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Background: Two approaches to understanding the etiology of neurodevelopmental

disorders such as Autism Spectrum Disorder (ASD) involve network level functional

connectivity (FC) and the dynamics of neuronal signaling. The former approach has

revealed both increased and decreased FC in individuals with ASD. The latter approach

has found high frequency EEG oscillations and higher levels of epilepsy in children with

ASD. Together, these findings have led to the hypothesis that atypical excitatory-inhibitory

neural signaling may lead to imbalanced association pathways. However, simultaneously

reconciling local temporal dynamics with network scale spatial connectivity remains a

difficult task and thus empirical support for this hypothesis is lacking.

Methods: We seek to fill this gap by combining two powerful resting-state functional MRI

(rs-fMRI) methods—functional connectivity (FC) and wavelet-based regularity analysis.

Wavelet-based regularity analysis is an entropy measure of the local rs-fMRI time series

signal. We examined the relationship between the RSN entropy and integrity in individuals

with ASD and controls from the Autism Brain Imaging Data Exchange (ABIDE) cohort

using a putative set of 264 functional brain regions-of-interest (ROI).

Results: We observed that an imbalance in intra- and inter-network FC across 11

RSNs in ASD individuals (p = 0.002) corresponds to a weakened relationship with RSN

temporal entropy (p= 0.02). Further, we observed that an estimated RSN entropy model

significantly distinguished ASD from controls (p = 0.01) and was associated with level of

ASD symptom severity (p = 0.003).

Conclusions: Imbalanced brain connectivity and dynamics at the network level

coincides with their decoupling in ASD. The association with ASD symptom severity

presents entropy as a potential biomarker.

Keywords: complexity, resting-state, fMRI, connectivity, dynamics, Autism Spectrum Disorders

https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://www.frontiersin.org/journals/neuroscience#editorial-board
https://doi.org/10.3389/fnins.2018.00869
http://crossmark.crossref.org/dialog/?doi=10.3389/fnins.2018.00869&domain=pdf&date_stamp=2018-11-27
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/neuroscience#articles
https://creativecommons.org/licenses/by/4.0/
mailto:smith.x.robert@gmail.com
https://doi.org/10.3389/fnins.2018.00869
https://www.frontiersin.org/articles/10.3389/fnins.2018.00869/full
http://loop.frontiersin.org/people/491278/overview
http://loop.frontiersin.org/people/289557/overview
http://loop.frontiersin.org/people/79899/overview


Smith et al. Spatiotemporal Brain Imbalance in ASD

INTRODUCTION

Autism spectrum disorder (ASD) impacts the neurodevelopment
of networks underlying social function and communication
as well as sensorimotor abilities (APA, 1994). ASD has been
linked to imbalanced functional connectivity (FC) in the brain
(Jeste, 2011). FC measures synchronous neuronal signaling and
has been used to identify several resting-state networks (RSNs)
(Greicius et al., 2004; Seeley et al., 2009). Studies have reported
intra- and inter-network FC among several RSNs to be either
reduced (Villalobos et al., 2005; Welchew et al., 2005; Kana
et al., 2006, 2007; Kleinhans et al., 2008; Uddin et al., 2013) or
increased (Anderson et al., 2011; Supekar et al., 2013; Uddin
et al., 2013) in ASD. Most work has focused on intra-network FC
for specific RSNs. Notably, several studies have reported that the
Default Mode Network (DMN), a set of brain regions that exhibit
increased activity in the absence of an external stimuli (Raichle
andMacLeod, 2001), exhibits both increased and decreased FC in
ASD (Jann et al., 2015). However, research focused on a specific
network is inherently limited at delineating the mechanisms of
brain disruption at the global level. A growing number of reports
have also shown that inter-network FC is also strongly impacted
in ASD (Belmonte et al., 2004; Courchesne et al., 2007; Rudie
et al., 2013; Cerliani et al., 2015).

Imbalance of excitation and inhibition within neural
microcircuitry may impair the formation of intra- and inter-
network connections that typify the segregation of RSNs
during typical neurodevelopment. Hyper-excitability (elevated
excitation/inhibition balance) has been hypothesized (E/I
hypothesis) as an underlying mechanism for behavioral deficits
in ASD (Rubenstein and Merzenich, 2003; Chao et al., 2010;
Vattikuti and Chow, 2010; Yizhar et al., 2011). However,
reconciling cortical dynamics with spatial network connectivity
remains a difficult task. Resting-state functional MRI (rs-fMRI)
is a widely used method offering a balance between temporal
and spatial resolution. The rs-fMRI time series signal represents
intrinsic blood oxygen level dependent (BOLD) activity that is
correlated with neuronal activation (Logothetis et al., 2001).
Evidence of spontaneous BOLD fluctuations suggests that
stochastic processes govern neuronal activity (He et al., 2010).
However, most studies investigate brain connectivity using
FC analysis (e.g., mean intra- and inter-network correlations)
which carries little information about the dynamic structure
typifying neuronal activity. The relationship between FC and
brain dynamics in ASD is not well-understood.

Recently, non-linear statistical measures based on
approximate entropy (Pincus, 1991) and sample entropy
(Richman and Moorman, 2000; Costa et al., 2002) have been
used to investigate the dynamic structure and complexity of
the brain by characterizing the recurring patterns of temporal
fluctuations (Smith et al., 2014). A time series containing many
repetitive patterns has relatively small entropy. Conversely,
a time series containing few repetitive patterns has a higher
entropy. Entropy studies have shown changes in dynamics in
aging (Liu et al., 2012; Yang et al., 2013a), Alzheimer’s disease
(Yang et al., 2013b), schizophrenia (Takahashi et al., 2010), and
depression (Pei-Shan Ho et al., 2018). Here we investigate the

relationship between FC and brain dynamics at the network
level using a recently developed wavelet-based regularity analysis
(Smith et al., 2015). This approach to assess network dynamics is
based on noise estimation capabilities of the wavelet transform
to measure recurrent temporal pattern stability within the
rs-fMRI signal across multiple temporal scales. The method
consists of performing a stationary wavelet transform (SWT) to
preserve signal structure, followed by construction of “lagged”
subsequences to adjust for correlated features, and finally the
calculation of sample entropy across wavelet scales based on an
“objective” estimate of noise level at each scale.

Previous applications of wavelet-based regularity analysis
showed the DMN, the most ‘active’ areas of the brain at rest
(De Luca et al., 2006), exhibited higher rs-fMRI signal entropy
than rest of the brain (Smith et al., 2015). This suggested
increased rs-fMRI signal activity is characterized by not only
increased amplitudes, but alsomore complex trajectories through
a diverse array of temporal patterns. Further investigation
of wavelet-based regularity suggested it may be sensitive to
neurobiological changes that underscore cognitive dysfunction.
Specifically, widespread entropy differences in the DMN and
executive control networks were detected between individuals
with mild cognitive impairment and healthy controls. Taken
together, these observations suggest wavelet-based regularity
analysis is a promising measure of the rs-fMRI signal’s dynamic
structure.

Leveraging the spatial resolution of rs-MRI, we use machine
learning tomodel the FC-entropy relationship across cortical and
subcortical RSNs. We hypothesized that FC measures would be
associated with RSN entropy in both ASD and TD participants.
However, per the E/I hypothesis, we expected the FC-entropy
relationship to be significantly weaker in ASD participants.

METHODS

Participants
Resting-state fMRI (rs-fMRI) and structural imaging data of 85
individuals with ASD and 163 matched controls from multiple
sites of the ABIDE data set (Di Martino et al., 2014) were
included in this study for a total of N = 248 individuals.
Inclusion criteria were: (A) a T1-weighted structural MRI
image, (B) a resting-state functional MRI (rs-fMRI) with full
cortical coverage, (C) a full-scale IQ > 100, and (D) a mean
framewise displacement (FD)(Power et al., 2012) of >0.10mm.
Additionally, individuals for a site were included if a total
of at least 7 ASD and 7 control participants met the above
inclusion criteria. Demographic information is summarized in
Table 1. Details of acquisition, informed consent, site-specific
protocols, specific diagnostic criteria for each data set can be
found at the ABIDE website http://fcon_1000.projects.nitrc.org/
indi/abide/index.html. Institutional Review Board approval was
provided by each site.

MRI Data Analysis
Structural MRI
T1-weighted structural images were transformed to standard
Montreal Neurological Institute (MNI) 2mm space using the
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TABLE 1 | Eighty-five individuals with ASD (18.0 yrs, 76 male, IQ = 117,

FD = 0.065) and 163 TD children (17.4 yrs, 132 male, IQ = 115.8, FD = 0.064).

Demographics (Mean ±

SD)

Controls (n = 163) ASD (n = 85) P-value

Age (years) 17.4 ± 8.0 18.0 ± 10.2 0.84

Sex (% male) 81 89

IQ 115.8 ± 9.0 117 ± 11.3 0.76

Motion (mm) 0.064 ± 0.02 0.065 ± 0.02 0.70

ADOS-G (score) NA 10.1 ± 5.4

suite of tools available in the FMRIB software library (FSL)
5.0.9 (http://www.fmrib.ox.ac.uk/fsl/). First, skull stripping was
performed using the brain extraction tool [BET (Smith, 2002)].
Second, a 12 degrees-of-freedom affine transform from the brain
extracted structural image to the MNI 2mm reference image
using FMRIB’s linear image registration tool (FLIRT) (Jenkinson
et al., 2002). The computed affine transform was applied to the
original (non-brain extracted) structural image. Finally, non-
linear warping was applied to the linearly registered original
structural image using the FMRIB’s non-linear image registration
tool (FNIRT) (Andersson et al., 2007). Tissue segmentation was
performed using FMRIB’s automated segmentation tool (FAST)
(Zhang et al., 2001). White matter and ventricle masks were
created for later use in rs-fMRI nuisance regression. Visual
inspection was performed at each stage for each individual
to ensure successful brain extraction, tissue segmentation, and
normalization.

Resting-State Functional MRI (rs-fMRI)
The rs-fMRI data were pre-processed as follows. First, correction
for rigid body head motion was conducted using motion
correction FLIRT (MCFLIRT) (Jenkinson et al., 2002) (default
parameters, with final sinc interpolation). Second, an individual’s
mean rs-fMRI image was aligned with their structural image via
a 7 degree-of-freedom affine registration using FLIRT, and the
transformation was applied to all volumes in the time series.
Frames with excessive motion were identified and scrubbed
(Power et al., 2012) if the framewise displacement exceeded
0.3mm. Individuals with >10% of their frames flagged for
scrubbing were excluded. The mean framewise displacement of
controls (FD= 0.064) was not significantly different (W = 7,135,
p = 0.74; Table 1) compared to ASD participants (FD = 0.065)
as determined by the Wilcoxon rank-sum test. The time series
was band-pass filtered removing >0.1 and <0.01Hz. Lastly,
voxel times series were linear detrended, and reduction of
spurious variance was implemented by linear regression of
nuisance waveforms derived from head motion (including
motion derivatives) and ROI extracted time series in white
matter, cerebrospinal fluid (CSF), and global signal. White matter
and CSF time series were obtained similar to Chang and Glover
(2009) by reverse-normalizing 6mm spheres at MNI coordinates
(26, −12, 35) and (19, −33, 18), respectively, to the native space
of each individual. Individual specific white matter and ventricle
masks were used to ensure no signal of interest in gray matter

was included. Spatially smoothing was performed at the end with
a 7mm FWHMGaussian filter.

Functional Connectivity Principal
Components Analysis
An intra- and inter-network-wise method for analyzing
distributed connectivity patterns was employed. Our analyses
focused on a putative set of 264 functional regions-of-interest
(ROIs) previously organized into 11 RSNs (Power et al., 2011).
ROIs were defined as 10mm diameter spheres whose center
coordinates are given in MNI atlas space (Power et al., 2011).
For each individual, we computed a 264 × 264 FC matrix by: (i)
MNI atlas transformation of the pre-processed functional data,
(ii) computation of the mean voxel time series within each ROI,
(iii) and computation of the pairwise correlation between all ROI
time series.

Data reduction was performed in two steps to isolate a
metric of distributed FC changes. First, using each ROI’s RSN
designation (Power et al., 2011), we computed the average intra-
and inter-network correlation for each RSN yielding a reduced
11 × 11 matrix for each individual. The 11 intra-network and
11×(11−1)

2 = 55 inter-network averages (total of 11 + 55 = 66)
were compiled for all N = 248 individuals into a single 248× 66
matrix M. Second, a principal component analysis (PCA) of the
matrixMwas performed by singular value decomposition (SVD):

M = UAVT. (1)

PCA is a simple eigenvector-based multivariate analysis that
reveals the internal data structure in a way that best explains
its variance. A single PCA including both control and ASD
individuals provides a set of components common to both
groups. This avoids the latent root and vector problem
(Krzanowski, 1979) that occurs when separate PCAs are
performed for each group. The principal components cn =

UA were obtained by projection of the RSN averages onto the
principal vectors V . The primary component, c1, was selected.
c1-values vary along the primary vector V1. Variation along this
vector explained 29% of the inter-individual RSN variance.

Wavelet-Based Regularity Analysis
We computed the entropy, H, of the mean rs-fMRI time series
for the same 264 ROIs used in the FC analysis using a previously
developed wavelet-based regularity analysis (Smith et al., 2015).
This approach is sensitive to, in addition to any non-linear
structure, the presence of intrinsic non-stationary processes (i.e.,
how variable the moments of the signal distribution are over
time) within the rs-fMRI signal (Chang and Glover, 2009). Non-
stationary structure is preserved with high fidelity across multiple
scales using the SWT using the WaveLab850 toolbox (Buckheit
et al., 2005). The time series noise level is estimated from
the highest frequency subband using wavelet-based de-noising
schemes (Donoho and Johnstone, 1994; Donoho, 1995; Chang
et al., 2000) and used to tune sensitivity to the entropy of the
intrinsic signal. The regularity with which rs-fMRI signal patterns
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recur is measured with Sample Entropy (Pincus, 1991):

H (m, r, Nm) = − log

(

Cm+1 (r)

Cm (r)

)

, (2)

where recurrence probability of m-length subsequences within a
tolerance distance r is given by:

Cm (r) =
1

2

Nm
∑

q,p 6=q

2(r)

Nm (Nm − 1)
. (3)

Nm is the number of subsequences, 2 is the Heaviside function,
and r = r0σ + t is the distance threshold for pattern similarity
that depends on a scaling r0 of the time series standard deviation
σ and a scale-dependent threshold t based on the BayesShrink
approach (Chang et al., 2000). Patterns were constructed from
time-delayed points to account for the serial correlations present
in rs-fMRI data. Pattern lengths were kept small to increase the
total number of patterns and improve the statistical power. In
this study, patterns of length m(+1)= 1(2) were compared using
a distance threshold of r0 = 0.2. The distance threshold, r0,
was selected using a procedure described previously (Smith et al.,
2015). The entropy was computed for a range of thresholds,
0.1–0.3 with 0.05 increments. The r0-value the maximized the
range of observed entropy values across all individuals was
selected. The mean entropy across two scales (0.031–0.063 and
0.063–0.13Hz) for each of the 11 RSNs was obtained for each

individual. The dyadic wavelet scales are based on the number
of time points. Here, the scales most sensitive to the 0.01–0.10Hz
frequency band, where most slow-wave neuronal activity occurs,
were selected.

Patterns containing one or more flagged frames were removed
from consideration. Specifically, a binary time series for each
individual equal in length to the rs-fMRI frames. Time points
equaled one if a frame was flagged for excessive motion. A SWT
was applied to this binary series. For each scale, m-length patterns
were formed using the same parameters to form patterns for the
rs-fMRI series. If any value in these patterns equal one, then the
corresponding rs-fMRI pattern is removed from the wavelet-base
regularity analysis.

Multilinear Regression Model
ASD and controls were pooled together and a multilinear
regressionmodel was used to evaluate the relationship between c1
(FC PCA scores) and RSN entropies, H. Specifically, we modeled
c1 as:

c1 = XHβ + ε, (4)

where XH is the 248 × 11 matrix of network entropies for
the 11 RSNs for all 248 individuals (both ASD and control),
β are the model coefficients to be estimated, and ε are the
residuals to be minimized. Importantly, no information about
group membership (i.e., ASD or control) has been explicitly
passed to the model.

FIGURE 1 | Principal component analysis (PCA) reveals imbalance in functional connectivity (FC) across cortical and subcortical resting-state networks (RSN). (A)

Primary PCA vector, V1, is positively weighted by the intra- and inter-network FC among several RSNs including the sensorimotor (SM, SM-lat), visual (VIS), auditory

(AUD), dorsal attention (DAN), ventral attention (VAN), and cingulo-opercular (CO). Conversely, the intra- and inter-network FC of the default mode (DMN), salience

(SAL), fronto-parietal (FP), and subcortical (SUB) RSNs are negatively weighted. (B) Violin and box plots of the primary PCA component score distributions for controls

(gray) and individuals with autism spectrum disorders (ASD; green). Horizontal black line denotes significant difference (p = 0.002).
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Elastic net regularization was performed to avoid overfitting
using the “glmnet” package (Friedman et al., 2010) within the
R statistical computing language (R Core Team, 2017). Elastic
net regularization is a common machine learning approach
to building linear models that combines L1 (lasso; Tibshirani,
1996) and L2 (ridge; Tikhonov et al., 1995) regularization. L1
regularization tends to produce sparse solutions by selecting
predictors strongly correlated with the outcome and zeroing
out the remaining. L2 regularization is suited to deal with high
collinearity among predictors. Estimated coefficients, β̂ , from
elastic net regularization are formulated as:

β̂ = min
β

(

‖c1 − XHβ‖2 +
λ

2

[

(1− α) ‖β‖22 + 2α ‖β‖1
]

)

(5)

where λ is a model complexity parameter, and α is a tradeoff
between L1 (α = 1) and L2 (α = 0) regularization. β̂values
represent the importance of certain RSN entropies over others.
Model validation was performed using 10-fold cross validation.
A grid search for the minimum mean squared error (MSE) was
performed across λ and αvalues.

Statistical Analyses
FC PCA score and entropy model distributions for ASD and
control individuals were compared using theWilcoxon rank-sum
test. A post-hoc linear regression analysis was used to test for an
interaction of entropy model estimates, c1H = XH β̂ , by group

(i.e., ASD vs. controls) in predicting c1: c1 = γ0 + γ1G+ γ2c1H +

γ3Gc1H + εr . Here γi are the regression coefficients, G is a binary
variable representing ASD individuals or controls, and εr are the
regression residuals. The regression coefficient γ3 measures the
entropymodel by group interaction and characterizes the relative
model performance between groups. The associations between
c1 and c1H with the individuals’ ADOS-G severity scores (Lord
et al., 2000) (for individuals with available scores) were computed
using a Pearson correlation. The mean age difference between
ASD and controls was 0.6 years, and not statistically significant
(W = 6,816, p = 0.66; Table 1). As such, age was not included as
a regressor to avoid loss of statistical power in detecting entropy
related group differences.

RESULTS

Imbalance in Functional Connectivity
We observed a distributed set of intra- and inter-network
FC. The brain networks that exhibit the most inter-individual
variation were evaluated by principal component analysis of
functional connectivity matrices for ASD and control groups.
The primary PCA vectorV1 (Figure 1A) is positively weighted by
the intra- and inter-network FC among several RSNs including
the sensorimotor (SM, SM-lat), visual (VIS), auditory (AUD),
dorsal attention (DAN), ventral attention (VAN), and cingulo-
opercular (CO). Conversely, the intra- and inter-network FC of
the default mode (DMN), salience (SAL), fronto-parietal (FP),

FIGURE 2 | Resting-state network (RSN) entropy is a stronger predictor of functional connectivity (FC) for TD compared to ASD. (A) Model coefficients determined

from elastic net method show sensory networks (SM, SM-lat, VIS, AUD, SUB) are positively weighted, while higher order cognitive networks (DMN, SAL, CO, DAN,

VAN, FP) are negatively weighted. (B) Scatter plot showing the relationship between FC (PCA primary component projections) and entropy model for control

(diamonds) and ASD (circles) individuals. The model was significantly weaker in predicting FC in ASD compared to controls (p = 0.02). (C) Box plot of entropy model

distributions for control (gray) and ASD (green) groups. Horizontal black line denotes significant difference (p = 0.01).
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and subcortical (SUB) RSNs were negatively weighted. FC PCA
scores, c1, significantly differed between ASD and control groups
(Figure 1B;W = 5,846, p= 0.04).

Imbalance in Brain Entropy
To evaluate whether this imbalance in intra- and inter-network
FC in ASD individuals corresponds to dynamical changes, the
mean entropy for each of the 11 RSNs were included as predictors
to model FC PCA scores (c1) of all individuals. First, we observed
that a combination of most RSNs (Figure 2A) reliably predicted
c1. The minimumMSE computed from a 10-fold cross validation
was 11.4 ± 7.2% of c1 variance, and was observed for α = 0.15.
The DMN exhibited the strongest weighting, but interestingly,
estimated model coefficients (β̂), for sensory networks (SM,
SM-lat, VIS, AUD, SUB) were positively weighted, while higher
order cognitive networks (DMN, SAL, CO, DAN, VAN, FP)
were negatively weighted. Second, in a post-hoc linear regression
analysis that included binary variable representing group (i.e.,
ASD vs. controls), we observed an interaction of group with
c1H in predicting c1 (Figure 2B; γ3 = 0.82, t = 2.3, standard
error= 0.35, p= 0.02). Lastly, we observed c1H were significantly
different for ASD compared to controls (Figure 2C; W = 5,628,
p= 0.02).

FIGURE 3 | Entropy model predicts autism diagnostic observation

schedule-generic (ADOS-G) severity score. Entropy model was negatively

associated with ADOS-G severity scores (r = −0.31, p = 0.003).

Severity Score Association
Lastly, we found a significant negative association between the
estimated model predictors (c1H) and severity scores based on
the AutismDiagnostic Observation Schedule-Generic (ADOS-G;
Figure 3; r = −0.31, p = 0.003). However, no association was
observed between c1 and ADOS-G severity scores.

DISCUSSION

Our findings revealed distributed alterations in FC across
multiple RSNs in ASD individuals. Alterations in FC were
characterized by negatively weighted sensory and positively
weighted cognitive RSNs, suggesting an imbalance of intra- and
inter-network FC in ASD. Linear modeling of these alterations
in FC revealed a significant association with alterations in
brain dynamics, as measured by the time series entropy of
multiple RSNs. We observed the observed FC imbalance in
ASD individuals was mirrored by a similar imbalance in
brain dynamics. Specifically, alterations in brain dynamics were
characterized by positively weighted sensory and negatively
weighted cognitive RSNs. Alterations in the brain dynamics were
further associated with level of symptom severity in individuals
with ASD.

Our results provide insight into the impact that ASD has
on the intra- and inter-network FC balance among several
RSNs. Previous studies have reported hypo-connectivity in the
VIS (Villalobos et al., 2005), SM (Mostofsky et al., 2009), and
DAN/VAN (Belmonte et al., 2010) networks. Conversely, hyper-
connectivity of the salience (Uddin et al., 2013) and subcortical
(Padmanabhan et al., 2013; Jann et al., 2015) networks have also
been reported. Consistent with these reports, we find imbalanced
FC may be a whole-brain phenomenon distributed across
multiple RSNs. Further, the imbalanced FC largely discriminated
sensory from cognitive networks. Sensory networks primarily
develop early during childhood while cognitive networks
continue to develop into early adulthood (Somerville et al.,
2010; Petanjek et al., 2011). Altered segregation of cognitive
networks (as indexed by stronger inter-network connectivity)
may reflect the atypical developmental trajectories (e.g., delayed
or incomplete pruning process) seen in ASD (Penzes et al.,
2011).

There is rapidly growing literature on the relationship between
FC and brain dynamics (Hutchison et al., 2013a,b; Allen
et al., 2014; Laumann et al., 2017). Here we found that, when
taken together, the dynamics of 11 RSNs reliably predicted
their engagement of distributed pattern of FC. The strongest
contributors to the entropy model were the DMN, SM, and
SAL networks. We note, the SM and SAL contributions to
both the primary PCA vector and the entropy model were
strong, and in both cases opposing each other. This suggests that
changes in network dynamics largely follow local FC changes.
This is consistent with histological studies reporting disorganized
pyramidal cells, consistent with focal cortical dysplasia, extend
across many cortical columns in such a fashion that impedes
coordinated signaling to other regions in ASD (Casanova, 2007;
Schmitz and Rezaie, 2008; Mosconi et al., 2009; Casanova et al.,
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2013). Conversely, the DMN was a small contributor to the
primary PCA vector, but was the largest contributor to the
entropy model. This may reflect the tremendous heterogeneity
that characterizes ASD (Courchesne et al., 2011). Specifically,
both hypo- and hyper-connectivity have been reported within
the DMN in individuals with ASD (Raichle and MacLeod, 2001),
suggesting these opposing effects may have averaged each other
out.

Overall, our results indicate FC and entropy provide
complementary information regarding the spatiotemporal
organization of the brain. Similar to FC, the entropy model
discriminated sensory from cognitive networks. Interestingly our
entropy model—rather than FC—was significantly associated
with ASD symptom severity. Specifically, the time series signals
in the negatively weighted cognitive networks (e.g., DMN,
SAL) become less repetitive with increasing symptom severity,
suggesting increased excitatory behavior. Conversely, the time
series signals in the positively weighted sensory networks (e.g.,
SM, SUB) become more repetitive with increasing symptom
severity. This may suggest increased inhibitory signaling

associated with repetitive behaviors in ASD (Lombardo et al.,
2016). Taken together, these findings point to entropy as a
sensitive measure of the hypothesized excitation and inhibition
imbalance underlying ASD behavioral deficits (Rubenstein and
Merzenich, 2003; Chao et al., 2010; Vattikuti and Chow, 2010;
Yizhar et al., 2011) and may serve as a potential biomarker.
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