and height (t=21.48, p=<0.000), in drought compared 

to ambient conditions. 

 

Community effects on focal species. Across both species, response ratios did not differ 

between mixture and monoculture pots, but this was due to divergent responses among 

focal species to interspecific versus intraspecific competition. Eriophyllum experienced 

lower LRR in mixture than monoculture (t=-2.75, p=0.04), while Phacelia experienced a 

higher LRR in mixture and lower LRR in monoculture (t=3.53, p=0.01; Figure S2). This 

pattern was further supported by Eriophyllum having higher total biomass in drought 

monoculture than monoculture under ambient conditions (F=46.62, p=0.02)—suggesting 

stronger facilitative effects under drought stress. Phacelia showed no difference in 

biomass between drought and ambient treatments when growing in monoculture 

(F=1.085, p=0.35).  
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Community trait composition of the surrounding community played a strong role 

in the outcome of interactions for both of our focal species, as shown by the results of our 

model averaging procedure (Table 2, Figure 2). Specifically, functional dispersion of the 

surrounding community had a consistent positive effect on the interaction outcome, 

where higher multivariate FDis communities facilitated both focal species under drought 

and ambient conditions, while lower FDis increased the intensity of competition (Figure 

2A). Similarly, FDis LDMC had a facilitative effect on both focal species, but only under 

drought conditions, exhibiting a significant interaction with the different water regimes 

(Figure 2D). In addition to functional diversity, the weighted average SLA of 

communities also played a strong role in interaction outcome, where both focal species 

were negatively affected by increasing CWM SLA of the surrounding community (Figure 

2C). Interestingly, the strongest community trait predictors as shown in our overall model 

coefficients were average trait values rather than ITV. In addition to the trait composition 

of the surrounding community, the height expressed by the focal species was strongly 

predictive of the interaction outcome (Figure 2B), where both species showed more 

positive interaction outcomes with increasing height, regardless of the surrounding 

community. 

 While overall predictors of interaction outcome for both focal species were 

related primarily to the functional composition of the community, focal species’ 

independent interaction outcomes were contingent on a combination of community trait 

composition, focal species’ trait expression, and trait distance between focal species and 
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the surrounding community (Figure 3). The standardized coefficients for the global 

model of Eriophyllum showed that this species’ success in a given community is 

contingent on abiotic-mediated trait expression, where a higher or lower leaf area was 

advantageous in ambient and drought conditions, respectively (Table 2; Figure 3C). 

Similarly, the distance between this species’ SLA and that of the surrounding community 

showed a positive relationship in ambient conditions and negative relationship in drought 

conditions (Fig 3D). While the later predictive variable was determined by average trait 

values, the former was reflective of ITV trait values, and thus the importance of both for 

this species. The strongest trait predictor mediating the success of Phacelia in diverse 

communities was FDisAVG, followed by heightDIST-ITV (Table 2; Figure 3A-3B) where this 

species showed increasingly positive interaction outcomes by having an increasing 

distance of height from the rest of the community and in more functionally diverse 

assemblages.  

 

 iscussion 

Since equalizing mechanisms of coexistence have been recognized (Chesson, 2000) and 

incorporated into empirical work (Herben & Goldberg, 2014), trait hierarchies have been 

found to operate as a mechanism of competition in many different communities. In 

contrast, support for limiting similarity is often weak or absent (Kunstler et al., 2012). In 

this study, I found support for both hierarchical competition and limiting similarity, but 

overall, limiting similarity played a larger role in determining the interaction outcomes 

for both species, since trait hierarchies were only important for a single trait for one of 
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the focal species. The more competitive focal species, Phacelia, benefitted from having a 

greater leaf area relative to the surrounding community, while the presence of trait 

hierarchies was not an important determinant of net interaction effects for Eriophyllum. 

In contrast, limiting similarity was more important for both species, where Phacelia 

showed a positive response ratio with increasing distance from the surrounding 

community in height and LDMC, and Eriophyllum showed a positive response ratio with 

increasing SLA distance from the surrounding community. Thus, the importance of 

competitive mechanism was trait-dependent, as has been shown in other studies (Herben 

& Goldberg, 2014). Since hierarchical competition has been shown to depend on abiotic 

conditions, being more important in more productive, high-nutrient conditions (Carmona 

et al., 2019; Goldberg et al., 2017), our results showing a greater overall importance for 

limiting similarity might be related to the more arid study system than others have 

investigated. 

While the trait distance between focal species and the surrounding community played 

a role in determining net interactions in our study, the trait composition of the 

surrounding communities also had important general effects regardless of focal species’ 

traits. In our model averaging approach combining both focal species, significant 

predictors were primarily community trait indices, which also had the highest 

coefficients, rather than metrics capturing the trait distance between focal species and the 

surrounding community (Table 2). I found that both of our focal species were facilitated 

to some extent by the functional diversity of the surrounding community, as multivariate 

FDisAVG was the strongest predictor of interaction outcome in our overall model. This 
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result is consistent with wide-scale support for biodiversity-ecosystem functioning 

relationships and recent developments suggesting that species producing higher biomass 

in mixture could result from multiple facilitative mechanisms, including abiotic and 

indirect biotic facilitation (Barry et al., 2019; Wright et al., 2017, 2021). For both of our 

focal species, interaction outcomes were also negatively related to CWM SLA and 

showed a strong positive relationship with FDis LDMC under drought conditions, where 

lower FDis LDMC suppressed focal species’ growth. In contrast, we also found patterns 

that indicate plants were experiencing some level of competition. Regardless of watering 

conditions, focal plant performance slightly decreased as the community exhibited a more 

resource-acquisitive strategy of higher SLA suggesting a transition from neutral to weak 

competitive interactions. We also observed that the diversity of LDMC was linked to 

decreased growth but only in drought conditions. LDMC is strongly linked to leaf-level 

drought tolerance and competitive superiority under more arid conditions (Mount et al., 

2024), and, since most of our species had relatively low LDMC (Table 1), the lower FDis 

of this trait likely reflected strong competitive effects of drought-resistant species. 

However, while more conservative traits were competitively superior under drought 

conditions, higher SLA communities negatively affected focal species under both abiotic 

conditions. While apparently contradictory results, the strong competitive effect is likely 

due to the high biomass produced by the dominant species Phacelia. Overall, these 

results support previous work demonstrating that both the mean and variance of 

functional traits in a given community can predict the outcome of species interactions 

between a resident community and a focal species (Borges et al., 2019; Li et al., 2022), 
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and that there may be generalizable effects of community composition on the coexistence 

and performance of a given species. Finally, our results are consistent with others that 

have found niche differences to be captured by multiple traits, while fitness differences 

leading to trait hierarchies are captured by single traits (Kraft et al., 2015).  

An accumulating body of research is highlighting the importance of intraspecific trait 

variability in response to both abiotic and biotic factors (Hess et al., 2022; Laughlin & 

Messier, 2015; Turcotte & Levine, 2016), and yet, it’s still unresolved to what extent 

plant species' average trait values versus ITV values are more useful predictors of their 

fitness under contrasting biotic and abiotic conditions. Furthermore, while ITV has 

shown to promote coexistence among species pairs (Hess et al., 2022), it is unknown to 

what extent the ITV of the surrounding community might influence the fitness of a focal 

species. I found that species’ average trait values of the surrounding community better 

captured the outcome of net interactions when analyzing both focal species combined—

thus, better capturing general effects—while ITV trait values of the focal species and 

surrounding community were stronger predictors for each species' individual success 

(Table 2). For example, the importance of trait distance from the surrounding community 

(limiting similarity and trait hierarchies) was only detected when accounting for ITV of 

both the focal species and surrounding community. This is likely because assemblages 

exhibited patterns of trait convergence toward optimum values across contrasting abiotic 

conditions, where communities shifted their CWM values and reduced FDis compared to 

when calculating with average trait values, which influenced the trait distance from the 

focal species. However, I also found that, for some traits, the focal species’ trait values 



 

126 
 

when considering ITV were important for net interaction outcome regardless of their 

distance from the rest of the co-occurring species. For instance, both focal species 

showed positive outcomes with increasing focal plant height, which is indicative of 

hierarchical competition for light, since plant height is a key indicator of light utilization 

strategy and competitive ability (Díaz et al., 2015; Kunstler et al., 2016). While all 

measured community traits had lower FDis when using ITV traits (indicating 

convergence toward optimum values), I found that only a few traits—height, leaf area, 

and SLA—were important in conferring fitness differences, which is consistent with 

other work showing the hierarchical importance of these traits (Carmona et al., 2019; 

Kraft et al., 2014). Our overall results highlight that, while there are general relationships 

between the effect traits (sensu Goldberg 1990) of a community considering species’ 

average trait differences, incorporating the context-dependent trait values of a focal 

species (response trait) and its surrounding community (effect traits) can give more 

accurate insight into the interaction mechanisms maintaining coexistence in multispecies 

assemblages. 

While I found generalizable effects of community trait composition on net interaction 

effects that extended to both of our focal species, our results were also likely driven to 

some extent by differences between focal species in their overall response to intraspecific 

and interspecific competition. Similar to other studies using dryland plant species (Mount 

et al., 2024), the species with more conservative traits, Phacelia, was a stronger 

competitor (taller, consistently produced more biomass, etc.), and exhibited stronger 

intraspecific competition. Thus, the stronger facilitative effects experienced by this 
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species in more diverse communities was likely due to alleviation of strong intraspecific 

competition. Our other, less competitive focal species, Eriophyllum, possessed more 

acquisitive traits that made it more sensitive to drought stress, and therefore, its response 

to the surrounding community was more contingent on abiotic conditions, with drought 

stress more strongly alleviated by intraspecific versus interspecific facilitation. Thus, 

consistent with other recent work, our study further suggests that biomass gains in 

mixture are dependent to some extent on species-specific density-dependence, with an 

inverse relationship between intra- and interspecific competition (Mahaut et al., 2020; 

Turnbull et al., 2013). While our monoculture replications were few, due to low seed 

germination in our study, species-specific density-dependence as a mechanism driving 

the outcome of multispecies interactions is an area worthy of further investigation, 

especially given that, while many species experience stronger self-limitation than 

limitation by competitors (Adler et al., 2018), intraspecific facilitation can occur, 

particularly in abiotically stressful habitats (Fajardo & McIntire, 2011; Sarneel et al., 

2022).  

A surprising result from observational and experimental approaches to understanding 

global change effects on plant communities has been that individual plant species 

experiencing novel abiotic conditions are frequently more affected by interactions with 

their neighbors than abiotic regime change (Alexander et al., 2015; Catford et al., 2020; 

Meineri et al., 2020). Our experiment provides additional support for the primary 

importance of neighborhood interactions, as I found that our focal species generally 

responded more to co-occurring species than drought when growing in communities 
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compared to when grown alone. While our results could indicate that there were minimal 

differences between drought treatments, I did find that species responded to drought with 

changes in their trait values when growing alone. Since ours is the first study that I am 

aware of to account for ITV among all individuals, our results suggest that the trait 

composition of communities is a stronger driver of individual fitness than changes in 

abiotic conditions, and lends further support to the idea that the processes underlying 

biodiversity maintenance may depend on species interactions at the community level 

(Allesina & Levine, 2011; Isbell et al., 2009; Levine et al., 2017). 

In conclusion, I found that the ITV of a focal species and the functional trait 

composition of its surrounding community largely determine the performance of a focal 

species while growing in the presence of diverse neighbors. While I found that both trait 

hierarchies and limiting similarity mediated the outcome of interactions, I also found that, 

when considering both focal species, the trait composition of the surrounding community 

and intraspecific trait variation of the focal species were more important. Therefore, there 

may be general properties of plant communities that mediate community-level 

interactions, while distance-based mechanisms are more species-specific. Furthermore, I 

found that average species’ trait values when considering the trait composition of the 

community were overall stronger drivers of interaction outcome, which suggests that, in 

many cases, using average species’ trait values may be sufficient for predicting 

competitive and facilitative interactions in a community. While more experimental work 

is needed to disentangle whether trait distance among interacting species versus the trait 

composition of the surrounding community is a more important driver of interactions in 
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multispecies assemblages, this study highlights the importance of community-level 

interactions for coexistence.  

 

Fi ures and  ab es 

 

Fi ure 3 1 Mesocosm experimental design and setup. (a) Communities were planted in a 

gradient of functional diversity (#1-10), which were replicated for each focal species 

(blue vs orange) and under two watering regimes. (b) Focal species were planted in the 

center of each pot with five neighboring species planted four inches from the focal 

species. (c) Pots arranged on greenhouse benches. 
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 ab e 3 1 Species used in the experiment and their average trait values across both 

watering regimes. Species abbreviations: ERIWAL=Eriophyllum wallacei (Asteraceae), 
PHADIS=Phacelia distans (Boraginaceae), CALMON=Calyptridium monandrum 

(Montiaceae), CRYMIC=Cryptantha micrantha (Boraginaceae), PEREMO=Perityle 

emoryi (Asteraceae), CHAFRE=Chaenactis fremontii (Asteraceae), 

MALGLA=Malacothrix glabrata (Asteraceae), PLAOVA=Plantago ovata 

(Plantaginaceae). Trait abbreviations: LDMC=leaf dry matter content, SLA=specific leaf 

area 

 pecies Ch orophy   

content 

  MC 

     –1  

      2 

k –1  

hei ht 

 c   

 eaf area 

   2  

ca  on 42.11 0.10 121.19 26.25 1.25 

chafre 23.36 0.18 171.08 75.00 6.47 

cry ic 6.04 0.23 408.48 31.60 0.66 

eriwa  32.73 0.16 492.34 22.06 0.89 

 a   a 11.57 0.15 131.16 91.50 5.80 

pere o 19.59 0.16 232.88 69.91 5.32 

phadis 22.86 0.19 385.18 80.71 5.84 

p ao a 18.15 0.18 71.84 24.00 0.90 
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Fi ure 3 2 Strongest trait predictors of log response ratio (LRR) for the global model 

using both focal species combined across drought (L, yellow) and ambient (H, blue) 

conditions. Functional dispersion (FDis) using average species’ trait values (A) and the 

height of focal species when accounting for plasticity (B) had positive effects on LRR, 

while the community-weighted mean (CWM) of SLA using species’ average traits had a 

negative effect (C). Functional dispersion (FDis) of LDMC using species’ average trait 

values positively influenced LRR under drought conditions and had a weak negative 

influence under ambient conditions. 
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Fi ure 3 3 Strongest variable predictors of interaction outcome for Phacelia (top row) 

and Eriophyllum (bottom row) across drought and ambient conditions. The strongest 

predictor of interaction outcome for the more drought-tolerant and competitive focal 

species (Phacelia) was community functional diversity using multivariate traits, possibly 

owing to the amelioration of strong intraspecific competition. The strongest predictors for 

the more drought-sensitive focal species (Eriophyllum) was SLA dissimilarity and ITV of 

leaf area—both of which were dependent on the abiotic treatment.  
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 ab e 3 2 Model-averaged standardized coefficients for the global model combining both 

focal species (overall) and for each focal species independently. For trait indices 

reflecting the distance from focal species to the community, either DIST or HIER is given 

to reflect absolute distance or hierarchical trait distance, respectively. Similarly, for all 

trait indices, either AVG or ITV is shown to indicate whether indices used average or 

context-dependent trait values. Abbreviations: FDIS=functional dispersion, 

CWM=community weighted mean, SLA=specific leaf area, LDMC=leaf dry matter 

content, LA=leaf area 
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Esti ate  tandard 

Error 

 dj 

 tandard 

Error 

 - a ue p-

 a ue 

o era   
     

Intercept -0.21 0.12 0.12 1.71 0.10 

F is VG 0.66 0.24 0.25 2.61 0.00 

foca _hei htI V 0.61 0.21 0.22 2.73 0.00 

CWM_    VG -0.62 0.28 0.28 2.12 0.03 

F is_  MC VG 0.47 0.20 0.32 2.19 0.02 

 hace ia 
     

Intercept -0.02 0.11 0.12 0.14 0.89 

F is VG 0.54 0.23 0.25 2.13 0.03 

hei ht I  -I V 0.47 0.22 0.24 1.94 0.05 

   IER-I V 0.49 0.26 0.27 1.78 0.08 

CWM   I V -0.47 0.27 0.29 1.65 0.10 

  MC I  -I V 0.36 0.29 0.31 1.15 0.25 

Eriophy  u  
     

Intercept -0.28 0.25 0.27 1.07 0.29 

CWM_   VG -0.61 0.39 0.43 1.42 0.16 

CWM_    VG -0.66 0.45 0.49 1.35 0.18 

foca _  I V 0.17 0.52 0.56 0.30 0.77 

foca _  I V * 

water 

-2.54 0.88 0.98 2.59 0.01 

    I  - VG 0.35 0.64 0.67 0.52 0.60 

    I  - VG * 

water 

-2.09 0.68 0.76 2.75 0.01 
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Fi ure 3  1 Response of focal species to interspecific versus intraspecific competition 

across both drought and ambient conditions. Phacelia (yellow) had a higher LRR in 

mixture than monoculture, while Eriophyllum (blue) had a higher LRR in monoculture 

than in mixture. Significance determined using paired t-tests. 
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Fi ure 3  2 Differences in response to interspecific competition (mixture) across drought 

treatments. Both Eriophyllum (red) and Phacelia (blue) showed no difference in 

interaction response across drought versus ambient conditions. Significance determined 

using paired t-tests. 
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 ab e 3  1 Differences in trait values when accounting for ITV for all individuals across 

drought conditions for community traits, focal species’ traits in mixture, and focal 

species’ traits grown alone. Values were compared using paired t-tests. Abbreviations: 

FDIS=functional dispersion, CWM=community weighted mean, SLA=specific leaf area, 

LDMC=leaf dry matter content, CC=chlorophyll content, LA=leaf area 
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 R I   F  -V  UE  -

V  UE 

 M IEN  

ME N 

 R UG   

ME N 

C MMUNI Y  
FDis 19 -1.39 0.18 0.94 0.78  
FDis_LA 19 -1.79 0.08 0.60 0.39  
FDis_SLA  19 0.94 0.36 0.04 0.06  
FDis_CC 19 -0.50 0.63 0.04 0.04  
FDis_LDMC 19 1.53 0.14 0.00 0.01  
FDis_height 19 -0.37 0.72 0.05 0.04  
CWM_LA 19 -2.79 0.01 7.11 4.77  
CWM_SLA 19 -1.65 0.11 181.90 153.50  
CWM_CC 19 -2.46 0.02 23.93 21.11  
CWM_LDMC 19 2.21 0.04 0.16 0.18  
CWM_height 19 -2.12 0.04 80.27 68.23 

F C     ECIE  IN MIX URE  
focal_LA 19 0.12 0.91 3.58 3.86  
focal_SLA 19 -0.28 0.78 267.70 267.70  
focal_CC 19 -0.09 0.93 26.96 26.80  
focal_LDMC 19 1.89 0.07 0.15 0.17  
focal_height 19 -1.41 0.17 61.85 54.60 

F C     ECIE     NE  
focal_LA 19 -0.67 0.17 3.90 3.65  
focal_SLA 19 -6.64 <0.00 271.60 243.10  
focal_CC 19 -7.76 <0.00 33.88 27.63  
focal_LDMC 19 9.07 <0.00 0.13 0.16  
focal_height 19 21.47 <0.00 67.81 107.97 
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 ab e 3  2 Differences in community trait indices when calculated using species’ average 

versus ITV traits for each individual. Values were compared using paired t-tests. 

Abbreviations: FDIS=functional dispersion, CWM=community weighted mean, 

SLA=specific leaf area, LDMC=leaf dry matter content, CC=chlorophyll content, 

LA=leaf area 

 

 R I   F  -V  UE  -V  UE  VG 

ME N 

I V 

ME N 

F I  39 3.34 0.00 0.62 0.86 

F I _ EIG   39 -6.39 <0.000 0.28 0.04 

F I _    39 -6.12 <0.000 0.24 0.05 

F I _  MC 39 -5.19 <0.000 0.21 0.00 

F I _CC 39 -5.19 <0.000 0.25 0.03 

F I _   39 3.23 0.00 0.29 0.49 

CWM_ EIG   39 0.75 0.46 72.27 74.25 

CWM_    39 -7.74 <0.000 309.40 167.71 

CWM_  MC 39 -0.21 0.84 0.17 0.17 

CWM_CC 39 0.76 0.45 22.00 22.52 

CWM_   39 1.62 0.11 5.11 5.94 

 

 

 

  



 

140 
 

References 

Adler, P. B., Fajardo, A., Kleinhesselink, A. R., & Kraft, N. J. B. (2013). Trait-based 

tests of coexistence mechanisms. Ecology Letters, 16(10), 1294–1306. 

https://doi.org/10.1111/ele.12157 

Adler, P. B., Smull, D., Beard, K. H., Choi, R. T., Furniss, T., Kulmatiski, A., Meiners, J. 

M., Tredennick, A. T., & Veblen, K. E. (2018). Competition and coexistence in 

plant communities: intraspecific competition is stronger than interspecific 

competition. Ecology Letters, 21(9), 1319–1329. https://doi.org/10.1111/ele.13098 

Albert, C. H., Grassein, F., Schurr, F. M., Vieilledent, G., & Violle, C. (2011). When and 

how should intraspecific variability be considered in trait-based plant ecology? 

Perspectives in Plant Ecology, Evolution and Systematics, 13(3), 217–225. 

https://doi.org/10.1016/j.ppees.2011.04.003 

Alexander, J. M., Diez, J. M., & Levine, J. M. (2015). Novel competitors shape species’ 

responses to climate change. Nature, 525. https://doi.org/10.1038/nature14952 

Allesina, S., & Levine, J. M. (2011). A competitive network theory of species diversity. 

Proceedings of the National Academy of Sciences of the United States of America, 

108(14), 5638–5642. https://doi.org/10.1073/pnas.1014428108 

Barry, K. E., Mommer, L., van Ruijven, J., Wirth, C., Wright, A. J., Bai, Y., Connolly, J., 

De Deyn, G. B., de Kroon, H., Isbell, F., Milcu, A., Roscher, C., Scherer-Lorenzen, 

M., Schmid, B., & Weigelt, A. (2019). The Future of Complementarity: 

Disentangling Causes from Consequences. Trends in Ecology and Evolution, 34(2), 

167–180. https://doi.org/10.1016/j.tree.2018.10.013 

Barton, K., & Barton, M. K. (2015). Package ‘mumin’. Version, 1(18), 439. 

Bennett, J. A., Riibak, K., Tamme, R., Lewis, R. J., & Pärtel, M. (2016). The reciprocal 

relationship between competition and intraspecific trait variation. Journal of 

Ecology, 104(5), 1410–1420. https://doi.org/10.1111/1365-2745.12614 

Borges, I. L., Forsyth, L. Z., Start, D., & Gilbert, B. (2019). Abiotic heterogeneity 

underlies trait-based competition and assembly. Journal of Ecology, 107(2), 747–

756. https://doi.org/10.1111/1365-2745.13082 

Burns, J., & Strauss, S. Y. (2012). Effects of competition on phylogenetic signal and 

phenotypic plasticity in plant functional traits. Ecology, 93(8), 126–137 

Byun, C., de Blois, S., & Brisson, J. (2013). Plant functional group identity and diversity 

determine biotic resistance to invasion by an exotic grass. Journal of Ecology, 

101(1), 128–139. https://doi.org/10.1111/1365-2745.12016 

Carmona, C. P., de Bello, F., Azcárate, F. M., Mason, N. W. H., & Peco, B. (2019). Trait 

hierarchies and intraspecific variability drive competitive interactions in 



 

141 
 

Mediterranean annual plants. Journal of Ecology, 107(5), 2078–2089. 

https://doi.org/10.1111/1365-2745.13248 

Carmona, C. P., Pavanetto, N., & Puglielli, G. (2024). funspace: An R package to build, 

analyse and plot functional trait spaces. Diversity and Distributions, 30(4), 1–14. 

https://doi.org/10.1111/ddi.13820 

Catford, J. A., Dwyer, J. M., Palma, E., Cowles, J. M., & Tilman, D. (2020). Community 

diversity outweighs effect of warming on plant colonization. Global Change 

Biology, 26(5), 3079-3090. 

Chesson, P. (2000). Mechanisms of maintenance of species diversity. Annual Review of 

Ecology and Systematics, 31, 343–366. 

https://doi.org/10.1146/annurev.ecolsys.31.1.343 

Díaz, S., Kattge, J., Cornelissen, J. H., Wright, I. J., Lavorel, S., Dray, S., ... & Gorné, L. 

D. (2016). The global spectrum of plant form and function. Nature, 529(7585), 167-

171. 

Fajardo, A., & McIntire, E. J. B. (2011). Under strong niche overlap conspecifics do not 

compete but help each other to survive: Facilitation at the intraspecific level. 

Journal of Ecology, 99(2), 642–650. https://doi.org/10.1111/j.1365-

2745.2010.01771.x 

Galland, T., Adeux, G., Dvořáková, H., E-Vojtkó, A., Orbán, I., Lussu, M., Puy, J., 

Blažek, P., Lanta, V., Lepš, J., de Bello, F., Pérez Carmona, C., Valencia, E., & 

Götzenberger, L. (2019). Colonization resistance and establishment success along 

gradients of functional and phylogenetic diversity in experimental plant 

communities. Journal of Ecology, 107(5), 2090–2104. https://doi.org/10.1111/1365-

2745.13246 

Goldberg, D. E., Martina, J. P., Elgersma, K. J., & Currie, W. S. (2017). Plant size and 

competitive dynamics along nutrient gradients. American Naturalist, 190(2), 229–

243. https://doi.org/10.1086/692438 

Gubsch, M., Buchmann, N., Schmid, B., Schulze, E. D., Lipowsky, A., & Roscher, C. 

(2011). Differential effects of plant diversity on functional trait variation of grass 

species. Annals of Botany, 107(1), 157–169. https://doi.org/10.1093/aob/mcq220 

Herben, T., & Goldberg, D. E. (2014). Community assembly by limiting similarity vs. 

competitive hierarchies: Testing the consequences of dispersion of individual traits. 

Journal of Ecology, 102(1), 156–166. https://doi.org/10.1111/1365-2745.12181 

Hess, C., Levine, J. M., Turcotte, M. M., & Hart, S. P. (2022). Phenotypic plasticity 

promotes species coexistence. Nature Ecology & Evolution, 6(9), 1256-1261. 

 

 



 

142 
 

HilleRisLambers, J., Adler, P. B., Harpole, W. S., Levine, J. M., & Mayfield, M. M. 

(2012). Rethinking community assembly through the lens of coexistence theory. 

Annual review of ecology, evolution, and systematics, 43(1), 227-248. 

Holden, E. M., & Cahill, J. F. (2024). Plant trait dissimilarity increases competitive 

interactions among co-occurring plants. Functional Ecology, 38(7), 1464–1474. 

https://doi.org/10.1111/1365-2435.14561 

Isbell, F. I., Polley, H. W., & Wilsey, B. J. (2009). Species interaction mechanisms 

maintain grassland plant species diversity. Ecology, 90(7), 1821–1830. 

https://doi.org/10.1890/08-0514.1 

Kandlikar, G. S., Kleinhesselink, A. R., & Kraft, N. J. B. (2022). Functional traits predict 

species responses to environmental variation in a California grassland annual plant 

community. Journal of Ecology, 110, 833–844. https://doi.org/10.1111/1365-

2745.13845 

Kraft, N. J. B., Crutsinger, G. M., Forrestel, E. J., & Emery, N. C. (2014). Functional trait 

differences and the outcome of community assembly: An experimental test with 

vernal pool annual plants. Oikos, 123(11), 1391–1399. 

https://doi.org/10.1111/oik.01311 

Kraft, N. J. B., Godoy, O., & Levine, J. M. (2015). Plant functional traits and the 

multidimensional nature of species coexistence. Proceedings of the National 

Academy of Sciences, 112(3), 797–802. https://doi.org/10.1073/pnas.1413650112 

Kunstler, G., Falster, D., Coomes, D. A., Hui, F., Kooyman, R. M., Laughlin, D. C., 

Poorter, L., Vanderwel, M., Vieilledent, G., Wright, S. J., Aiba, M., Baraloto, C., 

Caspersen, J., Cornelissen, J. H. C., Gourlet-Fleury, S., Hanewinkel, M., Herault, B., 

Kattge, J., Kurokawa, H., … Westoby, M. (2016). Plant functional traits have 

globally consistent effects on competition. Nature, 529(7585), 204–207. 

https://doi.org/10.1038/nature16476 

Kunstler, G., Lavergne, S., Courbaud, B., Thuiller, W., Vieilledent, G., Zimmermann, N. 

E., Kattge, J., & Coomes, D. A. (2012). Competitive interactions between forest 

trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity: 

Implications for forest community assembly. Ecology Letters, 15(8), 831–840. 

https://doi.org/10.1111/j.1461-0248.2012.01803.x 

Kuznetsova, A., Brockhoff, P. B., & Christensen, R. H. B. (2017). lmerTest Package: 

Tests in Linear Mixed Effects Models. Journal of Statistical Software, 82(13 SE-

Articles), 1–26. https://doi.org/10.18637/jss.v082.i13 

Laliberté, E., & Legendre, P. (2010). A distance‐based framework for measuring 

functional diversity from multiple traits. Ecology, 91(1), 299-305. 

 



 

143 
 

Laughlin, D. C., & Messier, J. (2015). Fitness of multidimensional phenotypes in 

dynamic adaptive landscapes. Trends in Ecology and Evolution, 30(8), 487–496. 

https://doi.org/10.1016/j.tree.2015.06.003 

Le Bagousse-Pinguet, Y., Börger, L., Quero, J. L., García-Gómez, M., Soriano, S., 

Maestre, F. T., & Gross, N. (2015). Traits of neighbouring plants and space 

limitation determine intraspecific trait variability in semi-arid shrublands. Journal of 

Ecology, 103(6), 1647–1657. https://doi.org/10.1111/1365-2745.12480 

Levine, J. M., Adler, P. B., & Yelenik, S. G. (2004). A meta-analysis of biotic resistance 

to exotic plant invasions. Ecology Letters, 7(10), 975–989. 

https://doi.org/10.1111/j.1461-0248.2004.00657.x 

Levine, J. M., Bascompte, J., Adler, P. B., & Allesina, S. (2017). Beyond pairwise 

mechanisms of species coexistence in complex communities. Nature, 546(7656), 

56–64. https://doi.org/10.1038/nature22898 

Levine, J. M., & HilleRisLambers, J. (2009). The importance of niches for the 

maintenance of species diversity. Nature, 461(7261), 254–257. 

https://doi.org/10.1038/nature08251 

Li, S. peng, Jia, P., Fan, S. ya, Wu, Y., Liu, X., Meng, Y., Li, Y., Shu, W. sheng, Li, J. 

tian, & Jiang, L. (2022). Functional traits explain the consistent resistance of 

biodiversity to plant invasion under nitrogen enrichment. Ecology Letters, 25(4), 

778–789. https://doi.org/10.1111/ele.13951 

Lipowsky, A., Roscher, C., Schumacher, J., Michalski, S. G., Gubsch, M., Buchmann, 

N., Schulze, E. D., & Schmid, B. (2015). Plasticity of functional traits of forb 

species in response to biodiversity. Perspectives in Plant Ecology, Evolution and 

Systematics, 17(1), 66–77. https://doi.org/10.1016/j.ppees.2014.11.003 

Loreau, M., & Hector, A. (2001). Partitioning selection and complementarity in 

biodiversity experiments. Nature, 412(6842), 72-76. 

MacArthur, R., & Levins, R. (1967). The Limiting Similarity, Convergence, and 

Divergence of Coexisting Species. The American Naturalist, 101(921), 377–385. 

Mahaut, L., Fort, F., Violle, C., & Freschet, G. T. (2020). Multiple facets of diversity 

effects on plant productivity: Species richness, functional diversity, species identity 

and intraspecific competition. Functional Ecology, 34(1), 287–298. 

https://doi.org/10.1111/1365-2435.13473 

Mayfield, M. M., & Levine, J. M. (2010). IDEA AND Opposing effects of competitive 

exclusion on the phylogenetic structure of communities. Ecology Letters, 13, 1085–

1093. https://doi.org/10.1111/j.1461-0248.2010.01509.x 

Meineri, E., Klanderud, K., Guittar, J., Goldberg, D. E., & Vandvik, V. (2020). 

Functional traits, not productivity, predict alpine plant community openness to 



 

144 
 

seedling recruitment under climatic warming. Oikos, 129(1), 13–23. 

https://doi.org/10.1111/oik.06243 

Mount, H. E., Smith, M. D., Knapp, A. K., Griffin-Nolan, R. J., Collins, S. L., Atkins, D. 

H., Stears, A. E., & Laughlin, D. C. (2024). Drought-tolerant grassland species are 

generally more resistant to competition. Journal of Ecology, 112(2), 416–426. 

https://doi.org/10.1111/1365-2745.14243 

Pantastico-Caldas, M., & Venable, D. L. (1993). Competition in two species of desert 

annuals along a topographic gradient. Ecology, 74(8), 2192-2203. 

Perez-Harguindeguy, N., Diaz, S., Garnier, E., Lavorel, S., Poorter, H., Jaureguiberry, P., 

... & Cornelissen, J. H. C. (2016). Corrigendum to: New handbook for standardised 

measurement of plant functional traits worldwide. Australian Journal of botany, 

64(8), 715-716. 

Perez-Ramos, I. M., Matias, L., Aparicio, L. G., & Godoy, O. (2019). Functional traits 

and phenotypic plasticity modulate species coexistence across contrasting 

environments. Nature Communications, 10(2555), 539–619. 

https://doi.org/10.1101/539619 

Poorter, H., Poorter, H., Niinemets, Ü., Poorter, L., Wright, I. J., & Villar, R. (2009). 

Causes and consequences of variation in leaf mass per area ( LMA ): a meta-

analysis. New Phytologist, 182(3), 565–588. 

Reich, P. B. (2014). The world-wide ‘ fast – slow ’ plant economics spectrum : a traits 

manifesto. Journal of Ecology, 102(2), 275–301. https://doi.org/10.1111/1365-

2745.12211 

Roscher, C., Gubsch, M., Lipowsky, A., Schumacher, J., Weigelt, A., Buchmann, N., ... 

& Schmid, B. (2018). Trait means, trait plasticity and trait differences to other 

species jointly explain species performances in grasslands of varying diversity. 

Oikos, 127(6), 865-865. 

Roscher, C., Gubsch, M., Lipowsky, A., Schumacher, J., Weigelt, A., Buchmann, N., 

Schulze, E. D., & Schmid, B. (2018). Trait means, trait plasticity and trait 

differences to other species jointly explain species performances in grasslands of 

varying diversity. Oikos, 127(6), 865. https://doi.org/10.1111/oik.04815 

Sarneel, J. M., Hefting, M. M., Visser, E. J., Díaz‐Sierra, R., Voesenek, L. A., & 

Kowalchuk, G. A. (2022). Species traits interact with stress level to determine 

intraspecific facilitation and competition. Journal of Vegetation Science, 33(5), 

e13145. 

Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. (2012). NIH Image to ImageJ: 25 

years of Image Analysis. Nat Methods, 9(7), 671–675. https://doi.org/10.1007/978-

1-84882-087-6_9 



 

145 
 

Siefert, A., Violle, C., Chalmandrier, L., Albert, C. H., Taudiere, A., Fajardo, A., 

Aarssen, L. W., Baraloto, C., Carlucci, M. B., Cianciaruso, M. V., de L. Dantas, V., 

de Bello, F., Duarte, L. D. S., Fonseca, C. R., Freschet, G. T., Gaucherand, S., 

Gross, N., Hikosaka, K., Jackson, B., … Wardle, D. A. (2015). A global meta-

analysis of the relative extent of intraspecific trait variation in plant communities. 

Ecology Letters, 18(12), 1406–1419. https://doi.org/10.1111/ele.12508 

Turcotte, M. M., & Levine, J. M. (2016). Phenotypic Plasticity and Species Coexistence. 

Trends in Ecology & Evolution, 31(10), 803–813. 

https://doi.org/10.1016/j.tree.2016.07.013 

Turnbull, L. A., Levine, J. M., Loreau, M., & Hector, A. (2013). Coexistence, niches and 

biodiversity effects on ecosystem functioning. Ecology letters, 16, 116-127. 

Van Dyke, M. N., Levine, J. M., & Kraft, N. J. (2022). Small rainfall changes drive 

substantial changes in plant coexistence. Nature, 611(7936), 507-511. 

Waterton, J., Mazer, S. J., & Cleland, E. E. (2023). When the neighborhood matters: 

contextual selection on seedling traits in native and non-native California grasses. 

Evolution, 77(9), 2039–2055. https://doi.org/10.1093/evolut/qpad119 

Weiher, E., Clarke, G. D. P., Keddy, P. A., Weiher, E., Clarke, G. D. P., Keddy, P. A., & 

Community, P. A. (1998). Community Assembly Rules , Morphological Dispersion 

, and the Coexistence of Plant Species. Oikos, 81(2), 309–322. 

Westoby, M., Falster, D. S., Moles, A. T., Vesk, P. A., & Wright, I. J. (2002). Plant 

ecological strategies: Some leading dimensions of variation between species. Annual 

Review of Ecology and Systematics, 33, 125–159. 

https://doi.org/10.1146/annurev.ecolsys.33.010802.150452 

Wright, A. J., Barry, K. E., Lortie, C. J., & Callaway, R. M. (2021). Biodiversity and 

ecosystem functioning: Have our experiments and indices been underestimating the 

role of facilitation?. Journal of Ecology, 109(5), 1962-1968. 

Wright, A. J., Wardle, D. A., Callaway, R., & Gaxiola, A. (2017). The Overlooked Role 

of Facilitation in Biodiversity Experiments. Trends in Ecology and Evolution, 32(5), 

383–390. https://doi.org/10.1016/j.tree.2017.02.011 

 

 

 

 

 




