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A B S T R A C T

Lay Summary: Adaptive immune proteins in mothers’ milk are more variable than innate immune

proteins across populations and subsistence strategies. These results suggest that the immune de-

fenses in milk are shaped by a mother’s environment throughout her life.

Background and objectives: Mother’s milk contains immune proteins that play critical roles in protect-

ing the infant from infection and priming the infant’s developing immune system during early life. The

composition of these molecules in milk, particularly the acquired immune proteins, is thought to reflect

a mother’s immunological exposures throughout her life. In this study, we examine the composition of

innate and acquired immune proteins in milk across seven populations with diverse disease and cul-

tural ecologies.
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Methodology: Milk samples (n = 164) were collected in Argentina, Bolivia, Nepal, Namibia, Philippines,

Poland and the USA. Populations were classified as having one of four subsistence patterns: urban-in-

dustrialism, rural-shop, horticulturalist-forager or agro-pastoralism. Milk innate (lactalbumin, lactoferrin

and lysozyme) and acquired (Secretory IgA, IgG and IgM) protein concentrations were determined using

triple-quadrupole mass spectrometry.

Results: Both innate and acquired immune protein composition in milk varied among populations,

though the acquired immune protein composition of milk differed more among populations.

Populations living in closer geographic proximity or having similar subsistence strategies (e.g. agro-

pastoralists from Nepal and Namibia) had more similar milk immune protein compositions. Agro-

pastoralists had different milk innate immune protein composition from horticulturalist-foragers and

urban-industrialists. Acquired immune protein composition differed among all subsistence strategies

except horticulturist-foragers and rural-shop.

Conclusions and implications: Our results reveal fundamental variation in milk composition that has

not been previously explored in human milk research. Further study is needed to understand what

specific aspects of the local environment influence milk composition and the effects this variation

may have on infant health outcomes.

K E Y W O R D S : milk immunofactors; human milk; maternal ecology; SIgA, lactoferin

BACKGROUND AND OBJECTIVES

Born with immature immune systems, human neonates are vul-

nerable to infection, particularly infections caused by respiratory

and gastrointestinal pathogens. Breastfed infants, however, have

fewer and less severe illnesses than do formula-fed infants [1, 2].

Mother’s milk contains immunologically active molecules that

play critical roles in protecting the infant and educating the in-

fant’s naı̈ve immune system. Many of these components are ac-

tive in mucosal defense against infection, including preventing

proliferation of pathogens and promoting maturation of the mu-

cosal barrier [3]. Although these molecules can resist digestion

and retain biological activity in the infant’s digestive tract

(e.g. lactoferrin, Secretory IgA [SIgA]) (reviewed in [4, 5]), diges-

tion is necessary for the activation of other immunologically pro-

tective compounds (e.g. lactalbumin) [6]. Milk bioactives may

also indirectly shape the development of the infant’s immune

function through interactions with the infant’s gut microbiota

[7]. Additionally, these immunologically active milk molecules

seemingly shape the maturation and regulation of the infant’s

gut immunity, which is important for the regulation of the im-

mune system overall [8]. Human milk modulates the immune

response of intestinal epithelial cells to microbial components

in vitro, though the direction of this modulation varies with the

mother’s country of origin [9]. The immunological protection

provided by human milk is likely shaped by a mother’s current

and past environment to promote the infant’s survival during the

earliest encounters in a complex microbial and pathogenic

postnatal landscape. In this study, we examine the composition

of milk immune proteins across diverse populations and subsist-

ence patterns to explore how the immune protection in mother’s

milk may be shaped by the maternal environment.

The immune protection provided by mother’s milk consists of

two layers of defense, the innate immune system and the acquired

(or adaptive) immune system. The innate immune system is evo-

lutionarily ancient and provides the first line of defense against

pathogens [10]. These broad, nonspecific defenses have been

shaped by selection to respond to highly conserved features of

pathogens, and this response does not change with repeated ex-

posure. Among the most important innate immune proteins in

milk are lactoferrin, lysozyme and lactalbumin (Table 1). The

acquired immune system is characterized by specificity and mem-

ory, producing specific defenses to pathogens that an individual

has been exposed to previously in their lifetime [17, 18]. Though

these acquired defenses initially require more time to respond,

immunological memory allows for stronger and more efficient

immune responses upon repeated exposures to a previously en-

countered pathogen. Thus, acquired immune proteins reflect

both an individual’s history of immunological exposure and their

acute immune activation. Immunoglobulins are the most well-

known acquired immune proteins in milk (Table 1). Antibodies

in milk are largely specific for pathogens encountered by maternal

mucosal tissues, making them reflective of the environment that

an individual has encountered throughout her life [19, 20]. Milk

immunoglobulins provide critical passive immunity to the infant

after birth, but may also prime the infant’s own developing im-

mune system [21]. In this way, milk functions as an

intergenerational bridge that carries acquired immunity to the

infant from the mother’s lifetime of exposure. This bridge may

be especially important in the human lineage, as proteins that

are associated with gastrointestinal, brain and immune develop-

ment are more abundant in human milk than macaque milk [22].

Athough data from more closely related primate species are

needed, Beck and colleagues propose that this is among the first
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evidence that disease and nutritional ecology may contribute to

derived features of human milk proteins [22].

The pathogens that humans encounter are determined by our

physical and cultural environments. Human pathogen species

diversity decreases with increasing distance from the equator,

similar to the latitudinal species gradients identified for many

other taxonomic groups [23]. Climatic factors, such as tempera-

ture and precipitation, are hypothesized to drive this distribution

by influencing the pathogens endemic to an area, the seasonality

of outbreaks, and/or the presence of vectors or alternative hosts

[23–26]. As a result, people living in tropical areas with higher

temperatures and precipitation are likely to be exposed to a

greater diversity of pathogens than people in more temperate

areas [23]. Human behavior, including cultural practices, also in-

fluences pathogen exposure [27, 28]. Throughout our species’

evolutionary history, cultural practices have engineered new

niches and affected the global distribution of species, including

of pathogen species (reviewed in [29]). Thus, considering the cul-

tural ecology of a population is likely to be an important part of

understanding mothers’ local environments.

In industrialized, wealthy countries, public health initiatives

(i.e. health care, potable water, sewage containment and waste

removal) reduce pathogen exposures and contribute to lower

rates of infectious diseases and parasitic infections, including

those that co-evolved with humans to modulate immune re-

sponse [30]. Lack of exposure to these microbial ‘old friends’,

particularly in urban areas, is associated with relatively higher

rates of allergies and immunoregulatory disorders [30].

Populations with non-industrialized subsistence strategies tend

to have higher pathogen exposure and burdens, though the

sources and types of pathogens, and their effects on the immune

system, are variable. Subsistence agriculturalists encounter

pathogens through soil cultivation and the use of human and

domesticated animal feces for fertilizer [28]. Agriculture also sup-

ports larger and more densely populated communities, which

permit crowd diseases (e.g. measles, tuberculosis) that are not

common among other subsistence patterns and activate pro-

inflammatory, Th1-type (intracellular pathogen-directed) im-

mune responses [30, 31]. Pastoralists are exposed to zoonotic

diseases through routine close contact with domestic animals

as well as exposures to animal blood or secretions during

butchering and the consumption of meat and raw milk [32, 33].

Hunter-gatherers and other groups that consume wild meat can

also be exposed to zoonotic diseases from contact with wild

Table 1. Selected functions of acquired and innate immune proteins in human milk

Protein Functions References

Innate Immune Proteins

Lactoferrin

. Bacteriostatic, antibacterial, and antiviral activities

. Modulates inflammation

. Regulates intestinal cell proliferation and differentiation

[11, 12]

Lysozyme

. Disrupts cell membranes in gram-positive bacteria

. Acts in conjunction with lactoferrin to kill gram-negative bacteria

. Stimulates maturation of intestinal tract

. Promotes beneficial gut microbiome profiles in animal models

[11, 13, 14]

Lactalbumin

. Primary role as a regulatory subunit of lactase synthase

. Alpha-lactalbumin can also combine with oleic acid to form a protein complex
(HAMLET) capable of killing tumor cells

[6, 15]

Acquired Immune Proteins

SIgA

. Primary antibody for mucosal defense and the most abundant immunoglobulin in human milk

. Specific antibodies have been identified to most major classes of pathogens,
including bacteria, viruses, fungi, and yeasts

. Reflect pathogens encountered by the mother during her lifetime

. Thought to have lasting beneficial effects on the infants’ gut microbiome and immune system regulation

[3, 16]

IgG

. Present in human milk at much lower concentrations than SIgA

. Unlikely to resist digestion in the small intestine and likely plays a small role in providing
passive immunity to the infant

[11]

IgM

. Present in human milk at much lower concentrations than SIgA

. Unlikely to resist digestion in the small intestine and likely plays a small role in providing
passive immunity to the infant

[11]
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animals, especially through injuries (e.g. scratches, bites)

acquired during hunting and exposures during butchering [34].

Among hunter-gatherers and horticulturalist-foragers, parasitic

(including helminth) and fungal infections are common. When

compared with western populations, some of these groups have

genetic profiles that favor Th2-type (extracellular pathogen-

directed) immune responses and elevated levels of immune

molecules throughout life, particularly those involved in response

to extra-cellular parasite infections [35, 36]. Subsistence pattern

has also been correlated with gut microbiome composition

among closely related, rural African populations [37], as well as

populations that share a subsistence patterns but are located on

different continents [38]. As the gut microbiome plays a

considerable role in shaping immune function, differences in

microbiome could translate to differences in immune function

among populations. Due to these broadly documented phenom-

ena, human biologists and anthropologists use subsistence

pattern as a rough proxy for the pathogen pressure that individ-

uals within a population may encounter, especially when national

health statistics are unlikely to reflect the experiences of tradition-

ally living populations [39]. It is worthwhile to remember, however,

that pathogen exposures are not exclusive to one subsistence

strategy and many populations engage in several types of subsist-

ence activities. For example, agro-pastoralists and subsistence

agriculturalists can both be exposed to zoonotic diseases

from domesticated animals as well as to pathogens during soil

cultivation though the patterns of exposure are still likely to differ

across these subsistence strategies based on factors such as the

number of animals present and proportion of time spent in each

activity.

Public health initiatives also examine environmental character-

istics to determine the effects of environment on human health.

The environmental characteristics of interest to health re-

searchers are proxies of the same kinds of phenomena that an-

thropologists evaluate through a theoretical lens. Biomarkers of

immune function, or more frequently morbidity/disease rates, are

correlated with characteristics of the broader environment

(e.g. high income countries vs. the global south) or the household

environment (e.g. the presence or absence of dirt floors or toilets)

[40]. These parameters often directly or indirectly relate to differ-

ences in pathogen exposure and public health interventions aim

to reduce morbidity or mortality by reducing pathogen exposures

[40, 41]. Previous studies have investigated how human milk

immunofactor concentrations are influenced by environmental

characteristics. Milk immunofactor concentrations have been

found to vary with maternal country of residence [42–45] or ma-

ternal country of origin [20, 46, 47, but see 9]. Most of these

studies, however, have investigated or compared urban areas of

western, industrialized countries. Thus, our understanding of how

maternal environment shapes variation in the immunofactors in

milk is limited.

In this study, we compared the composition of select immune

proteins in human milk across populations and subsistence

strategies to characterize how immune proteins provided via

mother’s milk vary across maternal environments. To do this,

we analyzed the levels of innate (lactalbumin, lysozyme and lacto-

ferrin) and acquired (SIgA, IgG and IgM) immune proteins in

human milk across seven populations that reflect diverse cultural

and disease ecologies. Importantly, all samples were analyzed in

the same laboratory at the same time, allowing us to make direct

comparisons among populations. Due to the differences in the

origins and functions of innate and acquired immunity, we pre-

dicted that acquired immune protein composition would differ

more across populations and subsistence patterns than innate

immune protein composition in milk across populations living

in different environments. Characterizing how immune protein

concentrations in milk vary across populations and environments

is the first step in understanding how specific aspects of the ma-

ternal environment relate to the immune protection provided by

mothers’ milk. To the best of our knowledge, this is the first study

to look at human milk immune protein concentrations in relation-

ship to subsistence strategy.

METHODOLOGY

Populations

Milk samples were collected from mother–infant dyads among

populations in the USA, Argentina, Philippines, Poland, Bolivia,

Namibia and Nepal between 2007 and 2013 (Supplementary

Material S1). The lifestyle and environment of these populations

vary with respect to their participation in agriculture, contact with

wild and domesticated animals, and access to sanitary infrastruc-

ture and medical care (Table 2) with greater ethnographic detail

provided in the Supplementary Material S1. Mother–infant dyads

varied in a number of demographic parameters (Table 3).

Subsistence strategy assignment

Populations were binned into one of four subsistence patterns:

urban-industrialists, rural-shop, agro-pastoralists or horticultural-

forager (Table 3). Anthropological studies of nutritional ecology

have prioritized investigating traditional subsistence activities,

but most traditional societies now participate in mixed economies

to some extent [56]. Increased urbanization and engagement in

wage labor is associated in many parts of the world with nutri-

tional transitions towards a more westernized diet [57]. The cat-

egory of ‘rural-shop’ encompasses populations that purchase

much of their food from small local groceries that have limited

inventory, and are not directly comparable to an urban population

in a westernized, industrialized nation. For example, the Qom

(formerly Toba) people of Argentina were traditionally hunter-

gatherers, but now live in government designated territories.
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Though foraging is still practiced in some rural territories, in peri-

urban barrios, most food is purchased with governmental aid and

supplemental income from men’s paid labor and women’s sales

of artisanal crafts [58]. Diets tend to be monotonous and include

calorie-dense food, such as fried dough, noodles and potatoes

[48, 59]. The Mogielica Human Ecology Study Site in Poland is

located in a region historically characterized by peasant subsist-

ence farming. Despite rapidly increasing participation in wage

labor, 65% of household surveyed in 2009–10 reported growing

at least some of their own produce [51]. Small shops in the area

provide limited selections of fresh produce, meat and dairy prod-

ucts, and larger selections of canned and dry goods, sweets,

juices, soft drinks and alcohol. Participants in the Cebu

Longitudinal Health and Nutrition Survey (Cebu Study,

Philippines) were drawn from the greater metropolitan area of

Cebu, Philippines. Approximately half the participants were from

urban areas engaged in wage labor, and half from surrounding

agrarian communities practicing small scale farming. Both

groups had access to a variety of commercially produced foods

as well as local produce, eggs and fish.

Participant characteristics

Women included in this study were nursing children from a single-

ton pregnancy and reported no indications of mastitis at the time

of milk collection. Mothers of infants under 2 weeks of post-natal

age or over 2 years of post-natal age were excluded from the study.

Among the Himba, Nubri Tibetans, Tsimane and Qom, ‘on-de-

mand’ breastfeeding for 2–3 years is typical and commercial in-

fant formulas are rarely available, though complementary foods

are usually introduced when the infant is between four and six

months old [48, 55, 60, 61]. Breastfeeding duration or initiation

rates can be much more variable within the other populations.

Although nearly all Filipino women in Cebu initiate breastfeeding

and many continue to breastfeed for at least 18 months, the me-

dian duration is around 12 months [62, 63]. Similarly, Polish

Table 2. Variation in pathogen exposures across populations

USA Argentina Philippines Poland Bolivia Namibia Nepal

Boston Qom Cebu Rural Polish Tsimane Himba Nubri Tibetan

Routine exposure to livestock 3 3 3 3

Subsistence Horticulture/Agriculture 3 3 3 3 3

Routine hunting of wild animals 3

Dirt flooring in the home 3 3 3

Lack of indoor plumbing 3 3 3 3 3

Limited access to modern,

western biomedical care

3 3 3

This table is a visual summary of environmental characteristics that are suspected to contribute to increased pathogen exposure within these popu-
lations. No mark indicates the exposure is not present or rare in the population, a gray check mark (3) indicates the exposure is variably present in the
population, and a black check mark (3) indicates the exposure is widespread in the population.

Table 3. Summary of participant characteristics

Country Population n Infant

sex (male)

n (%)

Infant

age (days)

(M ± SEM)

Parity

(M ± SEM)

Primiparous

n (%)

Subsistence

Strategy

References

USA Boston, MA 21 7 (33%) 197.8 ± 21.5 1.7 ± 0.2 11 (52%) Urban-industrial

Argentina Qom (Toba)a 18 9 (50%) 236.5 ± 22.8 3.7 ± 0.5 3 (17%) Rural-shop [5, 48]

Philippines Cebu 17 8 (47%) 190.0 ± 25.2 2.0 ± 0.2 4 (24%) Rural-shop [49]

Poland Mogielica Human

Ecology Study Site

22 12 (55%) 187.4 ± 20.3 2.2 ± 0.3 10 (45%) Rural-shop [50, 51]

Bolivia Tsimanea 47 28 (60%) 265.1 ± 23.4 4.2 ± 0.4 6 (13%) Horticulturalist-

forager

[36]

Namibia Himbaa 11 5 (45%) 172.0 ± 40.7 3.8 ± 0.9 2 (18%) Agro-pastoralist [52, 53]

Nepal Nubri Tibetana 28 13 (46%) 240.5 ± 34.0 2.1 ± 0.3 13 (46%) Agro-pastoralist [54, 55]

TOTAL 164 82 (50%) 224.7 ± 10.8 2.9 ± 0.2 49 (21%)

aIndicates an indigenous population.
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women living in the Mogielica Human Ecology Study Site area

typically breastfeed for around 12 months ([64]; unpublished

data). However, within the United States, 79% of mothers ever

breastfeed and only 27% continue for at least 12 months. Factors

such as mothers’ socioeconomic status, race/ethnicity, level of

education, geographic location, and family and social support are

well-known to contribute to considerable variation in breastfeed-

ing rates and duration in the USA [65].

Milk collection

Milk samples (n = 166) were collected using a standardized pro-

cedure. To control for diurnal changes in milk composition, all

samples were collected in the morning. Mothers were asked to

nurse their infants from the sample breast 2 h prior to the sample

collection and only nurse from the non-sample breast to allow for

a standardized pooling period for milk in the breast. Participants

provided mid-feed milk samples following Neville and colleagues

[66]. Briefly, infants suckled from the sample breast for 2–2.5 min

after the onset of milk let-down, as indicated by active infant swal-

lowing. Mothers then manually expressed up to 20 ml of milk

before resuming normal feeding. Mid-feed sampling was selected

because it allows researchers to collect a smaller volume of milk,

yet produces a sample with mean constituent concentrations that

are not significantly different from a pooled, pumped content of an

entire mammary gland [66–68]. Milk samples from Bolivia were

collected over two research periods, and those collected in 2009

(n = 9) were collected using a different procedure. Mothers were

asked to refrain from nursing from either breast for 1 h, instead of

2 hours, prior to a morning sampling. The sample breast was then

fully evacuated with a manual breast pump [69]. Milk protein con-

tent is not significantly affected by time since last feed or sample

expression mode, so differences in collection procedure for these

samples are not expected to impact the results of this study [70].

All procedures were conducted with approval from respective

institutional review boards and local advisory boards, where avail-

able. Ethical approval for all study procedures was granted by

institutional review boards from Harvard University (Boston

and Poland), University of Pennsylvania (Qom), University of

California Santa Barbara (Tsimane), University of California Los

Angeles (Himba), Northwestern University and University of San

Carlos, Philippines (Cebu) and Washington University in St Louis

and the Nepal Health Research Council (Nubri Tibetans). Details

of all ethical approvals are provided in the Supplementary Material

S1. Written or oral informed consent was obtained from all

participants.

Milk proteins analysis

Immune proteins were analyzed using triple-quadrupole time-of-

flight mass spectrometry with an Agilent 6520 Q-TOF MS (Agilent

Technologies, Inc., Santa Clara, CA) at the Lebrilla Lab at the

University of California Davis. Whole milk samples were prepared

and analyzed according to the protocol described by Huang et al.

[71]. Immune protein concentrations are reported in mg/L.

Statistical analysis

Two individuals were excluded from the dataset before statistical

analysis. One individual from Argentina was excluded from ana-

lysis due to improbably low values of all immune proteins, likely

due to a technical error during laboratory analysis. One individual

from Bolivia/Tsimane was excluded due to extremely high levels

of immune proteins consistent with mastitis, an exclusion criter-

ion for participation. All summary statistics and results are pre-

sented on the analyzed sample (n = 164). All statistical analyses

were performed in R version 3.1.0 [72]. Box-Cox power transform-

ation was used to normalize protein concentrations before ana-

lysis, and transformed concentrations were examined graphically

for normalization. Between-group principal components analyses

were conducted to compare transformed protein concentrations

among populations or subsistence patterns. Multivariate linear

models were constructed using bgPCA response variables that

cumulatively explained >90% of the variance. Infant sex, infant

age and maternal parity were included in the models as confound-

ing variables. Post-hoc pairwise comparisons modified from

RVAideMemoire package using the ‘pairwise.manova’ function

were used to assess differences in protein composition of milk

in relation to population or subsistence pattern [73]. P-values were

adjusted for multiple comparisons using the Holm method [74].

Effect sizes are reported as Z2. Differences were considered stat-

istically significant when P < 0.01. We employed a conservative

threshold to be more cautious in our interpretations of the results

[75].

RESULTS

Immune protein descriptives

The concentrations of innate and acquired immune proteins var-

ied across individuals (Fig. 1) and populations (Table 4), most

notably among lactoferrin and the acquired immune proteins.

Milk immune protein concentrations were correlated with one

another. Innate immune proteins did not show a consistent pat-

tern of correlation (Supplementary Material S2). Lysozyme was

weakly negatively correlated with lactalbumin (r = �0.21, P =

0.005) and IgM (r =�0.19, P = 0.01). Lactalbumin was moderately

positively correlated with lactoferrin (r = 0.34, P < 0.001).

Lactoferrin and lactalbumin were also positively correlated with

all of the acquired immune proteins (Lactoferrin-SIgA: r = 0.38,

P< 0.001; Lactoferrin-IgG: r = 0.26, P< 0.001; Lactoferrin-IgM: r =

0.26, P< 0.001; Lactalbumin-SIgA: r = 0.2, P< 0.01; Lactalbumin-

IgG: r = 0.34, P < 0.001; Lactalbumin-IgM: r = 0.24, P < 0.01).

Acquired immune proteins were all positively correlated with each
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other (SIgA—IgG: r = 0.54, P < 0.001; SIgA–IgM: r = 0.44,

P < 0.001, IgG—IgM: r = 0.34, P < 0.001).

Populations

The composition of innate immune proteins was less variable

among populations than the composition of acquired immune

proteins (Fig. 2). Innate immune protein composition was signifi-

cantly different in 10 of 21 pair-wise comparisons between

populations (Table 5). Comparisons that did not meet the thresh-

old for statistically significant differences also had considerably

smaller effect sizes (Z2
� 0.18 compared with Z2

� 0.41) and are

therefore also less likely to represent biologically meaningful vari-

ation. Variation in the composition of innate immune proteins

was due primarily to variance in lactoferrin concentration.

Notably, average lactoferrin concentrations in the Filipino and

ethnic Tibetan populations were approximately half the average

concentrations of other populations in this study.

Figure 1. Milk immune protein concentrations visualized for all participants. This heatmap shows the relative protein concentrations for all individuals. Each

column is an individual and each row is a protein (LA, lactalbumin; LF, lactoferrin; LZ, lysozyme; SIgA, Secretory Immunoglobulin A; IgG, Immunoglobulin G; IgM,

Immunoglobulin M). Shading represents individual’s value as a z-score above (more yellow) or below (more purple) the mean for that protein across all individuals

in the study

Table 4. Summary of population immune protein concentrations

INNATE

Lactalbumin (mg/L) Lysozyme (mg/L) Lactoferrin (mg/L)

Country n mean SD min max mean SD min max mean SD min max

USA 21 570.39 64.49 436.84 667.65 18.13 11.07 5.36 54.77 436.63 87.53 258.04 613.78

Argentina 18 559.98 111.09 232.62 710.51 18.69 14.05 3.86 58.40 556.24 260.33 192.05 1082.19

Philippines 17 534.09 111.54 248.57 679.75 14.86 10.00 3.29 42.47 238.80 70.63 106.11 351.45

Poland 22 585.83 75.14 417.75 731.60 20.05 12.40 5.77 47.66 478.41 103.29 329.12 709.22

Bolivia 47 565.70 105.62 216.40 754.04 15.11 9.33 5.36 54.14 444.20 110.40 138.11 671.21

Namibia 11 574.83 67.81 484.73 702.72 16.51 9.23 3.67 35.00 464.73 163.45 194.06 731.16

Nepal 28 565.25 115.69 144.50 843.90 18.25 12.79 2.80 53.07 245.50 73.84 46.30 452.90

TOTAL 164 565.63 97.80 144.50 843.90 17.16 11.21 2.80 58.40 406.28 164.83 46.30 1082.19

ACQUIRED

SIgA (mg/L) IgG (mg/L) IgM (mg/L)

Country n mean SD min max mean SD min max mean SD min max

USA 21 79.18 41.28 23.50 199.49 6.27 2.49 3.36 12.93 4.23 3.73 0.37 15.29

Argentina 18 157.84 83.96 68.19 346.39 26.66 15.75 6.90 75.36 11.37 6.65 1.30 21.78

Philippines 17 145.70 112.24 60.67 534.60 20.97 8.83 10.64 48.42 7.62 4.88 1.61 20.16

Poland 22 95.47 39.36 14.05 164.49 11.66 4.16 6.18 20.65 4.38 3.18 0.79 14.27

Bolivia 47 108.16 39.08 39.37 242.97 18.99 9.20 4.73 46.59 9.05 6.11 1.99 32.44

Namibia 11 104.84 20.57 73.43 128.76 10.29 4.82 4.82 19.21 10.44 5.41 3.27 19.14

Nepal 28 99.84 31.81 28.51 163.68 9.97 4.01 1.69 18.34 8.28 6.49 1.01 33.85

TOTAL 164 110.45 59.68 14.05 534.60 15.30 10.24 1.69 75.36 7.87 5.90 0.37 33.85
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Acquired immune protein composition was significantly

different in 17 of 21 pair-wise comparisons between populations

(Table 5). Notably, samples from Boston (the only urban,

industrialized population in this study) were significantly different

from all other populations. Boston mothers have the lowest levels

of all immunoglobulins (SIgA, IgG and IgM), with concentrations

of IgG three to four times less than Qom, Tsimane or Cebu women

and concentrations of IgM approximately two times less than the

Qom, Tsimane, Nubri Tibetan and Himba women.

Subsistence patterns

The composition of innate immune proteins was less variable

among subsistence patterns than the composition of acquired

immune proteins (Fig. 2). Innate immune protein composition

significantly differed in two of six pairwise comparisons of sub-

sistence patterns (Table 6). Pairwise comparisons that were sig-

nificantly different were between horticulturalist-foragers and

agro-pastoralists (Z2 = 0.25 P < 0.001) and urban and agro-

Table 5. Pair-wise comparisons of immune protein composition between populations: Z2 values (P-values)

Country USA Argentina Philippines Poland Bolivia Namibia Nepal

USA 0.12 (1) 0.69 (<0.001) 0.07 (1) 0.04 (1) 0.00 (1) 0.62 (<0.001)

Argentina 0.57 (<0.001) 0.65 (<0.001) 0.18 (0.411) 0.06 (1) 0.10 (1) 0.51 (<0.001)

Philippines 0.64 (<0.001) 0.10 (0.613) 0.71 (<0.001) 0.57 (<0.001) 0.51 (0.005) 0.02 (1)

Poland 0.37 (0.002) 0.42 (<0.001) 0.35 (0.006) 0.08 (0.852) 0.03 (1) 0.63 (<0.001)

Bolivia 0.54 (<0.001) 0.10 (0.193) 0.04 (0.613) 0.29 (0.005) 0.01 (1) 0.53 (<0.001)

Namibia 0.46 (0.004) 0.51 (0.003) 0.57 (0.001) 0.38 (0.009) 0.23 (0.006) 0.41 (0.002)

Nepal 0.28 (0.006) 0.42 (<0.001) 0.41 (0.001) 0.29 (0.005) 0.23 (0.002) 0.03 (0.613)

The blue shaded boxes indicate the composition of innate immune proteins while the red shaded boxes indicate the composition of acquired immune
proteins. Comparisons that are significantly different (P < 0.01) among subsistence patterns are bolded. P-values have been adjusted for multiple
comparisons using the Holm method.

Figure 2. Between-group principal components analysis plots. The four plots display a visualization of the between-group principal components analysis used to

create a composite measure of the composition of innate (top row) or acquired (bottom row) immune proteins for each population (left column) or subsistence

group (right column). The shaded area depicts the convex hull for each population or subsistence group
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pastoralists (Z2 = 0.25, P< 0.01). Acquired immune protein com-

position significantly differed in five of six pairwise comparisons of

subsistence patterns (Table 6). The only non-significant differ-

ence was between horticulturalist-foragers and rural-shop (Z2 =

0.04, P = 0.018).

CONCLUSIONS AND IMPLICATIONS

Mother’s milk contains immune proteins that provide immuno-

logical protection and education for the developing infant.

Examining milk from seven populations around the world, we

found both innate and acquired immune protein composition in

milk varied significantly among populations and subsistence pat-

terns. Consistent with our predictions, differences between

acquired immune protein compositions were more common than

differences in innate immune protein composition among popu-

lations and subsistence patterns. Notably, population compari-

sons that were not different included populations with more

similar geographic locations or subsistence strategies. These

findings support the perspective that milk immunofactors vary

among populations in part as a function of the pathogen pres-

sures within that environment. Subsistence strategies influence

pathogen exposure by engineering different local environments

for pathogen growth, facilitating contact with varying pathogen

sources and types, and/or providing different opportunities for

exposure and transmission [28]. Immunofactors in human milk

are therefore likely ‘tailored’ to the disease ecology that the infant

is predicted to experience if pathogen exposure is consistent

across generations. This would be consistent with theoretical

models, which have demonstrated that for the maternal transfer

of immunity to evolve; the risk of pathogen exposure of the mother

and offspring must be correlated so that the mother’s immune

defenses provide effective protection to the offspring [76]. These

results motivate further research into how specific aspects of the

maternal environment contribute to variation in milk immune

proteins.

Acquired immune proteins vary more than innate immune

proteins

The composition of milk innate immune proteins showed fewer

differences among populations and subsistence patterns than the

composition of acquired immune proteins. Acquired immune

proteins significantly differed in 17 of 21 pairwise comparisons

between populations, whereas innate immune proteins were sig-

nificantly different in only 10 of 21 pairwise comparisons. This is

consistent with what we would expect based on how the different

branches of the immune system have evolved to defend against

pathogens. Acquired immune proteins are produced by an indi-

vidual in response to specific pathogen exposures, whereas innate

immune responses are encoded in the genome, utilizing pattern

recognition receptors that are often structurally and functionally

conserved across vertebrates and invertebrates [77]. Thus, the

acquired immune molecules in a mother’s milk reflect the patho-

gens she has encountered and that are likely to endanger her in-

fant [78]. Due to immunological memory, antibodies that are

present in human milk can reflect not only a woman’s recent ex-

posures, but also exposures from across her lifetime. The specific

antibodies present in her milk; however, will depend on the type of

pathogens she has encountered and the timing of those encoun-

ters. Antibody isotypes (i.e. IgA, IgG and IgM) have specialized

functions and different antibody isotypes are produced in re-

sponse to different types and locations of pathogens [79]. The

longitudinal maintenance of antibody responses also varies

among specific pathogens [80]. Immigrant mothers in the UK

had much higher levels of milk antibodies specific to strains of

Escherichia coli common on the Indian subcontinent than non-

immigrant white mothers, and antibody level was not correlated

with time since immigration [20]. In contrast, Novak and

Svennerholm found Bangladeshi women had higher, less season-

ably variable levels of rotavirus-specific milk SIgA than did

Swedish women [81]. The authors posited that this difference

was observed because while there is a single annual peak in

rotavirus infections in Sweden, there are two annual peaks in

Bangladesh. More frequent exposures to rotavirus likely maintain

Table 6. Pair-wise comparisons of immune protein composition between subsistence patterns: Z2

values (P-values)

Urban Rural-shop Horticulturalist-forager Agro-pastoralist

Urban 0.01 (0.601) 0.13 (0.029) 0.25 (0.002)

Rural-shop 0.37 (<0.001) 0.09 (0.029) 0.10 (0.029)

Horticulturalist-forager 0.56 (<0.001) 0.04 (0.018) 0.25 (<0.001)

Agro-pastoralist 0.33 (<0.001) 0.34 (<0.001) 0.26 (<0.001)

The comparisons in the blue shaded boxes are for the composition of innate immune proteins. The comparisons in the red shaded boxes are for the
composition of acquired immune proteins. Comparisons that are significantly different (P < 0.01) among subsistence patterns are bolded. P-values
have been adjusted for multiple comparisons using the Holm method.
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higher and more stable concentrations of rotavirus-specific

antibodies in the Bangladeshi mothers’ milk [81].

The pathogen pressure encountered within the local environ-

ment depends on geography, culture, and the availability of

sanitation and western medical services. In this study, between-

population comparisons that were not different included popula-

tions that shared aspects of their cultural ecology. For example,

the Himba of Namibia and ethnic Tibetans in the Nubri Valley of

Nepal are geographically distant but both practice agro-pastoral-

ism. Populations that share a subsistence pattern may be more

likely to face similar pathogens and commensal microbes as a

result of shared exposures (e.g. domesticated animals, population

density) or behaviors (e.g. soil cultivation, consumption of raw

milk). In a recent study, Obregon-Tito and colleagues found that

populations that shared a subsistence strategy (hunter-gatherer,

traditional agriculturalist or urban-industrialist) had similar gut

microbial profiles despite being on different continents [38].

Thus, comparing the composition of milk across subsistence pat-

terns rather than countries or populations may be a more

bioculturally meaningful comparison. The acquired immune pro-

tein composition of milk differed significantly between all subsist-

ence patterns except rural-shop and horticulturalist-foragers.

In this study, the only group representing horticulturalist-

foragers, the Tsimane of Bolivia, reside in a neighboring country

to one group of the rural-shop (Qom of Argentina). Innate and

acquired immune composition also did not significantly differ

between the Tsimane and Qom populations. This is consistent

with results from a recent study that found that the presence and

concentration of immunofactors in milk varied with geographic

location [45]. As populations located in closer geographic proxim-

ity tend to share more recent common ancestry, populations on

the same continent tend to be more genetically similar to each

other than to geographically distant populations [82]. Moreover,

Native Americans have lower genetic diversity than indigenous

populations on other continents [83]. Thus, the Qom and Tsimane

are expected to be the most closely related populations included

in this study and it is possible this might contribute to similarity in

their milk composition. The concentrations of some milk con-

stituents, such as human milk oligosaccharides, are influenced

by maternal genotype [84]. Variability in adult immune function,

however, is generally influenced more by environmental than her-

itable factors, and this is particularly true for the acquired immune

system [85, 86]. Ruiz et al. [45] found that some milk immune

factors were significantly different between rural and urban popu-

lations in Gambia. This suggests that the composition of milk

immunofactors among populations may be more influenced by

maternal environment than genetic relatedness [45].

Though not directly considered here, geography is also an im-

portant influence of pathogen species and diversity [23].

Geographic proximity, however, is unlikely to fully explain the

similarity in milk composition between these populations as they

reside in different biomes with overlapping, but distinct, endemic

pathogens [87]. The Tsimane live in the tropical lowlands while the

Qom live in Gran Chaco region, which is characterized by dry

shrubland vegetation, savannah grasslands, and semi-arid forests

[58, 88, 89]. Although respiratory and gastrointestinal infections

are common among both the Qom and Tsimane, populations

living in tropical forests are particularly susceptible to helminth

infections and Tsimane often have multiple, co-occurring para-

sitic infections [58, 88, 90].

Alternatively, similarities in milk composition among these

populations may be explained by similarities in their household

environments. Household features such as flooring type or water

source affect pathogen exposures and health outcomes [40].

Though household features are not directly linked to specific sub-

sistence strategies, traditionally living populations tend to retain

their traditional home structures and have less sanitary infrastruc-

ture such as running water or indoor toilets than industrialized

populations or populations with mixed subsistence economies.

Though the Qom mothers sampled reside in a peri-urban barrio

and no longer practice traditional subsistence strategies, many

still have dirt floors and lack indoor toilets, similar to Tsimane

households [5]. However, these features are also shared with the

Himba, who had different acquired immune protein composition

in their milk than the Tsimane and Qom. This suggests that mode

of subsistence leaves a signature in milk despite other shared

features of the mothers’ local environments. Studies of the built

environment have focused on the effects of physical structures on

health, but household microbial communities are also influenced

by human activity [91, 92]. Previous studies have found that

farmers carry fungal spores from cow barns into their homes,

and the interactions of agro-pastoralists with cattle may contrib-

ute to diverse household microbial environments from other

modes of subsistence in similar ways [93].

Differences in acquired immune protein composition in this

study were primarily explained by variation in IgG. There was a

more than threefold difference in mean IgG concentrations

among the populations studied. IgG antibodies predominate in

blood and extracellular fluid, where they protect against viruses,

bacteria, and toxins [79]. IgG is present at low concentrations in

human milk and is thought to be less important than SIgA for

passive immune defense in human milk as much larger quantities

of maternal IgG are transferred across the placenta during late

pregnancy [94]. Due to its abundance in human milk and vital role

in mucosal immune protection, SIgA is often the focus of human

milk studies. Higher concentrations of SIgA tend to be found in

women with a higher current microbial load or lower

socioeconomic status [9, 42, 95, 96, but see 45]. SIgA and IgG

may also increase in response to active infection in the mother or

infant [97, 98, but see 5]. In this study, US women had the lowest

levels of all acquired immune proteins measured. The US also has

the lowest child mortality rates and percentage of child deaths due

to infectious causes of the populations studied [99, 100]. Mothers

from countries with high levels of child mortality (Namibia,
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Bolivia and Nepal) or higher percentages of child deaths due to

infection (Bolivia, Nepal and Philippines) tended to have higher

average concentrations of acquired immune proteins. Assuming

that infant mortality rates correlate with pathogen load, our re-

sults are consistent with previous research that milk SIgA concen-

trations are positively associated with environmental pathogen

load [9, 42, 95, 96]. Importantly, country-wide estimates of child

mortality are likely underestimates for the Qom, Tsimane, Nubri

Tibetans and Himba. Indigenous populations worldwide have

poorer health, including more infectious diseases, than non-indi-

genous persons, even in high-income nations [101].

Sources of variation in milk innate immune proteins

Although acquired immune protein composition was more variable

among populations, innate immune proteins also varied to some

extent among both populations and subsistence patterns. Innate

immune proteins were significantly different in 10 of 21 pairwise

comparisons among populations, and agro-pastoralists had signifi-

cantly different milk innate immune protein composition than

urban-industrialists and horticulturalist-foragers. Though innate

immune defenses are expected to be more conserved than acquired

immune defenses, innate immune function is also variable across

populations. In part, differences in immune function among popu-

lations may have a genetic basis. Locally prevalent pathogens have

been an important selective force, especially on immunity-related

genes, as humans have migrated across a diverse range of land-

scapes and developed new subsistence strategies [102, 103].

Immune function is also variable among individuals and popula-

tions due to evolved reaction norms that allow individual immune

responses to vary among environmental contexts (reviewed in [85]).

Among the environmental interactions that shape individuals’ im-

mune phenotypes are interactions between the immune system

and local pathogens. For example, gram-negative bacteria tend to

activate innate immune responses, while viral infections tend to be

more effectively suppressed by acquired immune responses (re-

viewed in [104]). Pathogens typically elicit Th1 or Th2 type immune

responses. As Th1 and Th2 immune responses inhibit each other,

repeated exposure to pathogens that elicit one type of response can

lead to polarization of the immune system and constrain an indi-

vidual’s ability to effectively mount immune responses to co-

occurring infections (reviewed in [85]). Parasites have also been

shown to modulate the immune systems of their hosts [105, 106].

Notably, helminths have been found to suppress several types of

immunological responses in ways that not only permit tolerance of

the parasite, but can also reduce vaccine responses and the ability

to resist other infections [105]. As the effects of helminth infections

on host immunity may remain even in the absence of active hel-

minth infections, helminths may be an important modulator of

immune function in communities where these infections are com-

mon [106]. Differential immune function among populations may

also be understood through an evolutionary life history framework

[18]. According to this framework, pathogen prevalence, nutritional

availability, and extrinsic mortality cues inform trade-offs in invest-

ment between the innate and acquired immunity during sensitive

periods in immune development which may calibrate ‘set points’

for immune function in later life [18]. It is not yet fully understood,

however, if or how factors that influence systemic innate immune

function are reflected in milk composition.

Much of the variance in innate immune protein profiles in this

study is attributable to lactoferrin. Lactoferrin comprises 15–20%

of the total protein in human milk and has several immunological

functions, including bacteriostatic, bactericidal and anti-inflam-

matory activities [11]. A recent review found lactoferrin varied

among geographic locations; however, in contrast to our study,

lactoferrin concentrations were higher in Asia than other parts of

the world [107]. Lactoferrin concentrations in Nubri Tibetan and

Cebu mothers’ milk are low compared with other populations in

this study, but within the range of average concentrations of lacto-

ferrin reported in mature human milk (2–4 g/L, reviewed in [108]).

Lactoferrin concentrations generally decrease during the first

month of lactation and then are stable across lactation (reviewed

in [107]), but infant age was consistent across populations and

statistically controlled for in our models, so it cannot account for

the differences reported here. Other factors that influence lacto-

ferrin concentrations are still not fully understood. Parity has been

positively [109] and negatively [110] correlated with milk lactofer-

rin concentrations, though our results are consistent with more

recent work that found no relationship [111]. Maternal dietary

quality may impact lactoferrin, though the direction of this rela-

tionship is not clear. Higher levels of lactoferrin may be related to a

diet high in iron [112]. Anemic or poorly nourished women have

been found to have milk lactoferrin concentrations lower

[109, 113], higher [114] or similar [111, 115] as among non-anemic

or well-nourished women. Higher lactoferrin levels have also been

associated with maternal or infant illness [5, 97, but see 98]. These

studies suggest lactoferrin concentrations are affected by mater-

nal environment, but further research is needed to fully under-

stand how lactoferrin reflects disease and nutritional ecology.

Strengths and limitations

This study is among the first investigations of milk

immunofactors among diverse populations. A notable strength

of this study is that all milk samples were analyzed at the same

time in the same laboratory. This reduces measurement error and

allows us to make direct comparisons among populations.

Interassay and interlaboratory differences can make it difficult to

determine the extent of biological variation among groups, but

comparable results are needed to develop effective clinical and

public health guidelines [116, 117].

Although comparisons of milk immunofactor concentrations

can inform us about the variation in milk across populations, our

study has limitations. A significant limitation in this study is that it
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is difficult to interpret the causes of variation in total antibody

concentrations. For example, while the Qom had the highest aver-

age concentration of all milk acquired immune proteins,

estimated infant mortality rates in the Qom (18.6 per 1000 live

births) are lower than the Himba, Tsimane, and Nubri Tibetans

[54, 58, 118, 119]. One possible interpretation is that the Qom

have greater exposure to pathogens than Himba, Tsimane or

Nubri Tibetans, but this would seem to contradict what we know

about these populations’ environments (Table 2). Alternatively,

higher antibody concentrations could indicate that the Qom pro-

duce larger antibody responses to the pathogens they do encoun-

ter. High antibody concentrations could therefore indicate that

those individuals or populations are able to allocate more energy

to mounting immune responses (reviewed in [120, 121]). The data

available here are not able to conclusively differentiate the extent

to which we may be measuring greater antibody responses to

similar exposures or similar antibody responses to different ex-

posures. These results motivate further research to understand

how maternal nutritional and disease ecology interact to shape

the composition of milk immune proteins.

This study is also limited by small, uneven sample sizes that

were collected for different primary research aims. As a result, we

cannot consistently control for individual health histories or het-

erogeneity in living conditions within populations. We also cannot

control for milk volume due to logistical difficulties collecting ac-

curate volume measurements in field settings. Milk volume can

vary considerably among individuals and may vary more than milk

composition in response to changes in maternal condition (re-

viewed in [122]). Both milk volume and concentrations are needed

to determine the total transfer of milk components to the child,

arguably the most biologically relevant measure [67]. However,

indirect test weighing over 24 h (the gold standard for assessing

milk volume) can be extremely challenging or impractical in field

settings [55, 67]. Finally, this study examines only a few of the

numerous milk immunofactors that have been identified to date.

Immune proteins are a small subset of the immunofactors in

human milk, and among the best-studied within the understudied

domain of milk [123–125]. As many immune defenses have func-

tional redundancy, differences in selected immunofactor concen-

trations may not translate to differences in the quality of immune

protection afforded to the infant by mother’s milk.

Implications and future directions

Our results show that the composition of innate and acquired

immune proteins in human milk differs among populations and

by mode of subsistence. These results add to the existing litera-

ture investigating variation in milk composition among mothers

living in different physical and cultural environments and, to our

knowledge, this is the first study to examine how milk protein com-

position varies among subsistence strategies. Subsistence

strategies have influenced diet and pathogen exposure

throughout human evolutionary history and are thus likely to have

shaped the composition of mothers’ milk. Of particular import-

ance for designing public health interventions, we found further

evidence that mother’s milk from western, urban-industrial popu-

lations differs from women in non-industrialized populations,

including populations undergoing economic transitions (in this

study, those categorized as ‘rural-shop’) [45, 126, 127]. Very few

populations still exclusively practice traditional subsistence

strategies, and populations are likely to face health challenges

as their diets, environments and physical activity patterns change

with increasing market integration [128–130]. Future investiga-

tions showing the extent to which milk composition responds to

these changes may help us understand the early life origins of

‘mismatch’ diseases, particularly those involving the immune

system.

Further study is needed to understand what specific aspects of

the local environment influence the composition of milk immune

proteins. In this study, agro-pastoralists had different acquired

and milk innate immune protein composition than urban-indus-

trialists and horticulturalist-foragers. Exposure to livestock (par-

ticularly ungulates), their products (milk and meat), their waste,

and associated pathogens in these populations may contribute to

the variation in immune protein composition observed among

subsistence patterns, as neither the horticulturalist-foragers nor

urban-industrialists have regular contact with large livestock. In

traditionally living pastoralist communities, contact with livestock

generally increases rates of parasitic infections (reviewed in

[131]). Traditionally living pastoralist communities often also

have other features of their local environments that make it diffi-

cult to disentangle the effects of domesticated animal exposure

on milk composition from other exposures, such as reduced ac-

cess to clean water or medical care. Comparing groups with

differing subsistence strategies but similar exposures, e.g. pas-

toralists and traditional agriculturalists who both have regular

contact with livestock may allow us to better identify how specific

aspects of the maternal environment relate to milk composition.

Research is also needed to understand the effects of variation in

human milk composition on infant health outcomes. Bioactive

molecules passed through milk provide protection against infec-

tion while the infant’s own immune defenses are becoming com-

petent. These molecules also signal the infant’s immune system

during a critical period in early life that may calibrate immune

responses throughout life [132, 133]. Understanding how vari-

ation in the composition of human milk impacts infant health

outcomes may allow us to better understand the biological sig-

nificance of the differences in milk composition we observe in this

study and may also help elucidate the early life origins of variation

in adult immune function across populations.
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