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Abstract
Logical Interrogations of Theory and Evidence
by
Reid Dale
Doctor of Philosophy in Logic and the Methodology of Science
University of California, Berkeley
Professor Thomas Scanlon, Co-chair

Professor Wesley Holliday, Co-chair

In the 1941 edition of Introduction to Logic and to the Methodology of the Deductive
Sciences [45] Alfred Tarski laments that

[T]he methodology of empirical sciences constitutes an important domain
of scientific research. The knowledge of logic is of course valuable in the
study of this methodology, as it is in the case of any other discipline. [t
must be admitted, however, that up to the present, logical concepts and
methods have not found any specific or fertile applications in this domain.
[45 p. xii] [emphasis mine]

This dissertation aims to partially realize Tarski’s project of applying mathematical
logic to questions beyond the scope of pure mathematics through an investigation of
the relationship between a theory and the evidence that (partially) confirms or refutes
it. It is constituted by three projects: On Falsification, On Rational Jurisprudence,
and On the Sufficiency of First-Order Logic.

The first major chapter, On Fulsification, is concerned with the question of when a
theory is refutable with certainty on the basis of sequence of primitive observations.
Beginning with the simple definition of falsifiability as the ability to be refuted by
some finite collection of observations, I assess the literature on falsification and its
descendants along the lines of its static and dynamic components. The static case is



broadly concerned with the question of how much of a theory can be subjected to fal-
sifying experiments. In much of the literature, this question is tied up with whether
the theory in question is axiomatizable by a collection of universal first-order sen-
tences. I argue that this is too narrow a conception of falsification by demonstrating
that a natural class of theories of distinct model-theoretic interest—so-called NIP
theories—are themselves highly falsifiable. The dynamic case, by contrast, is con-
cerned with the question of how falsifiable a single proposition is in the short and
long run. Formal Learning theorists such as Schulte and Juhl [35] have argued that
long-run falsifiability is characterized by the topological notion of nowhere density
in a suitable topological space. I argue that the short-run falsifiability of a hypoth-
esis is in turn characterized by the VC finiteness of the hypothesis. Crucially, VC
finite hypotheses correspond precisely to definable sets in NIP structures, pointing
to a robust interplay between the static and dynamic cases of falsification. Finally, I
end the chapter by giving rigorous foundations for Mayo’s [29] conception of severe
testing by way of a combinatorial, non-probabilistic notion of surprise. VC finite hy-
potheses again appear as the hypotheses with guaranteed short-run surprise bounds.
Therefore, NIP theories and VC finite hypotheses capture the notion of short-run
falsifiability.

The next chapter, On Rational Jurisprudence, is concerned with the epistemic ques-
tion of confirming a hypothesis—the guilt of a defendant—by way of testimony heard
by a juror over the course of an American-style criminal trial. In it, I attempt to
settle a dispute between two strands of the legal community over the issue of whether
the methods of Bayesian rationality are incompatible with jurisprudential principles
such as the Presumption of Innocence. To this end, I prove a representation theorem
that shows that so long as a juror would not convict the defendant having heard
no testimony (the Presumption of Innocence) but would convict upon hearing some
collection of testimony (Willingness to Convict), then this juror’s disposition to con-
vict the defendant is representable as the disposition of a Bayesian threshold juror
in Posner’s sense. This result indicates that relevant notion of a Bayesian threshold
juror is insufficiently specified to render this debate a substantive one.

Finally, On the Sufficiency of First-Order Logic is concerned with the limits of sound
inference. The starting point of this chapter is a reflection on a principle that Bar-
wise [3] terms the First-Order Thesis, namely that “logic is first-order logic, so that
anything that cannot be defined in first-order logic is outside the domain of logic.”
Barwise was chiefly concerned with the relative inexpressiveness of First-Order Logic.
Despite this, I argue that First-Order Logic—while not the most expressive abstract
logic—is sufficient to represent and carry out any inference a finitistic agent might



carry out. The main mathematical result here is the ¥; completeness of the con-
sequence relation Frp of First-Order logic as a Turing functional. A consequence
of 31 completeness is that any notion of logical consequence which is machine ver-
ifiable given an oracle naming the theory I' is in fact able to be internalized into a
First-Order proof system. While the translation function will generally not preserve
semantics on the nose—after all, First-Order Logic is not particularly expressive—the
inferential structure of such a system is captured by a first-order system by way of a
computable translation function. I then consider a recent argument of Warren’s [50]
that agents like us in nearby possible worlds can implement the w rule of inference,
a sound but non-recursive pattern of inference. While I do not refute his premise
directly, I do argue that there is a clear finitistic interpretation Warren'’s purported
example w rule, saving the plausibility of the position that agents like ourselves are
only capable of performing finitary inferences. I conclude the chapter by reflecting
on Hilbert’s Thesis, a position constituted by two related theses:

1. Hilbert’s Expressibility Thesis (HET): All mathematical (extra-logical) as-
sumptions may be expressed in first-order logic, and
2. Hilbert’s Provability Thesis (HPT): The informal notion of provable is made

precise by the formal notion of provable in first-order logic.

Kripke [26] has argued that
(HET) + (HPT) = Church’s Thesis

on the basis of Godel’s Completeness Theorem. The results of this chapter indicate
a partial converse. The ¥; completeness of Fro shows that

Church’s Thesis 4+ In-Principle Machine Verifiability of Proofs = (HPT).
First-Order Logic is neither the only nor most expressive logic with »; complete en-

tailment relation, but the above argument shows that First-Order Logic is sufficiently
expressive to simulate any machine-verifiable inferential system.
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Chapter 1

Introduction

In the 1941 edition of Introduction to Logic and to the Methodology of the Deductive
Sciences |45] Alfred Tarski wrote that

[T]he methodology of empirical sciences constitutes an important domain
of scientific research. The knowledge of logic is of course valuable in the
study of this methodology, as it is in the case of any other discipline. [t
must be admitted, however, that up to the present, logical concepts and
methods have not found any specific or fertile applications in this domain.
[45, p. xii] [emphasis mine]

Nearly eighteen years later, in the preface to the 1959 conference proceedings The
Aziomatic Method [19], Henkin, Suppes, and Tarski lamented that logicians had yet
to conclusively demonstrate the utility of mathematical logic in the methodology of
the physical sciences, writing that

it is possible to maintain that the status of axiomatic investigations in
physics is not yet past the preliminary stage of philosophical discussion
expressing doubt as to its purpose and usefulness. [19, p. VIII]

Tarski and Henkin—two of the founding members of the Group in Logic and the
Methodology of Science at UC Berkeley—recognized the ripe potential that logic
had for informing methodology beyond the realm of mathematics.

What were the reasons Tarski and others felt that mathematical logic should play
a more active role in empirical sciences? In Tarski’s 1944 classic paper, The Semantic
Conception of Truth, he explains that “the study of scientific language constitutes
an essential part of the methodological discussion of a science” and that “semantics
may have some bearing on any science whatsoever” [44, p. 690]. While Tarski
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does not claim to give a full account of the applications logic to the methodology
of empirical sciences, he does suggest that logical methods can yield constraints on
the acceptability of a scientific theory. For example, he defends a “postulate which
can be reasonably imposed on acceptable empirical theories and which involves the
notion of truth” that

as soon as we succeed in showing that an empirical theory contains (or
implies) false sentences, it cannot be any longer considered acceptable.
[44, p. 691]

For Tarski, a proof of logical inconsistency or a proof that the scientific theory con-
tradicts empirical observation was sufficient to conclude the inadequacy of a scientific
theory. In other words, a necessary condition for the adequacy of an empirical science
is that it is not refuted with certainty by either empirical evidence—observations—
or the logical evidence in the form of logical inconsistency. Already in 1944 Tarski
recognized the logical link between theory and evidence.

This dissertation continues in this Tarskian tradition and is expressly aimed at
demonstrating the utility of logic—drawing primarily from the methods of model
theory and recursion theory—in studying the relationship between theories and the
evidence that (partially) confirms or refutes them.

The three projects contained in this dissertation investigate both facets of ev-
idence in the context of scientific, legal, and general inferential systems. Chapter
2, On Fulsification, is concerned with questions of how amenable a scientific theory
is to refutation on the basis of observable data. Chapter 3, On Rational Jurispru-
dence, is concerned with a confirmation problem, namely the guilt of a defendant in
an American criminal trial on the basis of the indirect evidence afforded by witness
testimony. Finally, Chapter 4, On the Sufficiency of First-Order Logic considers the
ability of First-Order Logic to simulate any machine-verifiable system of inference,
shedding light on the limits of the inferential faculties of finitistic agents.

My goal across all of these projects is to demonstrate how, rather than being an
insular and esoteric field, contemporary mathematical logic can yield insights into
the modes of evidential reasoning.

1.1 On Falsification

In On Falsification, I investigate the landscape of refinements of a very modest notion
of falsifiability:
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Definition 1.1. Let K be a class of £ structures. We denote the universal theory of
K as
V1(K) = {¢| ¢ is a V; first-order L-sentence and K F ¢}.

We say that K is falsifiable provided that the class of models of ¥;(K) is nontrivial,
ie.

Mod(V; (K)) # Str(L). 0

According to this definition, a class of £ structures K semantically entailing a
single nontrivial universal is sufficient to conclude its falsifiability; after all, such
a universal Vzo(x) € Vi(K) \ V;(2) specifies a Boolean configuration of atomic
sentences, i.e. observations, incompatible with the class K. In other words, if M E
Jr—p(z), then M ¢ K. [[

Various strengthenings of this notion of falsifiability have been defined and stud-
ied, and can by and large be split into two classes:

1. The Static Case, wherein we ask “just how falsifiable is the class K?7,” and

2. The Dynamic Case, wherein we ask “how much observation is required to
falsify a hypothesis, and how quickly can we expect to falsify it?”

The static models of falsifiability typically concern themselves with questions of
how close a theory is to being universally axiomatizable; after all, the more universal
sentences a theory implies, in principle the more falsfiable the theory becomes.

Simon and Groen [38], in their work on Ramsification and the Second-Order defin-
ability of theories, isolate a notion on pseudoelementary classes K they call FITness
which they claim isolates the ideal scientific theories: On their account, a pseudoele-
mentary class K is FIT if and only if it is an ideal scientific theory. They show that
for pseudoelementary K, FITness implies universal axiomatizability.ﬂ Generalizing
their definition to arbitrary classes of L-structures K closed under isomorphism, I
show that for finite languages K being FIT entails that K is elementary and, in fact,
universally axiomatizable. This result substantially generalizes their result over finite
languages.

I then turn my attention to an argument given by Chambers et al. [7] that ar-
gues that being universally axiomatizable is not sufficient grounds to call a theory
falsifiable. Instead, they identify the falsifiable sentences with a class of universal sen-
tences they call UNCAF (a universal negation of a conjunction of atomic formulas).

LOf course, one may define a notion of falsifiability relative to a class K’ by replacing the set of
first-order universal validities with the set V1 (K') in the definition above.
2The proof presented in their paper is incorrect. However, this error is fixed in this disseration.
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In turn, I argue that their argument implicitly assumes that the underlying predi-
cates P € L exhibit mere ¥; behavior, and thus that their argument reaches too far
in its conclusions.

As a final foray into the static case of falsification, I consider how falsification
intersects with the dividing lines of classification theory. It is not too difficult to show
that under very mild restrictions on the language £, NIP theories entail a great deal
of nontrivial V; sentences and are highly falsifiable. Of note, in NIP theories each
formula ¢ is equipped with a notion of dimension known as the VC-dimension of a
class, which in a sense measures the effective falsifiability of membership in the class
of hypotheses it defines.

On the other hand, recent work of Kruckman and Ramsey [27] and, independently,
Jerdabek [21], yield examples of NSOP; and simple theories which are unfalsifiable.
While there are many NSOP; theories which are falsifiable, in a sense NIP is in-
dividuated among the dividing lines in model theory as a class of highly-falsifiable
theories.

Moving on to the dynamic case of falsification, we turn to the account of fal-
sification given by Formal Learning Theorists Juhl and Schulte [35]. For them, a
hypothesis H is identified with a set of possible worlds. They consider the case where
H C 2. For them, such a hypothesis is always falsifiable provided that regardless
of the results of some finite collection of observations, the hypothesis still has the
potential to be falsified by some further collection of observational data. This, they
show, is equivalent to the topological notion of the nowhere density of H inside 2¢
equipped with the product topology. This account gives a good account of long-run
falsifiability, but fails to give a satisfactory account of short-run falsification as there
are no bounds on how long it might take an agent to witness a crucial experiment.
I define a sample along a set X as follows:

Definition 1.2. A sample of X is an injective function f : w — X. A sample f is
full provided f is bijective. O

Now, relative to a sample f we define a notion of the surprise of a hypothesis
along the sample as follows:

Definition 1.3. Let X be aset, f : w — X asample of X, and H C 2% a hypothesis.
For Y C X let Hly = {hly |h € H}.
The surprise of H is the function

LA
S(H, fin) =1~ olf ()] 0



CHAPTER 1. INTRODUCTION )

The surprise of H along the enumeration f is the relative proportion of the states
of the world incompatible with H. If H is highly surprising, then it is compatible
with only a small number of observations along the sample.

Very closely related to the NIP theories discussed in the static case of falsification,
the VC finite hypothesis classes are characterized by the ability to obtain uniform
bounds on surprise independent of sample.

Finally, we turn our attention to the work of Mayo [29][30], who advocates for a
strengthening of Null Hypothesis Statistical Testing as the foundation of statistical
testing called severe testing. Mayo and other error statisticians ask the question

When do data x provide good evidence for / a good test of hypothesis
H?

The error statistician will invoke some form of a Severity Principle to answer
this question:

(Weak Severity Principle) Data = does not provide good evidence for
H if x is the result of a test procedure T with very low probability of
uncovering the falsity of H [31, p. 21].

A converse is given by:

(Full Severity Principle) Data x provides good evidence for H to the
extent that test 7" has been severely passed by H [31, p. 21].

However, the definition of severe testing via probabilistic notions is elusive. To
round out the discussion of falsification, I show that the notion of surprise I defined
in the context of always falsifiability is well-suited to give an account of a well-defined
combinatorial analogue of severe testing I term severe surprise.

Definition 1.4. Let f : w — X be a sample, H C 2% a hypothesis, H¢ = 2% \ H,
n € w, and € > 0. We say that (H, f,n) is severely surprising at level € provided the

observed data x € H[ s,
SH,f,n)>1—c¢

and

S(H, f,n) > S(H, f,n). O

Crucially, surprise is at its core a non-probabilistic notion. Key to this is the
observation that surprise is subadditive:
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Proposition 1.1. For all H, f,n,
S(H, f,n) +S(H fin) <1 ¢
and
Proposition 1.2. Let H C 2“ be dense and codense. Then for all f and n,
S(H, f,n) = S(H, f,n) = 0. ¢

Under this definition of severe surprise, one can show that VC finite classes are
in fact severely surprising if true, uniformly in the size of the sample.

The core message of this chapter is that VC finiteness is in some sense the core
concept in falsification for finitistic agents, being robust under arbitrary samples and
uniquely endowed with felicitous finite-sample bounds.

1.2 On Rational Jurisprudence

In the next chapter, I turn my attention to a dispute within the legal community
regarding the role of probability—in particular, Bayesian rationality—within the
criminal justice system. Tribe [46] famously argued against so-called “trial by math-
ematics,” claiming that the proliferation of statistical methods in the testimony of
expert witnesses ran afoul of the Presumption of Innocence. This sentiment was
echoed by the Supreme Court of Connecticut when, in State v. Skipper [42], they
ruled that Bayesian testimony was inadmissible in course on account of perceived
conflicts with the Presumption of Innocence.

Running counter to this trend, Judge Richard Posner argued that an ideal finder
of fact would themselves be a Bayesian, and found no conflict between Bayesian
principles and the Presumption of Innocence. For Posner, so long as a juror was
Bayes rational and assigned prior probability of guilt P(Eg) = %, the juror was fit
to serve as a juror.

To resolve this dispute regarding the probabilistic interpretation of the Presump-
tion of Innocence, I introduce a model of a juror’s disposition to convict on the basis
of witnessing some collection T of testimony as a function f with range {C, A} such
that

fr)=c

if the juror would convict upon hearing all and only the testimony contained in T
and would acquit (i.e. f(T) = A) otherwise. Under two very mild assumptions,
namely that
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1. f(@) = A (Presumption of Innocence), and
2. there exists a transcript 7" such that f(7") = C. (Willingness to Convict),

then there is a Bayesian juror that rationalizes this disposition.
This result cuts at the heart of both competing positions we discussed at the
outset, showing that

e nothing is gained by mandating that a juror be representable by a Bayesian
threshold juror: there is always a prior accommodating their disposition, and

e nothing is lost by mandating that a juror be representable by a Bayesian thresh-
old juror: given any disposition, it is indistinguishable from the disposition of
a Bayesian threshold juror.

This result indicates that relevant notion of a Bayesian threshold juror is insuffi-
ciently specified to render this debate a substantive one.

1.3 On The Sufficiency of First-Order Logic

In the final chapter of the dissertation I address a question that has puzzled me since
first learned about the metatheory of First-Order Logic: is there good epistemic
justification for restricting our attention to First-Order Logic? I was certainly not
the first person to ask that; a version of this phenomenon was described by Barwise
as the acceptance of what he calls the First-Order Thesis, which asserts that

logic is first-order logic, so that anything that cannot be defined in first-
order logic is outside the domain of logic. [4, pp. 5-6]

Barwise was chiefly concerned with the relative inexpressiveness of First-Order
Logic. Despite this, I argue that First-Order Logic—while not the most expressive
abstract logic—is sufficient to represent and carry out any inference a finitistic agent
might carry out. The main mathematical result here is the ¥; completeness of the
consequence relation Fpo of First-Order logic as a Turing functional. A consequence
of 31 completeness is that any notion of logical consequence which is machine ver-
ifiable given an oracle naming the theory I' is in fact able to be internalized into a
First-Order proof system. While the translation function will generally not preserve
semantics on the nose—after all, First-Order Logic is not particularly expressive—the
inferential structure of such a system is able to be witnessed as a first-order system by
way of a computable translation. I then consider a recent argument of Warren’s that
it is a strong metaphysical possibility that agents like us in nearby possible worlds
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can implement the w rule of inference, a sound but highly non-recursive pattern of
inference. While I don’t refute his premise directly, I do argue that there is a clear
finitistic interpretation of the example of the w rule that Warren has in mind, saving
the plausibility of a position that agents like ourselves only perform finitary infer-
ences. I close out the chapter by reflecting on Hilbert’s Thesis, a position constituted
by two related theses:

1. Hilbert’s Expressibility Thesis (HET): All mathematical (extra-logical) as-
sumptions may be expressed in first-order logic, and

2. Hilbert’s Provability Thesis (HPT): The informal notion of provable is made
precise by the formal notion of provable in first-order logic.

Kripke [26] has argued that
(HET) + (HPT) = Church’s Thesis

on the basis of Godel’s Completeness Theorem. The results of this chapter indicate
a partial converse. The ¥; completeness of Fro shows that

Church’s Thesis 4+ In-Principle Machine Verifiability of Proofs = (HPT).

First-Order Logic is neither the only nor most expressive logic with ; com-
plete entailment relation, but the above argument shows that First-Order Logic is
sufficiently expressive to simulate any machine-verifiable inferential system.



Chapter 2

On Falsification

2.1 Introduction

Popper’s [32] solution to the demarcation problem says that the distinguishing fea-
ture of a scientific theory—construed as an empirical hypothesis—is its falsifiability.
Various accounts of falsification have emerged over the years; in this chapter, I aim
to provide a model-theoretic account of falsification that will aid us in understanding
both long-run and short-run properties of various falsificationist strategies.

Broadly speaking, falsification centers on the following question: given a class K
of possible worlds, is there some finite collection of observations about our world W
that would allow us to infer W ¢ K7 If the answer is “yes,” the class K is said to be
falsifiable.

Throughout, we suppose that L is a signatureE] and K C Str(£) a class of L-
structures. Epistemically, £ plays the role of the collection of observable relations,
functions, and constants that relate objects in the world. We suppose that the world
W is itself an L-structure.

An observable formula p(z1,. .., z,) corresponds to a finite Boolean combination
of atomic L-formulas. We say that o(z1,...,2,) is K-forbidden just in case no
W € K realizes ¢. Model theoretically, this is the same as saying

KE =3z, ...20)0(x1, ..., x,).
Of course, this is equivalent to
KE (Voq,...xn)—0(21, ... 20),

motivating the following definition:

'Not necessarily finite or relational.
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Definition 2.1. Let K be a class of L-structures. We denote the universal theory of
K as
V1(K) = {¢| ¢ is a V; first-order L-sentence and K F ¢}.

We say that K is falsifiable provided that the class of models of ¥;(K) is nontrivial,
ie.,

Mod(V; (K)) # Str(L).

Let K C K’ be two classes of £ structures. We say that K is falsifiable relative
to K’ provided the inclusion
V1(K) D Vi (K')

is proper. O

One may think of Str(L£) as the class of possible worlds relative to a signature £;
indeed, it is the largest such collection of possible worlds. However, if one wants to
study falsifiability relative to a class of L-structures containing analytic truths beyond
the logical validities, one may turn to the relative definition of falsifiability. In the
vast majority of this chapter, we will concern ourselves with falsification simpliciter.

An immediate corollary of this definition is that if K is falsifiable, then any class
stronger than K is falsifiable:

Proposition 2.1. Let K be a falsifiable class. If K’ C K, then K’ is falsifiable. ¢

Proof. If K" C K then V,(K) C V,(K’). Since V,(K) contains nontrivial universal
sentences, so does V1 (K'), so K’ is falsifiable. O

In particular, per this definition a class of structures K need not even be first-
order axiomatizable in order to be falsifiable. Per this definition, all that is required
of a class of structures to be falsifiable is that there is some observable formula ¢
whose realization is incompatible with the class K.

While this base notion of falsifiability is rather simple in its expression, refine-
ments of the notion of falsification contain a great deal of mathematical complexity.
In the remainder of this chapter, we will investigate refinements of falsifiability along
two key axes:

1. The Static Case, wherein we ask “just how falsifiable is the class K?” relative
to the above definition of falsifiability, and

2. The Dynamic Case, wherein we ask “how much observation is required to
falsify a hypothesis, and how quickly can we expect to falsify it?”
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In discussing the static case, we will primarily discuss variants surrounding the
first-order, universal axiomatization of a class. After all, if a class K is specified by
a universal set of axioms, this means that each one of the theory’s axioms expresses
the class K being incompatible with some observation. Others, such as Simon and
Groen [38] and Chambers et al. [7], propose even more stringent constraints on K
than its universal axiomatizability to deem them falsifiable.

For the dynamic case, we concern ourselves with how much data is necessary
to falsify a hypothesis and also how much data we can afford to omit and still be
guaranteed to falsify a given hypothesis. The work of Juhl and Schulte 35| refines
the notion of falsifiability to that of always falsifiability, a condition that requires a
certain abundance of data that could refute the hypothesis. They go on to show that
the notion of always falsifiability is equivalent to the notion of nowhere density in a
certain topological space. However, the mere nowhere density of a hypothesis H does
not guarantee that after some number n = n(H) of observations one will witness a
bit of data that will aid in falsifying H. We identify a class of hypotheses—those of
finite VC dimension—as precisely those hypotheses which yield nontrivial surprise
once some fixed number n = n(H) of samples are observed.

As a case study in falsification, we then turn to the framework known as severe
testing. Developed by Mayo [30], severe testing is a neo-frequentist, neo-Popperian
account of what makes a hypothesis testable. Motivated in part by the replication
crisis in science, Mayo rejects the standard framework of Null Hypothesis Statistical
Testing, arguing instead that her notion of severe testing is a necessary and sufficient
condition for a hypothesis H to not be rejected / provisionally accepted in the face
of data x. I argue that her basic definition of severe testing is underspecified, but
nevertheless argue that the core notion of severe testing can be formalized with the
aid of surprise. Crucially, surprise is non-probabilistic: surprise is intimately related
to a family of semi-probability measure on the space of hypotheses in 2¢; that is, a
function p : 2%° — [0, 1] such that

p(H) + p(H) > p(HUHS),

where H¢ = 2%\ ‘H is the complement of H, with inequality between the two terms
possible. As in the discussion of falsification qua nowhere density, VC finite hypothe-
ses emerge as the hypotheses with felicitous small-sample properties.
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2.2 Falsifiability and Unfalsifiability in
Mechanics and Economics

As a warm-up to our investigation of falsification, we investigate falsificational phe-
nomena in physics and economics by way of an analysis of Newtonian Mechanics and
the theory of choice.

Newtonian Mechanics

We begin by showing that, in a strong sense, the framework of Newtonian Mechanics
is unfalsifiable relative to the class of kinematic motions.
For the definition of Newtonian system I follow the formalism given by Arnold [2].

Definition 2.2. [2, p. 8] An n-particle motion is a smooth function z : R — R3"
such that the graphs of the trajectories of each particle are non-intersecting.
A Newtonian system of n particles is a motion z : R — R3" such that there exists

a vector field
F:R™ xR™ xR — R

such that

for all t € R. O

Let K be the class of Newtonian systems. Note here that since we do not require
K to be an elementary class in order to be falsifiable, we do not have to exhibit a
first-order axiomatization of K.

By an n-particle kinematic datum e I mean an equality

(v, 2", 2")(to) = v

or inequalit
! ' (x, 2, 2")(to) # v

where v € R?" and ¢y € R. Intuitively, a kinematic datum is a specification of the
numerical values of the vector (z(t), 2'(t), z"(t),t) € R™xR. For aset E of kinematic
data, let m;(E) be the set of times occurring as values in E. For an element e € F,
let ¢, be the value of the time coordinate of e.

We say that a set E of kinematic data is motional provided all sentences in F
are satisfied by some motion.
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Proposition 2.2. Let E be a finite motional set of kinematic data. Then there is an
n-particle Newtonian system x such that for all e € F| x satisfies all the conditions

set out by F.
Thus, the class of Newtonian systems of n particles is unfalsifiable relative to the
class of n-particle motions. ¢

Proof. First, we note that if E is motional we may replace all inequalities of F with
equalities to prove the claim.ﬂ Let Y; denote the trajectory of the i*® particle.
Thus, e is equivalent to a system of equations of the form

(Y3, YY) () = v = (pis(t), vis(t), aij (L))

where p;;, v;j, and a;; represent the position, velocity, and trajectory of the i*" particle
at time ;.

Since the data E is motional, there exist n smooth functions Y; : R — R? such
that the positions of the " particle Y; satisfy

Yi(t;) = pij-

We now show that we may alter this trajectory to ensure that Y/(¢;) = v;; and
Y/ (t;) = a;; for each i, j. The following argument ensures that we can locally alter
the Y;’s without intersecting the graphs of the Y;.

Let I be a closed interval of finite length containing the open interval
[min((t;)), max((¢;))]. Since the Y; are all continuous, there exists a compact boxf|
R C R* such that a neighborhood of each graph I'; of each Y; restricted to I is
contained in R.

Since R is a compact metrizable space and the graphs I'; are closed and disjoint,
there exists an r € R such that the tubular neighborhoods of the graphs I'; given by

Ulr) ={z e R*|d(x,T;) < r}

are disjoint.
Now, by the existence and uniqueness of ODEs there locally exists a unique
solution to the initial value problem

(@i, 25, 27)(85) = (pig, vij» ai)-
2Some care must be taken to ensure that the set E remains motional in this case. So long as we
replace x;(t) # p with some x;(t) = p’ where p’ does not appear in the remaining conditions in F,
the set E’ will remain motional. Since E is finite and R is infinite, it is always possible to replace
finitely many inequalities with finitely many equalities and remain motional.
3By a box I mean a product of intervals.




CHAPTER 2. ON FALSIFICATION 14

For each particle ¢, by taking a small enough interval [; ; around ¢; we let Z;; :
I ; — R? be the solution to this ODE and have the graph of Z;; contained in the
neighborhood U;(r) constructed above. Perhaps by shrinking the interval on which
Z; ; solves the ODE, we may smoothly extend Z; ; to all of R in a manner such that
Zi,j(t) =0 for all ¢ ¢ Iz‘,j~

Now, by the existence of smooth bump functions, there exists a smooth bump
function

b;;(t) : R —[0,1]

such that b;;(t) = 0 on some open interval containing t; and b;;(t) = 1 for all
t > max(l;;) and t < min(1; ;). We define

— <Z bl-,j(t)> Yi(t) + (1 — Z bz',j(t)> Z Z;j(1))

Then Yj(t) satisfies the required differential equations.
Finally, we must argue that there exists a force function F' : R?" x R** x R — R3"
such that
Y1) = F(Yi(1), Y/ (1), 1)

for all 7. Intuitively, we would like to define

F(z,a' t) =Y Y/'(t) if 2(t) = Yi(t)

i

but this is not a continuous function. However, by the construction of U, shrinking
r as necessary, we can ensure that this map is continuous by defining

F(x,2' t) ZY” ). t) € Ui(r). O

This theorem indicates that no matter how many finite points of data we col-
lect regarding the kinematics of the system, there will always be some Newtonian
theory which accommodates that data. This is the sense in which the framework of
Newtonian mechanics fails to be falsifiable.

However, there are natural strengthenings of the class K of Newtonian motions
which are falsifiable.

For example, suppose that our hypothesis is that a particle P is a free particle
with motion z with zero initial acceleration relative to a fixed observer’s frame of
reference. This implies that for all ¢ the resultant force F'(z,z’,t) is identically zero.
Thus, the motion = must follow a straight line.
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This hypothesis is highly falsifiable. Since a line in R? is determined by two points,
the theory of the free particle entails that if x(¢;) and x(t2) are the positions of the
first two observations of the particle, all subsequent observations of the particle must
be a member of the line L(x(t;), z(t2)) € R3. Thus, for every n > 2, each subsequent
observation carries with it the chance of refuting the claim that the particle is free.
This is an instance of the notions of always falsifiability and VC' finiteness, which we
will discuss in our treatment of the dynamic case of falsification in section 2.3.

Theory of Choice

We now turn our attention from the falsification of physical theories to the falsifica-
tion of economic theories of choice. To keep things simple, we model preference as a
binary relation < on a set of choices C', where x < y is interpreted as “y is strictly
preferred to x.” The data (C, <) is called a preference structure.

A frequently assumed necessary condition for a preference to be considered ra-
tional is that the preference relation is acyclic; namely, that there is no chain
Ty < xy--x, < x; and 7 £ 1. Let K be the class of acyclic preference struc-
tures.

The class K is falsifiable: if one observes a configuration

( /\ Ci-<Ci+1> Ne, < ¢

1<i<n

then one can conclude that the underlying choice structure (C, <) ¢ K. In fact, K
is universally axiomatizable, axiomatized by the collection

Ap = (Vay, .. x,)- (( /\ X —<xi+1) AN —<x1>

1<i<n

for all n € w.

On the other hand, there are common rationality assumptions which are not
falsifiable.

For example, consider the axioms invoked to prove the representability of a pref-
erence structure (C, <) by a utility function u : X — R, that is,

r =2y u(r) <uly).
Gilboa [18 p. 51] gives the axioms

1. Completeness: (Vz,y)(x <yVy = ),
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2. Transitivity: (Vz,y,2)([x < yAy < z] - x < 2), and
3. Separability:(3Z C X)(Vz,y)(Fz € Z)((|1Z] < Ng) A (z <y = (z 22 < y)).

Completeness and Transitivity are both V; sentences in the language £ = {<},
but Separability is naturally expressed as a second-order sentence.

Gilboa makes a very interesting argument for the admissibility of the Separability
axiom: its unfalsifiability “suggests that [Separability| has no empirical content and
therefore does not restrict our theory... Rather, the axiom is a price we have to pay
if we want to use a certain mathematical model” [18, p. 52].

The following theorem makes this argument precise.

Theorem 2.1. Let K = Mod(T') be the class of models of an £ = {<}-theory T'. Let
Ksep be the class M € K satsifying Separability. Then K, is unfalsifiable relative
to K. ¢

Proof. Let T be a first-order theory and ¢ a ¥ sentence such that ¢ ¢ V;(K). We
wish to show that K, 7 ¢.

Since ¢ ¢ V1(K) there exists some M € K such that M F —¢. Since ¢ is a univer-
sal sentence, — is existential. Let m € M* witness —p. By the Léwenheim-Skolem
theorem there exists a countable elementary substructure M’ < M containing m of
size Ny. Since M’ € K and is of size Ry, M’ € K,,,. Therefore K, ¥ ¢, so K, is
unfalsifiable relative to K. O

Thus, not only is the Separability axiom unfalsifiable relative to the class of
all L-structures, it is unfalsifiable relative to any first-order axiomatizable theory
of preference. In this way the Separability axiom is empirically harmless: we may
freely adjoin the Separability axiom to any first-order theory T' of choice structures
without inadvertently strengthening the observable consequences of T'.

2.3 Falsifiability and the Randomness of the
Universe

As an application of the results of the previous section, we argue that for many ways
of making precise the assertion that “the world is, at a fundamental level, random,”
the assertion is unfalsifiable.

Defining what it means to be “random,” however, poses a great difficulty. To this
end, I consider two different formalizations of randomness as it pertains to structures:

1. The evolution of the universe is generic in a suitable sense, and
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2. The evolution of the universe is generated by a stochastic process.

For a suitable formulation of each of the above cases we will see unfalsifiability
arise. To make sense of these two notions we define the notion of a time-indexed
structure.

Definition 2.3. Let £ be a relational language. Then the time-indexed language L,
is given by

L;={Ri(x1,...,¢m,t)| Ri(z1,...,2m) € L} U{O(x), 7(x),<}.

A time-indexed structure is an L, structure satisfying the theory T, given by the
axioms:

1. Objects and Times are different sorts, i.e.,

(V) (O(z) v 7(2) A =(O(2) A7(2)),

2. (Vz,t)(R(z,t) — (A O(z;) A7(t))), and
3. the relation < is a linear order on 7. O

A time-indexed L, -structure can be thought of simply as a time-indexed family
of L-structures. We use such examples all the time:

Remark 2.1. Let £ = {H(x)} be the language consisting of a single unary predicate.
We can regard an w-sequence of coin flips as an £, structure in a straightforward
manner. The domain of the structure M = wU{c}, where c is an object correspond-
ing to the coin. We interpret O(M) = {c}, 7 (M) = w, and M E H(c,n) just in
case the n'™ coin flip of ¢ returns heads. ¢

The Richness of the Universe

We first consider the notion of the randomness of the universe as specified by the
notion of a Fraissé limit.

Definition 2.4. |20, pp. 321-322] A countable class K of finite L-structures is a
Fraissé class provided K satisfies the following properties:

1. Hereditary Property (HP): If M € K and NV C M is finitely generated then
N eK,
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2. Joint Embedding Property (JEP): If M, N € K then there exists Q € K such
that M and N both embed in Q, and

3. Amalgamation Property (AP): If M, N, Q are L-structures and fx : M — N,
fo : M — Q are embeddings there exists a structure § and embeddings
gy N — S and go : Q — S such that

gnv o fxn = goo fo. O
Remark 2.2. The class of finite linear orders is a Fralssé class. ¢

Remark 2.3. Let £ be a finite relational language. The class of finite L-structures
forms a Fraissé class. ¢

For a Fraissé class K, there is a unique, highly homogeneous, countable structure
Kjim into which all and only the members of K embeds, called the Fraissé limit.

Definition 2.5. Let M be an L-structure. The age of M, age(M), is the class of
all finitely-generated L-structures embeddable in M. O

Theorem 2.2. |20, Theorem 7.1.2] Let K be a Fraissé class of £ structures. Then
there is an £ structure K;;,,,, unique up to isomorphism, such that

1. age(Kym) = K,
2. K| < R, and

3. every isomorphism between finitely generated substructures M, My C Ky
extends to an automorphism of K;,,. ¢

Thus, a Fraissé limit is extremely rich, able to accommodate any finite number
of observations. Moreover, when a Fraissé limit exists for a class K, the first-order
theory Ky, is Vi-conservative over K.

Proposition 2.3. Let K be a Fraissé class of L-structures where L is a finite rela-
tional language. If ¢ is a V; L-sentence, then

Kiim F o <> KFE ¢. ¢

Proof. 1f Ky, E ¢, then since every M € K embeds into Kj;,,, and ¢ is Vq, K FE .
Conversely, suppose that Ky, # ¢. Then —¢ is existential, so there is some

witness m C Ky, to the falsity of ¢. Since K = age(Ky;,,) and (m) is a finitely-

generated substructure of Ky,,, N = (m) € K and N'F —p. Thus K ¥ ¢. O
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Thus, no new universal sentences are entailed by the Fraissé limit of K.

We show that the class of finite time-indexed structures forms a Fraissé class,
which we shall see yields unfalsifiabilty of the generic theory relative to the class of
time-indexed structures.

Theorem 2.3. Let T, be the theory of time-indexed structures. Then
1. the class of finite models of T, is a Fraissé class, and

2. the theory T j;, of the Fraissé limit of the class is the model companion of the
theory 7. ¢

Proof. We need to show that class of finite models of T is a Fraissé class.

First, since the class Mod (T, ) is universally axiomatizable, its finite models satisfy
(HP).

By the axioms of T} each model M € Mody;,(T;) can be expressed as

M = (Wi, ti))icm

where each W; is an L-structure (recall £, was obtained from £) and each ¢; is a
time.

A necessary and sufficient condition for a map f : M — N with M, N € Mod(T)
is that f restricted to 7 is an order embedding and that for each time t;, f(W;) C
Wi,y is an embedding of L-structures. From this decomposition of embeddings
it is clear that the joint extension property and amalgamation property holds as
the class of finite L-structures and the class of finite linear orders are both Fraissé
classes: to jointly embed two finite models of T structures, first jointly embed their
temporal component and then jointly embed their L£-structures at each time in the
intersection of the embedding. Likewise, one may amalgamate by first amalgamating
the temporal component and then amalgamating the L£-structures over each time.

Thus the theory of the Fraissé limit 77, exists and model complete by |20]
Theorem 7.4.2]. It remains to show that 77, is a model companion of 7.

Clearly every model of 17, is a model of T, so it suffices to show that every
model of 7" embeds into a model of 7% ,,. Suppose M E T... Then since T is V,
axiomatizable, all finitely generated substructures of M are models of T,,. Moreover,
M embeds into an ultraproduct of its finite substructures since the language is
relational, and in turn each finite substructure embeds into the Fraissé limit of the
class. Thus M embeds into an ultrapower of the Fraissé limit of the class and hence,
since T}, is elementary, a model of Tj;,,. O

As a corollary, we have the following.
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Corollary 2.1. The theory T j;, is Vi-conservative over T'; thus, T7 j;, is relatively
unfalsifiable over 7;. ¢

Therefore, for this sense of genericity, “the Universe is a generic time-indexed
L-structure” is not falsifiable relative to the theory of time-indexed structures.

The Stochasticity of the Universe

We now turn to probabilistically generated models of the evolution of the universe.
Definition 2.6. The discrete time-index language L is
LE={Ri(x1,...,2m,t) | Ri(z1,...,2,) € LYU{O(z),7(x),<,S(z)}. O
We work with a distinguished class of £¢ structures M, namely those such that
1. (1(M), <,S) is the structure of (w, <, S),
2. O(M) is [n] for some n € w,

3. the world (W,0) is drawn from a probability distribution px on the state space
¥ = Stre([n]), and

4. the world (W,t + 1) is obtained from (W,t) by way of a time-homogeneous
memoryless Markov process, i.e., there exists a stochastic matrix p on the

state space X in w such that P((W,t+ 1)|(W’,t)) = p(W, W').

Remark 2.4. This construction generalizes the construction of an w sequence of 11D
coin flips. In this case, O(M) = {c} is a single object, and each time ¢ is associated
to an £ = {H(z)}-structure where H(x) is a unary predicate meaning “z flipped
heads.” The basic £¢ predicate H(x,t) means “x flipped heads at time ¢.”

Let p be any measure on {H, T}, i.e., an assignment of py, pr € [0, 1] such that
py + pr = 1. The stochastic transition matrix p is given explicitly by

p= P DPr
pr pH)

Such a stochastic process generates an £2 structure on domain w U {c}. ¢
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Now, let C be a set of pairs (i, p) where u is a probability distribution on ¥ and
p is a stochastic matrix on EE| The choice of 1 and p induce a unique probability
measure P, , on X%, The existential C-theory T¢ in £¢ is given by:

(3z,1)(z, 1) € Te +» (Y, p € C) (P, (¢(T, T) is eventually realized) = 1)

Let C; be the class of pairs (u, p) of initial distributions p on ¥ with (W) > 0
for each W € ¥ and stochastic matrices p with rows and columns indexed by ¥ such
that p(W, W’) > 0 for all W, W’ € X.

Let o (T, t) be the sentence saying that at time ¢ the L-structure N () is iso-
morphic to M. To show that every £2-satisfiable 3; formula in the language £2 is a
member of T it suffices to show that every formula of the form

(/\ o, (Ti, 32)) A /\(SZ < Sit1)

where
L Wey,
2. s; is a term in the language of the successor function {S(z)}, and

3. the formula A 's; < s;41 is realizable in (w, <, S(x))
is realized with probability one for each P € C,..

We demonstrate this by studying an auxiliary Markov process on X, where m
is the number of terms s; occurring in the formula ¢.

Let (nq,...,n,) realize the formula A's; < s;11. Note that for all k € w, (n; +

7
k,...,n,+ k) also realizes A s; < s;41.
i
The stochastic process

(Wi,ng), ..o, Wiynm)) = (W,ng + 1), ..., (W) nm + 1))

is inferred from the data (p, p). The pair (u, p) induce atime-homogeneous Markov
Chain on ™ as follows: for each (W7,...,W,,) assign initial probability

4Recall that a stochastic matriz p is a matrix such that the sum of the entries over each row
and each column is 1. A stochastic matrix p is irreducible provided that for all 0,0’ € % there
exists an n € w such that the p™(o,0’) > 0. In other words, each state is reachable from every
other state after some finite number of steps with positive probability.
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w (W, ..., W,,)) according to the probability that ((Wi,n1),..., (W, ny)) is re-
alized given (u, p) in the first n,, transitions. Note that by assumptions on p and

P
W(Wi,y o W) > 0

for all Wy, ..., W,,. Likewise, define a stochastic matrix p* on ¥ by setting

PV, W), (W W) = Hp(Wi, Wi).

By assumption on p, p*(o,0’) > 0 for all 0,0’ € ¥™. Thus the data (u*, p*) are
themselves a time-homogeneous Markov process such that p*(o) > 0 and p*(o,0’) >
0 for all o € ™.

In particular, p* is an irreducible stochastic matrix and so by standard results in
Markov theory |11, Theorem 6.4.4, 6.5.6] there exists a unique stationary distribution
Ny~ on X™ capturing the asympototic probability that state o € ¥™ is observed on
the k trial, and since expected return times are finite for every irreducible Markov
chain, 7,+(o) > 0. Thus, in the long run, with probability one relative to (u, p) the

sentence
(/\ oM, (Ti, 8z‘)> A /\(Si < Sit1)
(2 (2
is realized.

In other words, on such a model of the evolution of the universe, every consistent
configuration of atomic sentences is realized with probability one according to this
process. Hence, this theory is unfalsifiable.

The theories T¢ naturally occur as a formal model of the universe as a theormo-
dynamic fluctuation. The idea that the universe is merely a fluctuation has been
discarded by many prominent physicists such as Feynman and Carroll; it is worth
investigating how these arguments dovetail with the present discussion of their fal-
sifiability.

Feynman argues that we can refute this hypothesis, writing:

Thus one possible explanation of the high degree of order in the present-
day world is that it is just a question of luck. Perhaps our universe
happened to have had a fluctuation of some kind in the past, in which
things got somewhat separated, and now they are running back together
again...

[F]rom the hypothesis that the world is a fluctuation, all of the predictions
are that if we look at a part of the world we have never seen before, we
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will find it mixed up, and not like the piece we just looked at. If our
order were due to a fluctuation, we would not expect order anywhere but
where we have just noticed it... is Every day they turn their telescopes
to other stars, and the new stars are doing the same thing as the other
stars. We therefore conclude that the universe is not a fluctuation. |17,
Lecture 46-5]

On this account, from the fact that we observe order—the aggregate of all of our
observations of the universe—we can conclude that the universe is not a fluctuation.
At first glance this argument appears to be an argument from falsification:

1 | The Fluctuation Hypothesis entails that the universe is disordered.

2 | We observe order in the universe.

3 | The Fluctuation Hypothesis is false.

After all, it appears to be framed as a reductio ad absurdum, but the inference
is more subtle than that. If by the fluctuation hypothesis we understand it to mean
that the universe is generated probabilistically in the manner described above, then
observing order of arbitrarily large complexity is in fact a deductive consequence of
the theory T¢.

The tension here comes from a quirk of the probabilistic framework and its rela-
tion to first-order logic; while the probability of a specific observer witnessing a given
highly-ordered conjunction of atomic and negations of atomics formulas will be quite
low, nevertheless the theory predicts that all such observations will be witnessed. In
other words, two notions of prediction are at play: in one sense, the theory entails
that with probability 1 the state that is observed will happen, all the while entailing
that the observer in question witnesses a sequence of low probability states. Carroll
[6] refers to this latter property of the fluctation theory as rendering observers “cog-
nitively unstable” in the sense that the theory in question actively thwarts inductive
reasoning as understood by Bayesian confirmation theory.

What Feynman has in mind, most likely, is an anthropic principle of the kind
that says we should only affirm/consider theories T' which themselves make it highly
probably that our own inductive reasoning is highly conducive to truth.

Much ink has been spilled over anthropic principles in connection with the hy-
pothesis that the universe is in some manner random [5], but the results of this section
indicate that such theories suffer the defect of unfalsifiability. While being unfalsifi-
able does not refute the truth of the hypothesis, it does show that the hypothesis is
not amenable to being refuted by way of finitary modes of data acquisition.
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2.4 The Static Case: How Much of a Theory is
Falsifiable?

The static models of falsifiability typically concern themselves with questions of how
close a theory is to being universally axiomatizable; after all, the more universal
sentences a theory implies, in principle the more falsfiable the theory becomes.

Simon and Groen [3§], in their work on Ramsification and the Second-Order defin-
ability of theories, isolate a notion on pseudoelementary classes K they call FITness
which they claim isolates the ideal scientific theories: On their account, a pseudoele-
mentary class K is FIT if and only if it is a scientific theory. They show that for
pseudoelementary K, being FIT implies its universal axiomatizability| Generalizing
their definition to arbitrary classes of L-structures K closed under isomorphism, I
show that for finite languages K being FIT entails that K is elementary and, in fact,
universally axiomatizable. This result substantially generalizes their result over finite
languages.

I then turn my attention to an argument given by Chambers et al. [7] that ar-
gues that being universally axiomatizable is not sufficient grounds to call a theory
falsifiable. Instead, they identify the falsifiable sentences with a class of universal sen-
tences they call UNCAF (a universal negation of a conjunction of atomic formulas).
In turn, I argue that their argument implicitly assumes that the underlying predi-
cates P € L exhibit mere ¥; behavior and thus that their argument reaches too far
in its conclusions.

As a final foray into the static case of falsification, I consider how falsification
intersects with the dividing lines of classification theory. It is not too difficult to show
that under very mild restrictions on the language £, NIP theories entail a great deal
of nontrivial V; sentences and are highly falsifiable. Of note, in NIP theories each
formula ¢ is equipped with a notion of dimension known as the VC-dimension of a
class, which in a sense measures the effective falsifiability of membership in the class
of hypotheses it defines.

On the other hand, recent work of Kruckman and Ramsey [27] and, independently,
Jerdbek [21], yield examples of NSOP; and simple theories which are unfalsifiable.
While there are many NSOP; theories which are falsifiable, in a sense NIP is in-
dividuated among the dividing lines in model theory as a class of highly-falsifiable
theories.

5The proof presented in their paper is incorrect. However, this error is fixed in this disseration.
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FITness: The Finite Signature Case

We begin our investigation of the static case of falsification by exploring the notion
of FITness—the finite and irrevocable—testability of a theory. Simon and Groen [3§]
argue that, at least when K is a pseudoelementary class, K being FIT is necessary
and sufficient for K to be a scientific theory. They purport to show that if K is
FIT and pseudoelementary, then K is V; axiomatizable. In this section I show that
so long as the signature L is finite, the requirement that K is pseudoelementary is
unneccessary; all that is needed is that K is closed under £-isomorphism.

Definition 2.7. Let £ be a language and K a class of L-structures. K is said to be
FIT provided that

i K is finitely testable, i.e., K is nontrivial:
K # Str(£)
and for every M € Str(L),
(VN € Str(L)[(IN| < Rg AN C M) - N €K]) - M e K,

ii and K is irrevocably testable, i.e., for every M € Str(L)
MeK — (VN e Str(L)[(JN] < Rg AN Cp M) - N € K]). O

In the case of a finite relational language £, any FIT class K is universally axiom-
atizable. This substantially weakens the assumption on K given in the original paper
of Simon and Groen at the cost of working within a more limited class of languages.

Theorem 2.4. Let K be a FIT class of a structures over a finite relational language
L closed under isomorphism. Then K is universally axiomatizable. ¢

Proof. We begin by giving a first-order axiomatization of K. For each finite V' € K,
let pu be the formula in || many free variables given by A ¢. This formula
ediag(N
expresses the isomorphism type of A relative to the fixed erﬁumel(ra‘zion T, ..., T, if
N ~pa@ N7 then gy is equivalent to g, Let Kn] = {N € K||N| < n}/ ~,@m).
Since the language £(7) is finite and only includes relations and constant symbols,
for each n € w there are only finitely £(Z)-isomorphism classes in K of size < n, so
K[n] is finite. Let 1, be the sentence

UV, =V, ...V, /\xz#xj—> \/ M

1#] [M]eK]n]
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By construction, each 1, is a universal sentence, as the disjunction <\/[ M]eK[n] P M)

is a disjunction of finitely many Boolean combinations of atomic formulas.

Let Tk = {1 }new- I claim that K = Mod(7Tk). To see this, suppose that M F Tk.
Because K is finitely testable it suffices to show that every finite substructure of M
is a member of K. Let A/ be a substructure of M of size n. Since 1, is universal,
N E 4, and so N E ¢ for some N’ isomorphic to a member of K. Since K is closed
under isomorphism, A" € K. Thus M € K.

Conversely, suppose that M € K. To show that M E Tk, it suffices to show
that M E 1), for each n. Let (mq,...,m,) € M" be a variable assignment. The set
N ={my,...,m,} is aset of size < n and is a substructure of M. By the irrevocable
testability of K, N € K. Thus, N £ ¢p. Thus M E ¢,. O

Moreover, a similar argument works to show that a FIT class closed under iso-
morphism over an arbitrary finite language is universally axiomatizable.

Theorem 2.5. Let K be a FIT class of structures over a finite language £ closed
under isomorphism. Then K is universally axiomatizable. ¢

Proof. Same as the above, but by defining the axiom scheme 1), as follows. For a
function symbol f, we denote the arity of f by ar(f).
Let xn(x1,...,2,) be the formula given by

w= (A AN ViiE=a sV w=cl,

fecr ]C[n]ar(f) 0<j<n ceL 0<i<n

where A and A are understood to be T in case £ contains no function or constant

fec cel
symbols respectively.
This formula expresses that the set z1, ..., z, is an L-structure of size < n, as it
expresses that zq,...,x, is closed under all function symbols f € £ and contains all

constants ¢ € L. Since L is finite, this is a quantifier-free first-order formula.
As above, let Tk be axiomatized by

UV =V21,.. ., T | Xn — \/ M
[M]eK([n]

A nearly identical argument as before suffices to show that K is axiomatized by Tk.
Let Tk = {t¥n}new- I claim that K = Mod(Tk). To see this, suppose that M E Tk.
Because K is finitely testable it suffices to show that every finite substructure of M
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is a member of K. Let A/ be a substructure of M of size n. Since 1, is universal,
N E 1,. Since N is an L-structure of size at most n, N E x,, so N E ¢ for some
N’ isomorphic to a member of K. Since K is closed under isomorphism, N € K.
Thus M € K.

Conversely, suppose that M € K. To show that M E Tk, it suffices to show
that M E 1), for each n. Let (my,...,m,) € M" be a variable assignment. The
set NV = {mq,...,m,} is a set of size < n. If N is an L-structure, then N is a
substructure of M € K so N E ¢ and hence

ME xn(my,...,my,) — \/ om(my,...,my).

[M]€eK(n]
If NV is not a substructure, then the variable assignment satisfies M F —x,,(mq, ..., my,)
and so
ME xp(my, ... ,m,) — \/ OM-
[M]€EK]n]
Thus M E 1, for all n, so M E Tg. O

Proposition 2.4. Suppose that 7' is a universally axiomatizable class over a finite
signature L.

1. If £ is relational, then Mod(T") is a FIT class.

2. There exist finitely axiomatizable T" which are not FIT. ¢

Proof. Suppose that L is relational. We need to show that for all £-structures M,
M E T if and only if N E T for all finite N' C M.

Suppose that M E T. Then since T is universally axiomatizable, N’ T for all
substructures ' C M. On the other hand, suppose M F T. Then there exists a V;
sentence ¢ € T such that M F —¢. Since ¢ is Vi, —p is Jd;, there exists a witness
m to M E —p. The finitely generated substructure My = (m) C M also satisfies
My E —p. Since L is relational, M is a finite structure, so M ¥ T ensures that
there is a finite My C M with Mg ¥ T. Thus the models of T" form a FIT class.

On the other hand, let £ = {f(x), g(x),c} and let T be the theory given by the
single universal axiom: (Vz) g(z) # x. We now exhibit an example of an L-structure
M such that M T but N E T for all finite substructures N' C M. Let M have
domain w and interpret f(x) = S(x) the successor function, g(z) = z the identity

function, and ¢ = 0. Note that M has no finite substructures, so vacuously N'E T
for all finite structures N C M. However, M ¥ T, so M is not FIT. n
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FITness: The Arbitrary Language Case

The setting in which Simon and Groen work involves a distinction between observa-
tional and theoretical scientific terms. Let £ = £,UL; be a language partitioned into
the observational language L, and theoretical language L;. Let ¥ be an L-theory.
There is, of course, the class of models of the theory:

Mod(¥) = {M|M E £} C Str(L).

By definition, this class is elementary, meaning that it is first-order axiomatizable.
However, the class Mod (X)) is not the appropriate class of structures to look at, for
if there is a true o/t distinction then the scientist only has epistemic access to the
observable structure. Instead, Sneed [40] isolates the fundamental relation between
scientific £L-theory ¥ and some L,-structure N of observations is that of application:
say that 3 applies to N just in case the Lo-structure NV can be expanded] to a full
L-structure N such that N F Y. The pseudoelementary class of such structures is
given by:
Mod*(X) = {M|., | M E X} C Str(L,).
In the case of pseudoelementary classes K = Mod*(X), we are able to drop

the hypothesis that £ is a finite language to conclude that an L,-FIT K is V;-
axiomatizable. This is the original result of Simon and Groen [3§].

Proposition 2.5. Let ¥ be an £,-FIT theory. Then the class Mod*(X) is an ele-
mentary class and admits a universal axiomatizationﬂ ¢

Proof. We recall a theorem of model theory [20, Theorem 6.6.7]:

Let L be a first-order language and K be a pseudo-elementary class of
L-structures. Suppose that K is closed under taking substructures. Then
K is aziomatized by a set of V1 L-sentences.

Since Mod*(X) is pseudo-elementary, it suffices to show that Mod*(X) is closed under
substructures. Let M € Mod*(X) and let N' C,, M be a substructure. To show
that NV € Mod*(X), the finite testability implied by L,-FIT-ness tells us that we
need only check that for every finite substructure Ny, C., N satisfies N}, € Mod*(X).
Since every such N, is an L,-substructure of M, the irrevocability of L,-FIT-ness
ensures that A, € Mod*(X). O

fAn expansion of an L, structure N to an L-structure N is an L-structure where the domain
of N is A/ and all of the symbols in £, are interpreted as is NV.

"In [38] Simon claims that this result follows from the Lo$-Tarski theorem. However, the
Lo$-Tarski theorem applies to elementary classes, whereas the class in question—Mod™(X)—is a
pseudoelementary class. Thus a new proof is needed.



CHAPTER 2. ON FALSIFICATION 29

That is, FIT-ness implies that the pseudo-elementary class of L,-structures ex-
pandable to models of X is not only elementary, but is in fact axiomatizable by
universal axioms.

A partial converse can be given for the case of relational observational languages

L,

Proposition 2.6. Suppose Mod* (X)) is a universally axiomatized class of £,-structures,
axiomatized by 7%, such that

i 3 has nontrivial observational consequences, i.e.,
Mod* (%) # Str(L,),
and

ii L, is a relational language.

Then Y is L,-FIT. ¢

Proof. To show that ¥ is L,-FIT we must show both finite testability and irrevocable
testability.

Finite testability: Since Mod*(X) # Str(L,), it follows that that Mod(X) #
Str(L), for otherwise all £, structures would be reducts of models of X.

We now need to show that if, for all My Cz, M finite, M} € Mod*(X), then
M € Mod*(%). It is a known result [28| Exercise 2.5.20] that any structure M is £,-
embeddabldf into an ultraproduct of its finitely-generated substructures. Since £, is
relational, the finitely-generated substructures are precisely the finite substructures.
Thus, there is an L,-embedding ¢ : M < [[ My, for U any nonprincipal ultrafilter

]
over the collection of finite substructures of M. Now, as M FE T3 for all finite
My, Cp, M, H./\/lk F T;. Since Ty is universally axiomatizable and ./\/l Ce, H M,

M ETY. But thls means that M € Mod*(X). So ¥ is finitely testable.
Irrevocable testability: We need to show that if M € Mod*(X) then for all
M, Cp, M finite, M}, € Mod*(X). Since T% is universally axiomatizable, any L,
substructure of M is a model of 75;. In particular, each finite M C,, M is a model
of T¥ and is therefore a member of Mod*(X), as desired.
Hence X is L,-FIT. O

8Not necessarily elementarily.
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The two properties defining FIT-ness warrant scrutiny in virtue of their strong
implications. We may view the finitely testable hypothesis as a local compactness
principle: in the stated form it says that if every finite M, C M is consistently
expandable to a model of 3, so too is M. The irrevocability hypothesis expresses the
closure of the class Mod*(X) under (finite) substructures, which together with finite
testability implies closure under substructures.

Moreover, when working with a relational language the semantic criterion of FIT-
ness is equivalent to the universal axiomatizability of the observable consequences
of the theory. Thus, on the Simon-Groen view, given a universally axiomatizable
L, theory T any L,-conservative extension of T" to an L-theory 7" is scientific. For

instance, consider adding unary predicate symbols Py, ..., P, and defining
T, =T U{Vzx ( \/ H(x))}.
1<i<n

the L,-consequences of T}, are the L,-consequences of T and so T,, is FIT and
therefore scientific. By construction, however, the truth of the axioms of T,, are
independent from any collection of observational data.

FITness and Finite Generation

The definition of FITness required that membership in a class K be witnessed by
all finite substructures themselves being members of K. However, except in the
relational case, a substructure being finitely generated does not imply that that
substructure is finite. In this section we consider the analogous notion of FITness
obtained by replacing “finite” with “finitely generated” everywhere in the definition
of FITness.

Definition 2.8. Let £ be a language and K a class of L-structures. K is said to be
fg-FIT provided that

i Kis fg testable, i.e. K is nontrivial:
K # Str(L)
and that for every M € Str(L),
(VA € Str(L)[(N is finitely-generated AN Cp M) - N € K]) - M €K,

ii and K is fg-irrevocably testable, i.e. for every M € Str(L)
M e K — (VN € Str(L)[(N is finitely-generated AN €, M) - N € K]). O
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The FITness and fg-FI'Tness of a class are generally inequivalent.

Proposition 2.7. Let £ = {+, —, x,0, 1} be the language of rings, and let K be the

class of all rings of positive characteristic, i.e. rings such that there exists an n € w

such that 1 +---4+1 = 0. Then K is fg-FIT but not first-order axiomatizable. In
—_——

n times

particular, K is not FIT. ¢

Proof. To show that K is fg-FIT, it suffices to show that for a ring R, R € K just

in case every finitely-generated subring of R is in K. Suppose that R € K. This is

witnessed by the quantifier-free formula 1 +--- 4+ 1 = 0, so any subring R C R is
—_——

n times

also a member of K. Conversely, if R ¢ K then (1) is infinite and therefore (1) ¢ K.

To show that K is not first-order axiomatizable, it suffices to show that K is not
closed under ultraproducts by [8, Theorem 4.1.12]. Note that each finite field F,
is a member of K. Let U be a nonprincipal ultrafilter on the set of primes. Then
F =[] F, is a field of characteristic zero, thus F' ¢ K. Hence K is not first-order

u
axiomatizable. Therefore, by [Theorem 2.4 K is not FIT. O

Moreover, unlike the FIT case, every universally axiomatizable theory is fg-FIT.

Proposition 2.8. Suppose that T is a universally axiomatizable class over an arbi-
trary signature £. Then T is fg-FIT. ¢

Proof. We need to show that for all L-structures M, M E T if and only if N E T
for all finitely-generated N' C M.

Suppose that M E T. Then since T is universally axiomatizable, N’ T for all
substructures N' ¢ M. On the other hand, suppose M F T. Then there exists
an V; sentence ¢ € T such that M FE —p. Since ¢ is Vi, = is 3, there exists a
witness m € MF to M E —p. The finitely generated substructure My = (m) C M
also satisfies My F =p. Thus M ¥ T ensures that there is a finite My C M with
Mo # T. Thus the models of T form an fg-FIT class. O

Remarks on Signatures in FITness

In the above discussions regarding FITness, fg-FI'Tness, and universal axiomatizabil-
ity, it was shown that in the case of a finite relational language, these notions are
equivalent without a background assumption on the class K beyond closure under £L-
isomorphism. However, these notions began to decouple in the case of languages with
constant symbols and function symbols. This behavior is not so surprising; when
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converting a function symbol f to a relation symbol by defining R; by identifying
VaVyRe(x,y) < f(z) = y, to eliminate the function symbol f from the language
completely requires one to include an V, axiom of the form

which in general will not be equivalent to a V; sentence. Thus, implicit in the
inclusion of function symbols in the language is a Vo axiom in a purely relational
language.

UNCAF Theories

Motivated by theories of revealed preference in economics, Chambers et al. 7] argue
that the empirical content of a theory is captured not by general universal sentences
but instead by a special kind of universal sentence they term UNCAF.

Definition 2.9. [7, Definition 4] An UNCAF sentence in a language £ is a universal
negation of a conjunction of atomic formulas; that is, a sentence of the form

(Vay,...xp)— ( /\ wi(T1, ... ,mn)>

1<i<m

where each ; is atomic. O

Perhaps surprisingly, they argue that sentences of the form (Va)P(x) is not fal-
sifiable by virtue of not being UNCAF, while (Vx)—P(z) is.
To argue this point, they write that

substructures are unsatisfactory as mathematical models for observed
data since they correspond to a situation in which the scientist observes
the presence or absence of every possible relation among the elements in
his data and, therefore, cannot accommodate partial observability.

While I agree with this general point, the conclusion that only UNCAF sentences
have empirical content is too strong. For example, let S(z) be the predicate “z is
a swan” and W (z) the predicate “z is white.” The sentence “all swans are white,”
when formalized, is equivalent to

(Va)=(S(x) A=W (2)),

which is not UNCAF owing to the presence of =W (x) as a nested subformula. To
conclude that this sentence has no falsificational content seems to run counter to the
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usual conception of falsification: after all, if I were able to produce an example ¢
such that S(c) A=W (c), I would immediately be able to infer that W ¢ K. However,
on their model it is as if, when I go to the local bird sanctuary I am told that I may
only record instances of white swans. One should not expect to be able to produce
a counterexample to “all swans are white” under such constraints!

The way that Chambers et al. circumvent this worry is to note that for each
predicate P one may add a new relation symbol P~ together with the axiom

Va(—P(x) < P7(x)).

While this approach does formally work, it is somewhat awkward that this axiom
itself is not UNCAF, as we see by reducing it to

Ve=((=P(x) A=P7(z)) V (P(x) AN =P (x))).

Their understanding of falsification qua UNCAF-expressibility entangles two sep-
arate considerations: first, whether there is in principle any falsificational strategy
on the basis of some configuration being witnessed by a finite set of data, and second
whether the model of knowledge acquisition allows one to actually carry out the fal-
sificational strategy. Their account corresponds to a model of knowledge acquisition
in which at each stage one gains (at most) one positive (relative to £) observation
at a time, in a semidecidable fashion.

As an example, suppose that a researcher is observing an agent Ashley and wishes
to falsify whether or not her preference relation is complete:

Vo, y((z <y)V(y <))

To do so, the observer waits each day d to see whether the agent exhibits some
preference relation between a can of Guayaki Enlighten Mint ready-to-drink Yerba
Mate and a can of Guayaki Revel Berry that are sitting side-by-side in the office
fridge, with no other items in potential consideration.

This experiment, as construed, is doomed to never falsify the experiment. After
all, if there is some day d where Ashley surveys the fridge and takes a can of Enlighten
Mint but not Revel Berry (resp. Revel Berry but not Enlighten Mint), then EM >
RB (resp. RB > EM) and therefore no refutation of the completeness axiom is
possible in the context. Likewise, if the day that Ashley takes a can out of the fridge
never comes, that also does nothing to falsify the completeness axiom.

So, what went wrong? Implicit in their semantics for the experiment is a sup-
pressed existentially-defined quantifier. Let R4(z,y, d) be the relation that says “on
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)

day d, agent A expressed a weak preference x over y.” Then the formula x > y in
Chambers’ terminology would not be V; but instead properly Vs:

Va,y (Ft)Ra(z,y,t) V (Ft)Raly, z,t)) .

Therefore, the purported example of an unfalsifiable V; sentence is better and more
directly modeled as an unfalsifiable V5 sentence fully compatible with the standard
account of falsification as a universal over an in-principle decidable primitive. What
their point indicates is that the standard revealed preference relations in economics
are not in-principle decidable, but instead are di-definable relative to the empirical
relation Ra(z,y,d) via

x>y :=(3t)Ra(x,y,d).

If we take as epistemically primitive a 3;-definable relation R(z,y) defined by an
L-formula Jep(z,y, ) with ¢ quantifier-free, then their result is clear. A sentence
of form (V1)R(z,y) is an 3y sentence, while an UNCAF sentence in the language

Z:R = {Z?Cr,y)},
(Vay, ..., x,)— (/\ R(%‘,%’)) )

i,J€1

with I C 2 finite is equivalent to the L-sentence:

(Vx1, ..., 2,) ( \/ Ve (—p(@i, yi, C)))

1,5€1

which is equivalent to a V; sentence in L.

Strength of Theories and their Falsifiability

Contrary to mere falsifiability, FITness, fg-FITness, and UNCAF-axiomatizable are
typically not closed upwards under strength.

Proposition 2.9. Let K be a universally axiomatizable FIT or UNCAF class such
that K has both finite and infinite models. Then the class K’ C K of infinite members
of K is not FIT, fg-FIT, or UNCAF. ¢

Proof. Let T be a universal axiomatization of K. Then K’ is axiomatized by T U

{¥n}new where 9, is the sentence (3z1,...2,) A @ # zj.
1<i#j<n
Since K is closed under substructures and admits finite models, K’ necessarily
fails to be closed under substructures. Thus K’ is not universally axiomatizable, and

in particular is neither FIT nor UNCAF. ]
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Falsification and NIP

In the preceding sections, we have considered a sequence of refinements to the basic
notion of falsifiability. We have seen, under mild conditions on the signature £ and
classes K the web of implications

K FIT —— K V; — Axiomatizable » | K Falsifiable

K has nontrivial UNCAF theory

However, there are a great deal of hypotheses which do not readily fall into this
framework at first glance.

For example, we are often interested in testing whether or not a (basic) relation
R(zy,...,x,) € L is equivalent to some other (basic) relation S(xy,...,z,) € L.
This is easy to handle directly in our account of falsification; after all,

Vo, ..o xn) (R(21, ..oy xn) <> S(x1,. .., 20))

is a Vi sentence in £ by assumption.

What if, instead, we are probing a more complicated question, such as whether
or not R(xy,z) is a line in R™? In the language of rings augmented by an additional
relation symbol

L={+,x%,,0,1,<, R(z,y)}

this is most easily expressed by the 35 formula
Ty, = (3a,0)(V, y)(R(z, y) <> L(z,y;0,b,¢))

where L(x,y;a,b) is the sentence ay + bx + ¢ = 0. Despite being 35, this sentence has
a great deal of falsificational content owing to the structure of the parametric family
L(z,y;a,b,c). From Euclidean geometry that between any two distinct points there
exists a unique line. Letting R*(a, b, ¢, d) be the sentence

R*(a,b,c,d) = ([(a # ¢) V (b # d)] A R(a,b) A\ R(c,d)).
Then

(Va,y)(Va, b, ¢, d) (R*(a, b, c,d) — (L (x v, ? b ol b) — R(:c,y)))

a’ c—a

which is a nontrivial V; sentence. Thus, while T}, is dy it has nontrivial V; conse-
quences.
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These properties of lines is an example of the V' finiteness of the class. For the
remainder of the section, we assume that K is an elementary class, axiomatized by
some first-order set of sentences 7.

Definition 2.10. [39, pg. 7-8] Let ¢(Z;7y) be a first-order formula in disjoint sets
of free variables 7,y. With respect to this partition we say that ¢ is a partitioned
formula.

Let M € K. We say that ¢(Z;7) M-shatters a set X C M7 just in case there
is a set Y C M such that for every subset X’ C X there exists ¢’ € Y such that

MEp(z;y) e X

for all z € X.

A partitioned formula is NIP provided for every M € K, no infinite set is M-
shattered by ¢.

The formula ¢ has Vapnik-Chervonenkis (VC) dimension, VC(¢) < n just in
case for all M € K| no set of size n is M-shattered. If ¢ has finite VC dimension
then ¢ is said to be VC finite.

A theory T' is NIP just in case every formula ¢ is NIP in the class K = Mod(T).

O

For elementary classes K, a formula being NIP is related to its VC finiteness:

Proposition 2.10. Let K be an elementary class and ¢(7; ) a partitioned first-order
formula. If ¢ is NIP, then ¢ has finite VC dimension. ¢

Proof. This is an elementary consequence of the compactness theorem of First-Order
Logic [39, Remark 2.3]. O

A first-order formula ¢(Z;7) having VC dimension < n is first-order expressible
by a sentence VC,,(¢); moreover, if ¢ is quantifier-free then the proposition VC,, ()
is a V; sentence.

Proposition 2.11. A formula ¢(x;y) having VC dimension < n is first-order ex-
pressible in any language containing ¢ by a sentence VC,(¢). Moreover, if ¢ is
3/, then VC,, () is at most V,,41.

In particular, if ¢ is quantifier-free then VC,, () is a V sentence. ¢
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Proof. First, the proposition “zy,...,x, is shattered by {y;}scp in ¢” is a Boolean
combination of instances in ¢:

Shatter, ((x,)1<z<n, Yr) an] /\ /\ Oi (i, y7)

JC[n 1<7,<n

where [0; o is ~p if i ¢ J and p if i € J.
The proposition VO, () is expressed by the following first-order sentence:

(V(%)1<i<n)V(Y5) 1) (( N wi# %‘) — —Shatter, ((:)1<i<n, (yJ)JC[n])> :

1<i#j<n
as desired. O

Proposition 2.12. Let T be a complete NIP theory in a language £ containing an
m-ary relation symbol R(Z,7) for some n > 1. Then T implies a nontrivial universal
sentence. ¢

Proof. Since T' is complete NIP, for some T entails the V; sentence VC,(R(Z;7)) for
some n € w. Since R non-unary, VC, (R(7;7y)) is not a first-order validity, since the
bipartite graph G, on a disjoint set of vertices [n] U 2I" given by R(i, X) <+ i € X
satisfies

G, F =VC,.(R(T;7)). O

In fact, since VC, (R(z;y)) — VCn(R(x;y)) for all m > n, for a VC finite
relation we get a nested chain of V; sentences. As we will see in our account of the
dynamic case of falsification, this simple observation has very strong consequences
in terms of understanding small-sample falsificational problems.

To explain the restriction about the language, we note that there are NIP unary
theories entailing no nontrivial V; sentence. Recall |28, Definition 4.2.17]E| that a
theory T is k-stable for a cardinal s if for every model M ET, n € w, and A C M
of size k, the space of n-types with parameters in A has size k

S (A)] = &

A theory is stable provided it is x-stable for some infinite . It is well known that
stability implies NIP [37, Theorem 4.7].

9In the next section we will work with an alternative, equivalent definition of stability better-
suited for our purposes.
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Proposition 2.13. There exists a stable theory 7" in a unary language which entails
no nontrivial universal sentence. ¢

Proof. Let T be the theory in the language £ = {P(z)} axiomatized by

on = (Fz1,...,2p) ( /\ xz;éac]/\/\P(xz)>

i#j<n <n
and
U = (Fzq, ..., xy) ( /\ x; # T N\ /\—P(x)) )
i£j<n <n

This theory is clearly Ny-categorical: any countable model M can be partitioned by
M =P(M)U-P(M)

with each definable set P(M), =P(M) countably infinite. If M, N E T, then any
pair of bijections
fp: P(M)— P(N)
and
f-p: " P(M) = =P(N)
induce an L-isomorphism

prf_.pIM—>N.

Moreover, T has no finite models, so by Vaught’s test |28, Theorem 2.2.6] T is
complete. Clearly, V1(7") contains only first-order validities.

This theory is w-stable. Let A be a set of size < Ny. The types over A are
determined by specifying which coordinates z; are equal to an element of A and, for
those x; ¢ A, whether or not P(xz;) or =P(z;). Thus, there are at most (|A|+2)" < Vg
types over A. m

Therefore, again under mild conditions on the language
K NIP — K Falsifiable.
We observe that VC finiteness is not equivalent to universal axiomatizability.

Proposition 2.14. There exists an NIP T such that T is not universally axiomati-
zable. There exists a universally axiomatizable T" such that 7" is not NIP. ¢
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Proof. Let DLO be the theory of dense linear orders in the language £ = {<}. Then
T is not universally axiomatizable as all of its models are infinite and the language
is relational. Concretely, we know Q F DLO but no finite subset X C Q is a model
of DLO. Since L is relational, X is a substructure.

On the other hand, let T" be the (incomplete) theory of acyclic directed graphs in
the language R(z,y). T is universally axiomatizable by the collection ¢, of sentences
defined by

On = (Vx1,...,2,)" (R(ZL’n,iL‘l) A /\ R(J;i,xi_l’_l)) .
1<i<n
This class is not NIP as for each n the bipartite digraph G,, on a disjoint set of
vertices [n] U 2" given by R(i, X) <+ i € X satisfies

G, F=VC,(R(x;y))

and is a model of T'. O

Useful Examples of NIP Theories and VC finite Classes

The preceding section describes the relationship between NIP theories, VC finite
classes, and falsification, but further argument is required to demonstrate that these
phenomena actually appear in the kinds of hypotheses we seek to falsify.

To this end, the following powerful theorem proves the VC finiteness of a very
wide class of geometrically-definable hypotheses.

We assume that the reader is familiar with the notion of an analytic function.

Definition 2.11. [10] Let A;_; ;) be the set of functions f : [-1,1] — R which
extends to an analytic function on an open neighborhood U O [—1,1]. Let exp :
R — R be the exponential map exp(z) = e*.

The restricted analytic exponential real field R is the structure

R = (Ra +7 EE) 07 <, exp, (fj)ijA[_l,l])
The theory Ry, czp is the theory of the structure R. O

In this structure, parametric families of equalities and inequalities between ana-
lytic functions on compact rectangular domains are definable. The following result
shows that such families have finite VC-dimension:

Theorem 2.6. R,,, ., is NIP. Consequently, every first-order definable set in the
theory of Ry, czp has finite VC dimension. ¢
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Proof. That R, czp is 0-minimal is a classical theorem of van den Dries and Miller
[10], together with the result that every o-minimal theory 7' is NIP, which can be
found in Simon’s book [39, Theorem A.6]. O

This theorem is extremely useful because it implies that not only is any parametric
family of algebraic equations over a real field VC finite, but in fact any parametric
family of semi-analytic inequalities is VC finite. This is of the utmost importance
for examples stemming from physics, as it implies that even definable classes where
one includes a model of measurement error can be VC finite.

As an illustration, we consider the example of the family of fat lines. By a fat
line I mean a set L C R? such that (z,y) € L(x,y; a,b, ¢,r) just in case (x,y) is most
distance r from the line ax + by + ¢ = 0.

Proposition 2.15. The class L(x, y; a, b, ¢, r) of fat lines in R? has finite VC dimen-
sion. ¢

Proof. By [T'heorem 2.6, any set definable in the theory of R, ¢z is VO finite. Thus
it suffices to give an explicit definition of this family. This is easily done: the formula

¢(x,y;a,b,r) given by
lax + by + c|* < r(a* + b?)

is a formula in the language of Ry, ¢z and defines the family of fat lines. O

This suggests an explanation for why many physical theories are so readily falsifi-
able: many of the predictions of physical theories can be cast in terms of determining
membership in a real semianalytic set which expresses being some bounded error
away from an analytic or algebraic set.

Falsification and Model-Theoretic Dividing Lines

It turns out that other classification-theoretic conditions on K fail to guarantee fal-
sifiability:.
Recall from classification theory the following definitions:

Definition 2.12. Let ¢(7;7) be a partitioned formula. We say that

1. [37, Theorem 2.2.3(2)] ¢ is stable if there is no set (c,)new such that for every
k< w,

{90(37’ CO): 90('1;’ Cl)a U ,QO(ZL‘, Ck—l)u _'QD(ZL‘, Ck)v _'()0(‘%7 Ck‘-i-l)? T }nEw

is consistent.
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2. |12, Definition 2.2] ¢ is NSOP; if there is no set of tuples {c, | o € 2<“} such
that

a) (Branch consistency) for every 7 € 2* the set

is consistent, and
b) (Lateral inconsistency) The set
{o(@, conqry, (@, ¢4)}
is inconsistent for all v D o N (0) .

A theory T is stable (resp. NSOP;) provided every formula in 7T is stable (resp.
NSOP,). ¢

Jetdbek [21], and, independently, Kruckman and Ramsey [27] showed that

Theorem 2.7. Let £ be a language. Then the model companion of the empty theory
T7 exists, is complete, and is

1. stable if £ is unary,
2. unstable NSOP; for any non-unary L.

Moreover, Vi (T7) contains only validities, so Mod(T7) is not a falsifiable class. ¢

Proof. We prove only the “moreover” clause. The proof of the rest can be found in
[21, Theorem B.1].

Suppose that ¢ is a V; sentence in £ that is not a validity. We wish to show that
T F ¢. Without loss of generality we assume that

o= (Vri,...x)0(T1,. .., 2)

with ¢ (zq, ..., x,) quantifier-free. Since ¢ is not a first-order validity, - is satisfiable
and is a 3y formula. Let M be an £ structure such that M E —¢. Since T7 is the
theory of existentially closed L-structures, M embeds into a model M’ E T. By
construction, M’ E =, so ¢ ¢ TF. O
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To be sure, there exist falsifiable NSOP; classes. The theory of the random graph,
for instance, contains the universal theory of graphs, which in particular includes the
non-logical validity

VaVy(R(z,y) < R(y,x)).

In short, NIP classes of structures yield examples of falsifiable structures in-
comparable to the notions we have thus far discussed. Thus, our picture of the
relationship between falsifiable classes of falsifiability now looks like (again assuming
mild assumptions on K and £):

K Simple

!

K FIT K NSOP,

| |

K V; — Axiomatizable > | K Falsifiable | < K NIP

K has nontrivial UNCAF consequence

2.5 The Dynamic Case: Falsification and the
Accumulation of Evidence

Moving on to the dynamic case of falsification, we turn to the account of falsification
given by Formal Learning Theorists Juhl and Schulte [35]. For them, a hypothesis H
is identified with a set of possible worlds. They consider the case where H C 2“. For
them, such a hypothesis is always falsifiable provided that regardless of the results of
some finite collection of observations, the hypothesis still has the potential to be fal-
sified by some further collection of observational data. This, they show, is equivalent
to the topological notion of the nowhere density of H inside 2¥ equipped with the
product topology. This account gives a good account of long-run falsifiability, but
fails to give a satisfactory account of short-run falsification as there are no bounds
on how long it might take an agent to witness a crucial experiment. I define a sample
along a set X is given by:

Definition 2.13. A sample of X is an injective function f :w — X. A sample f is
full provided f is bijective. O
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Now, relative to a sample f we define a notion of the surprise of a hypothesis
along the sample as follows:

Definition 2.14. Let X be a set, f : w — X a sample of X, and H C 2¥ a
hypothesis. The surprise of H is the function

1 H T ]

S(H, f,n) =1 olf ()]

O

The surprise of H along the enumeration f is the relative proportion of the states
of the world incompatible with H. If H is highly surprising, then it is compatible
with only a small number of observations along the sample.

Very closely related to the NIP theories discussed in the static case of falsification,
the VC finite hypothesis classes are characterized by the ability to obtain uniform
bounds on surprise independent of sample.

Finally, we turn our attention to the work of Mayo [29][30], who advocates for a
strengthening of Null Hypothesis Statistical Testing as the foundation of statistical
testing called severe testing. Mayo and other error statisticians ask the question

When do data x provide good evidence for / a good test of hypothesis
H?

The error statistician will invoke some form of a Severity Principle to answer
this question:

(Weak Severity Principle) Data = does not provide good evidence for
H if x is the result of a test procedure T with very low probability of
uncovering the falsity of H[31], p. 21].

A converse is given by:

(Full Severity Principle) Data x provides good evidence for H to the
extent that test T has been severely passed by H|[31} p. 21].

However, the definition of severe testing via probabilistic notions is elusive. To
round out the discussion of falsification, I show that the notion of surprise I defined
in the context of always falsifiability is well-suited to give an account of a well-defined
combinatorial analogue of severe testing I term severe surprise.

Definition 2.15. Let f : w — X be a sample, H C 2% a hypothesis, n € w, and
e > 0. We say that (H, f,n) is severely surprising at level € provided the observed
data x € H[f([n})?

S(H, f,n) >1—c¢
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and

S(H, f,n) > S(H, f,n). O

Crucially, surprise is at its core a non-probabilistic notion. Key to this is the
observation that surprise is subadditive:

Proposition 2.16. For all H, f,n,
S(H, f,n) + S fn) <1 ¢

and, in fact, any dense-codense pair H, H¢ C 2% surprise 0 along any subsample.
This is due to the simple fact that H; NHo = @ does not entail that the restriction
of the hypotheses to a finite set Xy, Hi|x, and Ha|x,, are disjoint.

Under this definition of severe surprise, one can show that VC finite classes are
in fact severely surprising if true, uniformly in the size of the sample.

Thus, VC finiteness emerges as the core notion of dynamic case of falsification,
being robust under arbitrary samples and uniquely endowed with felicitous finite-
sample bounds.

The Formal Learning Theoretic Picture of Falsification

The learning-theoretic analysis of falsification given by Schulte and Juhl identifies
always falsifiability of a hypothesis H C 2% with the notion of nowhere density in
the usual product topology on 2%.[35, p. 10]

The framework of Formal Learning Theory, especially as developed by Kelly [25],
provides a formal model of learning through observation. Schulte and Juhl [35] lever-
age this framework to give a topological characterization of Popperian falsification.
On this model, an agent is idealized as being fed a countably infinite number of
observations encoded by natural numbers and determining at each step n whether
or not some property P holds of observation z,: if P(x,), output 1 and if =P(x,,),
output 0. Such a sequence is called a data stream. Mathematically speaking, a data
stream can be thought of simply as an element of Cantor space 2. An empirical
hypothesis is simply a set of data streams, and thus a subset of 2“.

Popper’s solution to the demarcation problem says that the distinguishing fea-
ture of a scientific theory—construed as an empirical hypothesis—is its falsifiability.
As Schulte and Juhl explain, a weak form of falsification is that under ideal circum-
stances the hypothesis can be conclusively ruled out on the basis of some observed
relation or relations termed a crucial experiment of the theory. However, if the cru-
cial experiment does not rule out the theory, it may be the case that there are no
other crucial experiments to run.
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A more robust notion of falsifiability—what they term always falsifiability—
demands a preponderance of crucial experiments: given any finite collection of obser-
vations there exists a crucial experiment which may conceivably be run in the future.
This notion expresses the idea that the scientific theory might never be confirmed at
any finite time, since there are always potential observational paths refuting it in the
future. Schulte and Juhl demonstrate that the always falsifiability of a hypothesis
H C 2% is equivalent to that hypothesis’ nowhere density in the usual topology on
2¢,

Within formal learning theory, a world is an element of 2 and a hypothesis H
is identified with the subset H C 2 of worlds in which H holds.

Given a hypothesis H C 2“, we construct a two-sorted structure My in the
language £ = {R(x,y),O(x), W (y)} as follows:

1. The domain of My is the disjoint union w U H,

2. The predicate O consists of all of the observations: M4y E O(z) just in case
TEwW

3. The predicate W consists of all of the worlds: My E W (y) just in case y € H.
4. My E R(z,y) just in case My E O(x) AW (y),x €y, and y € H.

In other words, the structure on My is the bipartite graph on w and H with each
world w € H encoding itself:

R(Mpy,w) = w.

It is worth noting that we can encode a lot of information into this framework.
For instance, consider the structure (Q, <) with < as the usual order on Q. Then,
enumerating Q? as w, we may regard the partitioned formula

oy, ) = >y A <y

as a hypothesis H, C 2. We identify an h € H with any one of its codes; that is,
h = p(x; hy, hy) for some hy, hy € Q. We then have a definable interpretation of the
bipartite graph
QUH,(Q)
with
R(x,h) <>z € h < (x € QA (o(x; h, ha)).

To make this fully model theoretic, the induced structure we study would not

be restricted to only countable models; instead we would concern ourselves with
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large, sufficiently saturated M € K and look at the induced bipartite structure with
domain

MUH,.

We see that this is even necessary to capture all intervals in Q with real endpoints;
restricting only to parameters hy, ho € Q we have only countable many elements in
H,(Q), but H,(R) NQ C 29 is strictly larger.

The above construction gives us a way to convert learning questions in model
theory with the setup of Formal Learning Theory.

To maintain consistency with the Formal Learning Theory literature, we will
work primarily in the standard setting of hypotheses H C 2“, knowing that we may
choose to encode mathematical structures into this framework as needed.

Popper Dimension, VC dimension, and the Topology of
Falsification

The learning-theoretic analysis of falsification given by Schulte and Juhl identifies
always falsifiability of a hypothesis H C 2% with the notion of nowhere density in
the usual product topology on 2%.[35, p. 10]

There is an equivalent description of the notion of always falsifiability in terms
of the fundamental machine-learning theoretic notion of shattering.

Definition 2.16. Let # C 2% be a hypothesis and X, C X. Then H is said to
shatter X, provided that the restriction of H to X,

Hix, = {hlx, | h € 1},

satisfies

Hy = 2%, O

0

One may give an equivalent definition of always falsifiability in terms of shatter-
ing, following the account of [36].

Definition 2.17. Let H C 2% be a hypothesis. Let f : Xy — 2 be a function defined
on a finite subset Xy C X. Given such a function, let Hy = {h € H|h D f} be the
set of functions in H extending f.

The Popper dimension dp of H relative to f is the size of the smallest subset of
X \ dom(f) not shattered by H. More precisely:

dp(H, f) =min{]Y| | Y C (X \ dom(f)) is not shattered by H; }.



CHAPTER 2. ON FALSIFICATION 47

We say that H is hereditarily Popper finite provided 0p(H, f) is finite for all f :
Xo — {0, 1} with finite domain. O

Proposition 2.17. H is always falsifiable if and only if H is hereditarily Popper
finite. ¢

Proof. Suppose that H is hereditarily Popper finite. To show that H is nowhere
dense, first suppose that U C 2% is a basic open set, say U = U, for some string s.
We need to show that H N U is not dense in U. It suffices to show that there exists
a nonempty basic open V' C U such that HNV = @. Since H is hereditarily Popper
finite, there is a finite n such that dp(#, s) = n < co. Then there is a string ¢ D s of
length |s| +n + 1 such that ¢t ¢ H,. Thus H N U, = @. Since U was arbitrary basic
open, H is nowhere dense.

Conversely, if H is not hereditarily Popper finite then there exists a finite subset
Xo C X and f: Xy — {0,1} such that all finite subsets Yy C X \ X are shattered
by H¢. This precisely says that the nonempty basic open set Uy is such that H N Uy
is dense. Thus H is not nowhere dense. ]

A stronger condition than hereditary Popper finiteness—the context of Vapnik’s
PAC learnability—is that of VC finite classes.

Definition 2.18. Let H C 2% be a hypothesis. The VC dimension of H is the
maximal size of a set shattered by H:

dye(H) =max{|Y| | Y C X is shattered by H}. O

Proposition 2.18. 1. If H is VC finite then H is hereditarily Popper finite.

2. There exist hereditarily Popper finite H which are not VC finite.
¢

Proof. 1. This is essentially |36, Lemma 6.1]. By definition, for all finite z C X
op(H,x) < VC(H) + 1,
so that if H is VC finite then H is hereditarily Popper finite. O

2. Let
H={fe€2’|(Vn € weven)f(n) =0}

This set is hereditarily Popper finite as H shatters no set containing an even
number n, but is VC infinite as H shatters the collection of odd integers.
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Thus the VC finiteness of a hypothesis constitutes a stronger notion of falsifiability
than that of always falsifiability. It turns out that the added constraints of VC
finiteness are precisely what are needed to yield sample-independent bounds on the
prevalence of crucial experiments.

Surprise and Observational Studies

Over countable data streams, one can define a probability-independent notion of the
surprise of a hypothesis H C 2.

Definition 2.19. Let X be countable. A sample of X is an injective function f :
w — X. A sample f is full provided f is bijective. O

Definition 2.20. Let X be countable, f : w — X a sample of X, and H C 2% a
hypothesis. The surprise of H is the function

Hl (o
SO ) = 1= S 0
The surprise of H along the enumeration f is the relative proportion of the states
of the world incompatible with 7. Surprise is a quantitative, probability-independent
measure of falsifiability:

Proposition 2.19. Suppose that X is countable, f : w — X is a sample, and
H C 2% is a hypothesis. Then there is a crucial experiment of H along f at stage n
if and only if S(H, f,n) > 0. ¢

Proof. By definition, a crucial experiment occurs just in case |’H[f([n])| < 2lf (DI,
which is equivalent to saying that

S(H, f,n) > 0. O

In the case that H is VC finite, the Sauer-Shelah lemma allows us to give uniform,
enumeration-independent bounds on the surprise of H. The Sauer-Shelah lemma
shows that the growth function of a hypothesis class is polynomial once the sample
size exceeds the VC dimension of the class:

Lemma 2.1. Let H be a hypothesis class of VC dimension d. Then for all m, the
growth function

(m) = max{|H|y| | Y C X and |Y| =m}
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satisfies the inequality
d
m
< .
i =3 (7)
In particular, if m > d + 1 then
em\ @
mu(m) < mu(m) < (<) ¢
Proposition 2.20. Let X be countable and H C 2% a VC finite hypothesis. Then
for every € > 0 there is an m > 0 such that for all enumerations f: X — w
S(H, f,m)>1—e.

Moreover, for all enumerations f

lim S(H, f,m)=1. ¢

m—o0

Proof. By the Sauer-Shelah lemma (Lemma 2.1), we have for m > d+1 the inequality

em\ 4
< < |—
S<H7f7m) = T’H(m) = ( d )
so that for all enumerations f : X — w,
(em)?
S(H, f,m) >1— omgd
As m — oo, %%Oandso
lim S(H, f,m)=1. O

m—ro0

On the other hand, in the case of a VC infinite class there exist samples on X
with surprise 0 for unbounded time:

Theorem 2.8. Let X be countable and H C 2% a VC infinite hypothesis. Then for
every m there exists a sample f,, : w — X such that for all k < m

S(H7fm;k):0 ’

Proof. Since H is VC infinite there exists a set X,,, C X of size m which is shattered.
Let f,, be any enumeration of X enumerating X,, first. Then for all £ <m

1 s | 2

This result has the following epistemic interpretation: for an agent undertak-
ing observational inquiry, VC infinite classes may take unboundedly long to yield
nontrivial surprise.
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Falsifiability and Control Studies

In the previous section we saw how an agent in an impoverished epistemic state—
only being able to conduct purely observational studies without any way to alter
the data stream—is guaranteed short-run falsifiability of a hypothesis H just in
case the hypothesis is VC finite. In this section we characterize the falsifiability
of a hypothesis H in terms of the existence of certain selectors—to be thought of
as an agent’s sequential choice of objects amongst those in X—witnessing crucial
experiments.

For example, consider a simplified account of a particle collision experiment
wherein at each time t the scientist observes the collision of two elementary par-
ticles and the output is recorded. If the hypothesis H in question is a hypothesis
concerning the result of a collision between bosons, then the scientist may have to
wait an unboundedly long time witnessing irrelevant experiments (e.g. proton-proton
collisions). To make the hypothesis efficiently falsifiable requires some form of control
over the sampling procedure. To this end we define the notion of a selector.

Definition 2.21. A selector s : w — X is an injective sample. O

The always falsifiability of a hypothesis is a necessary and sufficient condition for
the existence of efficiently falsifying the hypothesis with a selector.

Proposition 2.21. If H is always falsifiable provided then there exists a selector
s : w — X such that for each m, a crucial experiment will be performed by sampling
s([0,m + k]) where k = 0p(H, s[m]).

Moreover, if for every string x € 2% for Xy C X finite there is a selector s such
that s([m]) = = and from m + 1 onward satisfies that a crucial experiment will be
performed by sampling s([0, m + k]) where k = 0p(H, s[m]). ¢

Proof. We construct s : w — X in stages:

e (Stage n = 0) Suppose 0p(H,D) = k < oo Let s(0),...,s(k — 1) enumerate
any set Y C X witnessing dp(H, @) = k.

e (Stage n = m + 1) Suppose 6p(H,s([m])) = k < oo and suppose that s is
defined on range [¢]. Then define s(£+1),...,s(¢ + k) so as to enumerate any
set Y C X witnessing dp(H, s[m]) = k.

By construction, s is injective and defined on all of w, so s is a selector.
The converse is immediate from the definition of hereditary Popper-finiteness. []
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We interpret this result as saying that a hypothesis class is always falsifiable just
in case an agent able to select data along a selector s as in [Proposition 2.21| can
falsify H with sample bounds given by the Popper dimensions dp(H, s([n])).

VC Finiteness and Inferring Always Falsifiability on
Subsamples

In the setup considered above, we looked only at the always falsifiability of a hypoth-
esis over a fixed, countable sample set X. However, in typical scientific inference we
typically wish to probe a hypothesis H with the aid of some (possibly incomplete)
sample of the world. In fact, we study hypotheses knowing full well that our sam-
pling capabilities are bounded: we cannot directly perform tests in the ancient past
or beyond the observable universe.

This would be no issue if the inference

1 | H is always falsifiable.

2 ‘ Hy is always falsifiable.

were true for all subsamples Y C X. However, this inference is invalid. Recall
from topology that the interior of a set X, int(X), is the union of all open subsets
U C X, and the closure of the set X, X, is the intersection of all closed subsets
C O X. Nowhere density of a set X is typically defined by

int(H) = @.
In the case of finite subsamples, recall that
Proposition 2.22. The only nowhere dense subset of 2" is &. ¢

Proof. The product topology on 2" is the discrete topology, so the interior and closure

operators on subsets H C 2" are equal to the identity operator. Thus, int(H) = @
just in case H = . m

From this observation it follows that

Proposition 2.23. Suppose that H C 2 is nonempty. Then for all Y C X finite
nonempty, H [y is not nowhere dense. ¢

Proof. Suppose that H is nonempty. Then H[y is nonempty, so cannot be nowhere
dense by [Proposition 2.22| ]
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This result should not surprise us; after all, if there are only finitely many obser-
vations to be made then there will not always exist a further crucial test to perform
as required by always falsifiability.

Less trivially, we can exhibit the existence of nowhere dense hypotheses H such
that the inference

1 | H is always falsifiable.

2 ‘ Hly is always falsifiable.

fails on a continuum-sized ideal of samples Y C 2v.

Proposition 2.24. Let X C w be infinite-coinfinite. Then there exists a nowhere
dense Hx C 2¢ such that for all Y C X, Hx|y = 2¥ and therefore not nowhere
dense. ¢

Proof. Define Hx as the set of all functions f : w — {0,1} such that f(z) = 0 if
ré¢ X.
Because X is coinfinite, the set Hx is nowhere dense: every x ¢ X yields a crucial

experiment. Moreover, Hx |y = 2% by definition, and likewise for any ¥ C X we
have that Hx [y = 2¥. O

While nowhere dense over the full sample set w, the hypotheses Hx fail to be
always falsifiable on any ¥ C X.

On the other hand, the stronger notion of VC finiteness is preserved under the
implication above:

Proposition 2.25. For all Y C X the inference rule

1 | ‘H is VC finite.
2 ‘ Hly is VC finite.

is valid. ¢

Proof. Observe that if Yy C Y is shattered by H[y then Y} is itself shattered by H.
Thus
VC(HIy) S VC(H)

so HN2Y is VC finite. O

VC finiteness does not, however, characterize those hypothesis classes which are
hereditarily nowhere dense.



CHAPTER 2. ON FALSIFICATION 53

Proposition 2.26. Partition w = J X,, where each |X,| = n. Let H = |J 2%~.

new new
Then
1. for every infinite Y C w, H [y is nowhere dense in 2¥, and

2. H is VC infinite. ¢

Proof. By construction, H shatters only finite sets, so is hereditarily Popper finite.
‘H is VC infinite since, by construction, it shatters arbitrarily large sets. O]

Despite this, there is a precise sense in which one can say that if H C 2v is
a hypothesis of infinite VC dimension then the structure My is observationally
indistinguishable from a structure A such that that an infinite set is shattered by
the relation R.

Proposition 2.27. Let H C 2 be VC infinite. Then there exists an N elementarily
equivalent to My, such that the interpretation of H in N, H*, shatters an infinite
set. ¢

Proof. Let N be a sufficiently saturated nonprincipal ultrapower of M. Then
N =w" UH"

defines the structure of a hypothesis set on 2¢*. H* is regarded as a subset of 2" by
way of the interpretation of the relation R. That is, we may regard

NE R(n*,h*) <> n* € h”

as the definition of an embedding H* C 2.
By saturation, N shatters an infinite set as H shatters arbitrarily large finite
sets. O

We note here that the A as constructed in the above proposition is elementarily
equivalent to My. This suffices to conclude that, in a strong sense, no finitistic
agent will ever be able to discern between My and N. This is due to the equivalence
between elementary equivalence and finitary back-and-forth equivalence.

Definition 2.22. |16, Definition XI.1.1] Let M and N be L-structures. A partial
function f: M --+» N with domain dom(f) C M and range rg(f) C N is a partial
1somorphism provided

1. f is injective,
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2. f preserves all relations, function symbols, and constants in L. O

Finitary back-and-forth equivalence is a property about being able to extend
arbitrary partial isomorphisms with finite domain:

Definition 2.23. [16| Definition XI.1.3] Two L-structures M and N are finitarily
back-and-forth equivalence provided there is a sequence (I,,),e. such that

e Every I, is a nonempty set of partial isomorphisms from M to N,

e (Forth) For every f € I,,; and a € M there is a g € I, with ¢ O f and
a € dom(g)

e (Back) For every f € I,.; and b € N there is a g € I, with ¢ O f and
a € rng(g). O

The definition of finitary back-and-forth equivalence has an immediate epistemic
interpretation. Two structures being back-and-forth equivalent means that any fi-
nite quantifier-free relation in M can be witnessed in N and vice versa. Thus, no
finite amount of observation of quantifier-free formulas can discern between M and
N F_U] Fraissé’s theorem relates finitary back-and-forth equivalence with elementary
equivalence:

Theorem 2.9. |16, Theorem XI.2.1] Let £ be a finite language. Two L-structures
M and N are finitely back-and-forth equivalent if and only if they are elementarily
equivalent ¢

Thus, even if H happens to be nowhere dense, VC infinite yet does not shatter
an infinite set, in a strong sense H is observationally indistinguishable from one in
which which does shatter an infinite set.

This result illustrates an effect of the underlying framework of Formal Learning
Theory: it works assuming an agent knows the extensional specification of the space
of observations (w) and hypotheses (#) on the nose. However, bounded agents may
only grasp the domain of observations and hypotheses intensionally, and thus know
the hypothesis and sample domain only up to back-and-forth equivalence.

10The astute reading will note that the definition of back-and-forth equivalence requires partial
isomorphism between finitely-generated substructures, which in the case of a language with function
symbols may be infinite. One may remedy this by nothing that any theory T in a language £
containing constant and function symbols is biinterpretable with a theory 7" in a purely relational
language, where the finitely generated structures in a relational language are precisely the finite
structures.
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Viewed in this light, the VC finite classes emerge as precisely the class of nowhere
dense hypotheses invariant under observable indistinguishability by finitistically bounded
agents.

VC Finiteness is Not a Topological Notion

In this section we argue that the topological and descriptive set theoretic tools relied
upon in formal learning theory are too coarse to adequately study the short-run
properties of the hypotheses of the sort encountered in machine learning.

A unifying theme of theoretical machine learning is identifying combinatorial
notions of dimension on hypotheses such that ”finite dimensional iff learnable” is
true. These notions of dimensions standardly have the structure of a nontrivial set-
theoretic ideal on 2% in the case that X is an infinite set. Two examples of such
dimensions are VC' dimension, characterizing the PAC learnable hypotheses, and
Littlestone dimension, characterizing the online-learnable hypotheses.

Following the analysis of [9] we investigate the topologies arising from such ide-
als and conclude that the natural topologies fail to satisfy the standard metrization
requirements of Formal Learning Theory. Instead, combinatorial measures of hy-
potheses are better equipped to handle such questions.

To illustrate this general point, we see that the class of VC finite hypotheses
cannot be realized as the nowhere dense sets in a Hausdorff topological space. The
arguments here are drawn from the analysis of topological properties of set-theoretic
ideals given by Cieselski and Jasinski in [9)].

Proposition 2.28. The set of VC finite families on an infinite set X,
Ive(X)={Y|Y C X and VC(Y) < o0}
forms a proper ideal in 22" ¢

Proof. First, 2% ¢ Iyo(X) since, by definition, 2% shatters an infinite set. Moreover,
it is clear from the definitions that if Y € Iy and Z C Y then Z € Iy since every
set shattered by Z is shattered by Y.

Finally, the Sauer-Shelah lemma implies that if Y, Z € Iy then Y U Z € [y ¢
since the growth function of the union is polynomial. O]

The fact that Iy ¢ has the structure of a proper ideal on 2% means that we
may construct a topology in which the VC finite sets are precisely the closed sets.
However, this topology is non-Hausdorff.
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Proposition 2.29. The collection
7(2%) = 22X\ H|H € Ive(X)} U {2}
of subsets of 2% forms a non-Hausdorff topology on 2¥. ¢
Proof. Since Iy¢(X) has the structure of a set-theoretic ideal, the collection
Fyo(X) = {2"\H|H € Ive(X)}
is a nontrivial filter on X. Thus, the collection
7(2Y) = Fye(X) U {2}

is closed under arbitrary union, finite intersection, and contains @ and 2.
This topology is non-Hausdorff: for any U,V € 7(2%),

UnNV=g)-U=2VV=0)
since @ ¢ Fyo(X) and Fyo(X) is closed under finite intersection. O

Moreover, no Polish space can make all VC finite sets closed.

Proposition 2.30. Let X be countably infinite. Then there are 22°° VC finite
subsets of X. In particular, no Polish topology renders all VC finite sets closed. ¢

Proof. Since Iy ¢ is closed downward, it suffices to show that there is an uncountable
VC finite subset of 2.

Identifying X with , we may identify the family of intervals H = {(r,o0) |r € R}
with a VC finite subset of 2. This family has size 2%, so |[Iy¢| = 22°.

Since Polish spaces have at most 2% many closed sets, no Polish space renders
all VC finite subsets closed. O]

Finally, we identify a mild condition on topologies guaranteeing that the ideal of
nowhere dense sets does not coincide with the ideal of VC finite sets.

Theorem 2.10. Let X be infinite. There is no topology 7 on 2% such that

1. There is a countable disjoint collection of nonempty open sets U, such that
each U, shatters a set of size > n,

2. Every VC finite H is nowhere dense, and
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3. Iye(X) = Lu(X). ¢

Proof. We follow the proof strategy outlined in |9, Thm 3.4] by showing that if 7
were a topology on X making all VC finite sets nowhere dense then there is a VC
infinite nowhere dense subset.

By hypothesis 1, there exists a countably infinite set of disjoint open subsets U,
shattering a set of size > n.

Let H, C U, be a finite hypothesis class shattering a set of size n. Then the
hypothesis H = |J H, shatters arbitrarily large subsets by construction, and is

new
nowhere dense as each H,, is finite and concentrated on a single open set U,,. O

In particular, the standard results of descriptive set theory—requiring that the
topology in question be Polish and hence Hausdorff—do not apply to any topology
rendering the learnable sets nowhere dense.

2.6 Rigorous Foundations for Severe Testing

Null Hypothesis Statistical Testing (NHST) is a ubiquitous method of statistical
inference. As Wasserman [51, Chapter 10| describes it, the basic data of a Null
Hypothesis Statistical Testing consists of

1. A space © of probability distributions on sample space €2,
2. A partition © = Hy U H;

3. A random variable T : 2 — R called the test statistic,

4. A critical value ¢ € R.

In the setup of a two-sided test, it is assumed that the null hypothesis H, is a single
distribution, i.e. Ho = {6y}, and therefore unambiguously determines a probability
measure [Py, that we may use to infer probability statements about the test statistic
T. To reject hypothesis Hy, a statistical version of modus tollens is invoked, by
replacing Ho — (T'(z) < ¢) with Py, (T(z) > ¢) < e

1 | Py (T(z) >c) <e
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Mayo and other error statisticians instead advocate for a modern recasting of
NHST—severe testing—as the appropriate framework guiding the use of statistical
methods. Central to the error statistician is the question:

When do data x provide good evidence for/a good test of hypothesis H?

The error statistician will invoke some form of a Severity Principle to answer
this question:

(Weak Severity Principle) Data = does not provide good evidence for
H if x is the result of a test procedure T with very low probability of
uncovering the falsity of H |31} p. 21].

A converse is given by:

(Full Severity Principle) Data x provides good evidence for H to the
extent that test 7' has been severely passed by H (31, p. 21].

The error statistician naturally asks which hypotheses are amenable to error-
theoretic analysis. This question is of utmost importance as the Full Severity Princi-
ple suggests the following account of scientific content: the hypotheses H that have
scientific content are precisely those which are severely testable. But what is the
definition of severe testing?

The notion of severe testing as described by Mayo is defined as follows:

Definition 2.24. A hypothesis H passes a severe test relative to experiment E with
data z if (and only if):

i x agrees with or “fits” H (for a suitable notion of fit), and

ii experiment E would (with very high probability) have produced a result that
fits H less well than x does, if H were false or incorrect. [29, p. 99 O

We turn now to discussing prongs (i) and (z7) in the above definition.
Regarding (i), Mayo writes that “fit” should at the very least be

P(x; H) > P(x;—H)
arguing that

any measure of evidential relationship, degree of confirmation, probabil-
ity, etc., can be regarded as supplying a fit measure. Severity can then be
assessed by computing the error probability required in (ii). [29, p. 124]
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If the notation P(x; H) is unfamiliar, that is for good reason: Mayo explains that

«@,”

[ am using “;” in writing P(x; H)—in contrast to the notation typically
used for a conditional probability, P(z|H)—in order to emphasize that
severity does mot use a conditional probability which, strictly speaking,
requires that the prior probabilities P(H;) be well-defined for an exhaus-
tive set of hypotheses. |29, p. 102]

This is on the face of it a key departure from the framework of NHST, which requires
us to only work with probability sentences involving Py, . A serious difficulty for this
account of severe testing is that no general construction of P(z; —H) is given.

For example, let H, C 2¥ be the a statement such as “the long run relative
frequency of heads in a countable sequence coin flips is equal to r.” The complement
He C 2¥ can be decomposed as the disjoint union

He =My U JH,
S#T

where H4 is the set of all infinite binary strings with non-convergent limiting relative
frequency as well as H, for all ' # r. Moreover, H+ and H, are dense and codense
in 2¥; so the complement H¢ has rich topological structure. There is no clear way to
construct a probability measure that amalgamates all H¢ into a probability measure
Py (x; H) if one does not avail oneself to an aggregation function such as a Bayesian
prior.

Even restricting only to the probability distributions on {0, 1}, which we identify
with the interval [0, 1], non-Bayesian methods of aggregating families of probability
distributions—such as the Maximum Likelihood Estimator—are generally not well-
defined. Recall the definition of the Maximum Likelihood Estimator [51, Definition
9.7]

Definition 2.25. Let © be a family of distributions over 2 and X;,..., X, :w — R
be an IID set of random variables. The likelihood function is given by

L. (0) =[] rx:0)
i=1
where the f(Xj;60) are the probability density functions of the random variables X;
with respect to distribution 6. O

The maximum likelihood estimator is typically defined as the value MLE(0,n) €
© maximizing £,(0). However, this definition is misleading, as M LE(0,n) may fail
to exist or to be unique.
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First, the Maximum Likelihood Estimator may fail to be unique. Let © = {0, 1}
be the space of distributions asserting that all flips of a coin are heads or tails.
Confronted with observations T = (H,T'), the likelihood functions have values

£5(0) = 0 = L,(1)

and so both 0 and 1 maximize the likelihood function relative to 6.

Second, the Maximum Likelihood Estimator may fail to exist within ©. Let
Ho = {3} and Hy = H§ = [0,3) U (3,1]. Suppose that T = (H,T). A routine
calculation [51, Example 9.10]

L) =] pi (0 —pu) X =pf x 1 —pu)"™°
=1

where S is the number of heads in the sequence of coin flips. Taking the derivative
of £,(0) and setting it to zero we find that 6 = % is the unique maximum likelihood
estimator on [0, 1] with likelihood 1. While 1 ¢ H, this does not on its own show that
the Maximum Likelihood Estimator does not exist in H;. In fact, any paritition of a
compact connected space © = H;UHs into nonempty subfamilies of distributions will
suffer this defect since the existence of a § € H; maximizing likelihood is guaranteed
only if H; is closed. However, it is not hard to see that the image £, (H;) = [0, }L) In
other words, the likelihood function on H; is arbitrarily close to i but never obtains
that value. So, no maximum likelihood estimator exists on H;. Thus, the standard
frequentist method of aggregating probability distributions in light of data is not
even generally well-defined, and cannot serve as a definition of P(z; —H).

Regarding condition (ii) in the definition of severe testing, Mayo requires the
satisfaction of the following conditional: if H is false, then £ would have produced
a result that fits H less well than x does with high probability. In this conditional,
we assume that H is false and tasked with computing some probability given —H
and the specification of the experiment E. This poses a serious problem for her
account of severe testing; she gives no general theory of semantics for the probabilistic
statements comprising the definition of severe, as no method for determining how to
construct a probability distribution Py -3 from experiment E is given. With no way
to determine what a “good” probability distribution is, it is difficult to make sense
of this.

For instance, consider the case of the hypothesis Hy expressing “all flips of a coin
are heads.” Let E, be the experiment given by flipping the coin some very large
number n of times. Then, given such an experiment F,

Proposition 2.31. Let ¢ > 0. There exists a probability distribution P,, on {H, T}
such that the probability py of flipping at least one tails T on n IID flipsis <e. ¢
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Proof. Let PP be a probability distribution on {H,T}. Let py be the probability of
heads. The probability p of flipping at least one tails 1" on n i.i.d. flips is

P(At least one Tails) = 1 — P(All Heads) = 1 — pY;.

Let € > 0. Then
P(At least one Tails) = 1 — p}, < ¢

is equivalent to saying )
pr > (1 —¢)n. O

The upshot is that the specification of the experimental setup itself does not
determine a priori the relevant probability distribution is. Moreover, this hypothesis
is as falsifiable as it can be: for each coin flip, H is compatible with only a single
outcome. Yet, on a strict reading of Mayo’s definition, H cannot be severely tested.

Rather, it seems to me that the combinatorics of the hypothesis—not any no-
tion of probability—are what make H severely testable. The critical element of
Mayo’s definition of severe testing is that the data x be compatible with H and—
simultaneously—highly incompatible with —7. That is, for a hypothesis H to be
severely tested by an experiment with n observations z, we would require:

1. x € Hr[n], and
2. Hlpy < HE M-

These requirements are precisely captured by the previously-defined notion of sur-
prise: if Hlp,; < HO[, then i« Mlml (. This motivates the following

2 Hl )
definition:

Definition 2.26. Let f : w — X be a sample, H C 2% a hypothesis, n € w, and
e > 0. We say that (H, f,n) is severely surprising at level e provided the observed
data z € Hrf([n})a

S(H, f,n) >1—¢

and

S(H, f,n) > S(H, f,n). O

Taking a step back, it is worth relating this definition back to probability the-
ory. Crucially, the definition of surprise is non-probabilistic in the sense that there
probabilistic frequency semi-measure lurking in the background:
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Definition 2.27. Let f : w — X be a sample and n € w. For every H € 2¢
frn 29 — [0,1] as follows:

HT ()]
ﬂf,n(H> - 2f,(L[ ]) .

Proposition 2.32. Let f : w — X be a sample and n € w. Then u = puy, is a
bounded sub-additive function on 22°. More precisely, for H;, Hs € 2* we have

p(Hi UH2) < p(Ha) + p(Ha).

O

Moreover, a necessary and sufficient condition for the inequality above to be strict
for Hq, Ho € 2¥ is that
Hal gy O Hal )y # 2

Finally, every dense-codense D C 2¢ satisfies (D) = u(D¢) = 1 so that
p(DUD) =1<2=p(D)+ pu(D°). ¢

Proof. Expanding terms, we find that

Halpgapl + [ Hal gyl
p(ts) + ) = A ten L Pl
|(7‘11 £ \ el g 20(Hay ) O Ha T ppy) |+ [(Fal ) \ Hal g
2n
S [(Ha Ty \ Halpp) ]+ 1H T gy N Ha )|+ T H2 T gy \ Hal )]
> 5
= p(H1 U Ho)

By the above chain of equalities, we see that

Hal iy N Hal (i
W)+ i(Ha) — (M UHy) — |l O Hal o))

2n
Now, while H; N H, = &, that does not imply that (Hi[ () N Hal f(()) = 2-
Finally, suppose that D is dense-codense. Then D| ) = = 2f(I") = = D°| 4(jn)), SO
24|
1(D) = u(D) = 27| =1 =

The relationship between 7, and the surprise function S(—, f,n) is that
S(H, f,n) =1—psn(H).

Therefore
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Proposition 2.33. For all H, f,n,
S(H, fin) + S fin) <1
Proof. Immediate from the sub-additivity of py,, O]

Remark 2.1. While the surprise function S(H, f,n) has a direct epistemic interpre-
tation, the above the co-surprise function has structure reminiscent of a probability
measure. Let S®(H, f,n) = S(H®, f,n). Then

1. S°(@, f,n) = S(2°, f,n) = 0,

2. 5°(2¢, f,n) = S(@, f,n) = 1,

3. S(H, f,n) + SO(HE, f.n) = S(HE, f,n) + S(H, f,n) < 1, and
4. if Hy C Ho then S©(Hy, f,n) < S(Ha, fon) as HS D H.

Co-surprise fails to be finitely additive, as any dense-codense subset D of 2 has
S°(D, f,n) =0=5°(D f,n) as

_ of(In) _ e
Dl = 2" = DM s ()

so is not a measure.

In fact, this function is very far from being a measure in the sense that the maxi-
mal Boolean subalgebra of 22° on which S®(—, f, n) is a finitely additive probability
measure is rather small. For each s € 2/(") let

Jo={he2X|hDs).

It is clear that
H i)y VH T s )y = 2

just in case for some S C f([n])

H=J7,

seS

for if 7,NH # @ and J, N H® # & then

Hl ) VH Ty 2 {8} # 9
From this observation it is we may conclude that the Boolean algebra

Apn={T:|s € Qf([N])} C 92%
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is the maximal Boolean algebra on which S is a probability measure.

This Boolean algebra is naturally isomorphic to 2/(") generated by the assign-
ment J, — s. Under this identification, S®(—, f,n) coincides with the uniform
measure on 2/(");

1
Sco(‘ys’f, n) = 2_n

Remark 2.2. There is a notion of conditional co-surprise analogous to conditional
probability. Since S% is monotonic, if H,J € 22° then

Se(HNT)
ST7TH) = —F—7—
\7( ) Sco(j)
is a well-defined function on 22° with range [0, 1] whenever S¢(7) # 0. ¢

Thus, while 22° has large cardinality, $(—, f,n) is only a probability measure
on a subalgebra of size 2", identifiable with the uniform measure on 2". ¢

[Proposition 2.33| implies that

Proposition 2.34. Suppose that (H, f,n) is such that S(H, f,n) > 1 —¢€ for 0 <
€< % Then (H, f,n) is severely surprising at level € < %
In particular, if € < % at most one of H, H¢ is severely surprising at level e. ¢

Proof. Immediate from the above inequality on surprise. O]

On the other hand, it is possible for neither H nor H¢ to be severely surprising
along sample f by observation n.

Proposition 2.35. Let H C 2% be dense-codense. Then for all f and n,
S(H, f,n) = S(H", f,n) =0. ¢

Proof. We show the argument for H assuming density; the case of H¢ follows by
codensity of H. Since H is dense, H| () = 2/ 50

ygf([n])‘

Nevertheless, VC finite classes of hypotheses provide us with a great wealth of
severely surprising hypotheses:
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Proposition 2.36. Let H C 2% be VC finite. Then for every % < € < 1 there exists
an n = n(e) such that for every injective sample f : w — X, if z € 2/(") 0 A then
‘H is severely surprising at level e. ¢

Proof. By |Proposition 2.20, there exists an n = n(e) such that S(H, f,m) > 1 — ¢
for all injective f: w — X and for all m > n.

Thus, it remains to show that S(H, f,m) > S(H¢, f,m) for all m > n. There are
two ways to see this. First, and most directly, by [Proposition 2.33|S(H, f,m) > 1—e¢
implies that S(H¢, f,m) < e.

We can obtain better bounds, however, by the VC finiteness of H. Since H is VC
finite, without loss of generality we may assume n is taken to be sufficiently large
so that |H[ | = p(m) for some polynomial, with [H[ ;| = 2™ — p(m) ~ 2™.
Thus not only is, S(H¢, f,m) < S(H, f, m) for all m > n, we have in fact that

_2M=r (m)HHT 5 () A ()|

S(Hcaf7m)_]‘ 2m
S(H, f,m) 1 — Tyl

(M) — [HT ¢ OHET (g
2m — Ty(m)

~o (5 )
(

noting that since
H Ly O H T | < THT pgap| = 7a(m)
we have
Tr(m) = [H1 gy O HE T g < Tr(m). O

So, if H is VC finite then not only is H severely surprising to level € if the data x
is compatible with #, but the ratio between S(H, f,m) and S(H¢, f,m) shrinks at

maeg(T)
2m
For an explicit example, the hypothesis of H that “all coin flips are heads” is VC
finite. If H is true, H will be severely surprising to level € so long as the number of

flips n satisfies

a rate ofO(

n > log(e™),
and since [H[ )| = 2" we have that

S(H, f,n) =0
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for all f and n.
As in our discussion of the Formal Learning Theoretic account of falsification,
VC finite classes emerge as a distinguished class of highly-testable hypotheses.

2.7 Conclusion : Shattering as the Fundamental
Concept of Falsification

The stated goal of this chapter was to take stock of the various modes of falsification
that have been studied since Popper’s initial definition of falsifiability. Over the
course of this examination, the central importance of the notion of shattering became
clear:

1. failing to shatter a set X is the same as saying that H has forbidden configu-
ration over X,

2. the class of NIP structures has uniquely strong falsificational content as com-
pared to the NSOP; dividing line in classification theory.

3. the nowhere density of a hypothesis can be defined in terms of shattering,

4. The VC finite classes are precisely the nowhere dense classes closed under
elementary equivalence, and

5. The VC finite classes are uniquely suited for severe testability, as viewed
through the lens of severe surprise.

It is no doubt that Vapnik himself—one of the originators of VC dimension—
would not be surprised by the primacy of the notion of shattering. While he phrased
his results primarily in terms of the equivalent notion of uniform two-sided con-
vergence of the FRM method of learning, he gives a probabilistic analogue to the
above characterizations of VC finite hypotheses as the class of effectively falsifiable
hypotheses, writing that

if for some some [hypothesis H] conditions of uniform convergence do not
hold, the situation of nonfalsifiability will arise.[48, page 49]

It is my hope that this chapter has bridged the gap between the Vapnikian account
of probabilistic falsification as the study of VC finite classes with the combinatorial,
logical, and topological accounts of falsification we have heretofore discussed.
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Chapter 3

On Rational Jurisprudence

3.1 Introduction

In State v. Skipper [42], the Supreme Court of Connecticut ruled that Bayesianism
directly conflicts with the presumption of innocence, stating:

Because Bayes’ Theorem requires the assumption of a prior probability
of paternity, i.e., guilt, its use is inconsistent with the presumption of
innocence in a criminal case such as this.... If we assume that the pre-
sumption of innocence standard would require the prior probability of
guilt to be zero, the probability of paternity in criminal cases would al-
ways be zero.... In other words, Bayes’ Theorem can only work if the
presumption of innocence disappears from considerations. [42, at 623]

Thus, the court argues, the jury cannot simultaneously hold the presumption of
innocence and update their credences according to Bayes’ rule without trivializing the
enterprise of criminal trial by licensing only verdicts of “not guilty.” Committed to
the presumption of innocence, the court therefore rejects the use of Bayesian inference
by the jury in a criminal setting. This caution is shared by many legal scholars, most
notably Tribe [46], who argues that many forms of probabilistic reasoning in the trial
setting—including Bayesian inference—violate the presumption of innocence.

On the other hand, the economic analysis of law undertaken by Judge Richard
Posner [33] suggests that a trier of fact ought to be Bayesian. Posner models the
ideal juror as an instance of what I term a Bayesian threshold juror: an agent who
updates her credence of guilt according to Bayes’ rule and moves to convict just
in case, at the conclusion of the trial, the credence she assigns to guilt is above
some threshold value 6 sufficiently close to 1. To ameliorate the worries of those
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skeptical of the Bayesian paradigm’s compliance with jurisprudential norms such as
the presumption of innocence, Posner proposes a simple solution: require of the juror
that her credence of guilt at the outset of the trial is exactly 50%.

In the following sections I will argue that such restrictions on an ideal Bayesian
juror fail to meaningfully constrain a juror’s disposition to render a conviction or
acquittal. My argument relies on a formalization of the notion of “Bayesian juror,”
wherein a juror’s disposition to convict based on an observed sequence of testimonies
is modeled as a function

f:Ts = {C A}

where Tg is a set of collections of testimony that can be presented in a court of law,
C represents “conviction,” and A represents “acquittal.” The disposition function
f is interpreted as f(T)) = C just in case, having heard all and only testimony
T = {t,...,t,} over the course of the trial, the juror would vote to convict. That
the juror’s disposition be a function of the collection of testimony heard over the
course of the trial is essential to modeling American criminal trials, as this is taken
to be a constitutional right of the defendant, as described in Turner v. Louisiana:

The requirement that a jury’s verdict ‘must be based upon the evidence
developed at the trial’ goes to the fundamental integrity of all that is
embraced in the constitutional concept of trial by jury...

In the constitutional sense, trial by jury in a criminal case necessarily
implies at the very least that the ‘evidence developed’ against a defendant
shall come from the witness stand in a public courtroom where there is
full judicial protection of the defendant’s right of confrontation, of cross-
examination, and of counsel.[47]

By testimony I refer not to the content of an agent’s testimony but to information
of the form “Alice testified that S, to which the defendant’s attorney objected on
grounds X, Y, and Z.” Events such as this can effect a change in a juror’s belief that
S, but the juror does not herself witness S. The fundamental assumption I make is

Testimonial Consistency Axiom (TCA): Let 75 be a collection of
possible testimonial events. For all subsets T" € Tg, both the guilt and
the innocence of the defendant are consistent with 7.

For example, while the semantic content of a witness’ testimony may be inconsistent
with either the guilt or innocence of the defendant, the witness” act of testifying to
that effect is consistent with both guilt and innocence. After all, such a witness may
be mistaken or lying. While there are some apparent violations of this assumption
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(e.g., a witness testifying that the defendant had murdered him), it generally holds
true in the actual trial context.

At minimum, the Presumption of Innocence (Pol) places the following con-
straint on a juror’s disposition to convict at the outset of the trial: absent any
testimony, the juror must not convict. In the notation of dispositions,

f(@)=A
Moreover, it is assumed that some set of testimony would compel a juror to convict;
in other words, there exists a set T' € Tg of testimony such that

£(T) =C.

Call this the Willingness to Convict (WtC).
Using this formalism, I critically evaluate the interactions between Bayesianism
and contemporary American legal theory. To this end, I focus on two key questions:

1. Are Posner’s Bayesian threshold jurors rational agents in that they maximize
the expectation of some utility function?

2. Does Posner’s model of Bayesian threshold jurors materially constrain a juror’s
disposition beyond the (Pol) and (WtC)?

Using recent work of Easwaran [15], I argue that the answer to Question 1 is
“Yes” by exhibiting a utility function that a Bayesian threshold juror optimizes.
However, by using the (TCA) I argue that the answer to Question 2 is “No”; while
Bayesian threshold jurors are rational qua the standard decision-theoretic account
of rationality, all dispositions satisfying (Pol) and (WtC) can be realized as the
disposition of some Bayesian threshold Juror.

This result calls into question the utility of modeling an ideal juror’s inferential
structure as a Bayesian threshold juror, as the disposition of any juror satisfying
(Pol) and (WtC) is rationalizable. For instance, consider the disposition that ren-
ders a conviction so long as at least two witnesses testify, regardless of the content
of the testimony. This disposition satisfies the (Pol) and the (WtC), and by the
representation theorem is represented by a Bayesian threshold juror. Such a person
would be ill-suited to be a juror, yet the Posnerian account cannot rule them out.

A natural response to this result would be to add further constraints to rule out
such contrived dispositions. In the final section of this paper multiple proposals in
this vein are analyzed. As we will see, each of these proposals avail themselves to
serious objections on both epistemic and jurisprudential grounds.

Ultimately, existing proposals to give probabilistic foundations to normative legal
reasoning fail to do so, and the truth of principles such as (TCA) cast serious doubt
that any such approach can succeed.
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3.2 A Formal Model of a Juror’s Reasoning

In this section I present the formal model, partially sketched in Section 1, of a juror’s
reasoning in a criminal trial. The atoms in this model are individual testimonies. I
use the word “testimony” here very broadly: it can include any sensory information
that a juror perceives during the course of the trial that may inform her rendering
of a verdict, including the statements by witnesses, legal counsel, and judges made
during the trial as well as qualitative information such as the demeanor and body
language of the witness.

Juror Dispositions

A transcript T of a trial is a collection of testimonies, to be understood as the contents
of a trial as perceived by the juror. Given a collection S of possible testimonies, the
set Tg = P(9) is the set of transcripts over S.

Recall from Section 1 that a juror’s disposition to convict (hereafter “disposition”)
is simply a function

f:Ts = {C A}

where f(T') = C (respectively A) is read as “the juror is disposed to convict (respec-
tively acquit) on the basis of transcript 7.”

So far, this model does not include any consideration of the material guilt or
innocence of the defendant. To remedy this, we define a set of possible worlds
relative to a set S of possible testimonies by setting

Wgz'rg X {G,]},

where G is shorthand for “materially guilty” and [ is shorthand for “materially
innocent” of the charges alleged by the prosecution. In other words, a world is a pair
w = (T, z) consisting of a transcript T" and a value x € {G, I'} corresponding to the
material guilt or innocence of the defendant. It is critical to note that we are licensed
in including both a world (7, G) and (T, I) by the axiom (TCA), which ensures that
both material guilt and innocence are consistent with transcript 7.

On Ws we define two distinguished classes of events. First, for a transcript T’
define

Er = {(Ta G)> (Tv I)},

the two-world set consisting of a transcript 7" and the two possible values for guilt, G
and I. Then Er is the event of receiving transcript 1" from the trial. Second, define

Eq={w|w = (T,G) for some T € Tg},
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the collection of worlds where the defendant is materially guilty. Thus, Eg is the
event of the defendant being materially guilty.

3.3 Bayesian Analysis in the Law

In this section some of the key literature surrounding the interaction between Bayesian
epistemology and legal epistemology is reviewed from a formal perspective.

Throughout, I make two crucial assumptions. First, I assume that all evidence is
presented as testimony. At first blush this may seem to be an unrealistic assumption,
but in court all physical evidence is accompanied by some testimony authenticating
or otherwise speaking to its relevance and veracity. For example, merely exhibiting
a firearm during the course of a murder trial bears little relevance to the case at
hand unless someone testifies to salient facts concerning, for instances, its ownership,
fingerprints found on the firearm, and the matching of the firearm to bullets recovered
at the scene of the crime.

Second, I assume that the guilt of a defendant is materially independent from
the act of any witness testifying. This is of course not to say that testimony lends
no inductive weight to the case at hand, but rather that such a testimonial act never
necessitates guilt or innocencel]

This is not to say that there are no logical inferences to be made regarding the
probabilities of guilt and the veracity of the testimonies, only that there is no direct
deductive relation between them.

Fundamentals of Bayesian Inference

To set the stage, we review the basics of the Bayesian account of rationality. Let S
be a collection of sentences containing “true” T, “false” L, and closed under Boolean
operations; namely, conjunction A, disjunction V, and negation —. For the purposes
of this paper we will assume that S is finite.

We assume that the semantics of the sentences in S is understood extensionally;
in other words, the sentence S is identified with the collection of worlds w in some
ambient universe of possible worlds W such that s holds true in w. Under this
semantics we may think of a subset T" C S of sentences as its corresponding event

Er ={w e W |T is true in w}.

IThis might not hold if, for instance, the defendant is charged with murder of person A and
then A testifies during the trial. Then the act of A testifying contradicts the guilt of the defendant.
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The Bayesian model of rationality supposes that each agent A is equipped at the
outset with a prior P, which is a certain kind of mathematical object that encodes
the degree of belief, or credence, they afford each sentence s € S. The structure of
this prior P is that of a probability measure on S:

Definition 3.1. A probability measure on a set S of sentences is a function

P:P(S)—[0,1]
such that
1. P(E) =0,
2. P(Er) =1, and
3. If Erx N Ep =@, then
P(Er) +P(Eq) = P(Er U Er). O

The Bayesian model of rationality requires that as evidence accumulates, the
agent A updates her degrees of belief on the basis of taking conditional probabilities:

Definition 3.2. Let E be an event and P a prior. The posterior distribution of P
given E is the conditional probability measure defined on P(.S) given by

P(ENT)
P(E)
For further details regarding the epistemic interpretation of conditional proba-

bilities and the general theory of Bayesian Rationality, the reader is directed to the
excellent survey by Earman [13].

PE(T) - O

State v. Skipper and the Court’s Error

Recall from the introduction the argument presented by the Supreme Court of Con-
necticut against the use of Bayesian reasoning in the setting of a criminal trial:

Because Bayes’ Theorem requires the assumption of a prior probability
of paternity, i.e., guilt, its use is inconsistent with the presumption of
innocence in a criminal case such as this.... If we assume that the pre-
sumption of innocence standard would require the prior probability of
guilt to be zero, the probability of paternity in criminal cases would al-
ways be zero.... In other words, Bayes’ Theorem can only work if the
presumption of innocence disappears from considerations. [42, at 623]
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While T argue that this argument is incorrect, the precise way in which it is
incorrect motivates the definition of a juror’s disposition. The court’s argument
seems to be:

1. (Presumption of Innocence) The defendant is to be presumed innocent until
proven guilty.

2. (Principle of Bayesian Inference) A Bayesian juror must update their beliefs
according to Bayes’ rule when presented with evidence during the course of the
trial.

3. If the jury finds, after hearing a set of testimony 7', the conditional probability
of guilt given the testimony P (Eq |E7r) = 0 then the jury must acquit.

4. The presumption of innocence implies that any prior adopted by the jury must

satisfy
P(Eg) = 0.

5. (Conditioning) Conditioning by any set of testimony FEr will yield a posterior
probability of 0:
P(Eq| Er)=0

6. (Conclusion) For any criminal case, the jury must acquit.

That Premise 4 is a misunderstanding of Bayesian epistemology is discussed in
[1], but the precise nature of this error is very illustrative of the difference between
credence and decision that our framework of juror dispositions and Bayesian thresh-
old jurors distinguishes between. On the court’s view, in order for a Bayesian agent
to presume innocence would mean that the Bayesian could not entertain the mere
possibility of guilt. This is duplicitous: criminal trials are predicated on countenanc-
ing the possibility of both guilt and innocence at the outset. As we will see, Judge
Richard Posner also finds Premise 4 faulty, instead arguing that the Presumption
of Innocence requires that P(E¢) = 3. The remainder of this section will be spent
analyzing his account of Bayesian threshold jurors.

Posner’s Even-Odds Proposal

Among other things, Judge Richard Posner is in part known for his economic ap-
proach to the law. In particular, his analysis of factfinding centers on the use of
Bayes’ Theorem[33], p. 1486]. Posner does “make clear at the outset that I do not
propose that juries or judges be instructed in the elements of Bayesian theory... The
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most influential model of rational decision making under conditions of ineradicable
uncertainty... it can be of great help, as we shall see, in evaluating the rationality
of rules of evidence.”[33, p. 3] Nevertheless, Posner models jurors as agents whose
credences form a probability measure, which are updated in light of new evidence
stemming from the testimony offered during the course of a trial. Moreover, in this
model Posner interprets the burden of persuasion and the burden of proof beyond a
reasonable doubt probabilistically:

In the typical civil trial... it is enough to justify a verdict for the plain-
tiff that the probability that his claim is meritorious exceeds, however
slightly, the probability that it is not...

Type 1 errors are more serious than Type II errors in criminal cases
therefore are weighted more heavily in the former by the imposition of a
heavy burden of persuasion on the prosecution... Judges when asked to
express proof beyond a reasonable doubt as a probability of guilt generally
pick a number between .75 and 0.95.[33, pp. 34-36]

Therefore, in the context of a criminal trial an ideal rational juror is modeled as:

Definition 3.3. A juror j assessing the guilt G of some defendant on the basis
of testimony T a collection of possible testimonial events is Bayesian in case: is
Bayesian just in case j

i The juror has a prior probability measure P : P(W) — [0, 1],

ii (Conditionalization) Assigns probability P(Eq |Er) to guilt when the juror has
heard all and only the testimonies 7', and

iii (6-Verdict Rule) There is a fixed 6 with 0.5 < # < 1 such that the juror j
renders a conviction if and only if P(Eg | Er) > 0. O

It is important to note here that rendering a verdict of convict on the basis of
exceeding a threshold 6 requires some work to justify in the framework of classical
decision theory since an explicit utility function is not presented. Somewhat recent
results of Easwaran |15, p. 828] provide such a utility function. The idea is to give
a reward R to an agent just in case that agent correctly believes that a proposition
P is true, and to give a penalty —IW if the agent incorrectly believes that P is false.
It is required that the agent believes at least one of P or =P, but not both. In our
current context we may interpret “belief” as “votes to convict” and “disbelief” as
“votes to acquit.”
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Definition 3.4. A dozastic state on a set S of sentences closed under Boolean op-
erations is a function

d:S—{0,1}
such that d(s) = 1 implies d(—s) = 0.
Let s be a proposition and R, W > 0 be real numbers. The (R, W)-weight of s is

defined as
(s) = R if sis true,
MRWAS) = _W if s is false.

The score of a doxastic state is given by

orw(f) = Z d(s)nrw(s). O

seS

A doxastic state encodes the a binary belief function: if d(s) = 1 then the agent
believes s, and if d(s) = 0 then the agent does not believe s. The score of the doxastic
state encodes the correctness of the agent’s doxastic state.

Easwaran shows that

Theorem 3.1. [15, p. 828] For a given probability function P, a doxastic state

maximizes expected score iff it believes all propositions s such that P(s) > RJFLW and

believes no propositions s such that P(s) < RJFLW. Both believing and not believing
are compatible with maximizing expected score if P(s) = RJFLW. ¢

In our setting, a Bayesian juror votes to convict the defendant when the posterior
probability of guilt exactly equal to the threshold. The above theorem says that either
choice maximizes expected score. Thus, for a threshold 0 < # < 1, a Posnerian juror
maximizes expected (1 — 6, 6)-score, and so Posnerian jurors are representable as a
Bayesian agent with respect to some utility function.

This choice of utility function, however, avails itself to criticism. One way to
interpret the score function above in the judicial context is to identify with W the
average net social cost of wrongful conviction and R the average net social benefit
of a correct conviction. While simple in its expression, making decisions according
to such a score function runs into some difficult challenges.

For instance, there is little reason to think that the overall values of W and R
would be the same across different crimes. The variation amongst crimes for the
values of W and R would therefore adjust the value of the probability threshold
0. Therefore, if a juror is to render her verdict on the basis only of the posterior
probability of guilt, expected score might be optimized but expected net social benefit
will not.
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One might object to this picture by saying that while it is true that the precise
values of W and R vary from crime to crime, it is the judge that sentences the
defendant and judges have a great deal of discretion in determining the sentence.
However, for many offenses mandatory minimum sentencing renders it impossible for
the judge to appropriately calibrate the punishment of the defendant once convicted.

Beyond the Bayesian model of a juror’s reasoning described above, Posner also
proposes the following probabilistic interpretation of the Presumption of Innocence:

Ideally we want the trier of fact to work from prior odds of 1 to 1 that the
plaintiff or prosecutor has a meritorious case... Although bias is clearest
when the judge or jury not only has a prior belief about the proper
outcome of the case but also holds the belief unshakably—that is, refuses
to update it on the basis of evidence-it is not a complete response to a
charge of bias that the judge or juror has an “open mind” in the sense of
being willing to adjust his probability estimate in the light of the evidence
presented at the trial. Any rational person will do that... His prior odds,
if he is a Bayesian, will still have an influence on his posterior odds and
hence... on his decision. |33, p. 1514]

Posner’s solution does guarantee a form of the Presumption of Innocence: pro-
vided that the threshold @ is chosen to be above 50%, no Bayesian juror conforming
to the constraints that Posner outlines would convict absent any evidence. However,
that is all it guarantees. Since testimony is presumed logically independent from
the material facts at hand, it is perfectly consistent to ensure that no matter what
testimony is afforded the juror will convict as soon as testimony of any kind is given.
More formally:

Proposition 3.1. Let 0 < 6 < 1 and that T satisfies (TCA). Then there exists a

prior probability P such that
1

P(Ec) = 5
but for any nonempty collection T" of testimony

P(Eq|Er) > 0. ¢
Proof. By the it suffices to show that we can ensure that

P(Eq| Er) > 0,

but the conditional extension lemma (Lemma 3.1)) ensures this. O



CHAPTER 3. ON RATIONAL JURISPRUDENCE 77

In other words, Posner’s proposal-constraining only the priors of the jurors—is
only sufficient to guarantee that juror acting in accordance with Posner’s rule will
not convict at the outset of the trial, and moreover is compatible with guaranteed
conviction as soon as the first testimony is offered. By this result, constraining the
prior probability of guilt to yield 1 to 1 odds only ensures that a juror’s disposition
cannot be to convict at the outset of the trial.

3.4 Rationalizing Juror’s Dispositions

Having defined a formal model of a juror’s reasoning in the preceding section, we
are now in a position to evaluate whether Posner’s view places any constraints on a
threshold Bayesian juror’s disposition beyond the Presumption of Innocence and the
Willingness to Convict.

Let 0 € (0,1). We call a juror disposition f : Tg — {C, A} 0-rationalizable
provided that there exists a prior Py on P(W)P|such that

In other words, a disposition f is f-rationalizable just in case the verdicts reached by
f on all transcripts T' can be realized as an instance of a threshold juror determining
that the probability of the defendant’s guilt meets or exceeds 6 at a trial specified
by transcript 7.

The aim of this section is to prove a representation theorem that states that all
juror dispositions satisfying (Pol) and (WtC) are the dispositions of some threshold
Bayesian juror.

Theorem 3.2. Suppose that S is a finite collection of testimonies. Let
f:Ts = {C, A}
be a juror’s disposition such that
1. f(@) = A (Pol)
2. there exists a transcript 7" such that f(7) = C. (WtC)
Suppose that % < 0 < 1. Then there exists a prior Py on Wy 6-rationalizing f such
that 1

Pr(Ee) = 5

2Where W is constructed as in Section 2
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Moreover, P; can be taken to be open-door in the sense that Py (E¢ | Er) ¢ {0,1}
for any transcript 7. ¢

This representation theorem shows that constraints set forth by Posner to analyze
the efficiency of the trial system place no meaningful constraint whatsoever on the
dispositions of the finders of fact in question beyond their nontriviality.

Proof. Suppose that f : T¢ — {C, A} is a disposition satisfying the hypotheses of
the theorem statement and that % < 6 < 1. The support of C' (resp. A) is the set
fHC)={T € Tc| f(T) = C} (resp. f~'(A)). By definition, f~1(C) and f~1(A)
partition 7¢, and by the assumption of the theorem they are nonempty.

We define Py as a weighted combination of two measures defined in terms of the

supports of C'and A. Let ng = |f~1(C)| and ny = |f~1(A)|.

Set
Ongt it T e f~1(C) and =z = G,
Pic({(T,2)}) =< (1—-0)ng" ifT e f1(C)andz=1,
0 it T ¢ f~1(C).
and
(1-— (9)71;‘1 it T e f_l(A) and r = G,
Pra{(T,2)}) = ony'  ifTef'(A)andz=1I, .
0 if T ¢ f~1(A).
Both P and Py 4 induce probability measures on Wy. Since Py (Eq) = (’:—CC =

0> 1 and Py a(Eg) = % =1—0 < 3 there exists some « € (0,1) such that the
measure
IEDf = OZIEDﬁC + (1 — Oé)PﬁA

has ]P)f(EG') = %

Moreover,
PR T TR (Bn) T B((T,6), (T ) L (1-6) i T e (4
ensuring that P, f-rationalizes f and is open-door. n

3.5 Further Constraints on Juror’s Dispositions?

Having seen that Posner’s proposal puts no constraints on a juror’s disposition be-
yond the Presumption of Innocence and the Willingness to Convict, one may attempt
to rescue this account by placing further constraints on the definition of a Bayesian
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threshold juror to pare down the class realizable juror dispositions. The final sec-
tion of this paper is intended to survey obstacles that possible additional constraints
on Bayesian accounts of rational jurors face. Broadly speaking, the additional con-
straints fall into three separate categories:

1. The uniformity of the prior with respect to a well-chosen sample space,
2. The objectivity of the prior, and
3. The rate of convergence to a verdict of “Guilty” of a prior.

I argue that, ultimately, none of these constraints suffice to save the Bayesian account
of rational jurors.

Constraint One: Mandating Uniform Priors

The first potential save we will consider is to restrict the class of Bayesian threshold
jurors to include only uniform priors with respect to an appropriate sample space.
At first glance, a uniform prior of guilt on some (appropriately large) collection X of
persons is appealing. For sake of simplicity, suppose that only one person z is guilty
of the crime in question; that is, Eg = {x}. Then

P(Eg) = %

So long as X has at least two members and the threshold 6 > %, a juror with this
prior will not convict at the outset of the trial. While this is a perfectly well-defined
prior, one runs into trouble with how a juror is to update her credences on the
basis of witness testimony. After all, when the axiom TCA holds, the occurrence of
testimony 1" is consistent with the guilt or innocence of each y € X. This implies
that the set of possible worlds in which testimony T occurs is not expressible as a
subset of X.

Faced with this obstruction, an advocate for assigning a uniform prior probability
of ﬁ to guilt must either supply us with a sufficiently rich sample space that the
ideal juror ought to update her credences according to or argue that constraining the
numerical probabilities to be proportional to the size of the set of potential perpetra-
tors is sufficient to constrain the ideal juror. The latter option is untenable, as the
proof of [Proposition 3.1 shows: merely constraining the numerical prior probability
of guilt to be low poses no constraint on how rapidly the juror may converge to an
assessment of guilt.
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As an illustration, suppose that the sample space X consists of the residents of
Manhattan. A witness testifies that the perpetrator of the crime has brown eyes.
Call this testimonial event T'. If the witness is taken to be certainly correct, the
event FEr is

Er = {x € X |z has brown eyes} C X,

and the updated probability of the guilt of the defendant d is:

0 dé¢Ep
P(EG|ET>={1 i€ B

|ET]

However, if it is acknowledged that the witness might be mistaken, the testimony
does not conclusively rule out any member of X; in other words,

Er=X.

Therefore the sample space X has insufficient expressive power to facilitate nontrivial
probabilistic reasoning.

Constraint Two: Requiring Objectivity of a Juror’s Prior
and the Principal Principle

A second constraint one may impose on a Bayesian threshold juror is that the juror’s
prior be in some sense objective. A convenient way to formalize this is bay way of
Lewis’” Principal Principle, which can be expressed as follows:

Principal Principle: Assume we have a number z, proposition A, time
t, rational agent whose evidence is entirely about times up to and includ-
ing ¢, and a proposition E that (a) is about times up to and including
t and (b) entails that the chance of A at ¢t is z. In any such case, the
agent’s credence in A given F is x. [52]

The difficulty with this approach is that, in the context of a trial, a Bayesian
Threshold juror will not witness an event E of the sort referenced in the statement
of the Principal Principle.

An excellent example of this exact issue playing out in case law can be found
in State v. Spann [43]. During the course of the trial an expert witness testified,
on the basis of Bayesian analysis, that from a prior probability of 50% of paternity
the defendant’s blood test rendered a 96.55% probability of paternity upon posterior
updating. The court recounts the cross-examination of an expert witness by defense’s
counsel:
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On cross-examination defense counsel brought out the fact that the prob-
ability of paternity percentage was based on that fifty-fifty assumption.
The expert described it as a “neutral” assumption... [h]er characteriza-
tion of the evidence was that its “purely objective” nature was “one of
the beauties of the test”; that it “makes no assumption other than ev-
erything is equal”; and that “the jury simply has objective information”
... Counsel noted that even if it were conclusively proven that defendant
had been out of the country at the time when conception could have
occurred, this expert still would have concluded that the probability the
defendant was the father was 96.55%. Counsel’s observation was correct;
the expert’s opinion had no relation whatsoever to the the facts of the
case. |43, p. 590]

Defense’s observation was astute. There was no mathematical error in the expert
testimony, being a straightforward application of Bayes’” Theorem. The expert’s
reliance on the “fifty-fifty” assumption underlies an even deeper issue: the expert
testimony imposes undue constraints on the structure of the juror’s priors beyond
the simple constraints of “guilty” vs. “not guilty.” Proper application of Bayesian
updating requires knowledge of the full structure of the juror’s prior, incorporating
not only their prior assessment of guilt but also the other pieces of testimony they
had heard, their background assumptions regarding the veracity of expert testimony,
their understanding of general causal laws, and the like.

We reconstruct the probabilistic analysis we see in State v. Spann. Suppressed
in the testimony is an underlying sample space. The basic data of the sample space
is a tuple:

(bX7 by,p(X, Y))
where by, by represent the blood types of a pre-selected pair of people, X and Y,
each a member of the following: {A+, A—, AB+, AB—, B+, B—,0+4,0—} and p
represents the paternal relationship between the two; either “True” if the first person
is a parent of the second, and “False” otherwise. This yields a sample space of size

8 x 8 x 2=128.

The event “X is a parent of Y has size 64 in the sample space—one half the size of
the total-—and the expert advises us to adopt the prior that

1

P(“X is a parent of Y”) = 3
This probability model cannot update on an event of the form “X was in a different
country from Y’s mother for the 5 years before and after Y’s birth” as it is not coex-
tensive with any subset sample space: the sample space is far too coarse. Thus the
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expert testimony carries with it a suppressed underlying model of the possible states
of the world, which with good reason are insufficient for the purpose of updating in
a Bayesian manner.

Presumably, an expert advising the jury on the probability p of the defendant’s
guilt on the basis of evidence such as DNA matching intends for their testimony
would move the juror’s credence of guilt to be p, absent any other testimony. A
juror’s updating of the prior in this way would, however, generally not be an instance
of the Principal Principle. After all, the agent conditionalizes on testimonial data
of the form “the expert testified that the probability of the defendant’s guilt is p,”
which by the TCA axiom is logically independent from the guilt of the defendant.

The obstruction to applying the Principal Principle in this case is the missing
premise that if the expert testifies that the probability of the defendant’s guilt is p
then the probability of the defendant’s guilt is p, a premise which would refute the
TCA.

Constraint Three: Objective Relevance Standards and
Objective Likelihood Ratios

Another potential constraint one might consider to further constrain a Bayesian
threshold juror is to require that the juror’s conditional updating is compatible with
some notion of an objective likelihood ratio.

Posner advances such an argument, but as we will see there is an awkward ten-
sion in Posner’s analysis between objective and subjective probabilities. One might
get the impression from Posner’s description that there are objective probabilities
governing the computation of likelihood ratios, as in the following excerpt:

Suppose that the new piece of evidence is testimony by bystander Z that
he saw X shoot Y. Suppose further that the prior odds Q(H) are 1 to 2
that X shot Y, while the probability that Z would testify that he saw X
shoot Y if X did shoot Y is .8 and the probability that he would testify
that he saw X shoot Y if X did not shoot Y is .1, so that the likelihood
ratio is 8. The posterior odds that X shot Y will therefore be 4 to 1...

[A]ltering posterior odds may not have much or even any social value
even if the likelihood ratio of the new evidence is high, as in our shooting
example, where it was 8. The value of the evidence will depend on the
prior odds and on the decision rule. Suppose that the prior odds (as a
consequence of the previously presented evidence) that X shot Y are not
1 to 2 but 1 to 10 and that for X to be held liable for the shooting the
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trier of fact must consider the odds that he did it to be at least 1.01 to 1
(the preponderance standard). Then the new evidence, since it would lift
the posterior odds above the threshold (multiplying the prior odds by a
likelihood ratio of 8 yields posterior odds of only 1 to 1.25), would have
no value. [33, pp. 1486-7]

It is important to note that in general one cannot posit an agent-independent
likelihood ratio of a piece of evidence E: if an agent’s prior probability of hypothesis
H is P(H) = 6, then any agent with prior probability distribution P is assured that
the likelihood ratio is at most %. In other words, the likelihood ratio afforded to
evidence is inseparable from the structure of the agent’s prior probability measure IP,
not just its numerical values. Therefore an attempt to save Posner’s account on the
basis of something like objective likelihood ratios is doomed to fail: any prescribed
value L(F, H) will result in inconsistent assessments of probability for many agents.

The strange hybrid of subjective and objective probabilities appears again in
Posner’s account of the relevance standard of the Federal Rules of Evidence (FRE
401), where Posner interprets it within an economic framework: “In Bayesian terms,
evidence is relevant if its likelihood ratio is different from one and irrelevant if it
is one.” [33, p. 1522] This Bayesian gloss fails to emphasize that the assessment
of whether or not a piece of evidence is relevant in the sense that its likelihood
ratio is different from 1 depends on the structure of the factfinder’s prior probability
measure.

To see this, note that having a likelihood ratio Lp(E, H) equal to 1 is equivalent
to evidence F being probabilistically independent from H. The measure extension
lemma—{Lemma 3.1} —entails that if a piece of evidence E is logically independent
from all preceding evidence, then there exist probability distributions P in which F
is probabilistically independent of the rest of the evidence, i.e. irrelevant, and proba-
bility distributions in which the evidence is probabilistically dependent, i.e. relevant.
On Posner’s account, FRE 401 is at best underspecified, and at worst fangless: all
testimonial evidence is both potentially relevant and potentially irrelevant. Worse
yet, even if one constrains the class of relevant testimony, the effect on the posterior
probability is unconstrained.

Constraint Four: Restricting Convergence Rates

The final constraint we consider in this section is that one might attempt to save the
Bayesian account by requiring that a juror not be too quick in reaching a verdict by
limiting the degree to which any given piece of testimony can affect a juror’s beliefs.
For instance, one might demand that the ratio between prior and posterior belief in
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guilt is bounded by some fixed amount for all testimonies 7', e.g. by requiring that
2 _PEelEn 0N By ) 3
3~ P(EglE,N---NE,) — 2

For a juror who convicts only when P(Eg|Ey, N---NE;,, NE;, 1) > 0 > % and
for whom P(Eg) = %, such a rule would ensure that, at least conceivably, one piece
of testimony at any time would be insufficient to render a verdict of “Guilty” since
P(Eq|E,) < 3 < 1.

That said, for any rule of the form

P(Eg|En 0+ 0 Biyt) _ |,
P(Ec|E, N---NE,) —

where v > 0, verdict threshold 6 > 0, and prior probability of guilt P(Eg) = % there
exists jurors who will convict just so long as there are

log(20)
log(1 + )

pieces of testimony, a disposition Posner would surely want no juror to have.

Similarly, it is easily conceivable that we would want a juror to be able to convict
having witnessed a single piece of testimony. For example, consider a defendant
who—defying their pretrial pleading of “Not Guilty”—has a sudden change of heart
on the stand and confesses to the crime at hand, a juror can hardly be faulted in
deciding to convict on that basis alone.

Outlook on Further Constraints

The candidate constraints considered in this section range from constraints regarding
the uniformity, objectivity, and the rate of convergence of a Bayesian threshold juror’s
prior to conviction. Each of these candidates faced severe challenges, and either
were mathematically ill-defined, were not operationalizable in the trial setting, or
constrained the class of rational dispositions too much. I do not claim that this list
of candidate constraints is exhaustive; however, the prospects of a formal solution
to the problems with the threshold Bayesian account laid out by the representation
theorem appear bleak.

3.6 Conclusion

In the Introduction to this chapter, we saw a deep divide between two factions. On
one side we have the anti-Bayesian current, with Tribe and the judges of the Supreme
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Court of Connecticut the vanguard members advocating for the inadmaissibility of
Bayesian and other probabilistic forms of reasoning from the criminal trial system on
the basis of a perceived conflict with the Presumption of Innocence. The opposing,
Bayes-rationalist side of this dispute, exemplified by Judge Posner, claim that to the
contrary that rationality requires these forms of reasoning, lest the criminal justice
system fall victim to a strain of irrationality.

The analysis of this paper suggests a mundane resolution to this dispute: there
is neither harm in nor necessity to demand a juror be Bayes rational; so long as
a juror’s disposition satisfies the Presumption of Innocence and the Willingness to
Convict, that juror’s disposition is indistinguishable from a Bayesian threshold juror’s
regardless of the underlying causal source of her dispositions. This result strikes
at the heart of both the strongly anti-Bayesian and pro-Bayesian accounts: if you
demand that Bayesian inference be banned in all its forms, there is no way to discern
this on the basis of an agent’s dispositions. Likewise, for the pro-Bayesian account,
the representation theorem demonstrates that nothing is gained by demanding that
an agent be Bayes rational. Thus, Posner’s notion of a Bayesian juror is insufficiently
specified to render this debate a substantive one.
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3.7 Appendix: Lemmata from Probability
Theory.

A very general extension theorem [34] p. 70] goes as follows:

Theorem 3.3. Let C be a Boolean algebra of subsets of a set € and let p: C — [0, 1]
be a finitely additive, positive bounded measure. Suppose that A € P(Q2) \ C. Write

u(A) = sup{u(B)|B € CAB C A}

and

wu(A) =1inf{u(B)|B€CANB D A}.
Then for any d € [ (A), uu(A)]E] there exists a finitely additive, positive bounded

measure
f:C(A) —[0,1]
such that
(A =d ¢

This lemma gives necessary and sufficient conditions to extend finitely additive
measures to larger Boolean algebras.

More generally, we have a great deal of control over extending measures to ensure
certain conditional probability inequalities hold:

Definition 3.5. Let C be a Boolean algebra on X. We say that B is logically
independent from C provided that for all A € C,

A4 X, 0= (ANB# I NA°NB # 0) O

In other words, B intersects every nontrivial Boolean combination of elements of
C nontrivially. When construing the set X as a set of possible worlds, this is the
same as proposition B being logically independent of any set of propositions in C.

Lemma 3.1. Suppose that A € C, P(A) ¢ {0,1}, P a probability charge on C and
B is logically independent from C. Then for all # € [0,1] there is an extension P of
P to C (B) such that

P(A|B) = 6. ¢

3Note that ;(A) < py(A) so there is always at least one extension to the measure .
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Proof. We apply the extension theorem twice: write
P(B)=P(BNA)+P(BNA°

and for any C' € C let Po(D) = P(D N C). This is an unnormalized measure on the
algebra Co = {CND|D € C}. When P(C) ¢ {0,1} the measures Po and Pge are
both positive bounded charges on Co and Coe. Now as B is logically independent
from C the set BN A (resp. BN A°) is logically independent of C4 (resp. Cac). By
the charge extension theorem we may extend the charge P4 (resp. Pac) to a charge
P, on Cy (BN A) (resp. P on Cy (BN A°)) assigning to it any value py € [0, P(A)]
(resp. p1 € [0,1—P(A)]). Since the algebras C4 (B N A) and C4 (B N A°) are disjoint,
we may define a probability charge PonC (B) via the formula

P=P,+Py.

Let 6 € [0,1]. Then we wish to express 6 as

9:@(A|B): _ P(AHNB) _ Po
P(ANB)+P(AcNB) protpr

This is a continuous function in (pg, p1) taking on the values of 0 (py = 0 and
p1 = P(A°)) and 1 (po = P(A) and p; = 0) and so by taking a suitable line inside
[0,P(A)] x [0,P(A°)] one can apply the Intermediate Value Theorem to conclude that
there are pg, p1 rendering

P(A|B) =46

true. O

This proposition tells us that when adjoining a logically independent event to
our algebra C, P may be consistently extended in such a way as to render the condi-
tional probability P(A|B) any value whatsoever. This indicates that merely placing
constraints on the numerical values of prior probability of an event A places no con-
straint on the posterior probability when updating by a logically independent event
except in the degenerate cases where P(A) € {0, 1}.
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3.8 Appendix: Remarks on the Utility Functions
Rationalized by Threshold Bayesian Jurors

Easwaran’s score function reflects a coarse grain of accuracy. In this section we
generalize his result by considering the case of epistemic scores determined by the
four possible outcomes of a juror’s verdict: the conviction of a guilty defendant, the

conviction of an innocent defendant, the acquittal of a guilty defendant, and the
acquittal of an innocent defendant. Let

S = {GC,NGC,GA, NGA}

be the state space corresponding to these four possible outcomes. A collection
{(s, as) }ses with each ag € R determines a utility function:

U(s) = Z xi(s)os

teS

1 ifs=t,
Xt(S):{ I s

where

0 otherwise.

Relative to a probability measure P on {G, NG}, the expected utility of each verdict
is given by:
E(U, C) = ]P)(Eg)OéGC + (1 — P(Eg))a]vgc,

and
E(U, A) = ]P’(Eg)CMGA + (1 — ]P(Eg))OéNGA.

To maximize expected utility, an agent will convict just in case
EU;C) > E(U;A).
Simple algebraic manipulation shows that this occurs precisely when

IP(EG) S anNGgA — ONGC

Qge — ANGC — QAgA T ANGA

This computation entails that being a threshold juror is rationalizability according
to more flexible epistemic utility functions.
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Chapter 4

On the Sufficiency
of First-Order Logic

4.1 Introduction

Barwise [4] defines the first-order thesis as the “widespread” view that “logic is first-
order logic, so that anything that cannot be defined in first-order logic is outside the
domain of logic.” He goes on to write that

[a]s logicians we do our subject a disservice by convincing others that logic
is first-order logic and then convincing them that almost none of the con-
cepts of modern mathematics can really be captured in first-order logic.
Paging through any modern mathematics book, one comes across concept
after concept that cannot be expressed in first-order logic.... First-order
logic is just an artificial language constructed to help investigate logic,
much as the telescope is a tool constructed to help study heavenly bodies.
From the perspective of the mathematician in the street, the first-order
thesis is like the claim that astronomy is the study of the telescope. [4,

pp. 56

After all, the semantics of first-order logic is coarse: it is famously unable to dis-
criminate between countable and uncountable structures. Barwise’s concern seems
chiefly with the semantic deficiencies of first-order logic.

On the other hand, there is a sense in which first-order logic is sufficient for the
kinds of deductive reasoning that finitistic agents are able to perform: any recur-
sively enumerable deductive system—very generally construed—can be realized as
an instance of a first-order deductive system.
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Thus, even while there are strictly more expressive logics than first-order logic
with a recursively enumerable consequence relation, first-order logic is nevertheless
sufficient to translate and mechanize its reasoning.

In the next section, we evaluate the argument recently put forward by Warren [50]
claiming that it is conceivable that agents much like ourselves in certain spacetimes
known as Malament-Hogarth spacetimes may be able to perform infinitary, non-
recursive deductive arguments. For him, “obviously the cleanest argument for infinite
inference would be to point to an example. But it would need to be an example that
couldn’t plausibly be redescribed in finite terms” [50, p. 397] . While I don’t directly
argue against the metaphysical possibility of w inference, I argue that the inference
Warren has in mind can be readily redescribed as an instance of modus ponens
relative to a validity in the theory of Malament-Hogarth spacetimes together with
an empirical observation. Those who default to the position that w inference is not
metaphysically possible may live to fight another day.

Finally, we discuss how the ¥; completeness of first-order entailment dovetails
with the so-called Hilbert Thesis, which consists of two sub-theses:

1. Hilbert’s Expressibility Thesis (HET): All mathematical (extra-logical) as-
sumptions may be expressed in first-order logic, and

2. Hilbert’s Provability Thesis (HPT): The informal notion of provable is made
precise by the formal notion of provable in first-order logic.

Kripke [26] argued that

(HET) + (HPT) == Church’s Thesis.

The above arguments suggest a partial converse to Kripke’s conclusion; the ¥; com-
pleteness of Frp suggests that

Church’s Thesis + In-Principle Machine Verifiability of Proofs = (HPT).

4.2 Sufficiency of First-Order Logic for Recursive
Proof

In this section we are focused solely on the inferential structure of a collection
of propositions, regardless of their underlying semantics. To this end, we model a
system of inference as a closure operator on a set of words over some recursive set S
of sentences. Without loss of generality we identify S with w.
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We show that the class of recursive closure operators can in fact be mechanized
within first-order logic in a precise manner.
An inferential closure operator over S is a function

V :P(S) = P(5)
satisfying
1. (Monotonicity) I C V(I')
2. (Homomorphism) T'; C T’y entails V(T'y) C V(T's)
3. (Idempotence) V*(T') = V(I

and perhaps more requirements. However, we will not make use of these properties:
all that will matter for our purposes is the Turing functionality of this operator.

Definition 4.1. A recursive deductive closure operator is an inferential closure oper-
ator such that there exists a »; formula ¢y in the language of arithmetic augmented
by a single unary predicate P(z) such that for all I' C S and ¢, the model (w,T")
where the interpretation of predicate P is I' satisfies

p e V() (wTI)Edo(e). 0
We think of V as determining a notion of entailment:

In other words, a recursive deductive closure operator is one for which membership
in the deductive closure is uniformly recursively enumerable, uniform over the base
theory I' C S. Examples of such closure operators are ubiquitous in mathematical
logic.

Of course, First-Order Logic, Intuitionistic Logic, Classical Propositional Logic,
all have recursive deductive closure operators, witnessed by enumerating the conse-
quences of an oracle-fed I' by way of enumerating the proofs relative to any of their
proof systems.

However, there exist strictly stronger logics still satisfying this property.

Definition 4.2. Let L(Q);) be First-Order Logic augmented with the quantifier ¢y
with the following semantics: M F (Q121,...,2,)¢(x1, ..., 2,) just in case there are
> Ny many m € M™ such that M E ¢(m). O
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This logic is not compact for arbitrary sets of sentences. However,

Theorem 4.1. |4, Corollary I11.1.2.2 and III1.1.2.3] The logic L(Q1) is countably

compact, i.e., if |I'| < Wy and each finite [y C T is satisfiable, then T is satisfiable.
Moreover, for each recursive signature £, the L(Q);) entailment relation on L(Q)

L-sentences is a recursive deductive closure operator. ¢

Keisler [24] showed that the logic L(Q1) has an effective proof system such that
for countable sets of L(Q1) sentences I', we have I' F ¢ just in case I k1 .

The proof system for L(Q);) consists of modus ponens together with the following
axioms [23, Definition IV.3.1.1]:

1. All universal closures of first-order validities in the language L(Q1),
2. "Qr(r=yVar=z),

3. V(e = ¢) = (Quy — Quy),

4. (QyIrp) — (FzQye V QrIyy), and

5. Qrp(x) < Que(y) where p(z,...) is a formula in L(Q;) in which y does not
occur, and ¢(y, . . .) is obtained by subsituting each instance of y by an instance
of z.

We write [' F; ¢ to mean that ¢ is provable from I' by way of the above proof system.
We denote the axioms 2-5 in the above by A;. Note that A; is a recursive set of
axioms.

A set T" of L(Q) sentences is consistent just in case the above proof system does
not prove a contradiction from I". The completeness theorem for L(Q;) asserts the
following.

Theorem 4.2. |24, p. 13] Let I" be a set of L(Q);) sentences in a countable signature.
Then I' is satisfiable if and only if I' is consistent. ¢

Consequently:

Corollary 4.1. Let I' be a countable set of L((Q);) sentences and ¢ an L(();) sentence.
Then I' E ¢ entails I' -1 ¢.

Moreover, given an oracle naming I', the consequence relation F is recursively
enumerable in this oracle. ¢
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Proof. Suppose I' E ¢ but ' t/; ¢. Then I" U {—¢} is countable and consistent but
unsatisfiable, contradicting the completeness theorem of L(Q).

The “moreover” clause follows because the set of proofs in L(Q;) from T' is re-
cursively enumerable in I'. O

There is a strong sense in which the inferential structure of L(@)) can be simulated
by first-order logic. Given a formula Qyp(y, T) we may recursively map it to the first-
order formula ¢, (Z) generated by the assignment QyR((x),y) to a new predicate
symbol Rg,(Z). This translation function is clearly well-defined; let ¢* denote the
translation of an L(Q;)-formula ¢ into the first-order formula described above. By
replacing all instances of ¢ with ¢* in the axioms A; of the proof system for L(Q)
with g, (T) we see that the axioms are all first-order sentences and

r "1 R (F* U AT) '_FO QO*.

If T is recursive/recursively enumerable relative to some oracle, so is (I'* U A?).

Of course, the formula ¢* will generally admit different models than ¢ since
QyP(y) will have only uncountable models if satisfiable, while P, will have count-
able models by the Lowenheim-Skolem theorem.

Thus, while first-order logic is strictly less expressive than L(Qi), first-order
logic is nevertheless able to internalize the consequence relation on L(Q;) for all
countable sets of L(Q1) sentences. Therefore, a “deductive” version of Lindstrém’s
characterization of First-Order Logic is not possible:

Corollary 4.2. There are logics strictly stronger than First-Order Logic with recur-
sive deductive closure operators. ¢

However, we might still hold out hope that First-Order Logic is sufficiently strong
to internalize the consequence relation of all recursive deductive closure operators
in a manner similar to its representation of the proof system of L(();). A trivial
generalization of a well-known theorem in recursion theory shows that this is indeed
the case.

Let £ be a recursive language consisting of

— countably many constant symbols c,
— countably many function symbols f for each arity n € w, and
— countably many relation symbols R for each arity n € w.

Then:
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Proposition 4.1. The set V of valid first-order sentences in the recursive signature £
is X1-complete. Moreover, the first-order deductive closure operator Turing-reduces
every other ¥; Turing functional. ¢

Proof. By the completeness theorem of first-order logic, every valid first-order sen-
tence is provable, so the set of valid first-order sentences in a recursive signature is
recursively enumerable, i.e., ;. Moreover, the proof of the undecidability of first-
order logic in [16, Thm 4.1] goes by proving that the set V' solves the halting problem,
which is 3j-complete [41, Thm I1.4.2].

The “moreover” clause follows because one may encode the halting of an oracle
machine into first-order logic in the exact same way as in the above proof. O

From this we may conclude that First-Order Logic is sufficient to simulate the de-
ductive structure of any recursive deductive closure operator. Independently, Walsh
[49] has given a similar argument.

Corollary 4.3. Every recursive deductive closure operator V is Turing-reducible to
the First-Order deductive closure operator. ¢

More directly, this result says that if - is some Turing functional capturing the
notion of proof in some logical system, then there are computable translation function
@ +— " and I' — I" such that

TkopaT e

However, as we will see in the following section, Warren [50] argues that there
is—at least in principle—plausible physical theories in which an agent can invoke a
properly infinitary rule of inference, the w rule of inference. The w-rule is not a >
rule of inference as it allows for the infinite use of an oracle, whereas ¥; rules allow
only finite use. If Warren’s account is correct, my argument for the sufficiency of
first-order logic fails.

4.3 On a Purported Instance of the w Rule

A central premise of the sufficiency argument for first-order logic given above is that
first-order logic is able to simulate any uniform, recursively enumerable deductive
closure operator. Recently, Warren [50] has argued that an agent may have the abil-
ity to invoke the w rule of inference in our own reasoning. In the paper, he illustrates
his point by way of an example from the literature on the physical possibility of
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performing supertasks—specifically, instances of the w rule of inference—such as de-
ciding on the basis of some physical process whether a given V; sentence of arithmetic
is true or false in finite time.

Recall [8, p. 81] the notion of an w-model:

Definition 4.3. An w-model is an L-structure M such that dom(M) = w.
The w-consequence relation I' F,, ¢, where I' is a set of first-order L-sentences
and ¢ a first-order L-sentence is given by

FE, p & (VM an w mode)( M ET — M E ¢). O

The w rule of inference is the following infinitary deductive pattern:

1 |¢(0),¢(1),...,¢(n),...
2 ‘V;m,b(x)

The w rule is sound on w-models; after all, it precisely expresses the truth condi-
tion for the quantifier Vx on an w-model. However, the above rule is by construction
not even expressible as a finite string. Nevertheless, we can inductively define this
closure operator to get a well-defined entailment relation between sets of sentences.
We construct -, by way of induction:

1. If y €' then I' I, .
2. Tk, 01,...,0, and @1, ..., 0, Fro ¢ then I' -, 9.
3. If forall n € w I' -, ¥(n) then I' k-, Va(z).

The w rule is non-recursive in the sense that from a recursive base theory I' the
w rule entails all Vy-truths in (w, +, %, 0, S(z)):

Proposition 4.2. Let PA be Peano Arithmetic. Then for every true V; sentence ¢
in arithmetic, PA F, .

Since the V; theory of arithmetic is not recursive, I, is a non-recursive provability
relation. ¢

Proof. Since w™ ~ w definably in the language L, ¢ is provably equivalent to a
sentence of the form Vi (z) with ¢ (z) a quantifier-free sentence in the language of
rings. By the definition of V,

wE Vry(z) & /\ wEY(n)  {Y(n) hew Fo Youu(z) & PA R, Yay(z).

new
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Therefore the w rule entails Vai(z) if and only if w F Vi (z).
However, the universal theory of arithmetic is co-r.e. complete and hence not
recursive. Therefore, the w proof system F,, is not a recursive relation. O

Using the fact that Peano Arithmetic proves that every formula ¢ in n free
variables is equivalent to a formula in m free variables for all 0 < m < n, a simple
induction argument shows that all of True Arithmetic (T'A) is provable from PA
given the w-rule:

Corollary 4.4. PA+, TA. ¢

Thus, being able to perform an w inference is a highly uncomputable process.
Warren’s purported example of an instance of the w rule is partially mechanized
with the aid of a hypothetical physical process. A classic paper of Earman and
Norton [|14] demonstrates the existence of models of General Relativity in which the
truth of arbitrary V; sentences of arithmetic can be determined by way of physical
experiment. In broad strokes, this experimental setup is accomplished by exploiting
the fact that in General Relativity there can exist two observers O, and O, such that
O,’s “past light cone contains the entire world-line of” Oy [14, p. 23]. Suppose that we
wish to determine whether or not the arithmetic sentence Vzo(x) is true, with ¢(z)
quantifier-free. Earman and Norton set out to determine this by having a terrestrial
scientist send an idealized computer into the vicinity of a spacetime singularity. Over
the infinite time horizon of this idealized computer, it will determine whether each
instance ¢(n) is true or not. If the computer finds a counterexample to Vzo(x), it
sends a physical signal back to the scientist and then halts. Of course, relative to
the computer’s frame of reference infinite time has elapsed, but if set up properly
the entire worldline of the computer is observable to the terrestrial observer in finite
time. So, relative to the terrestrial observer’s frame of reference there is a time ¢,
such that if no signal indicating that a counterexample was received by time ¢, then
Vap(x) is true.

One may in this case be tempted to argue that an instance of the w-rule is at
play: after all, the experimental setup involves observer O; checking each instance
©(0),(1),... in order to verify Vaze(x). This is the position that Warren adopts,
writing in the case of testing Goldbach’s conjecture that

when the computation [determining the truth of YaGB(x)] fails to halt,
we first accept each of GB(0),GB(1),GB(2),GB(3),.... We do this
without any explicit proofs of these claims, using instead the evidence of
the computation. Then, with the computational interval complete, we
conclude VG B(x). I think that the best and most natural description of
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this reasoning is that we would, on the basis of the computation, accept
each of the infinitely many premises, and then infer the conclusion—
Goldbach’s Conjecture—from these infinitely many premises with omega
reasoning. |50, p. 17] [emphasis mine]

Warren defends his position by arguing that the pattern of reasoning in the
Malament-Hogarth setting is not best understood as a form of induction. The in-
duction argument for Goldbach’s Conjecture would go

1 | GB(0)
2 | V2(GB(z) — GB(S))
3 | V2GB(x)

Warren rightly points out that

there is no sense in which, at any point, the Goldbach computation itself
checks or establishes the premise “Va(GB(z) — GB(Sz)).”... It is pos-
sible that, even if we use mathematical induction to infer the conjecture,
omega reasoning is still used in securing the induction premise. On the
basis of the computation we accept all of the infinitely many conditionals
— (GB(0) - GB(1)), (GB(1) — GB(2)), (GB(2) — GB(3)), ... —
and then, on this basis, accept “Va(GB(x) — GB(Sz))”. So this way of
using induction doesn’t avoid the omega rule. |50, p. 17].

This argument does, I think, dispense with the competing account by induction.
However, induction is not the only relevant pattern of reasoning. Neither inferential
pattern that Warren considers here invoke any premises with physically observable
content. That is, they model the reasoning of the agent as only involving mathe-
matical premises such as GB(n). Rather, the most straightforward account of the
observer’s inference to YaGB(x) can be viewed as a simple application of Modus
Ponens. For each V; sentence ¢ = Vaxp(x) of arithmetic, let By be the statement
“experiment £, was performed and no signal indicating a counterexample to ¢ was
observed by time t;.” For a true V; sentence of arithmetic ¢, the observer reasons
to ¢ by way of simple Modus Ponens:

1 | My = Validity in Malament-Hogarth Spacetimes
2 | My Experimental Observation
3 | Modus Ponens, 1, 2



CHAPTER 4. ON THE SUFFICIENCY OF FIRST-ORDER LOGIC 98

Examining premises (1) and (2) in detail, we find that no properly infinite reasoning
takes place. For Premise (1), one may argue By — ¢ by contraposition and the
properties of universal and existential quantifiers. First, if the experiment does not
take place then =My holds, so =@ — —My. Therefore we reduce to the case where
the experiment takes place. In this case, if ¢ holds, then there is some n € w such
that —=@(n) holds. By the specification of the experimental setup, there exists some
time #(n) < to where a signal indicating that ¢ has been refuted is received by the
observer. This is precisely the truth condition for —My given that the experiment
takes place. Therefore, ¢ is a logical consequence of By in the Malament-Hogarth
setting. This is not, properly speaking, a reflection principle. Instead, it expresses
the soundness of our experimental apparatus. Therefore the inferential pattern given
above shows that there is a simple first-order argument to ¢ in the Malament-Hogarth
setting.

Unlike Premise (1), By is not a validity in Malament-Hogarth Spacetimes. Rather,
By is a contingent premise. The truth conditions for By are purely physical: By
can be verified or refuted simply by determining whether or not some signal was
received by a set, known time t,.

Of course, the truth of By is partially grounded in the truth of the instances
©p(n), but it is also partially grounded in the observation of a specific physical state.
In fact, it is instead a red herring that the observer in the above scenario observes
each @(n) prior to inferring ¢. The inference to ¢ by the observer does not require
the observer to accept a single instance @(n) prior to to.

To see why, let us slightly modify the experimental setup. Rather than a signal
being sent to the observer just in case a counterexample to ¢ is found, let the signal
be sent first to a receiver which will in turn send a signal at a predetermined time
t1 > to. The receiver sends our observer the signal “True” if no counterexample to
¢ was found by time t;, and “False” otherwise. In this case, the observer

1. receives no signal regarding any particular instance p(n) and

2. infers ¢ correctly on the basis of the truth of some observable physical phe-
nomena.

Therefore, the particular instances @(n) are inadmissible to the observer’s pattern
of inference; the receiver censors the signals until all of the information comes in.
Nevertheless, the observer is able to infer ¢ on the basis of the directly observable
“black box” sentence M.

In Warren’s initial setup, one might be tempted to believe that the inferential
picture is described by the narrative: “The observer observes @(n) for each n by
time ty, and on this basis infers ¢.” The above example shows that one can instead
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consistently believe that the narrative in the initial example can be redescribed: “The
observer observes confirmation of ¢(n) for each n by time ty; separately, the observer
concludes on the basis of some physical fact that ¢ at time ¢;.” Both the inference
and the conclusion of the experiment occur at time tg, but that does not entail that
each of the infinite premises is used in the agent’s inference.

I readily admit that this does not constitute a knock-down argument against the
metaphysical possibility of some realization of the w rule—I would not be surprised
if there were no such knock-down argument. However, Warren’s purported example
itself does not necessitate an instance of w reasoning: the inference Warren has in
mind can can be readily redescribed as an instance of modus ponens relative to a
validity in the theory of Malament-Hogarth spacetimes together with a contingent
empirical observation.

4.4 Reflections on Hilbert’s Thesis

The Hilbert Thesis, first defined by Barwise [3, p. 41], is the hypothesis that

1. Hilbert’s Expressibility Thesis (HET): All mathematical (extra-logical) as-
sumptions may be expressed in first-order logic, and

2. Hilbert’s Provability Thesis (HPT): The informal notion of provable is made
precise by the formal notion of provable in first-order logic.

Hilbert’s Provability Thesis (HPT)—explicitly affirming the sufficiency of first-
order deduction for provability—is reminiscent of Church’s Thesis that the informal
notion of computability is made precise by the notion of Turing computability. Kahle
argues that Church’s Thesis is disanalagous to Hilbert’s thesis in the following regard:

One could try to put in parallel the different first-order axiom systems
with the different functions calculated by different Turing machines, such
that the different non-logical axioms would correlate to the different states
and transition tables of a Turing machine. This parallel is insofar|[sic|
defective, as there exists a universal Turing machine which can encode
the different machines in just one, while—due to Godel-—such a unified
first-order axiom system cannot exist. |22, Section 4]

In other words, Godel’s incompleteness theorem shows that—unlike the situation of
Church’s thesis—no single first-order theory is sufficient to capture all mathemati-
cal inferences, while there is a universal Turing machine. Kahle notes that there is
well-known way to salvage HPT by requiring only that that all proofs be in-principle
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formalizable in some theory T—as opposed to a fixed theory T—as Godel’s Incom-
pleteness Theorem applies only to fixed 7.
By contrast, Kripke [26] argued that

(HET) + (HPT) = Church’s Thesis

on the basis of Godel’s completeness theorem. The argument runs as follows:

Suppose one has any valid argument whose steps can be stated in a
first-order language. It is an immediate consequence of the Godel com-
pleteness theorem for first-order logic with identity that the premises of
the argument can be formalized in any conventional formal system of
first-order logic. Granted that the proof relation of such a system is re-
cursive (computable), it immediately follows in the special case where
one is computing a function (say, in the language of arithmetic) that the
function must be recursive (Turing computable). [26, p. 81]

The >; completeness of the first-order entailment relation Fgo (Corollary 4.3))

entails
Church’s Thesis 4+ In-Principle Machine Verifiability of Proofs = (HPT).

This is because the »; completeness of -ro implies that any deductive system with
in-principle machine-verifiable inferences can be simulated within the first-order proof
system at the cost of potentially weakening the expressive strength of the underlying
logic. As we saw in the example of L((),), the translation from an L(();) sentence
© to a first-order sentence * will generally result in a sentence with different truth
conditions and hence different models.

At first glance this appears to be a defect of the first-orderization process. How-
ever, this process actually isolates sufficient first-order conditions to carry out the
argument: despite the truth-conditions of the original sentences ¢ being non-first-
order, a first-order approximation of them suffices to witness the validity of the
argument. First-Order Logic is, of course, not the only such logic: any logic with ¥,
complete entailment relation will also be able to simulate any recursively enumerable
deduction relation. But First-Order Logic suffices.
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