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ABSTRACT OF THE DISSERTATION

Constant-round protocols of stronger security via relaxed
set-up assumptions

by

Chongwon Cho
Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2013

Professor Rafail Ostrovsky, Chair

The main aim of cryptography is to provide the frameworks and solutions for information security.

The fundamental weapons to protect information are interactions and private randomness. Since

the breakthrough result, zero-knowledge proof system, by Goldwasser, Micali, and Rackoff in

mid 80s, the cryptography community has endeavored to propose the new notions of information

security and the relative solutions which more closely reflect the modern computing environment.

Concurrent security first introduced by Dwork, Naor, and Sahai was suggested to capture the

information security in the modern internet environment. That is, the adversary may interact with

a honest parties in many concurrent executions of a protocol where the messages are scheduled in

any adversarial way.

Resettable security was first introduced by Canetti, Goldreich, Goldwasser, and Micali, which

models the security issues in which parties have a limited source of private randomness. In other

words, an adversary might interact with honest parties in many executions of a protocol while the

honest parties are only allowed to use the polynomially bounded number of (hard-wired) random-

ness.

An important question is: “How much efficient protocol can we construct to achieve the above

security in terms of round complexity?” Unfortunately, it has been showed that the best possible

round complexity for such protocols is poly-logarithmic in the security parameter based on black-
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box simulation without help of external set-up assumptions. Thus, the question is now to minimize

the round complexity of protocols with a minimal set-up assumption.

In this thesis, we positively answer the above question with help of set-up assumptions. Specif-

ically, we consider two set-up assumptions, the Bare Public Key (BPK) model and the Cross-

Domain (CD) model. The BPK model was first introduced by Canetti, Goldreich, Goldwasser,

and Micali. In the BPK model, each party is required to register their public keys before the start

of interacting with each other. The CD model is a newly proposed model in this work. In the

CD model, we have domains which models key certification authorities in the real world and each

party belongs to one of the domains.

In the BPK model, we show a constructions of constant-round simultaneously resettable zero-

knowledge argument of knowledge with a standard cryptographic assumptions. As a main building

block for this result, we show a construction of constant-round simultaneously resettable witness-

indistinguishable argument of knowledge.

In the CD model, we show a construction of constant-round concurrently secure multi-party

computation protocol with the fixed number of domains. On the other hand, we prove that if the

number of domains is not fixed, such a constant-round protocol does not exist.
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CHAPTER 1

Introduction

1.1 The cryptographic problem concerned in this thesis

The main aim of cryptography is to provide the frameworks and solutions for information secu-

rity. In the modern cryptography, the fundamental weapons to protect information are interactions

and private randomness. The breakthrough result, zero-knowledge proof system, by Goldwasser,

Micali, and Rackoff [GMR85] brought the state of art in cryptography one step further as it intro-

duced the security definition based on a mental experiment, so called simulation. To see the very

high-level intuition of simulation-based security, consider that two parties interact with each other

to compute some functionality. Then, according to the simulation-based security, the protocol run

by two parties is secure if there exists an imaginary adversary (called simulator) to by itself gen-

erate an interaction record (almost) identical to the real interaction record. Since the introduction

of usage of mental experiment to prove the security of cryptographic protocol, the researchers in

the cryptography community have endeavored to propose the new notions of security which more

closely reflect the fast evolving modern computing environment.

The emergence of internet aroused a new challenge. The computing systems no longer interact

with each other in the one to one fashion but one to many or possibly many to many. The notion

of concurrent security introduced by Dwork, Naor, and Sahai [DNS98] was suggested to capture

the new requirement of security in the modern internet environment. That is, a adversary, called

concurrent adversary, may interact with honest parties in many concurrent executions of a protocol

where the exchange of messages are scheduled by the adversary in any adversarial way. A protocol

is said to be concurrently secure if the protocol remains secure against such a concurrent adversary.
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The use of stateless devices also evoked a new cryptographic problem. Unlike a usual com-

puting system, stateless devices may use only the handful amount of private randomness which

is hard-wired to the devices. One of such exemplary devices is a smart card system. In the ex-

ample of smart card systems, a smart card (a prover) is required to provide a credential to a card

reader (a verifier) where the credential contains a private information for the smart card to protect.

Hence, so-called resettable security was introduced by Canetti, Goldreich, Goldwasser, and Mi-

cali [CGGM00] in order to reflect the above security issue where the prover has a limited source

of private randomness to protect its private information. On the other hand, the opposite direction

of the above security was introduced by Barak, Goldreich, Goldwasser and Lindell [BGGL01]

where the verifier only has a limited source of randomness.1 Finally, in [BGGL01], simultaneous

resettable security was proposed where both parties have the limited amount of randomness.

A common important question related to the above topics is “How much efficient protocol

can we construct to achieve the above security in terms of round complexity?” Unfortunately,

it has been showed that the best possible round complexity of concurrently secure protocol is at

least poly-logarithmic in the security parameter based on black-box simulation in the standard

model. It is well-known that the source of such round-inefficiency is due to the complexity of

simulation. Thus, the main question of the thesis is “Can we construct more round-complexity

efficient protocol with the help of set-up assumptions?”

1.2 Set-up assumptions considered in the thesis

In this thesis, we positively answer the above question with help of set-up assumptions. Specif-

ically, we consider two set-up assumptions, the Bare Public Key (BPK) model and the Cross-

Domain (CD) model.

The BPK model was first introduced by Canetti, Goldreich, Goldwasser, and Micali [CGGM00].

In the BPK model, each party is required to register their public keys with the key registration

functionality before beginning interaction with each other. The key registration functionality is not

1See Section 3.1 for more details on these notions.
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necessarily trusted by the participating parties. Only guarantees by the key registration function-

ality are to store the (possibly maliciously formed) public key on the registration request and to

retrieve the registered public key on the retrieval request.

The CD model is a newly proposed model in this work. In the CD model, we have domains

which models key certification authorities in the real world and each party belongs to one of these

domains. Before joining the execution of protocol, each party is required to obtain a certification

on their public key from its own domain. In the CD model, each player needs to trust only its own

domain but the others.

1.3 Our contributions

In the BPK model, we show a constructions of constant-round simultaneously resettable zero-

knowledge (ZK) argument of knowledge with a standard cryptographic assumptions. As a main

building block for this result, we show a construction of constant-round simultaneously resettable

witness-indistinguishable argument of knowledge.

In the CD model, we show a construction of constant-round concurrently secure multi-party

computation (MPC) protocol with the fixed number of domains. On the other hand, we prove

an impossibility result that if the number of domains is not fixed, a constant-round concurrently

secure multi-party computation protocol cannot exist.

1.4 The organization of the dissertation

The thesis consists of two main part: Part I and Part II. In Part I, we present our results in the

BPK model, which is a construction of constant-round simultaneously resettable ZK argument

of knowledge. In Part II, we introduce our new cross-domain model and show a construction of

concurrently secure MPC protocol in the CD model. For reader’s convenience, each part separately

has introduction and preliminary sections.
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Part I

Constant-round simultaneously resettable

ZK argument of knowledge in the BPK

model
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CHAPTER 2

Introduction

2.1 History of resettable security

Interaction and private randomness are the two fundamental ingredients in the foundations of Cryp-

tography since they have been proved to be necessary for achieving zero-knowledge proofs [GMR85]

and several other security definitions. Interestingly, in [CGGM00] Canetti et al. showed that when

private randomness is limited and re-used in several instances of a proof system, it is still pos-

sible to preserve the zero-knowledge requirement. The setting proposed by [CGGM00] is that

a malicious verifier resets the prover, therefore forcing the prover to run several protocol exe-

cutions using the same randomness. This setting applies also to protocols where the player is

implemented by a stateless device, therefore can only count on the limited hardwired randomness

while it can be adaptively run any polynomial number of times. The resulting security notion

against such powerful verifiers is referred to as resettable zero knowledge (rZK, in short) and it

turns out to be very non-trivial since it is proven to be even harder to achieve than concurrent zero

knowledge [DNS98, KPR98]. Feasibility results have been achieved in [CGGM00, KP01] in the

standard model with polylogarithmic round complexity for the case of rZK and in a constant num-

ber of rounds for the case of resettable witness indistinguishability (rWI, in short). Since then, a

line of studies has shown how to achieve resettable zero knowledge in the Bare Public-Key Model

(introduced by Canetti, Goldreich, Goldwasser and Micali in [CGGM00]) with improved round

complexity and assumptions [MR01, DPV04, APV05, YZ07, SV12].

The reverse of the above question was considered by Barak et al. in [BGGL01] where a ma-

licious prover resets a verifier, called resettable soundness. In [BGGL01], it was shown how to

5



obtain resettable soundness along with ZK in a constant number of rounds. In light of the feasi-

bility of rZK, zero knowledge with resettable soundness and the existence of ZAPs [DN00] (i.e.,

resettably sound rWI proof systems), Barak et al. in [BGGL01] proposed the challenging simul-

taneous resettability conjecture, where one would like to prove that a protocol is secure against

both a resetting malicious prover and a resetting malicious verifier.

The above machinery turned out to be insufficient to easily solve the simultaneous resettability

conjecture and indeed a definitive answer required almost a decade until a breakthrough by Deng,

Goyal and Sahai [DGS09] introduced new non-black-box techniques that in synergy with previous

machinery, produced a resettably sound rZK argument for np with polynomial round complexity.

Very recently, a similar claim has been obtained in [DFG+11] and in [Ari11] by only requiring a

constant number of rounds in the BPK model.

The missing piece: arguments of knowledge under simultaneous resettability. Argument

systems are often used with a different goal than proving membership of an instance in a lan-

guage. Indeed, it is commonly required to prove knowledge (possession) of a witness instead of

the truthfulness of a statement. As arguments of knowledge are major building blocks in Cryptog-

raphy (e.g., in identification schemes), it is a legitimate question whether the previous results for

arguments of membership extend to arguments of knowledge.

Unfortunately, the answer is negative. Indeed, arguments of knowledge have been achieved so

far when only one party can reset the other party. Therefore, we have rZK arguments of knowl-

edge [CGGM00] and resettably sound ZK arguments of knowledge [BGGL01]. Instead, when

reset attacks are possible in both directions, no result is known even when only rWI with reset-

table argument of knowledge is desired. The above results ([DN00, DGS09, DFG+11, Ari11])

achieving simultaneous resettability for arguments of membership can not be simply adjusted in

order to provide also a argument of knowledge property under reset attacks. Resettable security for

ZAPs come almost for free because of the minimal round complexity (1 or 2 rounds) that however

does not give a reasonable hope for any knowledge extraction1. For the case of resettably sound

1In this work, we only consider standard assumptions and standard security only, therefore we do not take into
account controversial non-black-box assumptions such as the Knowledge of Exponent Assumption.
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rZK, all the above results [DGS09, DFG+11, Ari11] critically use an instance-dependent tech-

nique along with ZAPs: when the statement is true (i.e., when proving rZK), the prover/simulator

can run ZAPs which allow the use of multiple witnesses. Such use of multiple witnesses gives

some flexibility that turns out to be very useful to prove resettable zero knowledge. Instead when

the statement is false (i.e., when proving resettable soundness), there is only one valid witness in

the ZAPs. Consequently, the adversarial malicious prover is stuck with some fixed messages only

to be played during the execution of protocol. Therefore, rewinding capabilities do not help the

resetting malicious prover. This is critically used in the proofs of resettable soundness in order

to reach a contradiction when a prover proves a false statement. It is easy to see that the above

approach falls down when arguments of knowledge are considered. Indeed, when the malicious

resetting prover proves a true statement, the same freedom that allows one to prove rZK/rWI,

also gives extra power to the malicious prover and does not seem to give much hope to design

an extractor for those protocols. New techniques are therefore needed so that the simultaneous

resettability conjecture is still unresolved when we consider knowledge extraction.

2.2 Overview of our results

Our main result is the first construction of a constant-round simultaneously resettable witness-

indistinguishable argument of knowledge (simresWIAoK, for short) for any NP language. Our

protocol is based on the novel use of ZAPs and resettably sound zero-knowledge arguments, which

improved over the techniques previously used in [DGS09, DFG+11] that achieved only resettable

soundness. Therefore, our result gives the first positive answer to the open problem discussed

before.

In addition, we show that our main result also turns out to be a very useful ingredient. Indeed,

by combining two executions of our protocol for simresWIAoK, we obtain a constant-round si-

multaneously resettable zero-knowledge argument of knowledge in the BPK model. This improves

the results of [DFG+11, Ari11] which do not enjoy witness extraction with respect to adversarial

resetting provers.
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As another application of our main protocol, we also consider the challenging question of se-

cure identification under simultaneous resettability and show how to use the above simresWIAoK

to obtain the first simultaneously resettable identification scheme which follows the knowledge

extraction paradigm. We describe it by extending the work of Bellare, Fischlin, Goldwasser and

Micali [BFGM01].

Finally, we also show how to obtain a constant-round resettably sound concurrent zero knowl-

edge argument of knowledge in the BPK model by relying only on collision-resistant hash func-

tions (CRHFs, for short) (i.e., we do not require ZAPs, and thus trapdoor permutations). This result

was not achieved in literature. Indeed, the previous constructions in [DFG+11, Ari11] use ZAPs

to obtain such a result.

Summing up, this work provides better understanding of the complexity of simultaneously

resettability. It includes tools that can be very useful when stateless or resettable devices are

considered. We finally stress that the issues of reset attacks have been considered in several other

contexts [Yil10, DNW08, GS09] and our techniques can also be of a broader impact.

Comparison with the recent and independent work of [GM11]. In a very recent and indepen-

dent work [GM11], Goyal and Maji used different techniques to achieve simultaneously resettable

secure computation. Their results use some additional tools such as simulation-sound zero knowl-

edge and lossy public-key encryption. Considering the argument of knowledge functionality, their

results also imply arguments of knowledge under simultaneous resettability, in particular with

simulation based security (i.e., zero-knowledge). However, beyond the fact that their independent

work is based on different techniques, they obtain simultaneous resettability with polynomial round

complexity (while we show constant-round protocols only) and assume the existence of lossy trap-

door encryption (while we stick with CRHFs and standard trapdoor permutations). Hence, our

results are incomparable and independent to theirs.

8



CHAPTER 3

Preliminaries

3.1 Notations

We denote by n ∈ N the security parameter and by PPT the property of an algorithm of running

in probabilistic polynomial-time. A function ε is negligible in n (or just negligible) if for every

polynomial p(·) there exists a value n0 ∈ N such that for all n > n0 it holds that ε(n) < 1/p(n).

We denote by x← D the sampling of an element x from the distribution D. We also use x $← A to

indicate that the element x is sampled from set A according to the uniform distribution. Let P ,V
be interactive Turing machines, we denote by 〈P(·),V(·)〉(x) the random variable representing the

local output of V when interacting with P where x is the common input and y and z are the private

auxiliary information of P and V respectively and the randomness of each machine is uniformly

and independently chosen.

3.2 Fundamental Definitions

Definition 1 (Indistinguishability [GM84]). Let X and Y be countable sets. Two ensembles

{Ax}x∈X and {Bx}x∈X are computationally (statistically) indistinguishable over X if for every

probabilistic polynomial-time (resp. unbounded) “distinguishing” machine D there exists a negli-

gible function ε(·) so that for every x ∈ X, y ∈ Y :

|Pr[D(x,Ax) = 1]− Pr[D(x, , Bx) = 1]| < ε(|x|).

Definition 2 (Interactive Proof System [GMR89]). A tuple of interactive algorithms (P ,V) is an
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interactive proof system for a language L, if V is PPT and there exists a negligible function ε such

that the following conditions hold:

• Completeness. ∀x ∈ L, Pr[〈P ,V〉(x) = 1] > 1− ε(|x|).

• Soundness. ∀x /∈ L, ∀ interactive machine P∗, Pr[〈P∗,V〉(x) = 1] < ε(|x|).

In case the soundness condition is required to hold only against computationally bounded

prover, the pair (P ,V) is called an interactive argument system and P gets the witness as auxiliary

input.

3.3 Resettable Zero Knowledge and Witness Indistinguishability

We briefly recall the definition of resettable zero knowledge and witness indistinguishability intro-

duced in [CGGM00]. Very roughly, a resetting verifier is a PPT adversary that is able to interact

with the prover polynomially many times upon (possibly) distinct theorems forcing the prover to

execute the protocol using the same randomness several times. Namely, the malicious verifier in-

vokes the prover by two indexes (i, j): the theorem to be proved xi and the randomness to be used

ωj . The formal definition is provided below and is taken almost verbatim from [CGGM00].

Definition 3 (rZK and rWI [CGGM00]). An interactive proof system (P ,V) for a language L

is said to be resettable zero knowledge (rZK) if for every PPT adversary V∗ there exists a prob-

abilistic polynomial time simulator M so that distribution ensembles D1 and D2 described below

are computationally indistinguishable. Let each distribution be indexed by a sequence of distinct

common inputs x̄ = x1, . . . , xpoly(n) ∈ L∩{0, 1}n and the corresponding prover’s auxiliary-inputs

ȳ = y1, . . . , ypoly(n).

Distribution D1 is defined by the following random process which depends on P and V∗.
Randomly select and fix t = poly(n) random tapes ω1, . . . , ωt for P , resulting in de-

terministic strategies P(i,j) = Pxi,yi,ωj defined by Pxi,yi,ωj(α) = P(xi, yi, ωj, α) for

j ∈ 1, . . . , t, i ∈ 1, . . . , poly(n). Each P(i,j) is called incarnation of P .
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1. Machine V∗ is allowed to run polynomially-many sessions with P(i,j). Throughout these

sessions, V∗ is required to complete its current interaction (an interaction is complete

if is either terminated or aborted) with the current copy of P(i,j) before starting a new

interaction with any P(i′,j′), regardless if (i, j) = (i′, j′) or not. Thus, the activity of V∗

proceeds in rounds. In each round it selects aP(i,j) and conducts a complete executions

with it.

2. Once V∗ decides it is done interacting with all P(i,j), it produces an output based on its

view of these interactions. This output is denoted by 〈P(ȳ),V∗〉(x̄) and is the output of

the process.

Distribution D2: The output of M(x̄).

An interactive proof system (P ,V) for a language L is said to be resettable witness in-

distinguishable (rWI) if every two distribution ensembles of type D1 that are indexed by the

same sequence of distinct inputs x̄ = x1, . . . , xpoly(n) ∈ L ∩ {0, 1}n but possibly different se-

quences of prover’s auxiliary inputs: ȳ(0)(x̄) = y0
1, . . . , y

0
poly(n) and ȳ(1)(x̄) = y1

1, . . . , y
1
poly(n) are

computationally indistinguishable. That is, we require that ensembles {〈P(ȳ(0)),V∗〉(x̄)}x̄ and

{〈P(ȳ(1)),V∗〉(x̄)}x̄ are computationally indistinguishable.

Resettable Soundness. In the following definition we consider only computationally bounded

malicious provers.

Definition 4 (resettable soundness rs [BGGL01]). A resetting attack of a cheating prover P∗ on

a resettable verifier V is defined by the following two-step random process, indexed by a security

parameter n.

1. Uniformly select and fix t = poly(n) random tapes, denoted r1, . . . , rt, for V , resulting in

deterministic strategies V(j)(x) = Vx,rj defined by Vx,rj(α) = V(x, rj, α), where x ∈ {0, 1}n

and j ∈ 1, . . . , t. Each V(j)(x) is called an incarnation of V .

2. On input 1n, machine P∗ is allowed to initiate poly(n)-many interactions with V . The

activity of P∗ proceeds in rounds. In each round P∗ chooses x ∈ {0, 1}n and j ∈ 1, . . . , t,
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thus defining V(j)(x), and conducts a complete session (again, a session is complete if is

either terminated or aborted) with it.

Let P and V be some pair of interactive machines, where V is implementable in probabilis-

tic polynomial-time. We say that (P ,V) is a resettably-sound argument system (rs) for L if the

following two conditions hold:

• Resettable-completeness: Consider a polynomial-size resetting attack and suppose that

in some session after selecting an incarnation V(j)(x), the attacker follows the strategy P
(for those sessions will also be given the witness). Then, if x ∈ L then V(j)(x) rejects with

negligible probability.

• Resettable-soundness: For every polynomial-size resetting attack, the probability that in

some session the corresponding V(j)(x) has accepted and x /∈ L is negligible.

Arguments of knowledge in the simultaneous resettable setting. Proving the argument of

knowledge property of an argument system usually requires to show an expected polynomial-time

Turing Machine called Extractor, that having oracle access to the prover, is able to extract the wit-

ness of any accepting proof. Such extractor is called black-box extractor. In the setting of resetting

verifier, where V∗ is allowed to rewind the honest prover, the verifier has the same power of the

extractor, therefore a protocol cannot be resettable witness indistinguishable (or rZK) and proof

(or argument) of knowledge at the same time, unless we provide the extractor with more power

then the malicious verifier. Thus as a natural relaxation of the standard notion of proof of knowl-

edge [BG92] in the simultaneous resettable setting consists in allowing non-black box extraction,

that is, the extractor gets the code of the (possible malicious) prover. We are now ready to provide

the definition of resettably-sound argument of knowledge for NP relations.

Definition 5 (resettably-sound argument of knowledge (adapted from [BGGL01])). Let RL : ⊆
{0, 1}∗ × {0, 1}∗ be an NP-relation for a language L = {x : ∃y (x, y) ∈ RL}. We say that (P ,V)

is a resettably-sound argument of knowledge forRL if:

• (P ,V) is a resettably-sound argument for L;
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• there exists an expected polynomial time extractor E such that for every PPT resetting ma-

chine P∗, there exists a negligible function ε for which the following condition holds:

|Pr[〈P∗,V〉(x) = 1]− Pr[E(desc(P∗), x) ∈ RL(x)]| < ε(|x|)

where desc(P∗) denotes the description of P∗’s strategy and RL(x) denotes the set of wit-

nesses for x for the NP language L.

Remark 1 (Our Extractor). The extractor that we provide in our main construction (the simultane-

ous resettable WI argument of knowledge) follows the typical two-phase extraction paradigm: in

the first phase the extractor runs the honest verifier procedure, and if it obtains an accepting tran-

script, proceeds to the second phase. In the second phase, it rewinds P∗ several times (activating

her with the same randomness) and uses fresh randomness trying to reconstruct a new accepting

transcript.

In order to use the extractor in a larger protocol, we define our extractor with three inputs. The

first two inputs are the random tape used for the activation of the prover and the random tape for

the execution of the first phase; the length of these tapes is polynomially bounded by the size of the

prover. The last input is a random tape used to perform the second phase (the length of this last

tape can not be established in advance since the number of attempts required to obtain a distinct

accepting transcript is not dependent of the size of P∗).

3.4 Bare Public-Key (BPK) Model in Resettable Settings

The Bare Public key model was first introduced in [CGGM00]. Informally, in the BPK model, a

file (called a public file) of polynomially many public keys is selected and published by a (possibly

malicious) verifier before any protocol execution begins. Such public keys in the public file repre-

sent the identities of verifiers in the interactions with provers. More formally, in the BPK model,

any interactive argument system consists of two phases, key generation (or registration) phase and

main protocol execution phase described as follows.
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Interactive argument systems in the BPK model.

Key Generation Phase. A verifier V , running on security parameter n and random tape R,

generates a pair of public and secret keys (pk, sk). Then, V stores public key pk in the

public file F and keeps the secret key sk as its secret trapdoor information. The size of the

public file F is polynomial in the security parameter.

Main protocol execution phase. Once the key generation phase is over, F can not be changed

anymore, and therefore players can start the actual interactions by exploiting the BPK model

to obtain more efficient protocols.

• On inputs security parameter n, random tape rV , theorem x, public key pk, and secret

key sk, V interacts with P .

• On inputs security parameter n and random tape rP , theorem x, witness w, and public

key pk, P interacts with V to prove the validity of x.

Definition of malicious resetting provers in the BPK model: Let P∗ be a PPT malicious prover

which takes security parameter n and runs in at most time s(n) for some polynomial s. Without

loss of generality, as a common input, x is a vector of theorems which contains s(n) theorems xi

for i ∈ [s(n)] such that |xi| = n. Then, the s(n)-resetting malicious prover P∗ in the BPK model

is defined as follows:

• P∗ chooses a vector of random strings ~RV for V , which contains s(n) random strings rj for

j ∈ [s(n)].

• P∗ runs V to obtain public file F which contains at most s(n) public keys pkk for k ∈ [s(n)].

The corresponding secret keys skk for k ∈ [s(n)] are privately stored by V .

• P∗ initiates at most s(n) sessions indexed by a tuple (i, j, k) for i, j, k ∈ [s(n)]. That is, P∗

invokes sessions at most s(n) times by choosing a tuple (i, j, k) and in each session (i, j, k),

P∗ attempts to prove theorem xi to the incarnation of Vjk which uses random tape rj ∈ ~RV ,

pkk ∈ F , and skk as its secret key for the session. We call index k the identity of V for the

session.
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Definition of malicious resetting verifiers in the BPK model: Let V∗ be a PPT malicious verifier

which takes security parameter n and runs in at most time s(n) for some polynomial s. V∗ takes,

as a common input x which is a vector of theorems containing s(n) theorems xi for i ∈ [s(n)]

such that |xi| = n. Let ~RP be a vector of s(n) random strings rj for j ∈ [s(n)] for P . An s(n)-

resetting malicious verifier V∗ in BPK model works as follows. First, V∗ generated the public file

F . Then V∗ initiates at most s(n) sessions indexed by a tuple (i, j, k) by choosing (i, j, k) for

i, j, k ∈ [s(n)]. In particular, V∗ invokes sessions at most s(n) times and in each session (i, j, k),

V∗ interacts with the incarnation of Pij which by using random tape rj ∈ ~RP is supposed to prove

theorem xi to V∗ using pkk ∈ F for some k ∈ [s(n)]. V∗ outputs the view which contains the

entire interaction transcript.

3.5 Overview of Building Blocks

Blum’s protocol. In Fig. 3.1 we describe the 3-round WIPoK protocol for the NP-complete

language Graph Hamiltonicity (HC). We use this proof system as sub-protocol in our construction

and we refer to it as BL protocol. Notice that by getting the answer for both b = 0 and b = 1 allows

the extraction of the cycle. The reason is the following. For b = 0 one gets the permutation of the

original graph G. Then for b = 1 one gets the of the Hamiltonian cycle of the permuted graph.

Resettably sound Statistical Zero Knowledge. In our construction we will use the constant-

round public-coin zero-knowledge argument of Barak [Bar01, BGGL01] as modified in [PR05b].

In [PR05b] the original Barak’s protocol is tweaked in order to obtain statistical zero knowledge

(instead of computational ZK) for NP languages along with argument of knowledge (instead of

weak proof of knowledge). Finally by applying the transformation of [BGGL01] to the construc-

tion of [PR05b] one can obtain a resettably-sound statistical zero knowledge argument of knowl-

edge.
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The BL Protocol [Blu86] for HC.

Inputs: V , P have as input a graph G. P has as auxiliary input a witness y ∈ RHC(G). Let
n be the number of vertexes of G. G is represented by a n × n adjacency matrix M
where M[i][j] = 1 if there exists an edge between vertexes i and j in G, and M[i][j] = 0
otherwise. Each of the following step is repeated in parallel n times using independent
randomness.

BL1 (P → V): P picks a random permutation π of the graph G and commits bit-by-bit to the
corresponding adjacency matrix using a statistically binding commitment scheme.

BL2 (V → P): V responds with a randomly chosen bit b.

BL3 (P → V):

- if b = 0, P opens all the commitments, and send the permutation π showing that the
matrix committed in step BL1 is actually the instance G.

- if b = 1, P opens only the commitments that form an Hamiltonian cycle in the per-
muted matrix committed in step BL1.

V accepts if and only if all n executions are accepting.

Figure 3.1: Blum’s witness indistinguishable proof of knowledge for Hamiltonicity.

Commitment schemes. A commitment scheme is a two-stage (commitment phase, decommit-

ment phase), two-party (sender, receiver) protocol in which the sender binds itself to a value in

the commitment phase, keeping secret the value to the receiver (this property is called hiding).

Nevertheless in the decommitment phase, the sender reveals the secret value and the receiver is

guaranteed that it corresponds to the value committed in the previous stage (this property is called

binding). A commitment scheme is statistically binding if the binding property holds even against

unbounded malicious sender. Non-interactive statistically binding commitment can be constructed

from any one-way permutation [GL89]. In statistically hiding commitment schemes instead the

hiding is preserved even against unbounded malicious receiver. Constant-round statistically hiding

commitment schemes exist assuming the existence of families of collision-resistant hash func-

tions [HM96a].

Pseudorandom functions. A keyed function f is a two inputs function f : {0, 1}n × {0, 1}κ →
{0, 1}`, where the first input is the key and the second is the input, mapping a κ-bit input string
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to an `-bit string by using a fixed n-bit key. We say that f is efficient if there is a deterministic

polynomial time algorithm that computes f(k, x)
def
= fk(x) given k and x in input.

Definition 6 (Pseudorandom Function). Let f : {0, 1}κ × {0, 1}n → {0, 1}` be an efficient

keyed function. We say that f is a pseudo-random function (PRF, in short) if for all PPT distin-

guisher D, there exists a negligible function ε such that: |Pr(k
$← {0, 1}κ;Dfk(·)(1κ)) − Pr(f

$←
{F}κ,`;Df(·)(1κ))| ≤ ε(κ) where Fκ,` is the uniform distribution over all functions mapping κ-bit

long strings to `-bit long strings.

ZAPs [DN00, GOS06]. ZAPs are two-round resettably-sound witness indistinguishable proof

systems [DN00]. As noted in [DN00] by requiring that the randomness of the prover is generated

by applying a pseudo-random function to the first message sent by the verifier, ZAPs are also

resettable witness indistinguishable. We refer to such a simultaneously resettable ZAP as rZAP .
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CHAPTER 4

A constant-round resettably sound resettablyWI arguments of

knowledge

In order to obtain a constant-round simultaneously resettable ZK AoK protocol in the BPK model,

we first construct a resettably sound resettably witness-indistinguishable Aok protocol (simresWIAoK)

in the plain model where the protocol enjoys the constant-round complexity. Protocol simresWIAoK

serves as a main building block of our constant-round simultaneously resettable ZK AoK protocol

in the BPK model. Remark that simresWIAoK is the first constant-round protocol in the plain

model which is resettably witness-indistinguishable and resettable argument of knowledge.

4.1 The overview of our new techniques

Our goal is to obtain a construction that is resettably-sound resettableWI and argument of knowl-

edge in a constant number of rounds. The only known constant-round simultaneously-resettable

WI protocol is rZAP which is not an argument of knowledge and can not be trivially transformed

in a argument of knowledge even without considering resettability.

A typical paradigm: determining message and consistency proof. Typically ([CGGM00,

BGGL01, DGS09]), protocols dealing with a resetting adversary follow this paradigm: the reset-

ting party is required to provide a special message (called determining message) that determines

her own action for the rest of the protocol. Namely, for each protocol message the resetting party is

required to prove that such message is consistent with the determining message (we call this proof

consistency proof). Moreover, the actual randomness used by the honest party in the protocol de-

pends on the determining message (typically the honest party applies a pseudorandom function
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(PRF) on it). The combination of the randomness depending on the determining message and

the consistency proof given by the resetting party suppresses the resetting power of the adversary.

Indeed, since the resetting party, upon each protocol message has to prove consistency with the

determining message, even after a reset she cannot change a message previously played without

first having changed the determining message (unless she is able to fake the consistency proof).

However, if she changes the determining message, then the honest party plays the protocol with

(computationally) fresh randomness (unless the adversary violates the pseudo-randomness of the

PRF). We will follow this paradigm to construct our simultaneously resettable witness indistin-

guishable argument of knowledge. Recall that as specified above, we can not start from rZAP s

that are already simultaneously resettable and try to transform them into an argument of knowl-

edge. Our starting point is Blum’s proof of knowledge [Blu86] shown in Fig. 3.1 which is secure

only against concurrent adversaries. In the following discussion we show incrementally how to

transform such protocol to enjoy resettable witness indistinguishability and resettable soundness

(this transformation is already known in literature) to finally present our novel technique to obtain

also resettable argument of knowledge.

Resettable WI and stand-alone arguments of knowledge [BGGL01]. Consider the case in

which only the verifier can reset the prover. Following the above paradigm, it is easy to construct

a resettable WI system starting from Blum’s protocol. In Blum’s protocol the only message

from V to P is the challenge. The modified resettable version requires that V sends a statistically

binding commitment of the challenge as determining message. The only other protocol message

of V is the opening of the commitment which, due to the binding property, is itself a proof that

the message is consistent with the determining message. Note that such modified protocol is no

longer an argument of knowledge since the extractor has the same power of the malicious verifier.

In order to allow only the extractor to cheat, the next step is to avoid the opening as a proof of

consistency. Instead of the actual opening of the commitment, V is required to send the challenge

along with a res-sound (non-black-box) ZK argument ([Bar01]) as a proof of consistency with the

commitment. The (non-black box) extractor can send an arbitrary challenge and prove consistency

with the determining message by using the (stand-alone) non-black-box simulator (recall that only
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V might reset here).

The resulting protocol is resettableWI and (stand-alone) argument of knowledge (rWIAoK)

and it is known from [BGGL01]. We use a modified version of such protocol. We require that

the commitment sent by the verifier is statistically hiding (instead of statistically binding), and

we use the statistical zero-knowledge argument of knowledge of [PR05b] instead of the protocol

of [Bar01] that is only computational ZK and is not an argument of knowledge. In the following

we refer to such protocol as BGGL.

Achieving Resettable Soundness and Resettable Argument of Knowledge: existent solutions

do not work. We now deal with the case in which also the prover can reset. By the BGGL com-

piler [BGGL01], we know that any public-coinWI argument system can be upgraded to resettable

soundness by simply requiring the honest verifier to apply a PRF on the first message received from

the prover. However, since our aim is to obtain simultaneous resettability, we need to start from the

rWIAoK protocol shown before, which is not public coin. Thus, following the paradigm and the

technique of [DGS09], we require that as first message, P sends the commitment of the random-

ness that will be used in the protocol: this is the determining message. Then upon each protocol

message P proves that the message is honestly computed using the randomness committed in the

determining message: this is the consistency proof. Since we are now in the setting in which both

parties can reset each other the consistency proof must be provided with a simultaneous resettable

tool. For this purpose we use rZAP s that are constant-round simultaneously resettableWI proofs.

We denote the theorem to be proved with rZAP as “consistency theorem”, since P proves that a

message is honestly computed and consistent with the randomness committed in the determining

message.

The technical problem using rZAP s is that they are onlyWI, thus the theorem being proved is

required to have more than one witness (note that using the simultaneous ZK protocol of [DGS09]

is not an option for us since we aim to a constant-round construction). Recall that we want to use

rZAP to provide the proof of consistency with the determining message. If the determining mes-

sage is a statistically-binding commitment of the randomness, then there exists a unique opening,

which implies the existence of only one witness. On the other hand, if we use a statistically hiding
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commitment, then any opening is a legitimate witness, and the theorem is always true, which leads

to another technical problem when one wants to reduce the resettable soundness of the resulting

construction to the soundness of rZAP . The solution to overcome this problem is to change the

theorem to be proved with rZAP so that it admits more than one witness.

In [DGS09] the consistency theorem is augmented with the theorem “x ∈ L” that we call

“trapdoor theorem”. We call it trapdoor to stress out that it is an escape for the prover that can

avoid the consistency proof essentially having freedom to change messages among resets. Hence

in [DGS09, DFG+11], along with each protocol message, P is required to prove that either the pro-

tocol message is computed honestly with the randomness committed in the determining message,

the “consistency theorem”, or x ∈ L , the “trapdoor theorem”.

This solution can be seen as an instance-dependent technique. Indeed, it is easy to see that a

malicious prover has the freedom of not proving the consistency of its messages and therefore to

exploit the resetting power only when x ∈ L. Instead, when proving soundness, since x /∈ L,

the trapdoor theorem is false, hence due to soundness of rZAP s, the malicious prover is forced to

prove the consistency theorem and thus to honestly follow the protocol.

Unfortunately, such an instance-dependent solution serves well to prove resettable soundness

but fails completely when one would like to prove witness extraction (i.e., the argument of knowl-

edge property). The reason is that, when proving witness extraction, we have to construct an

extractor that works against any malicious prover, even one who uses the witness of the trapdoor

theorem instead of proving consistency of the protocol messages.

More specifically, this possible behavior harms the extractor in two ways: 1) upon seeing the

challenge of the verifier/extractor, P resets it and changes the first message of Blum’s protocol

according to the challenge; 2) it can act as a resetting verifier in the non black-box ZK protocol,

therefore preventing the extractor to use the stand-alone non black-box simulator. Even if this is

not harmful for the soundness (a malicious prover can perform this attack only when x ∈ L), this

attack kills the existence of the extractor; thus, the final construction is only resettable WI and

resettable sound. Therefore, the instance-dependent technique of [DGS09] inherently prevents the

existence of any extractor. New ideas are required to solve the problem.
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Achieving Resettable Argument of Knowledge: the new technique. We propose a new “trap-

door” theorem that forces the prover to honestly follow the protocol regardless whether x ∈ L or

not.

The idea is the following. We let the protocol consist of the parallel execution of two BGGL

protocols that we call left sub-protocol denoted by π0 and right sub-protocol execution denoted by

π1. Before starting each sub-protocol P commits to the randomness that will be used in the sub-

protocol. Moreover, P must commit to a single bit. The determining message therefore consists

of the statistically-binding commitment of both randomnesses and of a single bit.

The trapdoor theorem that P proves in the sub-protocol πd is the following: “d is the bit

committed in the determining message”. Clearly, due to statistically-binding property of the com-

mitment, the trapdoor theorem is true only in one sub-protocol. Therefore, in each sub-protocol

πd, along with each message of BGGL protocol, P provides as proof of consistency a rZAP for

the following compound theorem: either the message is honest and consistent with the determining

message, or d is the bit committed in the determining message. Finally, the verifier will accept the

proof if and only if both sub-protocol executions π0, π1 are accepting.

It is easy to see that now, regardless of whether x ∈ L or not, any malicious prover cannot

escape from proving the consistency theorem in at least one of the subprotocols. Indeed, let b be

the bit committed in the determining message, in sub-protocol πb, a malicious P is not forced to

be honest and can then use the resetting power to prove any false theorem (indeed among resets

P can change the protocol messages without without changing the determining message). In sub-

protocol πb̄, the trapdoor theorem is false, thus the only way to provide an accepting rZAP is to

prove the “consistency” theorem (where P proves that messages are honestly computed using the

randomness committed in the determining message). Therefore, in sub-protocol πb̄, the extractor

is guaranteed that 1) for sessions starting with the same determining message, the first round of

Blum’s protocol does not change, so that playing with two distinct challenges yields the extraction

of the witness; 2) it can run the stand-alone non black-box ZK simulator without being detected.

Note that in both sub-protocols, the resettable WI property is still preserved. Finally we have

the following: sub-protocol πb̄ is resettably-sound and resettable argument of knowledge, while
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sub-protocol πb is not sound. Both sub-protocols are rWI.

Summing up, the final protocol consists of a round in which the prover sends its determining

message, namely the commitments of the randomnesses used in each sub-protocol, and the com-

mitment of a bit. Then prover and verifier run two parallel executions of BGGL augmented with

the additional zaps from P to V where P proves consistency with the determining message. P runs

each sub-protocol with the randomness committed in the first round, V runs each sub-protocol with

the randomness generated as a function of the determining message of the prover.

4.2 The formal Construction of simresWIAoK

In this section, we provide the formal description of our main protocol. We describe how to build a

simultaneously resettableWI AoK (simresWIAoK) starting from Blum’s protocol (BL protocol),

shown in Fig. 3.1. We denote by SHCom, a two-round statistically hiding commitment scheme. We

denote by SBCom the commitment procedure of a non-interactive statistically binding commitment

scheme. We denote by c← SBCom(v, s) (resp. SHCom) the output of the commitment of the value

v computed with randomness s. We use the resettably-sound statistical (non black-box) ZK AoK

of [PR05b] that we denote by resSZK. In our construction, we require that P , at each round of the

protocol (except the last that is the opening of commitments as required by BL protocol), provides

a proof that either the messages are honestly computed according to the randomness committed

in the first round, or the “trapdoor” condition is satisfied. Formally, P provides rZAP s for the

following NP languages during the execution of the main protocol (except the language ΛSHCom

that is proved only by V using resSZK protocol).

ΛBL1: correctness and consistency of the first round of Blum’s protocol (BL1). A tuple (x,m, crb , cb)

∈ ΛBL1 if: there exist (rb, sb) such that crb = SBCom(rb, sb) and m is honestly computed

according to BL1 for the graph x using randomness frb(cb).

ΛV: correctness and consistency of verifier’s messages. A tuple (mP , mV , crb , cb) ∈ ΛV if: there

exist (rb, sb) such that crb = SBCom(rb, sb) and mV is honestly computed according to the
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verifier’s procedure of the protocol resSZK having in input the prover’s message mP using

randomness frb(cb).

Λtrap: trapdoor theorem (true only for sub-protocol b). The pair (cs, b) ∈ Λtrap if there exists s such

that cs = SBCom(b, s).

ΛSHCom: validity of the opening (proved by V). The pair (cs,m) ∈ ΛSHCom if there exists s such

that cs = SHCom(m, s). Note that for a statistically-hiding commitment scheme, any pair

(cs,m) is actually in ΛSHCom. Nevertheless, V proves this theorem using the argument of

knowledge resSZK.

The simresWIAoK protocol is described in Figure 4.2, while a graphic description is provided in

Figure 4.1. It basically consists of two phases. In the first phase, P and V generate the random

tapes that they will use to run the sub-protocols. P sends V the commitments of two random

strings (cr0 , cr1) and the commitment of a random bit cs. This message is the determining message

on which V applies a PRF to generate a pseudo-random tape (to be used to execute the protocol).

The second phase consists of a parallel execution of π0 and π1 formally described in Figure 4.3. P
runs each sub-protocol on theorem x, randomness picked in the first stage, and the witnesses for

computing the rZAP s as inputs (i.e., the opening of the commitments of the determining message).

V runs each sub-protocol using the psuedo-randomness computed upon the determining message

received from P . Each sub-protocol is resettableWI, while only one of the two sub-protocols is

a resettably-sound AoK. Since V accepts the proof only if both executions are accepting, the final

protocol is also a resettably-sound argument of knowledge.

The sub-protocol πd is described in Figure 4.3. We omit the first round of the rZAP and the first

round of the statistically hiding commitment scheme SHCom. rZAP s are computed with indepen-

dent randomness. We stress out that the determining message for V is the first prover’s message:

dm = (cr0 , cr1 , cs). The determining message for P is the first verifier’s message: (c0, c1).
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P V

π1−b

cs = SBCom(b)

cr0 = SBCom(r0)

rWI
ressound
resAoK

πb
rWI

RV1 ← fr(x||cr1 ||cs)
RV0 ← fr(x||cr0 ||cs)

crb cr(1−b)cs

x ∈ L

cr1 = SBCom(r1)

Figure 4.1: simresWIAoK.

Protocol simresWIAoK

Inputs: common input x ∈ HC.
P’s input: witness y, randomness ω. V’s input: randomness r.

1. P: b $← {0, 1}; r0, r1, s0, s1
$← {0, 1}n.

Send cr0 ← SBCom(r0, s0), cr1 ← SBCom(r1, s1), cs ← SBCom(b, s).
Run in parallel πP0 (x, y, r0, s0, b, s); πP1 (x, y, r1, s1, b, s).

2. V : upon receiving dm = (cr0 , cr1 , cs) from P .
RV0 ← fr(x||cr0 ||cs); RV1 ← fr(x||cr1 ||cs); Run in parallel πV0 (x,RV0); πV1 (x,RV1).

Figure 4.2: Simultaneously ResettableWIAoK.

4.3 The proof of security of simresWIAoK

In this section, we provide an high-level proof sketch of the simultaneous resettable witness indis-

tinguishability property and the resettable argument of knowledge property of the protocol depicted

in Fig. 4.2.

4.3.1 Resettable Soundness and Argument of Knowledge

In this section we show that protocol shown in Fig. 4.2 is a resettably-sound argument of knowl-

edge.

Resettable-soundness of simresWIAoK. We start proving that the scheme is resettable-sound.

Recall that the protocol starts with P∗ sending the determining message dm to V . dm consists

of three commitments: commitment of two seeds and commitment of a bit (let us call the bit

committed b). Consider the following observations.
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Sub-protocol: πd = 〈πPd (x, y, rd, sd, b, s), π
V
d (x,RVd)〉.

Inputs: common input: x (∈ HC). P’s input: witness y for RHC; (partial) witness (rd, sd) to prove

rZAP ’s consistency theorem. V’s input: randomness RVd. Protocols BL (Fig. 3.1) and resSZK ( [PR05b])
are used as sub-protocols.

• V: Pick challenge for BL protocol: chd
$← {0, 1}n. Send cd ← SHCom(chd) to P .

• P: upon receiving cd (this is the determining message for P):

1. generates randomness RPd ← frd(x||cd).

2. computes the step BL1 for the instance x using randomness RPd. Let us denote the output as
mBL1d.

3. Send mBL1d to V along with the rZAP for theorem: ((x,mBL1d, crd , cd) ∈ ΛBL1 ∨
(cs, d) ∈ Λtrap).

• V: if rZAP is accepting send chd to P .
Prove theorem (cd, chd) ∈ ΛSHCom using resSZK protocol. Let md

Prszk
be the prover’s message of

sub-protocol resSZK (sent by V to P) and md
Vrszk

be the verifier’s messages of resSZK (sent by P
to V):

1. (P → V) at each round of the protocol resSZK, upon receiving md
Prszk

from V , P computes
md

Vrszk
using randomness RPd and sends md

Vrszk
to V along with an rZAP for the theorem

((md
Prszk

,md
Vrszk

, crd , cd) ∈ ΛV ∨ (cs, d) ∈ Λtrap).

2. (V → P) at each round of the protocol resSZK upon receiving md
Vrszk

from P , if rZAP is
accepting V computes the next resSZK’s prover message and sends it to P . Otherwise aborts.

• P: upon successfully completing the resSZK protocol compute step BL3 and send the message
mBL3d to V .

• If mBL3d is the correct third message of BL protocol V outputs accept, else outputs abort.

Figure 4.3: Sub-protocol πd = (πPd (·), πVd (·)).

1. The randomness used by V depends on the determining message. In a resetting attack the

malicious prover P∗ activates V selecting theorem and randomness (x, j), forcing V to run

with the same randomness rj among several executions. However, the randomness that is

actually used by V at each session is determined by the output of the PRF on seed rj and

input (x, dm) where dm is the determining message. Thus, even if activated with the same

random tape rj , when receiving a new determining message V plays with fresh random tape.

Note that here we are using the assumption that the output of the PRF looks random to the

PPT P∗, thus soundness holds against computationally bounded adversary only. For lack of

26



space we omit the reduction, that however is pretty standard.

2. In sub-protocol πb the resetting power of P∗ is effective. The reason is that in πb, P∗ can

honestly prove the trapdoor theorem of the rZAP therefore she is not forced to use the

randomness committed in the determining message among several resetting attacks. More

specifically P∗ can mount the following attack. She initiates a session labelled by (x, j, dm),

and in the sub-protocol πb, upon receiving the challenge chb from V , P∗ resets V (keeping

the same determining message) up to the second round (after V has sent the commitment of

the challenge), and changes the message mBL1b according to the challenge chb previously

seen (indeed, since the determining message is the same V will use the same challenge in

the sub-protocol πb). Thus, in this sub-protocol P∗ can basically run the algorithm of the

simulator of the zero-knowledge version (i.e., when there is a mechanism for the simulator

to know in advance the challenge) of BL’s protocol and prove any theorem. Therefore in

sub-protocol πb soundness does not hold.

3. In sub-protocol πb̄ P∗ trapdoor theorem is false thus resetting attacks are ineffective. This

means that in order to provide an accepting transcript, P∗ must provide a rZAP for the “hon-

est” theorem, i.e., for each protocol message she has to prove that it is honestly computed

according to the randomness committed in the determining message. Due to the statistically

binding property of SBCom (there exists only one opening for the commitment cs, crb̄) and

to the soundness of rZAP (any unbounded P∗ cannot prove a false theorem) if V accepts the

rZAP for messages of protocol πb̄ it must be the case that P∗ is honest and consistent with

the randomness committed in the determining message. Furthermore, if P∗ resets V forcing

to use the same randomness and changes the determining message, due to the fact that V use

of the PRF applied to the determining message, it will use a fresh new randomness therefore

making the reset useless. Thus the resetting power of P∗ in the execution of πb̄ is defeated.

Therefore, πb̄ is resettable sound.

In the light of the observations above consider the follows. Assume that there exists a PPT mali-

cious prover P∗ and a pair (x, j) such that V accepts x with non-negligible probability, but x /∈ HC
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. Specifically, this means that P∗ is able to generate an accepting transcript for x when invoking

the verifier on randomness rj . By observation 1, we know that such a transcript is indexed also by a

determining message dm. Thus the accepting transcript can be labelled by the triple (x, j, dm). By

observation 2, we know that for the same determining message dm there are polynomially many

distinct sub-transcripts for sub-protocol πb (P∗ can reset V many times and change the protocol

messages), and that all these (partial) transcripts of πb can be accepting for x /∈ HC since for πb

soundness does not hold. However by observation 3 we know that for a fixed triple (x, rj, dm)

there exists only one possible accepting transcript for the sub-protocol πb̄ since, fixed the deter-

mining message, P∗ is forced to honestly follow the (BL) protocol according to the randomness

committed in it. Since V accepts if and only if both sub-protocols executions are accepting, since

πb̄ is sound against reset attack, the composition of the two protocols is resettably sound too. This

proves the following theorem.

Theorem 1 (Protocol simresWIAoK is resettably sound). If trapdoor permutations and collision

resistance hash functions exist then the protocol simresWIAoK is a resettably sound argument

system.

Resettable argument of knowledge. In this paragraph we show that the protocol depicted in

Fig. 4.2 is a resettable argument of knowledge. In order to prove this we show an expected poly-

nomial time extractor E that extracts the witness from any P∗ with probability that is negligibly

close to the probability that P∗ convinces an honest verifier.

Let (x, j, dm) be the label of the session in which P∗ provides an accepting proof. The goal of

the extractor is to obtain two distinct accepting transcripts for the same label. As observed before

one label identifies a unique execution of one sub-protocol in which P∗ is forced to play honestly.

Therefore, given a fixed label, the extractor first has to identify the sub-protocol in which P∗ is

forced to use the committed randomness. Then it rewinds the prover and in that sub-protocol it

tries several times to obtain a new accepting transcript, opening to distinct challenges of the BL’s

protocol, i.e. it will cheat in the opening of the challenge committed using the non-black-box

simulator. Note that since in the execution of this sub-protocol P∗ is bound to the committed
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randomness, the stand-alone simulator of resSZK is sufficient. The non-black-box simulator takes

as input the code of the malicious verifier. In order to use the non-black-box simulator the extractor

must prepare an augmented machine M that simulates the system 〈P∗,V〉 internally and forwards

in output only the message of P∗ belonging to the protocol resSZK protocol.

In the following paragraph we describe the extractor E and the augmented Machine M.

The Extractor E. Let s(n) be the maximum number of sessions that adversary P∗ opens. This

bound is known since we know the size of the circuit of the adversary (we are assuming that the

extractor gets the code of P∗). Following the traditional approach, our extractor roughly consists

of two phases, in the first phase E follows the honest verifier procedure. When P∗ has completed

her execution, if there exists an accepting session, labelled by (x, j, dm) (if there are many, the

extractor will consider the last accepting session) the extractor goes ahead to the second phase.

Let us call the session labelled by (x, j, dm) as target session. In the second phase the extractor

tries to obtain another distinct accepting transcript for the target session that allows extraction

of the witness. The distinct transcript is obtained by cheating in the opening of the challenge

committed in the first phase. The cheating is done by simulating the zero knowledge proof given

by the verifier (i.e. running the non black-box simulator Sim). In this phase E must detect the sub-

protocol in which P∗ is bound to the randomness committed in dm (recall that dm consists of the

commitment of two randomnesses and a bit). Indeed it is only in this sub-protocol that E can use

the stand-alone simulator Sim. The second phase requires polynomially many rewinds for which

the extractor needs fresh randomness, i.e. randomness that is distinct from the one used to execute

the first phase. The actual extractor is more involved as it requires an intermediate estimation step

(as shown in [GK96]) in which the extractor estimates the probability of having another accepting

transcript for the label (x, j, dm).

Therefore, the random tape used by E can be seen as partitioned in three blocks. The first block

is used to activate the malicious prover, the second block is used to executed the first phase as the

honest verifier, the size of this block is a fixed polynomial s(n) and depends of the malicious P∗.
We denote the first block by R∗ and the second block as ~R. The last block that we denote as R′
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is used to perform the estimation phase and the second phase. The size of the second block is an

arbitrary polynomial. The extractor E is shown in Fig. 4.4.

Resettable Extractor E(desc(P∗), R∗, ~R,R′)
Input: Random tape for honest phase ~R = r1, . . . , rs(n), R∗ for P∗’s activation, for all other computations R′.

• Honest Verifier Phase. Run 〈P∗(R∗), V(~R)〉. Upon completion of P∗’s execution: let (x, j, dm) the label of
the last accepting session, and let τx,j be the accepting transcript (for better readability we omit the subscript
dm). If there are no accepting transcripts output ⊥. From now on, the extractor will focus on obtaining
another accepting transcript τ ′x,j for the same session that we call target session. For all the other sessions,
the extractor proceeds as the honest verifier. Fixed the label (x, j, dm) the accepting transcript can be seen
as the concatenation of the accepting transcript of each sub-protocol τx,j = τ0

x,j , τ
1
x,j and dm.

• Estimation Phase. Run P∗(R∗) and execute the honest verifier procedure using randomness ~R for all ses-
sions except that in the target session execute the protocol resSZK with independent fresh randomness taken
from R′. Repeat this step until either n2 accepting transcripts for the target session have been obtained, or
the loop has been repeated 2n times. Let q(n) be the number of iteration needed to obtain the n2 accepting
transcripts.

• Extraction Phase. Pick b $← {0, 1}.
Repeat q(n) times:

1. pick ch′ ← {0, 1}n using random tape R′. Run τts ← Sim(M(P∗,V, R∗,~R, b, (x, j, dm), τ bx,j , ch′) on
the theorem (cb, ch

′) ∈ ΛSHCom; If Sim does not abort, reconstruct the new accepting transcript: run
P∗(R∗) and plays as the honest verifier with randomness ~R except that in all sessions labelled with
(x, j, dm) run the sub-protocol πVb opening the commitment cb as ch′ and using the transcript τts for
the rsSZK proof. At the end of the execution obtain the transcript τx,j = τ ′bx,j , τ

(b̄)
x,j and use τ bx,j and

τ ′bx,j to extract the cycle y. Output y and halt.
2. b← (b+ 1)mod 2.

Output ⊥.

Figure 4.4: The resettable extractor E.

Remark 2. The above extractor follows the behaviour of any standard extractor, therefore when it

halts, it either outputs the witness or the special symbol⊥. However, if the simresWIAoK protocol

is used as sub-routine in a larger protocol, when proving the security of the larger protocol, it could

be useful to have an extractor that in case of failure provides more information, that can be used by

a possible outer simulator/extractor. Therefore it is straightforward to modify the above extractor

such that in case of abort it outputs the last message received by P∗.

Claim 4.3.1. The extractor E runs in expected polynomial time in the security parameter n.

Proof. The extractor consists of three phases: the honest verifier phase, the estimation phase and

the extraction phase. The honest verifier phase consists in executing the (PPT) procedure of the
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honest verifier, thus this step requires polynomial time tver(n). Now, assume that in this phase

P∗ has provided an accepting transcript for a session (x, j, dm) (as explained above, a session is

determined also by the determining message dm), with probability ζ(x,j) = ζ(R∗, rj, x). Then,

with probability ζ(x,j) E initiates to the estimation phase.

The estimation phase, follows the Goldreich Kahan [GK96] technique, and consists of repeat-

ing the execution withP∗ until n2 accepting transcript for the session (x, j, dm) are obtained. Upon

each repetition, the view of P∗ is identical for all the other sessions, and for session (x, j, dm) the

only change is the randomness used by the verifier in running the protocol resSZK. Therefore,

we have that at each repetition, in session (x, j, dm), P∗ produces an accepting transcript with

probability ζ(x,j). Therefore in order to obtain n2 accepting transcript E runs the second step:

q(n) = n2

ζ(x,j) times.

In the extraction phase E runs the simulator Sim on input the augmented machine M. The aug-

mented machine takes in input (among the other inputs) the bit of the target sub-protocol in which

the extractor wants to cheat and does the following: 1) it executes the honest verifier procedure

as long as it does not detect that the prover is successfully resetting the verifier in the target sub-

protocol 2) forwards the messages belonging to the resSZK protocol of the target sub-protocol to

Sim. Hence, M runs in polynomial time. The non-black box simulator of the protocol resSZK runs

also in polynomial time tsim. Recall that the extractor has to figure out in which sub-protocol it can

safely use the stand-alone simulator. In order to do this, at each attempt E invokes Sim first with

input M that cheats in in sub-protocol b and the then again M cheating in sub-protocol (1− b).

Thus, the extraction phase consists of the repetition of at most 2q(n) times of the simulator Sim

plus a polynomial time due to the reconstruction of the new transcript that we denote as trec.

Summing up the total running time of the three phases is the following:

tver + ζ(x,j) ·
[
q(n) · poly + tsim · q(n) + trec

]
= poly(n)

Claim 4.3.2. Let P∗ any PPT prover, let p the probability that P∗ provides an accepting transcript
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for a theorem x ∈ HC. If trapdoor permutations and collision resistance hash functions exist, then

E outputs the witness y ∈ RHC(x) with probability negligibly close to p.

Proof. Recall that due to the statistically biding of SBCom and to the soundness of the rZAP s,

for each accepting session (x, j, dm) the sub-protocol πb̄ is resettable sound and that in such sub-

protocol P∗ is bound to the randomness committed in the determining message dm. Note that the

strategy of the extractor is basically to play honestly in all sessions, while in the session (x, j, dm)

tries to make effective rewinds by keeping the same verifier’s determining message, i.e. the com-

mitments of the challenges of BL’s protocol c0, c1 and cheating in the opening by providing a false

proof. Such a cheating is allowed only in the sub-protocol πb̄ where P∗ is forced to be consistent

and in turn for E is sufficient to cheat invoking the only stand-alone non-black box simulator Sim.

Assume that there exists a session (x, j, dm) (that we will denote as target session) in which P∗

generates an accepting transcript with probability p. An accepting transcript consists of a pair of

sub-transcripts τx,j = (τ 0
x,j, τ

1
x,j). We want to argue that E is able to obtain from P∗ a new ac-

cepting sub-transcript τ ′(b̄)x,j , for the target session with almost the same probability. We show this

through hybrids arguments.

H0 : In this hybrid consider a modified version of the extractor E that runs always as the honest

verifier. Namely, in the third phase (the extraction phase), instead of playing with challenge

ch′, E activated the augmented machine M on input the honest openings of the challenge

ch (as the honest receiver) and the messages of the augmented machine are held by the real

prover instead of the simulator. Obviously in this modified extraction phase, once E gets

another accepting transcript for the target session it does not extract the witness. In this

experiment the view of the prover P∗ interacting with an honest V is indistinguishable from

the view of P∗ interacting with the modified E. The only difference is that here the extractor

could abort more often then honest V .

Now we want to argue that in this experiment the extractor outputs ⊥ with negligible prob-

ability. Note that the extractor outputs ⊥ in the third phase if, after repeating the execution

with P∗ 2q(n) times (where 1
q(n)

is an estimation of p), P∗ does not provide another accept-
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ing transcript for the target session (x, j, dm). Note that by the Goldreich Kahan analysis

we have that after q(n) number of repetitions, P∗ provides another accepting transcript with

overwhelming probability. Note also that, in the extraction phase, the extractor runs the aug-

mented machine M. More specifically each repetition M is run with a target sub-protocol in

input, and it aborts when detects that the prover’s messages are not consistent with previous

transcript. However, at each repetition M is run twice, once per each sub-protocol. Now, by

the soundness of rZAP and by the statistically-binding property of the commitment sent by

P∗, we have that at least in one sub-protocol P∗ must be consistent with previous transcript.

Then, since in the extraction phase, each attempt is repeated once for each sub-protocol,

there exists a sub-protocol in which M does not abort. Therefore, at each repetition E aborts

only if also P∗ aborts. Due to the indistinguishability of the view generated by E P∗ aborts

with the same probability of the first and second phase. Thus the probability of obtaining a

new transcript in the third phase is overwhelming, and in turn the probability that E outputs

⊥ is negligible.

H1: In this hybrids the extractor works as in experiment H1 except that in the third phase instead

of handling the message of the augmented machine M running the honest prover strategy on

the theorem (cb, ch ∈ ΛV) it invokes the zero knowledge simulator Sim. By the statistically

zero knowledge property of the protocol resSZK H0 and H1 are statistically close.

H2: In this hybrid the extractor works as in the previous hybrid except that in the third phase it

invokes the simulator on theorem (cb, ch′ ∈ ΛV). Due to the statistically hiding property

of the commitment SHCom hybrids H2 and H1 are statistically close. This is the extractor

described in Fig. 4.4.

Remark 3 (Simulation Soundness in not needed.). Note that in this experiment P∗ is receiv-

ing simulated proofs by Sim of a false theorem and could maul this proof in other concurrent

executions. Since resSZK is not simulation sound (very roughly a protocol is simulation

sound when even if the adversary receives simulated proof of false theorems is still not able

to prove a false theorem to an honest verifier) we cannot rule out this possibility. Note how-
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ever that by the unconditional soundness of rZAP P∗ cannot use the simulated proof within

the same execution in which the simulator is used. Still P∗ could open new concurrent ex-

ecutions and use the simulated messages to lead V to accept a false theorem. This is not a

problem since the extractor, once is in the third phase, has already a target theorem/session

on which is trying to extract, therefore, other new (possibly false) theorems proved in other

sessions are nor relevant to E.

Augmented Machine In this paragraph we formally define the augmented machine M (depicted

in Fig. 4.5). Very roughly, M internally runs the system 〈P∗(R∗),V(~R)〉 honestly using the same

randomness used in the first phase of E for all sessions different from the target session. The target

session (x, j, dm), and the sub-protocol πb in which M has to cheat are provided in input. The

cheating consists in opening the commitment of the challenge cb sent in the first phase as a fresh

challenge ch′ that is also provided as input (note that M is a deterministic machine).

For the target session, M cheats by simulating the ZK protocol proving that ch′ is the correct

opening of cb, i.e., the verifier’s message of resSZK sent by P∗ are written to the output tape, and

M waits the the simulator writes the prover’s answer to the input tape. One of the most important

task of M is to detect if the sub-protocol πb in which it is trying to cheat is the wrong one, i.e. is

the one in which P∗ is free to reset the verifier without getting caught. In order to do this, M will

receive in input the transcript of the target sub-protocol τ bx,j generated in the first phase, such that

it can check if the messages sent by P∗ are consistent with such transcript and thus detect if P∗ is

changing her messages among the resets.

Summing up, M receives the following inputs:

• the code of P∗ and V , the randomness R∗, ~R, and the target session (x, j, dm) to reproduce

the same execution generated in the first phase by E for all sessions except the target session

(x, j, dm).

• the bit b indicates the sub-protocol πb of the target session in which the messages belonging to
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the resSZK protocol must be forwarded in output to the simulator.

• the fresh challenge ch′ to be open to, that replaces the honest challenge committed in cd.

• the transcript τ bx,j of the sub-protocol πb obtained in the first step of E and that M uses to detect

if the sub-protocol πb is the one in which P∗ is free to cheat.

In the following, we say arrays (a1, . . . , an) 6= (a′1, . . . , a
′
n) if there exists i ∈ [n] such that ai 6= a′i.

We denote as ∅ the empty string. When writing the Augmented Machine M we cannot consider

sub-protocols π0, π1 as black-boxes, but we have to deal with each sub-protocol round. Following

there is some notation for that. We indicate with ZAP 0
BL, ZAP 1

BL the rZAP s sent along with

messages mBL10,mBL11, and with ZAP 0
rszk,ZAP

1
rszk the rZAP s sent along with each message

m0
Vrszk

,m1
Vrszk

of the resSZK protocol. We denote as τ bx,j the transcript of the sub-protocol b (the

sub-session from which we are trying to extract the witness) for the accepting session labelled

with (x, j, dm). Recall that τ bx,j was generated by the extractor in the first phase (honest verifier

phase)(see Fig. 4.4). A sub-protocol πd consists of three stages, the BL1 step (along with ZAPs),

the resSZK protocol and the BL3 phase. In particular BL1,BL3 consist of a single message from P
to V . The resSZK steps consists of ` messages. Thus we denote with τ bx,j[BL1], τ bx,j[BL3] the single

messages for BL1,BL3 steps along with respective rZAP , and with τ bx,j[resSZKi] the i-th verifier’s

message of protocol resSZK. All messages are considered along with the respective rZAP s. M

stores in the local variable τSim the transcript of the messages received by the simulator of resSZK

protocol.

4.3.2 Resettable Witness Indistinguishability

In this section we prove that protocol shown in Fig. 4.2 is resettable WI. Recall that the pro-

tocol mainly consists of a single message from P to V (i.e., the prover’s determining message

(cr0 , cr1 , cs)) and the parallel execution of π0, π1. Therefore the main protocol can be seen as a par-

allel repetition of two protocols π′0,π′1 where π′0 = (cs, cr0 , π0) and π′1 = (cs, cr1 , π1) (the repetition

of cs is only for presentation purpose).

The proof structure is the following. Assume that there exists a WI distinguisher D for the
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M(P∗,V, R∗, b, (x, j, dm, τ bx,j), ~R, ch′) :

τSim ← ∅;
Run P∗(R∗). When receiving a command (x′, j′, dm′,mP∗):
− if (x′, j′, dm′) 6= (x, j, dm): return V(x′, rj , dm

′,mP∗);
− else:

• if mP∗ = ∅:
− (RV0|RV1)← frj (x||dm);

− cb ← πVb (x,RVb,mBL1b,ZAP b
BL); cb̄ ← πV

b̄
(x,RV b̄,mBL1b̄,ZAP b̄

BL). Return c0, c1 to P∗;
• if mP∗ = (mBL10,ZAP 0

BL,mBL11,ZAP 1
BL):

− if (mBL1b,ZAP b
BL) 6= τ bx,j [BL] ABORT;

− else compute chb̄ ← πV
b̄

(x,RV b̄,mBL1b̄,ZAP b̄
BL). Return ch′, chb̄ to P∗.

• if mP∗ = (mBL10,ZAP 0
BL,mBL11,ZAP 1

BL,m
0,i
Vrszk

,ZAP 0
rszk,m

1,i
Vrszk

,ZAP 1
rszk) for i ∈ [`]:

− if (mBL1b,ZAP b
BL) 6= τ bx,j [BL] or (mb,i

Vrszk
,ZAP b

rszk) 6= τ bx,j [resSZK
i] ABORT;

− else mb̄
Prszk

← πV
b̄

(x,RV b̄,mBL1b̄,ZAP b̄
BL,m

b̄,i
Vrszk

,ZAP b̄
rszk; if there exists a pair

(mb̄,i
Vrszk

,mi
Sim) ∈ τSim, return mb̄

Prszk
,mi

Sim to P; else write on the output tape mb̄,i
Vrszk

and wait
for the message of Sim.

Figure 4.5: Augmented Machine

protocol (π′0, π
′
1), i.e. D distinguishes whether P runs both protocols using witnesses sampled

from distribution {ȳ0(x̄)}x̄ or from {ȳ1(x̄)}x̄. This in turn means that there exists d such that

D distinguishes in sub-protocol π′d. The difference between protocol π′d and π′
d̄

is due to value

committed cs: indeed, fixed sub-protocol π′d we have that if d is the bit committed in cs then the

trapdoor theorem is true in this protocol while it is false in sub-protocol πd̄ (more details follow

in the formal proof). Then we consider two cases: 1) the case in which D distinguishes in the

sub-protocol in which the trapdoor theorem is true, i.e. it distinguishes in the execution of π′d when

cs is a commitment of d; in claim 4.3.3 we show that if such distinguisher exists then it can be

used to break the WI property of the underlying BL protocol used in π′d. 2) the case in which D

distinguishes in the sub-protocol where the trapdoor theorem is false i.e. in sub-protocol π′
d̄

if d is

the bit committed in cs; we show that such a distinguisher can be used to break the hiding of the

commitment scheme used for cs. After analyzing that in both casesD distinguishes with negligible

probability, we conclude that D does not distinguish in the main protocol.
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Formal Proof. Assume that there exist PPT V∗ and a PPT distinguisher D such that:

Pr[D(〈P(ȳ(0)),V∗〉(x̄)) = 1] = p0

while

Pr[D(〈P(ȳ(1)),V∗〉(x̄)) = 1] = p1

and p0 − p1 is non negligible, where the probability is taken on the random coins of P ,V∗. For

what said above the prover can be seen as it is playing two parallel protocols π′0, π
′
1. Therefore,

with a slight abuse of the notation, the above equations can be re-written as follows:

Pr[D(〈P(π′0(ȳ(0)), π′1(ȳ(0))),V∗〉(x̄)) = 1] = p0

and

Pr[D(〈P(π′0(ȳ(1)), π′1(ȳ(1))),V∗〉(x̄)) = 1] = p1

where by P(π′d(ȳ
(d)), π′

d̄
(ȳ(d))) we denote the fact that P is running the protocol π′d using

witness belonging to distribution ȳ(d) and is running running protocol πd̄ using witness belonging

to distribution ȳ(d).

If such D exists than it must exist a d such that:

Pr[D(〈P(π′d(ȳ
(0)), π′d̄(ȳ

(0))),V∗〉(x̄)) = 1] = p0

and

Pr[D(〈P(π′d(ȳ
(1)), π′d̄(ȳ

0)),V∗〉(x̄)) = 1] = p1

As mentioned before the only difference between protocols π′d and π′
d̄

is determined by the

value of the bit committed in cs. Recall that each sub-protocol consists of several executions of

rZAP and the theorem proved in each rZAP is the OR of the “honest theorem” and the “trapdoor

theorem” (see the par. Overview given in Sec. 4.1 for more details about honest and trapdoor
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theorem). The trapdoor theorem for protocol π′d is: (cs, d) ∈ Λtrap, and is true only in one sub-

protocol. Let b the bit committed in cs. By the equation above we know that there exists V∗ such

that D distinguishes in π′d. Hence we have two cases:

Case b = d. In this case then we have that for π′d the trapdoor theorem (used in the rZAP run in

the sub-protocol) is true. (We stress that however, regardless from the bit committed in cs

the honest P always proves the honest theorem, that is it never uses the witness (b, s) where

(cs = SBCom(b, s)) in proving ZAPs). In Claim 4.3.3 we prove that, if cs is a commitment

of d then sub-protocol πd is resettable WI. Therefore, in this case D distinguishes with

negligible probability.

Case b 6= d. In this case D distinguishes when the change of the witness is made in the sub-

protocol in which the trapdoor theorem is false, i.e. in sub-protocol π′b. If such V∗ exists

then it is possible to construct an adversary A for the hiding of the commitment scheme

SBCom. The reduction works as follows. A playing in the hiding experiment obtains the

challenge commitment C. Then it runs V∗ as sub-routine and simulates the honest prover P
in all the executions (i′, j) 6= (i, j). In execution (i, j)1 it proceeds as follows. It prepares

the first message cr0 , cr1 as the honest prover, sets cs = C and sends the three commitments

to V∗. Note that so far the view of V∗ receiving cr0 , cr1 , cs is identical to the view that she

would have obtained playing with P . Now, A picks d ∈ {0, 1} and proceeds as follows. It

runs the protocol πd using witness belonging to distribution ȳ1 and protocol πd̄ using witness

belonging to distribution ȳ0. Note that A can run both sub-protocols without knowing the

opening of C since P never uses such witness in the honest execution. Then when V∗ has

completed its executions A hands the output to D and outputs whatever D outputs. Now if

C is a commitment of d, it means that in the sub-protocol πd where A changed the witness,

the trapdoor theorem is true. By the claim above we know that in this sub-protocol D does

not distinguish the change of the witness, therefore by A says 1 with probability ≈ p0.

1wlog we can focus only on execution (i, j) since if V∗ is such that D distinguishes P(i,j)(ȳ0) from P(i,j)(ȳ1)
by hybrid arguments there exists an i in which V∗ distinguishes. Then, picking j from {1, . . . , t} where t is the
upper-bound of the random tapes of P , in the reduction we reduce the advantage of the adversary by a factor of 1

t .
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Otherwise if C is a commitment of d̄, since the sub-protocol in whichA changed the witness

is πd we have that, by hypothesis assumptions D says 1 with probability p1. Since p0− p1 is

non-negligible, we have that A distinguishes if the bit committed in C with non-negligible

probability. By the computational indistinguishability of the commitment scheme we have

that D does not distinguish the witness used also in this case.

Claim 4.3.3. Let d the bit committed in cs in session (i, j). Then protocol π′d is Resettable-WI.

Proof. Intuition. The main idea of the proof is to show that if there exists a PPT V∗ breaking the

resettable WI property of the protocol π′d then it is possible to show a reduction to break the WI

of the basic Blum’s protocol BL. In order to implement such reduction we have to show how the

resetting power of V∗ is disabled by the protocol π′d. Very informally, the reduction is possible for

the following reasons:

1. The randomness of the honest prover executing protocol π′d depends of the first message sent

by V∗ to P , namely P applies a PRF to the first message received by V∗. This message is the

commitment of the challenge for the BL protocol and is the determining message for P . Due

to the pseudo-randomness of PRF, whenever V∗ changes the determining message P plays

with fresh randomness.

2. By the resettably-sound argument of knowledge property of the resSZK protocol and by

the computationally binding of the commitment scheme SHCom we have that V∗ cannot

maintain the same determining message, i.e, the commitment of BL’s challenge, and at the

same time ask for two distinct challenges (therefore trivially extracting the witness).

3. Finally, in order to be able to show a reduction to the WI of BL’s protocol, we have to forward

the messages of V∗ to an external prover. However, notice that for each protocol message

the honest prover is required to send a ZAP proving that the messages are consistent with the

randomness committed in the first round of the protocol. Thus, in order to accomplish the

reduction we have to cheat in the proof proving the trapdoor theorem with witness (b, s). Due
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to the resettable WI property of rZAP and the computational hiding of cs, crd , the cheating

is not detected by any PPT V∗.

Formal proof. The proof follows hybrids arguments. In all hybrids we assume that for all

sessions opened by V∗, the sub-protocol π′
d̄

is always played honestly byP , therefore for simplicity

we omit to write it and we focus only on the sub-protocol π′d. Recall that we are assuming that in

all executions (i, j), in protocol π′d the theorem (cs, d) ∈ Λtrap is true. Recall that the procedure of

π′d requires that each protocol message sent by P must be followed by a rZAP s proving the fact

that either the message is consistent with the randomness committed in the first round, or P knows

the opening of the commitment cs. Consider the following hybrids.

H0: In this hybrid P honestly follows the protocol using witness distribution ȳ(0).

H1: This hybrid is the same as before except that here P computes rZAP s using the witness (d, s)

for the language Λtrap (recall that we are assuming that (cs, d) ∈ Λtrap is true). Note however,

that the message are still honestly computed according to the randomness committed in the

determining message. Assume that there exists a distinguisher between hybrids H(i,j)
1 and

H2, then it is possible to construct a distinguisher for the resettable WI property of rZAP .

H(i,j)
3 : This hybrids is the same as before except that here P is session (i, j) in commitment crd

instead of committing to the seed rd of the PRF used in the protocol, commits to the string

0n. However, the string rd is still used as seed, and the protocol’s messages are still computed

using the output of the PRF. Therefore, the only difference between the two hybrids concerns

the string committed in crd . Assume that there exists a distinguisher between H2 and H(i,j)
3 ,

then it is possible to construct a distinguisher A for the hiding of the commitment scheme

SBCom. A runs the procedure of P as in the H2, except that for session (i, j). For this

sessionA picks a random rd and hands to the sender of the commitment scheme SBCom the

strings (rd, 0
k), receiving the challenge commitment C. Then each time V∗ activates session

(i, j), A sends C, cs as determining message, while it computes all messages of the protocol

using the randomness generated by the PRF seeded by rd. Clearly, if C is the commitment

of rd then the view of V∗ is distributed as H2, if C is the commitment 0n then the view of
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V∗ is distributed as H(i,j)
3 . Thus at the end of V∗’s attack A hands the output of V∗ to D,

thenA outputs whatever D outputs. By the computational hiding of SBCom hybrids H2 and

H(i,j)
3 are computationally indistinguishable. The same argument above can be repeated one

by one, for all (i, j), with j ∈ {1, . . . , t} asked by V∗ during her attack. Therefore at the end

of all this sub-hybrids we have that in all session indexed by (i, ·) played by the prover, the

seed of the PRF is independent of the value committed in the first round in crd .

H(i,j)
4 : This hybrids is the same as before except that here in session (i, j) P computes the protocol

messages using a truly random function, instead of the PRF. Note that, already in hybrid

H(i,j)
3 , the seed of PRF did not appear anywhere in the protocol except that in the evaluation

of the PRF. Assume that there exists a distinguisher D between hybrids H(i,j)
3 and H(i,j)

4 ,

then it is possible to construct a distinguisher A for the pseudo-randomness of the PRF. The

reduction works as follows. A has access to a random oracle O and has to distinguish if it

is truly random or is a pseudo-random function. Thus, A activates V∗ and runs the same

procedure of P in the hybrid H(i,j)
3 expect that, when V∗ sends the determining message

for the session (i, j), A generates the random tape to be used in this session forwarding the

determining message received by V∗ to O.

Now, if the oracleO is a PRF, the view of V∗ is distributed identically to H(i,j)
3 , otherwise ifO

is a truly random function then the view of V∗ is distributed identically to H(i,j)
4 . Thus at the

end of V∗’s attackA hands the output of V∗ toD, thenA outputs whateverD outputs. By the

pseudo-randomness of PRF hybrids H(i,j)
3 and H(i,j)

4 are computationally indistinguishable.

The same argument above can be repeated one by one, for all (i, j), with j ∈ {1, . . . , t}
asked by V∗ during her attack.

At this point we have that in all the sessions (i, j) P computes the protocol messages using

truly randomness and in all ZAPs P does not proving theorems related to the randomness

used to computed the protocol messages. Thus at this point it seems that we are ready to

forward the verifier messages to an external prover of BL protocol thus proving that the

protocol is WI.
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This is not true, since there is still a possible resetting attack that we did not rule out.

Assume that we proceeds now forwarding the verifier’s message to the external prover of BL.

Recall that, BL is only concurrent WI, i.e. we cannot reset the external prover. Now consider

the following attack of V∗ for a session (i, j). V∗ sends the commitment of the challenge

cd to P . Thus in the reduction we activate the prover of BL and obtain the first message

BL1, that we forward to V∗. Then V∗ sends the challenge chd and prove using the resSZK

protocol that is the opening of the first commitment. If the proof is accepting we forward the

challenge to the external prover and finally we forward the message of the external prover

to V∗. Then, V∗ reset P and ask again to play session (i, j) sending the same determining

message cd. Thus, to be consistent we copy the same message sent in the other session. At

this point V∗ sends the challenge ch′d and provides an accepting resSZK. In this case, V∗

would extract the witness, trivially breaking the WI property. Thus, before proceeding to the

next hybrid, we have to prove that V∗ is not successful in such attack.

Assume that there exists a pair (i, j),cd such that V∗ in session (i, j) is able to open the

commitment cd as two distinct strings chd, ch′d, therefore extracting the witness. Observe that

since cd is computed using a statistically-hiding commitment scheme, we have that theorems

(cd, chd) ∈ ΛSHCom and (cd, ch
′
d) ∈ ΛSHCom that are proved using the resSZK protocol are

always true, therefore, we cannot conclude that if V∗ exists, we break the soundness of

resSZK. Fortunately, the protocol resSZK is also argument of knowledge, therefore if V∗

manages to provides two accepting proof for two distinct opening of the commitment cd,

we can extract the witness in both execution and break the computational binding of the

commitment scheme SHCom.

The formal reduction goes as follows: let A a malicious sender of the statistically hiding

commitment scheme and let V∗ as above. Let (i, j) the session in which V∗ is able to open

the commitment cd as two distinct strings chd and ch′d. A runs V∗ as sub-routine simulating

the prover to her as in hybrid H4. In session (i, j), when V∗ sends the string ch along with an

accepting ZK proof of the theorem (cd, chd) ∈ ΛSHCom, A runs the code of the extractor of

resSZK (this is a black-box extractor). Note that is crucial that in the ZAP A is proving the
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trapdoor theorem, therefore, it can reset V∗ and change the protocol messages according to

the procedure of the non-black box extractor. Due to the AoK property of resSZK protocol,

A extracts the witness, i.e. the opening of cd with high probability. Then, when for the same

session (i, j), V∗ sends ch′d along with another accepting proof,A run the extractor as before

to obtain the witness of the theorem (cd, ch
′
d) ∈ ΛSHCom, and thus a distinct opening. Finally

A forwards to the honest receiver the message cd along with the opening as chd and ch′d. By

the computationally-hiding of the commitment scheme this event happens with negligible

probability.

H5: This hybrid is the same as hybrid H4 except that here P runs the protocol using the witness

belonging to the distribution ȳ(1). Now assume that there exists a distinguisher D that is

able to tell apart hybrid H5 from H4 then it is possible to construct a distinguisher A for

the witness indistinguishability BL. The distinguisher works as follow. First A activates the

prover of BL with theorems x̄ and the two witness distributions ȳ(0),ȳ(1). When A activates

P with (i, j), A follows the prover’s procedure as in H4. Then upon receiving the verifier’s

determining message cd it checks if cd was already asked by V∗. If cd appears for the first

time,A activates the external prover of BL handing the theorem xi, and forwards the message

mBL1d to V , along with the rZAP computed using the trapdoor witness (d, s). If cd was

asked already, then forward the same BL1 previously obtained. Upon receiving the string

ch′d, first run the ZK protocol for the theorem (cd, ch′d) with V∗. If the ZK was accepting

then, check if there was already an accepting pair (cd, chd). If chd 6= ch′d then aborts. By

the soundness of the resSZK this event happens with negligible probability. Otherwise if

chd = ch′d then forwards BL3 obtained previously. Finally if there is no such pair, then

forwards challenge ch′d to the external prover. A follows this procedure for all (i, j) (recall

that BL is concurrent WI).

When V∗ terminates its attack, A hands to D the output of V∗ and outputs whatever D

outputs. Now, if the external prover picked distribution ȳ(0) then the view of V∗ is distributed

identically to H4, while if the external prover picked distribution ȳ(1) then the view of V∗ is

distributed identically to H5. By the concurrent WI property of BL we have that H4 and H5
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are computationally indistinguishable. This complete the proof.

Therefore, the following theorem holds.

Theorem 2. If trapdoor permutations and collision resistance hash functions exist, then the pro-

tocol shown in Fig. 4.2 is simultaneously resettable witness indistinguishable and a resettable

argument of knowledge.
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CHAPTER 5

A constant-round Simultaneously resettable ZK argument of

knowledge in the BPK model

In this chapter, we present the first application of our main protocol simresWIAoK. We show how

to combine two instances of simresWIAoK to obtain the first construction of constant round Si-

multaneously Resettable Zero-knowledge Argument of Knowledge (simresZKAoK) in Bare Public

Key (BPK) model.

5.1 Construction of simresZKAoK

In the BPK model, verifiers first generate public keys and corresponding secret keys. Then they

register the public keys in a public file F which is available to all provers. Essentially, malicious

PPT prover and verifier employing resetting attacks may run the protocol with polynomially many

identities. In the following, let s(n) be a polynomial in security parameter n which upper-bounds

the running time of malicious prover and verifier. Hence, the size of public file is also upper-

bounded by s(n).

For underlying primitives, we assume to have a non-interactive statistically binding commit-

ment scheme, denoted by SBCom where for easiness SBCom(v, s) : {0, 1}n × {0, 1}n → {0, 1}n.

Again, c ← SBCom(v, r) denotes that c is the commitment to input string v using random tape r.

In addition, let g : {0, 1}∗ → {0, 1}∗ be a one-way function.

Our protocol consists of two phases, the key registration phase where verifiers create and pub-

lish their identities, and the main execution phase where P proves an NP-statement to V associated

to an identity. In particular, the main execution phase consists of three sub-phases which we denote
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by Π0, COM and Π1 for notational convenience in the proof of security later. We now define the

NP-languages appearing in our construction.

Language Λow: A tuple (y = (y0, y1), g) is in Λow if g is an one-way function and there exists x

such that y0 = g(x) or y1 = g(x). Hence, x is a witness of the NP-statement (y, g) ∈ Λow.

(x, y, g) ∈ RΛow denotes that tuple (x, y, g) satisfies the NP-relation of Λow.

Language ΛSBCom: A tuple (m, c) is in ΛSBCom if there exists a string r such that c = SBCom(m, r).

Hence, c is the statistically binding commitment to m with respect to randomness r. Hence,

r is a witness of NP-statement (m, c) ∈ ΛSBCom. (c,m, r) ∈ RSBCom denotes that tuple

(c,m, r) satisfies the NP-relation of ΛSBCom.

The pictorial description of simresZKAoK is provided in Figure 5.1. The formal definition of

the protocol is provided in Figure 5.2.

P V

simresWIAoK
(pk0, pk1) ∈ Λow

simresWIAoK
x ∈ ΛL

SBCom(w), SBCom(0n)

x ∈ L

witness w
pk0, pk1 pk0, pk1

secret key skb

(pk0, pk1) ∈ Λow

∨

Figure 5.1: Constant-Round Simultaneously Resettable Zero-Knowledge Argument of Knowledge
In The BPK Model

5.2 The proof of security of protocol simresZKAoK

In this section, we prove that the protocol simresZKAoK is resettably zero-knowledge and reset-

tably argument of knowledge. In Section 5.2.1, we first prove that the protocol is resettably zero-
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Protocol simresZKAoK

Ingredients: One-way function g, statistically binding commitment scheme SBCom, sub-
protocol simresWIAoK

Key Registration Phase:
V chooses a pair of secret keys (sk0, sk1) where skb ∈ {0, 1}n and b ∈ {0, 1}. Then V generates
the corresponding pair of public keys (pk0, pk1) such that pkb = g(skb) for b ∈ {0, 1}. V
publishes (pk0, pk1) in public file F and stores skb as its secret trapdoor information with
b

$← {0, 1}. We call i an identity of verifier V as if V’s public keys (pk0, pk1) appear in the ith
entry of the public file F.

Main Execution Phase:
Common input: NP-statement x supposedly in L and the verifier’s identity i. Hence, prover P
knows public keys (pki0, pk

i
1) in F, chosen by V .

Input for P: Witness w such that (x,w) ∈ RL and randomness rP .
Input for V: Randomness rV , secret key skib.

• P: Obtain a sufficiently long pseudo-random tape r′P ← frP (x||pki0||pki1). From now on,
P uses r′P for the execution in the rest of protocol. For convenience, we assume that r′P
consists of four partitions, r′P (1), r′P (2), r′P (3) and r′P (4).

• (V → P) (Π0): V proves, by using simresWIAoK, the following statement:

– There exists skib such that (skib, (pk
i
0, pk

i
1), g) ∈ RΛow .

For the execution of simresWIAoK, P uses random tape r′P (1).

• (P → V) (COM): If the above proof is rejecting, then P aborts. Otherwise, P commits to
w and 0n as c0 ← SBCom(w, r

′
P (2)) and c1 ← SBCom(0n, r

′
P (3)). Then, P sends c0 and

c1 to V .

• (P → V) (Π1): P by using simresWIAoK and random tape r′P (4) proves to V the follow-
ing statements:

1. There exists w and r such that (x,w) ∈ RL and (c0, w, r) ∈ RSBCom OR
2. There exist sk and r such that (sk, pki0, g) ∈ RΛow and (c1, sk, r) ∈ RSBCom OR
3. There exist sk and r such that (sk, pki1, g) ∈ RΛow and (c1, sk, r) ∈ RSBCom.

• V: output ”accept” if and only if the proof provided by P is accepting.

Figure 5.2: Constant-Round Simultaneously Resettable Zero-knowledge Argument of Knowledge
in the BPK Model
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knowledge by providing the resettable zero-knowledge simulator which runs in expected polyno-

mial time. In Section 5.2.2, we prove that protocol simresZKAoK is an indeed resettable argument

of knowledge by constructing an expected polynomial time knowledge extractor.

5.2.1 Proof of Resettable Zero-Knowledge of simresZKAoK

Let V∗ be an s(n)-resetting malicious verifier where s(·) is a polynomial, also written as s for

short. Given X = {x1, · · · , xs} as an input (a set of fixed theorems), V∗ first creates and publishes

a public file F = {(pki0, pki1)|i ∈ [s]}. Upon its own choice of identity k, V∗ proceeds to interact

with at most s2 incarnations of P(i,j)’s by choosing (i, j) where i is an index of a theorem xi and

j is the jth random tape of P for i, j ∈ [s]. Note that V∗ possibly invokes each incarnation of the

prover with different identities. In the following, we denote each session by an index tuple (i, j, k)

where V∗ with the kth identity invokes the incarnation of P(i,j) in the session. We denote three

main sub-phases of session (i, j, k) by Πijk
0 , COMijk, and Πijk

1 .

The high-level description of our expected probabilistic polynomial time (EPPT) non-black-

box simulator Sim is as follows. Sim first honestly plays Π0 with random tape and statement

chosen by V∗. Whenever Sim reaches COM of a session without the corresponding trapdoor in-

formation, Sim constructs an augmented machine M (which will be formally defined later in this

section) which enables Sim to extract the trapdoor information in Π0 by applying EPPT knowledge

extractor EWI on M . Note that each session is processed in a sequential way. Once Sim reaches

COM of a session for which Sim possesses the corresponding trapdoor information sk, Sim simply

commits to 0n and sk instead of actual witness w and 0n. At the end of each session, Sim proves

to V∗ in Π1 that sk is the valid pre-image of one of two public keys with respect to V∗’s one-way

function. For convenience, we call a vector empty if the vector contains only⊥’s as its entries. The

formal construction of Sim is provided as follows.

Simulator Sim:

Input: The description of V∗ desc(V∗), a vector of theorems x = {x1, · · · , xs}.
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1. Sim prepares the following entries:

(a) ~T := 〈skk〉k∈[s], a vector of trapdoor secret keys skk where k is the index of the identity

of V∗. ~T is initialized to be empty.

(b) ~R := 〈rijk〉i,j,k∈[s], a vector of random tapes for Sim and the first phase of extractor

EWI to play as an honest prover except the use of a different witness. Sim samples s3

random tapes rijk and initializes ~R to be 〈rijk〉ijk∈[s]. Note that each rijk consists of

four partitions rijk(1), rijk(2), rijk(3), and rijk(4) where rijk(1) and rijk(4) are used in

Π0 and Π1 respectively while rijk(2) and rijk(3) are used in COM.

(c) R∗ := A random tape which is sufficiently long for extractor EWI to use in the second

(extraction) phase of extraction for all sessions opened by V∗.

(d) RM := 〈rijk〉i,j,k∈[s], a vector of random tapes for an augmented machine M to play the

incarnations of honest P(i,j). RM is initialized to be empty.

(e) ~Rinit := 〈rl〉l∈[s], a vector of s(n) random strings for extractor EWI of underlying proto-

col simresWIAoK to initiate the malicious prover with. Sim uniformly generates s(n)

strings and creates vector ~Rinit. A malicious prover might ignore ~Rinit and is allowed

to use its own hardwired randomness.

2. (Simulation of Key Generation Phase) Sim samples a random tape for V∗ and runs V∗ to

obtain file F = {(pki0, pki1)|i ∈ [s]}.

3. (Simulation of Main Execution Phase) Sim repeats the following steps until V∗ terminates

the interaction.

Step 1: Sim receives a tuple of indexes (i, j, k) as a request from V∗ where V∗ with the

kth identity in F and invokes the incarnation P(i,j). Then, Sim proceeds to Step 2 with

random tape rijk ∈ ~R orRM and xi ∈ X .

Step 2: For the execution of session (i, j, k), Sim follows the instruction described below:

• If the next message of Sim belongs to Πijk
0 , then Sim honestly generates and sends

the next message to V∗ by using random tape rijk(1).
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• If the next message of Sim belongs to COMijk, then Sim proceeds to Step 3 without

sending the commitments.

• If the next message of Sim belongs to Πijk
1 , then Sim generates and sends the

next message to V∗ by using rijk(4), which prove that there exists skk such that

(skk, pk
k
b , g) ∈ RΛow for a bit b and that there exists rijk(3) such that (0n, cijk1 , rijk(3)) ∈

RSBCom. Bit b is easily obtained by executing g(skk). Note that if Sim reaches Πijk
1 ,

then Sim must have succeeded to extract and stores skk in ~T in Step 4.

• Whenever V∗ opens a new session by sending index tuple (i, j, k), Sim proceeds

back to Step 1.

• Whenever V∗ sends an empty string ⊥, Sim terminates the execution and outputs

a view including the entire transcripts exchanged between Sim and V∗ and the

randomness of V∗.

Step 3: In session (i, j, k), Sim proceeds as follows:

• If skk ∈ ~T , then Sim commits to 0n and skk as c0 ← SBCom(0n, rijk(2)) and

c1 ← SBCom(skk, rijk(3)) respectively. Sim sends c0 and c1 to V∗. Then Sim

proceeds to Step 2.

• If skk /∈ ~T , then Sim proceeds to Step 4.

Step 4: (Extraction thread for extraction) Note that all the transcripts generated during

Step 4 will not be included in the output view of Sim.

(a) (Construction of Augmented machine M(~T ,RM,P , desc(V∗)))

Sim first constructs augmented machine M which takes as inputs ~T , RM, P and

desc(V∗) and follows the instruction described below.

• For any message in Πijk
0 such that skk /∈ ~T , M externally forwards the mes-

sages from V∗.

• For any message in Πijk
0 such that skk ∈ ~T , M internally emulates the inter-

action with V∗ as P by using random tape rijk(1) ∈ RM.

• When M reaches COMijk, M checks if skk ∈ ~T . If so, M commits to 0n and
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skk by using rijk(2) and rijk(3). Then, M internally sends the commitments

to V∗. If skk /∈ ~T , then M aborts.

• If M reaches Πijk
1 , then it must be the case that skk ∈ ~T . Thus, M as a prover

internally executes Πijk
1 with V∗ by using the random tape rijk(4) ∈ RM to

prove (skk, pk
j
b , g) ∈ RΛow for a bit b and that there exists rijk(3) such that

(0n, cijk1 , rijk(3)) ∈ RSBCom.

(b) (Extraction of Trapdoor Information)

Sim runs EPPT extractorEWI for simresWIAoK on inputM(~T ,RM,P , desc(V∗)),

~Rinit, ~R and R∗. If EWI(M, ~Rinit, ~R,R∗) outputs skk for some k ∈ [s], then Sim

proceeds to Step 5. Otherwise, Sim aborts and outputs ”Simulation Failure”.

Step 5: (Reconfiguration of entities)

Sim adds skk to ~T . Also, Sim removes from ~R all the random tapes ri′j′k′ such that

k
′
= k and adds such random tapes ri′j′k′ toRM. Then, Sim proceeds again with Step

2.

Remarks on simulator Sim: Note that the interactions between extractor EWI and machine M in

Step 4 will not be included in the output view of Sim. In addition, note that Sim solves every session

in a sequential way (i.e., session by session). That is, whenever there exists a session in which Sim

reaches COM without the corresponding trapdoor information, Sim opens an extraction thread

and extracts the trapdoor information with overwhelming probability. If the trapdoor information

corresponding to an identity has already been extracted in a previously opened session and stored

in ~T , then simulator Sim simply uses the extracted trapdoor information to (straight-line) simulate

any later opened session of the identical identity of V∗ without opening extraction thread. Since the

number of identities is upper-bounded by s(n), the running time of simulator Sim is upper-bounded

by the expected probabilistic polynomial time in the security parameter n.

Claim 5.2.1. Simulator Sim runs in expected probabilistic polynomial time in security parameter

n.

Proof. Let the time to prepare entities and key generation phase be poly(n) for some polynomial
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poly(n). In addition, Let poly(n)
′ be the running time of a single completed session of the protocol.

Note that V∗ resets at most s(n) times, with possibly s(n) distinct identities in which Sim must

open s(n) extraction threads to extract s(n) secret keys. It is easy to see that the running time

of executing a extraction thread (in Step 4) is dominated by the running time taken by extractor

EWI on input M, which is an expected probabilistic polynomial time EPPTEWI(n) in n. The

reconfiguration phase of Step 5 is dominated by finding and removing the used random tapes from

~R, which is at most s(n). Therefore, Sim’s running time tSim is as follows:

tSim = Running time for key generation phase + Running time for main simulation phase

≈ poly(n) + s(n)poly(n)
′
+ s(n)EPPTEWI(n) + s(n)

≈ poly(n) + poly(n)EPPTEWI(n) by letting all polynomial terms be poly(n)

≈ poly(n)(1 + EPPTEWI(n))

= expected polynomial in n.

Let {〈P(w),V∗(z)〉(x)}x,w be a random variable denoting the output view of V∗ on input x

where w is the vector of witness for x. Let {Sim(x, desc(V∗))}x be a random variable denoting

the output view of Sim on input x and the description of V∗. In the following, we show that the

output view of Sim and the view of V∗ in the real execution of the protocol are computationally

indistinguishable. Without loss of generality, we assume that V∗ receives its optimal random tape

as non-uniform information (i.e., the optimal random tape is hardwired to V∗). Hence, we consider

V∗ as an deterministic machine in the analysis. We present a series of hybrids and show that two

consecutive hybrids are identical or computationally indistinguishable to each other.

Claim 5.2.2. For any s(n)-resetting malicious verifier V∗ and any PPT distinguisher D, distribu-

tion ensemble {Sim(x, desc(V∗))}x is computationally indistinguishable from distribution ensem-

ble {〈P(w),V∗(z)〉(x)}x,w.

Proof. Consider the following series of hybrids.
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H0(x,w): is identical to a real interaction between honest prover P with w and V∗ on common

input x. Therefore, it is easy to see that distribution ensemble {H0(x,w)}x,w is identical to

{〈P(w),V∗(z)〉(x)}x,w.

H1(x,w): is identical to H1(x,w) except that P does not use pseudo-random function f to obtain

random tape. Instead, P samples s(n)3 random tapes and indexes the tapes as rijk. Finally,

P interacts with V∗ who invokes P(i, j) with the kth identity by using the prepared random

tapes.

Claim 5.2.3. Distribution ensemble {H1(x,w)}x,w is computationally indistinguishable from dis-

tribution ensemble {H0(x,w)}x,w for any PPT distinguisher D and all x and w.

Proof Sketch. Suppose that there exists a PPT distinguisher D, x, and w such that D distinguishes

{H1(x,w)}x,w from {H0(x,w)}x,w with non-negligible probability. Then, D can be used to con-

struct an adversary that distinguishes the ensemble of pseudo-random function from uniform ran-

dom tapes with the identical advantage as follows. Let P1 be the prover’s strategy described in

{H1(x,w)}x,w. Then, adversary A for pseudo-random function f executes simresZKAoK as P
with using a challenge (i.e., s(n)3 pseudo-random or uniform random strings). Finally, A outputs

whatever the distinguisher D outputs on the above output view.

H2(x,w): is identical to H1(x,w) except that P runs EPPT extractor EWI on M as described in

Step 4. Hence P extracts all the secret keys from Π0. However, P does not use them in the

execution of COM and Π1.

Claim 5.2.4. Distribution ensemble {H2(x,w)}x,w is statistically close to {H1(x,w)}x,w for any

PPT distinguisher D and all x and w.

Proof. The claim directly follows from the fact that the view of extraction thread is not included in

the output view and P does not use any extracted trapdoor information in the protocol. Since the

extraction fails only with negligible probability in security parameter n, the above two distribution

ensembles are statistically close to each other.
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H3(x,w): is identical to H2(x,w) except that P commits to extracted secret key skk for commit-

ment c1 in session (i, j, k). Note that P still commits to the actual witness wi for the first

commitment c0.

Claim 5.2.5. Distribution ensemble {H3(x,w)}x,w is computationally indistinguishable from dis-

tribution ensemble {H2(x,w)}x,w for any PPT distinguisher D and all x and w.

Proof Sketch. Suppose that there exists a PPT distinguisher D, x, and w such that D distinguishes

{H3(x,w)}x,w from {H2(x,w)}x,w with non-negligible probability. Then, we construct adversary

A by usingD, which violates the computational hiding property of underlying statistically binding

commitment. Essentially, A can distinguish the commitment to 0n from the commitment to a

non-zero string of the same length with non-negligible probability.

H4(x,w): is identical to H3(x,w) except that P executes Π1 to prove in session (i, j, k) that

(skk, (pk
k
0 , pk

k
1), g) ∈ RΛow by using the extracted secret key skk.

Claim 5.2.6. Distribution ensemble {H4(x,w)}x,w is computationally indistinguishable from dis-

tribution ensemble {H3(x,w)}x,w for any PPT distinguisher D and all x and w.

Proof Sketch. Suppose that there exists a PPT distinguisher D, x and w such that D distinguishes

distribution ensemble {H4(x,w)}x,w from distribution ensemble {H3(x,w)}x,w with non-negligible

probability. We construct PPT adversary A that violates the witness indistinguishability property

of the underlying protocol simresWIAoK as follows. The witness indistinguishability challenger

receives x, w and uniformly picks random tapes rijk(3) for all i, j, k ∈ [s], which is to be used

to execute Π1 as a prover of Π1. A interacts with V∗ as a prover by generating all the messages

belonging to Π0 and COM as defined by the {H4(x,w)}x,w (which is identical up to Π0 and COM).

Whenever V∗ extract a secret key for some session, V∗ sends this extracted secret key to the chal-

lenger. For all the messages belonging to Π1 in every session, V∗ externally forwards the messages

between the challenger and V∗ as the challenger is forced to prove either statement 1 using the wit-

nesses in w for all the sessions or to prove statement 2 or 3 using the secret keys received from V∗

for all the sessions. Upon the completion of all the sessions, V∗ runsD on the output transcript and
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outputs whatever D outputs. Since the extraction fails only with negligible probability, V∗ violates

the witness indistinguishability property of simresWIAoK between proofs of actual witnesses and

proofs of secret keys with non-negligible probability as does D.

H5(x): is identical to H4(x,w) except that P commits to 0n for commitment c0 in all sessions as

prover P does not receive w as an input.

Claim 5.2.7. Distribution ensemble {H5(x)}x is computationally indistinguishable from distribu-

tion ensemble {H4(x,w)}x,w for any PPT distinguisher D and all x and w.

Proof Sketch. Suppose that there exists a PPT distinguisher D, x, and w such that D distinguishes

{H5(x)}x from {H4(x,w)}x,w with non-negligible probability. Upon the existence of PPT distin-

guisherD, we construct adversaryA which violates the computational hiding property of underly-

ing statistically binding commitment. In particular, A can distinguish the commitment to 0n from

the commitment to a non-zero string of the same length (i.e., commitments to the real witnesses)

with non-negligible probability.

Notice that {H5(x)}x is identical to {Sim(x, desc(V∗))}x as the description of P in H5(x) is

identical to the description of Sim. Thus, the proof of claim 5.2.2 is completed.

We showed that Sim is an resettable EPPT zero-knowledge simulator for protocol simresZKAoK

by claim 5.2.1 and claim 5.2.2. Therefore, we obtain the following theorem.

Theorem 3 (Protocol simresZKAoK is resettable Zero-knowledge). If trapdoor permutations and

collision resistant hash functions exist, then protocol simresZKAoK is resettable Zero-knowledge

argument system in bare public key model.

5.2.2 Proof of Resettable Argument of Knowledge of simresZKAoK

In this section, we present EPPT extractor EZK to prove the argument of knowledge property

of protocol simresZKAoK. That is, if any PPT prover P∗ succeeds to convince honest V of the

validity of theorems with probability p, thenE can extract the witness of the last completed session
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with the probability negligibly close to p. Without loss of generality, we assume that malicious

prover P∗ is hardwired to its optimal random tape. Hence, we treat P∗ as a deterministic machine

in the analysis.

The extraction of EZK is directly obtained from the extractor EWI of underlying protocol

simresWIAoK. For the high-level description, our non-black-box extractor EZK with the descrip-

tion of malicious prover P∗ constructs an augmented machine that as verifier V internally plays

Π0 and COM with P∗ and externally forwards all messages of Π1. Then, EZK runs EWI on the

prepared augmented machine. The main technical challenge in the construction of EZK is the re-

duction from the case that P∗ succeeds to prove the possession of secret keys in Π1 of some session

to the witness indistinguishability property of the underlying protocol simresWIAoK (i.e., the WI

property of Π0). If we simply provide the augmented machine with the secret keys as as input,

which are required to play honest prover in Π0 (denoted by PΠ0), then the reduction fails since

the machine taken as an witness indistinguishability adversary knows already all the secrets and

the relevant random coins. To overcome this difficulty, our extractor EZK generates the messages

of PΠ0 and provides the messages to the augmented machine which will play Π0 according to the

provided messages without knowledge of secret keys.

To prepare PΠ0’s messages for the augmented machine, EZK exploits the following properties

of EWI’s output messages. EWI takes as inputs the followings: the description desc(P∗) of a

malicious prover, a vector of random strings ~R to play a honest verifier, a sufficiently long random

string R∗ to rewind and extract the witness, a random string R to activate the prover. Upon the

above inputs, EWI returns a message m as follows:

1. If m = wi for the last completed session i ∈ [s], then the extraction is successful (It is still

not sufficient to claim the extraction from the larger protocol. See Claim refzkaokproof

for the detailed discussion).

2. If m = ⊥ (denoting ”abort”) while playing as a honest verifier by using ~R, then the ex-

traction is successful. In particular, since the malicious prover aborts the protocol execution

without completing proofs in all opened sessions while EWI plays an honest verifier, EWI
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is not required to extract any witness.

3. If m = ⊥ while rewinding and extracting a witness from the prover by using R∗, then the

extraction fails. By the property of EWI , the extraction failure occurs with only negligible

probability in security parameter n.

4. If m is neither of the above cases, then EWI received message m while playing an honest

verifier by using ~R, in which EWI as a honest verifier did not expect to receive message m.

The formal construction of non-black box extractor EZK is provide below.

Extractor EZK:

Input: The description of P∗ denoted by desc(P∗)

1. EZK prepares the following entries:

(a) τ := a string of polynomial length, which contains the messages of honest verifier V as

PΠ0 to be sent to P∗ as V∗Π0
during the executions of Π0. EZK initializes τ to be empty.

(b) 〈τijk〉i,j,k∈[s] := a vector of s(n)3 strings of polynomial length. Each τijk contains mes-

sages which are sent from P∗ as V∗Π0
to V as PΠ0 during the executions of Π0 in session

(i, j, k).

(c) ~R := 〈rj〉j∈[s], a vector of random strings for EZK and extractor EWI to play as an

honest verifier. Sim samples s random strings rj and initializes ~R to be 〈rj〉j∈[s].

(d) R∗ := A random tape which is sufficiently long for extractor EWI to use in the second

(extraction) phase of extraction for all sessions opened by V∗.

(e) ~Rinit := 〈rl〉l∈[s], a vector of s(n) random strings for extractor EWI to evoke the mali-

cious prover. EZK simply chooses s(n) random strings and creates ~Rinit. Note that a

malicious prover might ignore ~Rinit and uses its own random tapes.

2. (Key Generation Phase)
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(a) EZK samples 2s secret keys skk0 and skk1 for k ∈ [s]. Then, EZK generates and pub-

lishes public file F = {(pkk0 , pkk1)|k ∈ [s]} where pkk0 = skk0 and pkk1 = skk1 for some

one-way function g.

(b) EZK uniformly chooses bit bk ∈ {0, 1} and stores secret key skkbk for all k ∈ [s].

3. (Main Extraction Phase) EZK performs the following instructions.

Step 1: (Construction of Augmented machine M(desc(P∗), τ, F )) EZK constructs an

augmented machine M which takes as inputs desc(P∗),τ and F and follows the in-

structions described below. Then, EZK proceeds to Step 2.

• For any message belonging to Πijk
0 or COMijk sent by P∗, M does not externally

forward it.

• For all the messages belonging to Πijk
1 , M externally forwards the messages.

• If the next message that M needs to send to P∗ belongs to the execution of Πijk
0

in session (i, j, k), then M looks up τ and attempts to find the corresponding next

message m which is supposed to be the prefix (of a certain size) of τ . If τ = ∅,
then M externally forwards the previous message from P∗ and the session index

(i, j, k). Otherwise, M internally sends m to P∗ and then deletes m from τ .

Step 2: EZK runs EPPT extractor EWI which as inputs takes M(desc(P∗), τ, F ), ~Rinit, ~R
and R∗. Let m be the message returned by EWI(M, ~Rinit, ~R,R∗). EZK proceeds to

Step 3.

Step 3: Upon m returned in Step 2 EZK follows the instruction described below.

Case 1: If m contains w such that (xi, w) ∈ RL for some i ∈ [s], then EZK outputs

w.

Case 2: If m = ⊥, then EZK outputs ⊥.

Case 3: If m is neither of the above cases, then m ∈ Πijk
0 for some session (i, j, k)

along with the index (i, j, k). Then, EZK does the followings:

(a) EZK adds m to τijk as τijk = τijk||m.
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(b) EZK runs PΠ0 on inputs τijk, rj and skkbk . Then, EZK computes PΠ0’s next

message m′ = PΠ0(τijk, rj, sk
k
bk

).

(c) EZK adds m′ to τ as τ = τ——m
′ .

(d) EZK proceeds to Step 1.

Remarks on extractor EZK: Augmented machine M does not receive as inputs secret keys and

random tapes of EZK as honest verifier V . Instead, M only takes transcript τ which contains the

messages of EZK as honest verifier V in the execution of Π0. Since we treats PPT malicious prover

P∗ as a deterministic machine, the messages contained in τ enables M to internally response to

the messages of P∗ without knowing the secret keys and random tapes of EZK during the internal

emulation of Π0. Whenever M could not find a message in τ to respond to P∗ in an execution of

Π0, EZK parses the last message of P∗ to generate the next message and updates τ to construct

a new augmented machine M . Once τ contains all the messages to send to P∗ for the execution

of Π0, M can be treated as a malicious prover of Π1, which enables EZK to extract the witness of

last completed session by running EWI on M . We first prove that EZK is an EPPT extractor for

protocol simresZKAoK.

Claim 5.2.8. Extractor EZK runs in expected probabilistic polynomial time in security parameter

n.

Proof. The running time of the key registration phase clearly takes a polynomial time in se-

curity parameter n. Let c be a constant denoting the round complexity of underlying protocol

simresWIAoK. The running time of main extraction phase by EZK is dominated by the time of

constructing augmented machine M and running time of EPPT extractor EWI for simresWIAoK

on prepared machineM . It is easy to see thatEZK constructs augmented machineM and runsEWI

on M at most c · s(n). Let EPPTEWI(n) be the expected probabilistic polynomial running time

taken by EWI on M . Therefore, the running time of EZK is also an expected probabilistic polyno-

mial time in security parameter n which is dominated by c · s(n)(poly(n) + EPPTEWI(n)).

Claim 5.2.9. Let P∗ be any s(n)-resetting PPT prover for any polynomial s(n) and let p be the

59



probability with which P∗ provides an accepting transcript for some theorem x ∈ L. Given the

description of P∗, EZK outputs witness w ∈ RL with probability negligibly close to p.

Proof. To prove the claim, we want to show that the following holds: For any PPT prover P∗, and

for all x,

|Pr[〈P∗,V〉(x) = 1]− Pr[EZK(desc(P∗), x) ∈ RL]| < ε (5.1)

where the probability taken over the random coins of P∗ and ε is a negligible function in secu-

rity parameter n. That is, whenever any PPT prover P∗ outputs an accepting transcript in real

interactions with probability p, our extractor, given the description of P∗, outputs the witness with

probability negligibly close to p. Essentially, our extractor extracts the witness of last accepting

session of the resetting attack without loss of generality. This is due to the fact that the malicious

prover can always duplicate any session in the last session [BGGL01].

Upon the completion of protocol simresZKAoK, we have three distinct possible events where

PPT prover P∗ outputs an accepting transcript by interactions with V on a vector of theorems x as

a common input (Hence, 〈P∗,V〉(x) = 1) as follows.

Event1: P∗ convinces V that there exists witness wi such that (xi, wi) ∈ RL for some i ∈ [s].

Event2: P∗ convinces V that there exists skk1−bk such that (pkk1−bk , sk
k
1−bk) ∈ RΛow while V holds

skkbk for the kth identity.

Event3: P∗ convinces V that there exists skkbk such that (pkkbk , sk
k
bk

) ∈ RΛow while V holds skkbk
for the kth identity.

We call an event ”Good” when P∗ outputs an accepting transcript in which the last session of

the accepting interaction with V corresponds to the event. Hence, the union bound gives us the

following:

Pr[〈P∗,V〉(x) = 1] ≤ Pr[Event1 = Good] + Pr[Event2 = Good] + Pr[Event3 = Good].

We first prove that if Event1 is Good with probability p, then EZK extracts corresponding witness
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(in the last accepting session) with probability negligibly close to p. Then, we show that Event2

and Event3 occur with only negligible probability in security parameter n.

Notice that in the core of our non-black-box EPPT extractor EZK, (non-black-box) EPPT ex-

tractor EWI of underlying simresWIAoK is used as a black-box subroutine to extract the witness

of proofs in accepting interactions. One crucial feature of EWI is that it extracts the witness re-

gardless of the validity of the theorem x. That is, EWI not only extracts the witness w when the

prover proves x ∈ L, but also it extracts (trapdoor) secret keys when the prover proves (in a witness

indistinguishable way) its possession of secret keys.

If any PPT prover P∗ generates an accepting transcript with probability p, then EZK, given

the description of P∗ as an input, obtains a new accepting transcript with probability p, where the

transcripts belonging to Π0 and COM are honestly generated by EZK and the transcripts belonging

to Π1 is internally generated by EWI . As shown in the proof of Claim 4.3.2 (the proof of argument

of knowledge for our main protocol simresWIAoK), EWI obtains the accepting transcript with the

identical probability as P∗ generates the accepting transcript. Once τ contains all the V’s messages

for the executions of Π0 generated by EZK, EWI obtains the accepting transcript belonging to the

executions of Π1 by interacting with an augmented machine M(desc(P∗), τ, F ) with the same

probability and outputs the witness of the last accepting session of the interaction with probability

negligibly close to p, which is the output of our extract EZK. This proves the following claim.

Claim 5.2.10. For all x and for any PPT malicious prover P∗ such that 〈P∗,V〉(x) = 1, EZK

takes as inputs desc(P∗) and x, and outputs the witness in the last accepting session (i, j, k) for

some i,j and k ∈ [s] with probability negligibly close to p.

Hence, we obtain the following claim immediately.

Claim 5.2.11. For all x and for any PPT malicious prover P∗ such that 〈P∗,V〉(x) = 1, EZK

takes as inputs desc(P∗) and x, and outputs the witness wi in the last accepting session (i, j, k) for

some j and k ∈ [s] with probability negligibly close to p.

Now, we show that Event2 and Event3 occur with only negligible probability in security pa-

rameter n below.

61



Claim 5.2.12. Suppose that there exists PPT malicious prover P∗ and a vector of theorems x such

that Pr[Event2 = Good] = p. Then, p is negligible in security parameter n.

Proof. Towards contradiction, suppose that there exists PPT malicious prover P∗ and vector of

theorems x such that

Pr[Event2 = Good] = p.

where p is a non-negligible function in security parameter n.

Then, we construct an EPPT adversary A which violates the one-way property of underlying

one-way function g. In particular, the adversary follows the extraction strategy of EZK above.

Adversary A is a pair of two algorithms (A1,A2) defined as follows.

A challenger first randomly picks sk and generates a challenge pk such that pk = g(sk) where

g is a one-way function to break. The challenger sends pk to adversary A.

Given challenge pk and black-box access to g,A1 randomly picks an index k′ ∈ [s]. For the key

generation phase, A uniformly chooses 2s − 1 secret keys (sk1
0, sk

1
1), (sk2

0, sk
2
1), · · · , (skk

′

0 ), · · · ,
(sks0, sk

s
1) and generates public keys (pkk0 , pk

k
1) for all k ∈ [s] by using oracle access to one-way

function g. We set k′th public key pair to be (pkk
′

0 , pk) where pk is challenge from the challenger.

A1 sets and publishes public file F which contains all the public key pairs. Finally, A1 stores s

secret keys sk1
b1

, sk2
b2

, · · · , sksbs .

Now, A1 as a verifier of simresZKAoK interacts with P∗ in the following way. For all the

messages of Π0 and COM, A1 honestly plays V of simresZKAoK. For all the messages of Π1, A1

externally forwards the messages. Then, A2 simply runs EWI on the messages forwarded by A1

(Note that EWI receives the random tape to play honest verifier of Π1, the random tape to extract

the witness, and the random tape to initiate P∗ externally from A2).

Since Pr[Event2 = Good] = p is non-negligible in security parameter n, A2 outputs sk with

probability negligibly to p, which is non-negligible as well. As we randomly chooses index k′ , the

overall advantage where A inverts challenge pk is negligibly close to p/s which is non-negligible.

Therefore,A violates the one-way property of g with non-negligible probability in security param-
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eter n.

Claim 5.2.13. Suppose that there exists PPT malicious prover P∗ and a vector of theorems x such

that Pr[Event3 = Good] = p. Then, p is negligible in security parameter n.

Proof. Towards contradiction, suppose that there exist PPT adversary P∗ and vector of theorems

x such that

Pr[Event3 = Good] = p.

We construct an EPPT adversary A which upon the description of P∗ as an input violates the

witness-indistinguishability property of simresWIAoK on the language Λow. Challenger C receives

the following theorems and the corresponding witnesses.

• Theorems: A vector of theorems is defined by 〈(pkk0 , pkk1)〉k∈[s].

• Witnesses: For each theorem, the challenger has two possible witnesses skk0 and skk1 for

k ∈ [s] such that pkkb = g(skkb ) where g is a one-way function, all b ∈ {0, 1}, and all k ∈ [s].

Our EPPT adversaryA taking a description of P∗ as an input is a pair of algorithms denoted by

〈A1,A2〉. As high-level overview, A1 acts as a man-in-the-middle adversary between P∗ and C.

In the left interaction with P∗,A1 plays a honest verifier of simresZKAoK. In the right interaction

with C, A1 plays a malicious resetting verifier of simresWIAoK. In particular, A1 externally

forwards all the messages of Π0 between C and P∗ (which is a verifier in Π0). For any message

belonging to COM and Π1, A1 internally generates and sends the messages to P∗. Finally, A1

collects the messages from C to P∗ and outputs an augmented machine M defined as in Main

Extraction Phase of EZK.

Formally, A1 prepares random tapes to play COM as a receiver and Π1 as a verifier. Each

random tape contains s(n)3 random strings indexed by (i, j, k) for i, j, k ∈ [s]. We denote the

random tapes for the execution of COM and Π1 by ~R. In addition, A1 prepares random tape

~Rinit for initiating P∗. Also, A1 publishes 〈(pkk0 , pkk1)〉k∈[s] as a public file. For all the messages

belonging to the execution of Π0,A1 externally forwards the messages betweenP∗ and C including
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the resetting request fromP∗. For all the messages belonging to the executions of COM and Π1,A1

internally plays honest receiver and verifier of COM and Π1 by using the prepared random tapes.

Upon the completion of interaction with P∗,A1 collects the transcript from C to P∗, denoted by τ .

Then, A1 outputs an augmented machine M(desc(P∗), τ) defined as in Main Extraction Phase of

EZK.

On the augmented machine output by A1, A2 runs extractor EWI on inputs M , ~Rinit, ~R and

R∗ as EWI(M(desc(P∗), τ), ~Rinit, ~R, R∗). Finally, A2 outputs b if secret key skkb is returned by

EWI for some k ∈ [s]. Otherwise, A2 outputs 0. A outputs whatever A2 outputs.

Note thatA1 construct transcript τ from C toP∗ in the execution of Π0 by externally forwarding

the messages between C and P∗. Since EWI run by A2 takes ~R to play honest verifier of Π1 and

augmented machine M responses all the messages from P∗ by referring to τ , EWI outputs skkb

for some k ∈ [s] with probability negligibly close to p as Pr[Event3 = Good] = p. Therefore, A
distinguishes the proof of skk0 and skk1 for some k ∈ [s] with non-negligible probability in security

parameter n.

By Claim 5.2.12 and Claim 5.2.13, we let εEvent2 and εEvent3 be the negligible probabilities

where Event2 is Good and Event3 is Good respectively. Hence, we have the following:

Pr[〈P∗,V〉(x) = 1] ≤ Pr[Event1 = Good] + Pr[Event2 = Good] + Pr[Event3 = Good]

= p+ εEvent2 + εEvent3

Hence, from (5.1), we complete the proof of Claim 5.2.9 by the following:

|Pr[〈P∗,V〉(x) = 1]− Pr[EZK(desc(P∗), x) ∈ RL]|

≤ |p+ εEvent2 + εEvent3 − Pr[EZK(desc(P∗), x) ∈ RL]| = ε(n) by Claim 5.2.11

Resettable Soundness of simresZKAoK: The resettable soundness of protocol simresZKAoK
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follows from its property of argument of knowledge. This is because the above extractor EZK

extracts the witness regardless of the validity of the theorems to be prove as so does the underlying

extractor EWI . For any PPT P∗ and all x, Event2 and Event3 occur with only negligible probabil-

ities (denoted by εEvent2 and εEvent3 respectively) by Claim 5.2.12 and Claim 5.2.13. If x /∈ L for

all x ∈ x, then Event1 occurs with probability 0. Therefore, for all x such that x /∈ L for all x ∈ x
and for any PPT prover P∗,

Pr[〈P∗,V〉(x) = 1] ≤ εEvent2 + εEvent3 = ε(n).

Therefore, we immediately obtain the following claim on the resettable soundness of simresZKAoK.

Claim 5.2.14. If trapdoor permutations and collision resistance hash functions exist, then protocol

simresZKAoK is resettably-sound argument system.

Notice that the above argument on the soundness works because because the extraction is not

based on instance-dependent primitives. Consequently, by Claim 5.2.8, Claim 5.2.9, and Claim

5.2.14, we derive the following theorem.

Theorem 4. If trapdoor permutations and collision resistance hash functions exist, then protocol

simresZKAoK is resettably-sound argument of knowledge system.

Combining Theorem 3 and Theorem 4, we obtain the following conclusion.

Theorem 5. If trapdoor permutations and collision resistance hash functions exist, then protocol

simresZKAoK is resettably-sound resettable Zero-Knowledge argument of knowledge system.
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Part II

Constant-round concurrently secure

multi-party computation protocols in the

cross-domain model
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CHAPTER 6

Introduction

Consider the following toy scenario: British intelligence and CIA want to enable their employees

to be able to independently and freely collaborate with each other over the internet. In particular

for example, Alice an agent of the British intelligence and Bob a member of the staff at CIA

should be able to evaluate joint functions on the confidential databases that these countries own.

Unfortunately, Alice and Bob (also, British intelligence and CIA) do not trust each other and want

to protect their own confidential information from one another. Even worse, neither are they willing

to trust a third-party setup. The well studied notion of secure computation [Yao86, GMW87]

allows them to do so, however only in the stand-alone setting where security holds only if a single

protocol session is executed in isolation. However the requirement of free collaborations between

employees of British intelligence and CIA requires security to hold even when multiple sessions

are executed concurrently as in the Internet. Can this be enabled? What if in parallel Bob also

wants to collaborate with a secret service agent Charlie in Germany while protecting itself even in

a setting where Alice and Charlie collude?

Background: Concurrent Security. The last decade has seen a push towards obtaining secure

computation protocols in the demanding network setting where there might be multiple concurrent

protocol executions. A large number of secure protocols (in fact under an even stronger notion of

security called Universal Composability (UC)) based on various trusted third-party setup assump-

tions [CF01, CLOS02, BCNP04b, CPS07, Kat07, CGS08, LPV09, GO07, GK08, GGJS11] have

been proposed. One of main aims to this line of work has been to reduce the level of trust that

honest parties need to place in the trusted third-party setup. For example, Katz [Kat07] considered

the hardware token model. In his model, honest parties program tokens and send them to other
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parties. Since honest parties can program their own tokens, they only need to trust their hardware

token manufacturer. Groth and Ostrovsky [GO07] initiated the study of constructing UC secure

protocols without relying on a single trusted external entity. In other words, one of the main goals

in this line of works is to achieve those notions of security in a setting which is as close to the

“plain model” as possible (also see [GK08, GGJS11] for subsequent works). In this work, we are

interested in the standard notion of secure computation.

The Dark Side of Concurrency. Unfortunately, very strong impossibility results ruled out the

existence of secure protocols in the concurrent setting. UC secure protocols for most functionalities

of interest have been ruled out by [CF01, CKL06]. Concurrent self-composability1 for a large

class of interesting functionalities (i.e., bit transmitting functionalities) was first ruled out [Lin04]

only in a setting in which the honest parties choose their inputs adaptively (i.e., “on the fly”).

Subsequently, a series of works [BPS06, Goy11a, AGJ+12, GKOV12] show that it is impossible to

achieve concurrent self-composition even in the very natural setting of static (pre-specified) inputs.

In summary, these results have firmly established that for obtaining the most general result some

setup is needed unless we are willing to consider more constrained models. Finally even in a setting

with bounded number of players [JORV12], an impossibility result has been established. However,

this is for the more demanding setting in which honest parties choose their inputs adaptively.

6.1 Our setting and our results

We introduce a new set-up model, called the Cross-Domain(CD) model. In this model, there exist

multiple domains and each of them comes with a key certification authority (KCA). Furthermore

each party in a domain trusts the KCA of its domain only. In this setting, each party in a domain

can gets its own public key certified by KCA it trusts. We assume that the public-key of each

of the KCA is shared with every other KCA. We prove the following for the setting of n-domain

multi-party protocols:

1Concurrent self-composition requires that a protocol remain secure even when multiple copies of the same proto-
col are executed concurrently.
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Positive result if n = 2. We give a multi-party protocol that concurrently and securely evaluates

any function in the CD model of two fixed domains where each domain may contain arbi-

trarily many parties. Additionally, our protocol has a constant round complexity, a black-box

proof of security and relies only on standard assumptions.

Impossibility results when n ≥ 3. We show that there does not exist a two-party protocol such

that parties from three distinct domain can concurrently and securely realizes any complete

asymmetric (only one party gets the output) deterministic functionality2 in the stand-alone

setting [Kil88, KMO94, BMM99, Kil00, KKMO00]. Our impossibility results hold even

in the very restricted setting of static inputs (inputs of honest parties are pre-specified) and

fixed roles (i.e, the adversary can corrupt only two parties who plays the same role across all

executions).

This answers the motivating question we started with. We can equip the employees of British

intelligence and CIA to collaborate freely but not if collaboration with Germany are also desired.

Our results directly extend to the setting of n-domain protocols. In particular an n-party pro-

tocol for concurrently and securely computing any function on the joint inputs of n parties form

distinct domains exists, if and only if there are exactly n domains in the system.

6.2 Previous results with weaker notions of security

To address the problem of concurrent security for general secure computation in the plain model, a

few candidate definitions have been proposed, including input-indistinguishable security [MPR06,

GGJS12] and super-polynomial simulation [Pas03, PS04, BS05, LPV09, CLP10]. Both of these

notions, although very useful in specialized settings, do not suffice in general. Additionally, other

models that limit the level of concurrency have also been considered [Pas04, Goy11a] or allow

simulation using additional outputs from the ideal functionality [GJO10]. Among these models

the model ofm-bounded concurrency [PR03, Pas04] which allowsm different protocol executions

2A functionality is complete if it can be used to securely realize any other functionality.
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to be interleaved has received a lot of attention in the literature [PR03, Pas04, Lin04, Lin08].

Unbounded concurrent oblivious transfer in the restricted model where all the inputs in all the

executions are assumed to be independent has been constructed in [GM00]. Finally the only known

positive results for concurrently secure composition in the plain model are for the zero-knowledge

functionality [DNS98, RK99, KP01, PRS02, BPS06].

6.3 Technical Overview

In this section, we give the intuition behind our results. We assume some basic familiarity with the

notion of concurrent secure computation.

Impossibility. We start by giving the intuition behind the impossibility result for constructing a

protocol that concurrently securely realizes the Oblivious Transfer(OT) functionality in the setting

of three parties. The extension to general asymmetric two party functionalities follows using a

Theorem from [AGJ+12]. In the following, we consider the simplest setting where three domains

exist where each domain contains a single party.

Our impossibility result builds on top of ideas developed by [AGJ+12, GKOV12] for the setting

of plain model. Even though their result hold for the two party setting, we recall their technique

for the setting of three parties. Consider a scenario with three parties Alice, Bob and Charlie. Now,

consider an adversary that corrupts Bob and Charlie who (as receivers of the OT protocol) are

allowed to participate in an arbitrary polynomial number of executions of the protocol with honest

Alice (who plays as the sender). In this setting, we can construct a real-world adversary that

interacts with Alice in an execution of the protocol, referred to as the main execution, that cannot

be simulated in the ideal world. The key idea is that the adversary has secure computation at its

disposal and it can use it to its advantage. More specifically, the adversary on behalf of Charlie may

interact with the Alice in multiple additional executions of the secure computation protocol and

use these executions to generates messages that it needs to send in the main execution on behalf

of Bob. More specifically, the adversary securely realizes Bob by using garbled circuits such that
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the adversary needs to evaluate the garble circuit in order to generate the messages it sends on

behalf of Bob. However, the adversary does not have the OT keys necessary for evaluation of

the garbled circuit. Instead, the OT keys are given to the honest Alice from which the adversary

obtains the desired OT keys by the (additional) concurrent executions of the OT protocol as Charlie.

Finally, the existence of a simulator simulating such an adversary that is securely implementing

Bob contradicts the stand-alone security of the OT protocol.

In the CD model, each domain containing Alice, Bob and Charlie generates a certificate as-

sociated with their public-keys. The key insight in our impossibility result is to use the setting

described above and to enable the garbled circuit securely evaluating Bob to generate Bob’s public

key as well. The adversary however will generate Charlie’s public key and secret key by himself,

which enables the adversary to interact freely on Charlie’s behalf. In particular, this allows the ad-

versary to still obtain the OT keys for the garbled circuit from Alice as in the plain model. Finally,

the existence of a simulator simulating such an adversary that is securely implementing Bob (along

with its key registration) contradict the stand-alone security of the OT protocol in the CD model.

Positive result for two parties. The intuition behind the impossibility result above makes it

abundantly clear that the adversary must be able to do secure computation with honest Alice if it

wants to securely simulate Bob. However, if we restrict ourselves to the setting of two parties then

the adversary essentially looses this ability. In fact, it is exactly this loss in its ability that allows

us to give a positive result.

Our protocol can roughly be partitioned into two phases– the preamble phase and the post-

preamble phase. In the preamble phase, a party needs to demonstrate the knowledge of the secret

key corresponding to its public and the certificate issued by its KCA. Subsequently in the post-

preamble phase the actual secure computation happens. In the simulation for the proof of security,

obtaining the knowledge of the adversary’s secret key suffices for straight-line simulation.

Our protocol proceeds to the post-preamble phase only after the adversary has demonstrated

knowledge of its secret key in the preamble phase. The adversary can interleave sessions arbitrarily

and among these interleaved sessions consider the first session in which the protocol reaches the
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post-preamble phase. Let’s call this session as the target session. Now note that since the target

session was the first session in which the the post-preamble phase was reached, we can expect the

same thing to happen with some probability on appropriate re-windings as well. We formalize

this appropriately using swapping argument introduced in [PRS02]. Now note that throughout this

process of re-windings we never execute the post-preamble phase for any session. This allows

us to avoid the technical difficulties that generally arise when construction concurrently secure

two-party computation protocols. Our protocol with this limited re-windings is able to extract the

secret key of the adversary and this allows our simulator to subsequently simulate all the sessions in

straight-line. For our construction and the proof we build on the techniques developed in [BPS06,

GJO10, GGJS12].
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CHAPTER 7

Preliminaries

7.1 Concurrently secure multi-party computation

In this section, we recall the notion of concurrently secure computation. Our definitions of concur-

rent security build upon the the definition of Lindell [Lin08]. Some of the text has been taken ver-

batim from [Lin08]. A protocol is modeled by Interactive Turing Machines (ITM) as in [GMR89],

which essentially represent participants of the protocol. Intuitively, in the concurrent computation,

an adversary, controlling a subset of protocol participants, may interact with the honest parties in

polynomially many sessions while the schedule of the protocol messages is interleaved in any way

desired by the adversary. In this work, we consider the case of concurrently secure MPC with a

static adversary where a static adversary corrupts before beginning the execution of the protocol

and then fully controls the corrupted parties during the execution of the protocol.

Ideal model of concurrent MPC Let f : ({0, 1}∗)N → ({0, 1}∗)N be an (desired) N -party

functionality where N = N(n) is a polynomial in security parameter n. In the ideal model, we

assume that a trusted party denoted by F exists where the trusted party computes f on the inputs

received from the participants and then returns the outputs to the corresponding parties. Let P1, P2,

· · · , PN be N parties which wish to participate in the execution of the ideal model. The adversary

A corrupts a subset of N parties denoted by C and fully controls the parties in C. Let t be the

number of sessions in which the adversary desires to interact with the honest party. Note that

t = t(n) is an arbitrary polynomial in security parameter n. The ideal model proceeds as follows:
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Ideal model of concurrent MPC Let f : ({0, 1}∗)N → ({0, 1}∗)N be an (desired) N -party

functionality where N = N(n) is a polynomial in security parameter n. In the ideal model, we

assume that a trusted party denoted by F exists where the trusted party computes f on the inputs

received from the participants and then returns the outputs to the corresponding parties. Let P1, P2,

· · · , PN be N parties which wish to participate in the execution of the ideal model. The adversary

A corrupts a subset of N parties denoted by C and fully controls the parties in C. Let t be the

number of sessions in which the adversary desires to interact with the honest party. Note that

t = t(n) is an arbitrary polynomial in security parameter n. The ideal model proceeds as follows:

Inputs: Each honest party Pi ∈ H holds an input vector ~xi = {xsid
i }sid∈[t] where the honest party

always uses input xsid
i for the session sid. The adversary sim holds distinct input vectors ~xi

for each party Pi ∈ C.

Session Initiation: Whenever the adversary wishes to initiate a new session, it sends a special

message new-session to the trusted party. Upon the special message new-session, the

trusted party sends sid ∈ [t] to all N parties where sid is the index of the new session.

Input phase of the honest party: Whenever the honest party Pi receives sid from the trusted

party F , the honest party sends (xsid
i , sid) to the trusted party.

Input phase of the corrupted party: The adversary by instructing the corrupted parties Pj in C
sends (xsid

j , sid) for every j ∈ C where xsid
j is an arbitrarily (possibly maliciously) chosen

input string of appropriate length.

The adversary receives the result: If there exists a session sid such that the trusted party has

recived inputs (xi, sid) from all parties for every i ∈ [N ], then the trusted party F computes

(ysid
1 , ysid

2 , · · · , ysid
N ) = f(xsid

1 , xsid
2 , · · · , xsid

N ). The trusted party first sends to the adversary

(ysid
j , sid) for every j such that Pj ∈ C and waits for the adversary’s response.

The adversary responds to the trusted party: Upon the reception of (ysid
j , sid) for every j such

that Pj ∈ C, the adversary sends a messages of the following form: (R, sid) where R is a

subset of honest parties to which the trusted party sends the corresponding outputs in session
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sid. Then, upon receiving the message (R, sid) from the adversary, the trusted party sends

ysid
i to Pi in session sid if Pi ∈ R. Otherwise, it sends a special message (⊥, sid).

Output of Ideal Model: The honest parties output the values received from the trusted party. The

adversary outputs the values received from the trusted party along with its entire view of

the above procedure. We let IDEALFsim(n, z, {~xi}i∈N) be a random variable denoting the

outputs of the honest parties and the adversray in the Ideal model.

Real model of concurrent MPC We next consider the real model where N real parties jointly

compute the desired N -ary functionality f : ({0, 1}∗)N → ({0, 1}∗)N on a network. Let t = t(n)

be a polynomial in security parameter n. Let Π be a N -party protocol for computing the desired

functionality f . Let A be a non-uniform probabilistic polynomial time (PPT) machine which cor-

rupts a subset ofN parties. In the real concurrent execution of protocol Π,A concurrently interacts

with the honest parties at most t times with its own (maliciously chosen) inputs and schedule of

messages. The output of real concurrent execution is denoted by REALΠ
A(n, z, {~xi}i∈N) which

includes the outputs of the honest parties, and the outputs and the view of the adversary. Note that

the schedule of messages of real concurrent execution is fully controlled by the adversary. That is,

the adversary sends a message of the form (α, sid) to the honest parties. Then, the honest parties

add α to the view of Π of session sid, and follows the instruction of Π on the view to responds to

the adversary. This process repeats in the way that the adversary desires.

Security of concurrent MPC protocols Intuitively, a concurrent multi-party protocol is said

to securely carry out a given task (a desired functionality f ) if the execution of the protocol in

real model emulates the ideal model. More specifically, for any real world concurrent adversary,

we argue that there exists an ideal world adversary (so-called simulator) such the the distribution

ensembles of outputs from ideal and real models are computationally indistinguishable. The formal

definition follows below.

Definition 7. Let F be an ideal functionality and let Π be a N -party computation protocol where

both compute a desiredN -ary functionality f . Then, protocol Π is said to be a concurrently secure
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computation protocol for computing f if for every probabilistic polynomial-time adversary A in

the real model, there exists a probabilistic polynomial-time simulator sim in the ideal model such

that for all inputs {~xi}i∈N ,

{
IDEALFsim(n, z, {~xi}i∈N)

}
n∈N;z∈{0,1}∗

c≡
{

REALΠ
A(n, z, {~xi}i∈N)

}
n∈N;z∈{0,1}∗ .

For simplicity of exposition, we consider a network which supports authenticated communica-

tion in this work. That is, the adversary can deliver only the messages which were actually sent by

a party.1

7.2 The Cross-Domain (CD) model

We introduce a model of multiple key certification authorities (KCA) where multiple parties exist

under each of the KCAs. In this model, a party might not trust only all other KCAs but the KCA to

which the party belongs. Therefore, each KCA defines a domain which consists of multiple parties.

Intuitively, whenever a party in one domain wants to jointly compute something with a party in

another domain, each party registers its public key to its own KCA (trusted by the registering

party) and obtains a certification on the public key. No party communicates with the KCA of other

domains as it does not trust the other untrusted KCAs. Instead, only KCAs communicate with each

other to obtain the certification information of other parties within other KCAs and then distribute

the certification information to the parties under its own domain before the interaction between

parties in distinct domains. Once the interaction between parties across the domains, parties uses

the certification information received from the trusted KCA throughout the subsequent interaction.

We formalize this as an interaction between parties and multiple KCA functionalities denoted by

a set of functionalities denoted by FKCA = {F1
KCA, F2

KCA, . . . , FNKCA} where N is the number of

domains.

More specifically, FiKCA for some i ∈ [N ], upon a registration request from a party within

1Note that, as discussed in [BCL+05], this extra treatment does not undermine our result.
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the domain computes a signing key and a verification key, then it signs a part of the registration

request with the signing key. Finally, it returns the signature and the verification key to the party

and records the signing key (certification creation key) and the verification key (certification key)

associated with the player in its storage. Note that each party may register polynomially many

public keys to FiKCA but all under the identical signing key. That is, we associate the signing

and verification keys with the domain rather than separately with each player. The honest parties

do not obtain the signing key associated with their registered public keys while corrupted parties

have freedom to choose whatever they want to create signing and verification keys. The crucial

restriction is that the number of domains is exactly N . Moreover, in this cross-domain model, we

consider an adversary such that if an adversary corrupts a party in a domain, then it consequently

assumes that all parties in the domain is corrupted.2 Below, we provide the formal definition of our

KCA functionality FKCA.

Definition 8. [Functionality FKCA]: Let n be the security parameter. Let KeyGensig : {0, 1}∗ →
{0, 1}∗ × {0, 1}∗ be a deterministic key generation algorithm of a digital signature scheme where

KeyGensig takes a random string r ∈ {0, 1}n and outputs (master) signing key msk and (master)

verification key mvk. We also denote the signing algorithm and the verification algorithm by

Sign(·, ·) and Ver(·, ·) respectively. Each party is assigned to a unique identity id. Also, for each

j ∈ [N ], Fj
KCA internally maintains a set of records including good signing keys and corresponding

verification keys, denoted by R. That is, R is a set consisting of at most one element of the form

(id,msk,mvk). Initially, R is set to be empty. Let P j
i be the i-th party under domain Fj

KCA.

1. Public-Key Registration by a honest party: When Fj
KCA receives a message of the form

(register, id, sid, pk) from a party with id within the domain. If there is a tuple (id
′
, msk,

mvk) ∈ R for some id
′
, then Fj

KCA computes the signature σ ← Sign(pk,msk), sends (id, σ)

to the party of id and to A. If R is empty, then Fj
KCA obtains a fresh (msk,mvk) ←

KeyGensig(r) where r is a uniform string and adds (msk,mvk) to R. Then, Fj
KCA signs

2For better understanding, imagine an intranet. Once an adversary succeeds to deploy a malware in a computing
system within an intranet, the malware is likely to spread over other systems within the intranet, resulting in the
compromise of security within the entire domain.
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pk as σ ← Sign(m, sk) and sends (id, σ) to the party of id and toA. Finally, it adds (id, vk)

to R.

2. Public-Key Registration by a corrupted party: When Fj
KCA receives a message of the form

(register, id, sid, r) from a corrupted party of id, Fj
KCA checks if the Fj

KCA computes (msk,

mvk)← KeyGensig(r). Then, FKCA records (id,mvk). Note that the adversary can choose

one of the existing (msk,mvk) recorded previously by simply choosing the same r.

3. Certificate Retrieval between KCAs: A domain Fj
KCA may request a verification key of any

any domain Fk
KCA by sending a message of the form (retrive, j) to Fk

KCA. Then, Fk
KCA sends

a recorded mvk in R to Fj
KCA. If the adversary corrupts a party in Fk

KCA, Fk
KCA forwards the

message (retrive, j) to A. Then, A sends mvk to Fk
KCA. Subsequently, Fk

KCA sends mvk to

Fj
KCA.

Definition 9. [Concurrently Security of MPC protocols in the Cross-Domain model]: Let f

be a desired functionality to be computed where N(n) is a polynomial in security parameter n.

Assume that all parties which desire to participate in the main protocol execution belongs to one

of exactly N domains. The concurrently secure MPC in the CD model is defined identically to the

concurrently secure MPC as in Definition 7, with the following conditions;

1. Before any interaction between parties starts, the parties registers their public keys by inter-

acting with their own trusted domain as defined in Definition 8. Also, each party obtains a

certificate (verification key) of parties in other domains from the own KCA who obtains the

certificate by interacting with other KCAs.

2. If an adversary corrupts a party in a domain, then all parties in the domain are considered

to be corrupted.

Remarks: Our main aim of the above definition is to protect the privacy of inputs of parties in

domains in which no corrupted party exists from interacting with corrupted parties in the other

domains. Note that we can extend the model and security definition by removing the second con-

dition. That is, a adversary is allowed to corrupt a subset of parties in one domain. We emphasize
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that the the security of honest parties (co-existing with corrupted parties) within a single domain

can be achieved by previously known constructions based on various set-up assumptions and sim-

ulation techniques [BCNP04a, LPV09].

7.3 Garbled Circuits

In this section we briefly recall the notion and constructions for garbled circuits that we need in this

paper. Garbled circuits were first constructed by Yao [Yao86] and have since then found numerous

uses in secure multiparty computation and elsewhere. A vast body of literature explaining this

notion exists. However since our construction relies heavily on garbled circuits in order to clarify

the notation that we use in this paper we present an informal overview. We assume that the reader

is familiar with the notion and constructions. We first start by considering the semi-honest (or,

honest-but-curious) case and then extend the construction to the malicious case.

7.3.1 Garbled circuits for semi-honest adversaries

A formal simulation based security definition for garbled circuit construction in the case of an

honest but curious adversary is presented in [HK07, KO04]. Some parts of the following text have

been taken verbatim from [HK07, KO04].

Let Fk : {0, 1}k → {0, 1}k denote any polynomial time computable function3. Note that a

garbled circuit only hide the nature of a gate used in a circuit and does not hide the number of

gates used etc. However this can be achieved by using some form of canonicalization. This is

fairly standard when using garbled circuits and we refer the reader to Section 4 of [GHV10] for

more discussion. Formally,

Definition 10. (garbled circuits) Let Fk : {0, 1}k → {0, 1}k be the description of any function as

above. Yao [Yao86]’s garbled circuit technique is a pair of algorithms (Yao1, Yao2) such that,

• Yao1 is a randomized algorithm which takes as input Fk and outputs a tuple (GC,Z) where
3The garbled circuit technique also extends to functions whose input and output are polynomial in k. However for

simplicity of exposition we limit ourselves to functions with input and output lengths exactly k.
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GC is a garbled circuit and Z = {Zi,σ}
i∈ $←1,...,k,σ∈{0,1}

are keys corresponding to input

wires.

• Yao2 is a deterministic algorithm which takes as input a garbled circuit, GC and keys corre-

sponding to an input x. More specifically it takes as input a set {Zi,xi}i∈ $←1,...,k
(denoted by

Zx) of keys where xi is the ith bit of x. It outputs an invalid symbol⊥ or a value v ∈ {0, 1}k.

• Correctness: For any function Fk, let (GC,Z)←Yao1(Fk), and for any input x, let v =

Yao2(GC,Zx). Then we require that v = Fk(x).

• Privacy (honest-but-curious case): ∃ a PPT simulator YaoSim such that for all PPT adver-

saries A with auxiliary input z,

{
(GC,Z)← Yao1(Fk) : A(k, z, x, (GC,Z))

}

k∈N,z∈{0,1}∗,x∈{0,1}k

c≡
{
v = Fk(x) : A(k, z, x, YaoSim(k, x, v))

}

k∈N,z∈{0,1}∗,x∈{0,1}k

7.3.2 Garbled circuits for malicious adversaries

Although garbled circuits were designed for the honest-but-curious case, since [GMR89], they

have been used in the presence of malicious adversaries in the interactive setting via compila-

tions with zero-knowledge proofs. [GKR08, BPS06] consider garbled circuit constructions secure

against a malicious adversary. In the following for the sake of completeness we provide a formal

definition of security of garbled circuits in the malicious, adaptive setting and provide a construc-

tion for the same. The construction follows from the work of [GKR08]. In our construction we sill

assume a garbled circuit constructions secure in the semi-honest setting (according to Definition

10). Some of the following text has been taken verbatim from [GKR08].

Before we get into details we highlight the main concern. A malicious adversary evaluating

the garbled circuits can be adaptive in it choice of the input x. In particular, a malicious adversary

may choose the input (and thus the keys it obtains) adaptively based on the actual circuit (and also

the keys so far). Therefore our simulator needs to “hold off” on embedding the output at the time
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of the generation of the garbled circuit. Goldwaseer et. al. [GKR08] consider such a setting. They

deal with this problem by providing the adversary with a garbled circuit that computes masked

functions. The unmasking values are provided along with the keys. More specifically, a simulator

can be designed to hold off until all the input keys have been queried (so fully specified). Finally

when all the input bits have been specified the simulator can manipulate the output masks based

on the output that it needs to world.

Next we formalize the notion of garbled circuits in the setting of malicious adversaries below

by using the simulation based definition for the functionality F (that can be invoked n times) to

evaluate functions F1, F2 . . . Fn.

Reactive functionality F . A reactive functionality F consists of a sequence of functions F1, F2,

. . ., Fn : {0, 1}k → {0, 1}k.4 On the ith invocation of the functionality F function Fi is evaluated

and the output of Fi can potentially depend on the inputs provided to functions Fj’s for all 1 ≤ j <

i. We remark that in our setting we will use the next message function of a party (in an execution

of an n round protocol) and model it as a functionality F = (F1, F2, . . . , Fn).

Towards the goal of defining security, we first describe the ideal world process; next we de-

scribe the real process; and finally present the definition.

Ideal execution of a reactive functionality F . Consider an ideal execution of an adversary sim

on input x̄ and auxiliary input z interacting with the ideal functionalityF . LetF = (F1, F2, . . . , Fn).

Execution proceeds as follows,

• Input: sim receives an input x̄ = (x1, . . . , xn). It is also provided with an auxiliary input z.

• Evaluation: For each i ∈ [n], sim sends as input x′i and obtains a response Fj(x′i), where as

mentioned before, Fi can additionally depend on all of the inputs x′j,∀1 ≤ j < i.

4As in the case of semi-honest setting technique extends to functions whose input and output are polynomial in k.
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• Output: sim outputs any arbitrary probabilistic polynomial time function of its view. Let

IDEALF ,sim(k, x̄, z) denote the output distribution of the ideal world adversary sim in inter-

action with the ideal functionality F .

Real execution of garbled circuits by an adversary. Let F = (F1, . . . , Fn) be a reactive func-

tionality as above and let (Yao1, Yao2) be as above. A real model evaluation of F using garbled

circuits uses a pair algorithms (Yao1, Yao2) such that,

• Yao1: Yao1 on input a description of a reactive functionality F = (F1, . . . , Fn) outputs a

tuple (GC,Z) denoting the garbled circuit and the keys for input wires.

• Yao2: Yao2 is a deterministic algorithm which on input a garbled circuit GC and keys

(Z1,b1 , Z2,b2 , . . . , Zt,bt) where t = i · k (where b (of length t) is the concatenation of the

inputs x1, . . . , xi) outputs an evaluation of Fi.

Let A be any polynomial time algorithm. Then the real world execution proceeds as follows:

• Input: Let x̄ = (x1, . . . , xn) be the input of the adversary A. It is also provided with an

auxiliary input z.

• Setup: Let (GC,Z)←Yao1(F). Let g be the number of keys where g = n · k.

• Key Queries: Let K be a key oracle. At any point A sends a message of the form (i, b), i ∈
[g], b ∈ {0, 1} to K to which K responds by Zi,b.

• Output: A outputs any arbitrary probabilistic polynomial time function of its view. Let

REALK,A(k, x̄, z) denote the output distribution of A.

Security: The definition of security, following the ideal-real model is as follows. 5

5We provide a stronger black-box definition of security. Known constructions satisfy this definition of security.
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Definition 11. (garbled ciruits - malicious case) Let F be any reactive functionality as above.

Then ∃ a PPT ideal-world adversary (i.e a black box simulator) YaoSim such that for every PPT

real-world adversary A,

{
IDEALF ,YaoSimA(k, x̄, z)

}

k∈N,z∈{0,1}∗,x̄∈({0,1}k)n

c≡
{

REALK,A(k, x̄, z)

}

k∈N,z∈{0,1}∗,x̄∈({0,1}k)n

Next using a construction for garbled circuits (Ŷao1, Ŷao2) secure in the semi-honest setting

(Definition 10) we give a construction (Yao1, Yao2) that offers security against malicious adver-

saries (Definition 11). A formal construction is provided in Construction 7.1

Let F = (F1, . . . Fn) where each Fi is such that Fi : {0, 1}k → {0, 1}k. Let (Ŷao1, Ŷao2) be a
pair of algorithms that satisfy Definition 10. Then let algorithms (Yao1, Yao2) be as follows.

Yao1: 1. For each i ∈ $← 1, . . . n, choose masks mi←{0, 1}k.
2. Let F ′ = (F1(x1)⊕m1, F2(x2)⊕m2, . . . Fn(xn)⊕mn). Let (ĜC, Ẑ) = Ŷao1(F ′).

Note that Ẑ consists of key pairs for kn input wires and one key from the first ki
pairs of keys is needed to evaluate Fi. The specific keys needed depend on the inputs
x1, x2 . . . xi.

3. For each i ∈ [n], for each j ∈ [ik], choose a sub-mask si,j←{0, 1}k subject to
⊕ikj=1si,j = mi. Append sub-mask si,j to the keys Ẑj,0 and Ẑj,1

4. Output: (GC,Z) = (ĜC, Ẑ) after the transformations above.

Yao2: On input GC, and input xi (where b is the concatenation of xi with the previous inputs
x1, x2 . . . xi) proceed as follows:

1. Observe that the keys Zj,bj for every j ∈ [(i − 1)k] have already been obtained for
evaluations F1, . . . Fi−1. Obtain the keys Zj,bj for every j ∈ (i− 1)k, . . . ik.

2. For each j ∈ [ik], extract the values Ẑj,bj and the sub-mask si,j from Zj,bj .

3. Compute the mask mi = ⊕ikj=1si,j and let Oi = Ŷao2(GC, {Ẑj,bj}j∈{1...ik}).

4. Output: Output mi ⊕Oi.

Figure 7.1: Garbled Circuits: malicious case

Lemma 1. [Garbled circuits secure against malicious adversaries] Assuming garbled circuit se-

cure against honest-but-curious adversaries exist, there exists a garbled circuit construction that

is secure against malicious adversaries (Definition 11).
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Proof. In order to argue the above lemma we need to argue that for every adversaryA (that obtains

its keys adaptively from the oracle K) we construct a simulator YaoSim that can simulate its view

interacting directly with the functionality F . Note that the adversary A expects to receive as input

a garbled circuit. Our simulator YaoSim starts by generating a garbled circuit that just outputs

random values m1,m2 . . .mn. Now our simulator YaoSim needs to simulate the key oracle K for

the adversary A in a way such that A obtains the correct output values from the evaluation when

unmasked with the sub-masks. We will describe our strategy in ensuring that the correct output

Fi is obtained. Every i ∈ [n] can be handled in an analogous manner. For the adversary A to

be able to evaluate Fi, the adversary A needs to obtain all the keys {Zj,bj}j∈[ik] where b is the

concatenation of x1, x2 . . . xi. Furthermore each key Zj,bj contains a sub-mask si,j that is needed

to evaluate Fi. All these masks are set randomly until the last key is queried. Let Zt,bt be the last

key among {Zj,bj}j∈[ik] that the adversaryA queries toK. Note that the entire input (i.e., x1, . . . xi)

of the adversary gets specified once it has made all these queries. Our simulator YaoSim, when

queried with the last key Zt,bt obtains the appropriate output for Fi from the ideal functionality F .

It sets the sub-mask si,t = ⊕ikj=1,j 6=tsi,j⊕mi. This allows our simulator to force the output obtained

from the ideal functionality F .

7.4 Building Blocks for our positive results

We review the main cryptographic primitives which are used for our construction of black-box

constant-round concurrently secure MPC in the CD model. The notations and discussions on the

following primitives are directly adopted or slightly modified from the recent work of Garg et al.

[GGJS12].

7.4.1 Statistically Binding String Commitments

Such a protocol can be obtained by executing, in parallel, Naor’s statistically binding bit commit-

ment [Nao91] based on an one-way function. In fact, we use a non-interactive perfectly binding
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string commitment for the simpler exposition.6 Such a non-interactive bit commitment scheme can

be constructed from any 1-to-1 one-way function. We denote a non-interactive perfectly binding

string commitment to string x using random coin r by PBCOM(x; r). In the following, we slightly

abuse the notation and let PBCOM(x) denote the commitment to string x by taking random coin r

to be implicit.

7.4.2 Statistically Hiding Commitments

Such a commitment scheme is implied by the existence of one-way functions due to the recent

work by Haitner and Reingold [HR07]. In this work, we use the two round statistically hiding

commitments [HM96b] and denote it by SHCom(x; r) a (statistically hiding) commitment to a

string x using random coins r. We abuse notation and sometimes skip the random coins for nota-

tional convenience.

7.4.3 Constant Round Public-Coin Non-Malleable Commitments

For the construction of our constant-round concurrently secure MPC in the CD model, we use

a constant-round public-coin non-malleable commitment, denoted by NMCom. Such a protocol

exists due to Pass and Rosen [PR05a]. In addition, Garg at al. [GGJS12] showed the transformation

of Goyal’s constant-round non-malleable commitment [Goy11b] into a public-coin constant-round

non-malleable commitment.

7.4.4 Extractable Commitment Scheme

We use a challenge-response based extractable statistically-binding string commitment scheme

〈C,R〉 which has been used in previous works [PRS02, Ros04]. In contrast to [PRS02] where

multiple slots of challenge and response were used resulting in the poly-logarithmic round com-

plexity of the protocol, we only require a one-slot protocol, similarly to [Ros04], of constant round

complexity.

6We emphasize that our construction does not require the underlying commitment scheme to be non-interactive.

85



Protocol 〈C,R〉. Let PBCOM(·) be a non-interactive perfectly binding string commitment scheme

described in Appendix 7.4.1. Let n be the security parameter. The extractable statistically-binding

string commitment scheme 〈C,R〉 is defined as follows.

- COMMIT PHASE:

1. To commit to a string str, committer C chooses k = ω(log(n)) pairs of independent ran-

dom strings {α0
i , α

1
i }ki=1 such that str = α0

i ⊕α1
i for ∀i ∈ [k]. Then, it commits to str, α0

i

and α1
i for every i ∈ [k] by using the non-interactive perfectly binding commitment PBCOM

and sends those 2k + 1 commitments to the receiver R. Let B, A0
i , and A1

i respectively

denote PBCOM(str), PBCOM(α0
i ), and PBCOM(α1

i ) for every i ∈ [k].

2. Receiver R chooses and sends k independent random bits b1, . . . , bn to committer C.

3. For every i ∈ [k], if bi = 0, committer C opens A0
i , otherwise it opens A1

i to R by sending

the corresponding decommitment.

- OPEN PHASE: Committer C opens all the commitments by sending the decommitment to the

receiver R; C sends R all the committed strings and the corresponding random coins used to

commit for every commitment.

7.4.5 Constant-Round Strong Witness-Indistinguishable Proof

We use a constant-round strong witness-indistinguishable (strong WI) proof system for every lan-

guage in NP, denoted by 〈Prszk, Vrszk〉. Intuitively, a strong WI proof system guarantees that the

distribution of two proofs (each with a distinct witness) are computationally indistinguishable if the

theorem statements are computationally indistinguishable. For more details, we refer the readers

to [Gol01, Gol04].
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7.4.6 Special Non-Malleable Witness-Indistinguishable Argument of Knowledge

In the construction of a constant-round concurrently secure MPC in the CD model, we use a special

(constant-round) non-malleable zero-knowledge argument of knowledge (NMWIAok) denoted by

〈P ′, V ′〉 for every language in NP.

In the following, let P ′ and V ′ be the prover and the verifier respectively. Let L be any NP-

language and let RL be the NP-relation of L. Let g : {0, 1}n → {0, 1}3n be a length-tripling

pseudo-random generator. Then, we define R2 to be a NP-relation where the NP theorem is a

string mvk and the witness is a tuple (p̃k, s̃k, σ̃) such that (mvk, p̃k, s̃k, σ̃) ∈ R2 if and only if

p̃k = g(sk) and Ver(p̃k, σ̃,mvk) = 1.

PROTOCOL 〈P ′, V ′〉. Both parties P ′ and V ′ get x, mvk as common inputs. Additionally the

prover P ′ gets a witness w such that (x,w) ∈ RL or (mvk,w) ∈ R2.

2. P ′ commits to 0 by using a statistically-hiding commitment as c = SHCom(0). In addition,

P ′ proves the knowledge of a valid decommitment to c by using a statistical zero-knowledge

argument of knowledge SZKAOK.

3. P ′ commits to witness w and sends the commitment to V ′ by using a constant-round public-

coin non-malleable commitment NMCom.

4. P ′ proves the following statement to V ′ by using SZKAOK:

(a) either the string w committed to in Step 3 is a valid witness to x such that (x,w) ∈ RL,

or

(b) the value w committed to in Step 2 is such that (mvk,w) ∈ R2.

The indistinguishability between transcripts with distinct witnesses. Here, we do not pro-

vide the formal proof on the computational indistinguishability between the views using distinct

witnesses. Instead, the proof is formally provided as a part of computational indistinguishability

between hybrids experiments in Section 8.4.
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7.4.7 Constant-Round Statistically Witness Indistinguishable Arguments

Additionally, we use a constant-round statistically witness-indistinguishable (SWI) argument sys-

tem, denoted by 〈Pswi, Vswi〉. Such a protocol can be obtained by executing Blum’s Hamiltonicity

protocol [Blu87] in parallel ω(log n) times, where we replace the prover’s commitments in the

Blum’s Hamiltonicity protocol with a constant-round statistically hiding commitment scheme [NY89,

HM96b, DPP97].

7.4.8 Semi-Honest Two Party Computation

We also use a constant-round semi-honest two party computation protocol 〈P sh
1 , P sh

2 〉 for any func-

tionality F in the stand-alone setting. The existence of such a protocol follows from the existence

of constant-round semi-honest 1-out-of-2 oblivious transfer [Yao86, GMW87, Kil88].
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CHAPTER 8

A constant-round concurrently secure MPC protocol in the

Cross-Domain model

In this section, we present the positive side of our result by constructing a constant-round concur-

rently secure MPC protocol in the CD model. Let F be a well-formed functionality where such a

functionality admits a constant-round two-party computation protocol in the semi-honest setting.1

In fact, for simplicity, we present a constant-round concurrently secure two-party computation

protocol in the CD model, denoted by Π, where a party belongs to either of the two domains.

We emphasize that this two-party protocol easily extends to a concurrently secure protocol for

any polynomially many parties in CD model of two fixed domains where a party is under either

of two domains. Subsequently, our protocol extends to a concurrently secure protocol for any

polynomially many parties in CD model of N fixed domains where each party belongs to one of

the N domains. We postpone the explanation on these extensions.

8.1 Building Blocks and Notations

Due to the space restrictions, we provide the details of the building blocks for our construction

in Section 7.4. Let g : {0, 1}n → {0, 1}3n be a length tripling pseudo-random generator. Let

PBCOM(·) denote a non-interactive perfectly binding commitment scheme, and let 〈C,R〉 denote

an one-slot extractable commitment scheme. Furthermore, we will denote a constant round strong

WI proof system by 〈Prszk, Vrszk〉 and a special constant-round NMWI argument of knowledge

protocol by 〈P ′, V ′〉. Finally we denote a constant-round SWI argument by 〈Pswi, Vswi〉, and a

1See [CLOS02] for the notion of well-formed functionality.
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constant-round semi-honest two-party computation protocol by 〈P sh
1 , P sh

2 〉 which securely com-

putes F as per the standard simulation-based definition of secure computation.

8.2 Construction of the protocol

We now provide the formal construction of concurrently secure two-party computation protocol in

the CD model. Some notations and the protocol description closely resemble those of [GGJS12].

Let FKCA = {F1
KCA,F

2
KCA} be the key certification authority(KCA) functionality with two domains

in the CD model, which is a special case of FKCA described in Section 8 where N = 2. See the

formal description in Section 7.2.

Let n be the security parameter. Let P1 and P2 be two parties with private inputs x1 and x2 re-

spectively. Without loss of generality, let P1 and P2 be in the domains F1
KCA and F2

KCA respectively.

Also, P1 and P2 have unique identifiers id1 and id2 respectively. Protocol Π = 〈P1, P2〉 proceeds

as follows. We omit session identifiers for the succinct specification.

I. Key Registration Phase.

1. P1 samples random strings sk0
1 and sk1

1 and sets pk0
1 := g(sk0

1) and pk1
1 := g(sk1

1).

2. P1 registers both public keys pk0
1 and pk1

1 by sending (register, id1, pk0
1) and (register, id1, pk1

1)

to functionality F1
KCA.2

3. P1 obtains (σpk0
1
,mvk1) and (σpk1

1
,mvk1) from F1

KCA where σpk0
1

and σpk1
1

are signatures on

pk0
1 and pk1

1 respectively where mvk1 is the respective verification key.

4. P1 chooses a random bit b1 ∈ {0, 1} and sets pk1 = pkb11 and sk1 = skb11 . We now denote the

corresponding signature by σpkpo.

2The registration request is not required to be two distinct requests to the functionality. Registering pk0
1 and pk1

1

can be viewed as a registering one public key which is a concatenation of two public keys and the functionality simply
decomposes it into two strings, signs both and returns them to the party.
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5. P2 acts analogously, registers pk0
2 and pk1

2 with F2
KCA, and obtains (σpk0

2
,mvk2) and (σpk1

,mvk2).

It sets pk2 = pkb22 and sk2 = skb22 where b2 is a random bit. Finally, σpkpt is the corresponding

signature.

II. Trapdoor Creation Phase. Let R1 be a NP-relation where the NP theorem is a string mvk

and the witness is a tuple (p̃k, s̃k, σ̃, c̃) such that (mvk, p̃k, s̃k, σ̃, c̃) ∈ R1 if and only if c̃ is the

commitment to p̃k||sk||σ̃ with respect to protocol 〈C,R〉, p̃k = g(sk), and Ver(p̃k, σ̃,mvk) = 1.

For convenience, we let (mvk, t, c̃) ∈ R1 if t = p̃k||sk||σ̃ and (mvk, p̃k, s̃k, σ̃, c̃) ∈ R1. In

addition, let R2 be a NP-relation where the NP theorem is a string mvk and the witness is a tuple

(p̃k, s̃k, σ̃) such that (mvk, p̃k, s̃k, σ̃) ∈ R2 if and only if p̃k = g(sk) and Ver(p̃k, σ̃,mvk) = 1.

Similarly, we denote we let (mvk, t) ∈ R2 if t = p̃k||sk||σ̃ and (mvk, p̃k, s̃k, σ̃) ∈ R2. The

trapdoor creation phase proceeds as follows.

1. P1 ⇒ P2 : P1 sends a request (retrieval, id2) to F1
KCA and obtains mvk2, a verification key

from F1
KCA. Recall that F1

KCA obtains mvk2 by interacting with F2
KCA. P2 analogously obtains

mvk1 from F2
KCA.

2. P1 ⇒ P2 : P1 executes 〈C,R〉 with P2, where P1 commits to trap1 = pk1||sk1||σpk1
. We

denote this execution by 〈C,R〉trap1
1→2 and the commitment by c̃1. Next P1 proves to P2 by

using strong WI proof system 〈Prszk, Vrszk〉 with common input mvk1, the following NP-

statement: there exists (pk1, sk1, σpk1
) where (mvk1, pk1, sk1, σpk1

) ∈ R1. If the verifier V

in 〈Prszk, Vrszk〉sk1
1→2 aborts, then P2 aborts. We denote this execution by 〈Prszk, Vrszk〉trap1

1→2 .

3. P2 ⇒ P1 : P2 acts analogously in Step 2 and 2 by first committing to trap2 = pk2||sk2||σpk2

using 〈C,R〉 and then giving a proof using 〈Prszk, Vrszk〉. We denote this execution by

〈C,R〉trap2
2→1 and 〈Prszk, Vrszk〉trap2

2→1 .

4. P1 ⇒ P2 : P1 commits to bit 0 as com1 = PBCOM(0) and sends com1 to P2. Next P1

and P2 executes constant-round NMWI argument of knowledge 〈P ′, V ′〉 in which P1 and P2

respectively play as P ′ and V ′. The common inputs for this execution of 〈P ′, V ′〉 are com1

and mvk2. In this execution, P1 proves to P2 that com1 is a commitment to 0 or there exists
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a string t such that (mvk2, t) ∈ R2. Honest party P1’s private input is the de-commitment

information of com1.3 That is, by the execution of 〈P ′, V ′〉, P1 proves to P2 that com1 is a

commitment to bit 0.

5. P2 ⇒ P1 : P2 proceeds symmetrically as does P1 above. In summary, it generates a com-

mitment com2 to bit 0 and then proves the same using 〈P ′, V ′〉.

III. Input Commitment Phase. Let Encpk(·) denote the encryption algorithm of an dense en-

cryption scheme with pseudo-random public keys with public-keys of length `.

1. P1 ⇔ P2 : P1 samples a random string α1 ∈ {0, 1}` and sends c′1 = PBCOM(α1) to P2.

Upon receiving c′1, P2 responds with a random string β1 ∈ {0, 1}`. At this point, P1 reveals

the value α1 to P2 and proves the following NP-statement to P2 by executing 〈Pswi, Vswi〉:

(a) either there exists randomness such that c′1 is a commitment to the string α1,

(b) or com1 is a commitment to 1.

Both parties set pk1
c = α1 ⊕ β1 (public key generated using the coin flipping).

2. P2 ⇔ P1 : P2 and P1 proceed symmetrically as above to generate the public key pk2
c =

α2 ⊕ β2.

3. P1 ⇒ P2 : P1 samples a random string r1 of appropriate length which is to be used as

randomness to execute semi-honest two-party computation 〈P sh
1 , P sh

2 〉. P1 computes y1 =

Encpk2c(x1||r1). Then, it sends y1 to P2.

4. P2 ⇒ P1 : P2 proceeds symmetrically as does P1 above. Let x2 and r2 be the input

and the random string chosen by P2 to be used in the execution of 〈P sh
1 , P sh

2 〉. Let y2 =

Encpk1c(x2||r2) be the cipher-text generated.

3Looking ahead the secret key corresponding to the public key pk2 will allow the simulator to cheat in the simula-
tion.
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IV. Secure Computation Phase. In the secure computation phase, parties P1 and P2 jointly

evaluate the desired functionality F based on a constant-round semi-honest two-party computation

protocol 〈P sh
1 , P sh

2 〉. Party P1 plays P sh
1 while party P2 plays P sh

2 . Note that 〈P sh
1 , P sh

2 〉 is secure

against semi-honest adversaries. Thus, we require that the coins of participating parties are indeed

uniform. Moreover, we require each party to prove the validity of every message it sends to the

other party. That is, whenever a party generates and sends a message to the other party, it is required

to prove by using 〈Pswi, Vswi〉 that the message is honestly generated with respect to its input,

random coins and the instructions of 〈P sh
1 , P sh

2 〉. In the following, let t be the round complexity

of 〈P sh
1 , P sh

2 〉 where each round consists of two messages: w.l.o.g. a message from P1 followed

by a message from P2. We denote the next message generators of 〈P sh
1 , P sh

2 〉 simply by P sh
1 and

P sh
1 . We define transcript T1,i (resp., T2,i) by the set (or vector) of all the messages (belonging

to 〈P sh
1 , P sh

2 〉) which are exchanged between P1 and P2 before P1 (resp., P2) needs to send the

i-th round message of 〈P sh
1 , P sh

2 〉 for i ∈ [t]. In particular, P1 obtains the i-th round message,

denoted by β1,i, of 〈P sh
1 , P sh

2 〉 as it computes β1,i = P sh
1 (T1,i, x1, r

′′
1). The P2’s i-th message is

symmetrically defined as β2,i = P sh
1 (T2,i, x2, r

′′
2). The formal definition of the secure computation

phase is provided as follows.

1. P1 ⇒ P2 : P1 samples a random string r′2 of appropriate length and sends it to P2.

2. P1 ⇐ P2 : P2 similarly samples a random string r′1 of appropriate length and sends it to P1.

3. P1 computes r′′1 = r1 ⊕ r′1 and P2 computes r′′2 = r2 ⊕ r′2. Then, r′′1 and r′′2 are the random

coins to be used respectively by P1 and P2 in the execution of 〈P sh
1 , P sh

2 〉.

4. For i ∈ [t], parties P1 and P2 repeats the following procedure.

(a) P1 ⇒ P2 : P1 computes β1,i = P sh
1 (T1,i, x1, r

′′
1) and send it to P2.

(b) P1 ⇒ P2 : P1 proves to P2 by using 〈Pswi, Vswi〉, the NP-statement which is a disjunc-

tion of the following NP-statements:

i. There exist values x̂1, r̂1 such that

A. there exists randomness such that y1 = Encpk2c(x̂1||r̂1)
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B. and β1,i = P sh
1 (T1,i, x̂1, r̂1 ⊕ r′1)

ii. com1 is a commitment to bit 1.

(c) P2 ⇒ P1 : P2 acts symmetrically.

This completes the formal definition of protocol Π. We claim the following.

Theorem 6. If there exist a constant-round semi-honest OT, an encryption system with dense(pseudo-

random) public keys, and a family of collision-resistant hash functions, then there exists a constant-

round concurrently secure two-party computation protocol for every well-formed functionality F
in the CD model.

8.3 Proof of Theorem 6

In this section, we prove Theorem 6 by constructing an Expected Probabilistic Polynomial-Time

(EPPT) simulator sim for protocol Π, which satisfies Definition 9. That is, the EPPT simulator sim

with a black-box access to the adversary A simulates the view of adversary which is computation-

ally indistinguishable from the view of adversary interacting with a honest party in the real world

execution of Π. Notice that the NP-statement for an instance of SWI (in Step 4b of Secure Compu-

tation Phase) is a disjunction of two NP-statements (Statement 4(b)i and Statement 4(b)ii). In the

rest of the work, we refer to Statement 4(b)i as real theorem while we refer to Statement 4(b)ii as

the trapdoor theorem. We call the witness corresponding to statement 4(b)i (resp. statement 4(b)ii)

as real (resp. trapdoor) witness. In the following, we first describe the construction of sim in

Section 8.3.1. The formal proof on the indistinguishability between views of real execution and

simulated execution is provided in Section 8.4.

8.3.1 Construction of simulator sim

Notations. In the following, we denote the honest party and the adversary by H and A respec-

tively. Also, let FHKCA be the domain to which the honest party belong. Similarly, we use FAKCA to

denote the domain where the adversary corrupts a party. Without loss of generality, we define our
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simulator in the case where the honest party (thus, the simulator in the following) sends the first

message in the protocol. We omit the other case where the corrupted party sends the first message.

Let m = poly be the running time of the PPT adversary A. And let l be the number of public keys

registered by the corrupted party. The running time ofA serves as an upper-bounds on the number

of concurrent sessions and also on the number of registered public keys. In the course of simula-

tion, simulator sim maintains two sets denoted by Database1 and Database2. Database1

contains an element of the form (pk, sk, σpk) for i ∈ [l]. Database2 contains elements of the

form (sid, xsid
i , r

sid
i ) where sid ∈ [m] and i ∈ [l]. Initially, Database1 and Database2 are set

to be empty. We sometimes omit the session identifier sid in order to simplify notations.

We preserve the notations for the execution of building blocks as in Section 8.2. For example,

we denote by 〈Prszk, Vrszk〉sim→A, an instance of 〈Prszk, Vrszk〉 where simulator sim and corrupted

party A play as the prover P and the verifier V respectively in the execution of the protocol

〈Prszk, Vrszk〉. We demarcate the following two special messages in the protocol Π:

• Message Σsid
1 : Σsid

1 denotes the second message of 〈C,R〉trapAA→sim in session sid. Recall that

the second message of the protocol 〈C,R〉 is a random string (challenge) from the receiver

to the committer. In the execution of 〈C,R〉trapAA→sim, this message is sent by the simulator (on

behalf of H) to the adversary A.

• Message Σsid
2 : Σsid

2 denotes the message of session sid when the simulator (on behalf of the

honest party H) sends the commitment to 0 using the commitment scheme PBCOM. The

simulator will behave honestly until this point and will cheat only after this point is reached.

Description of sim. We provide the simulation strategy of sim in each phase of Π as follows.

I. SIMULATION OF KEY REGISTRATION PHASE: In the key registration phase, simulator sim

follows an honest party’s strategy. That is, sim interacting with FHKCA registers public keys pk0
sim

and pk1
sim (on behalf of the honest partyH) where (pk0

sim, sk0
sim) and (pk1

sim, sk1
sim) are obtained as in

the honest setting. Finally, sim completes the simulation of key registration phase by setting pksim,

sksim, and σpksim following the honest strategy.
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II. SIMULATION OF TRAPDOOR CREATION PHASE: Simulator sim behaves according to the

honest party strategy until it needs to send the Σsid
2 for some session session sid ∈ [m]. At this

point, sim by interacting with FHKCA obtained a verification key mvkA of FAKCA. To successfully

simulate trapdoor creation phase, sim wants to do the following:

1. For all sessions, sim commits to 1 (recall that this differs from the real execution in the fact

that honest party commit to 0) by executing comsim = PBCOM(1) and then sends comsim in

to the adversary.

2. For all sessions, sim proves to A by executing 〈P ′, V ′〉sim→A using a trapdoor information

trapA (stored in the database Database1) as its witness that (mvkA, trapA) ∈ R2.

Thus, before sending the commitment to 1, sim checks if Database1 contains trapA such

that (mvkA, trapA) ∈ R2. If so, then sim proceeds as above. Otherwise, sim employs a rewinding

strategy to extract the trapdoor information. Note that session sid (called target session) is the

session in which the simulator needs to send the commitment to bit 1 using the commitment scheme

PBCOM without the corresponding trapdoor information in Database1. We will denote this

session by sidtarget. When this point is reached, our simulator sim executes the following look-

ahead thread strategy.4

1. sim rewinds adversary A back to the point before sim had sent Σsidtarget
1 to A.

2. In the look-ahead thread, the simulator sim sends to A a fresh random challenge for the

message Σsidtarget
1 and behaves honestly subsequently. If in this look-ahead thread, the first

session in which the simulator needs to send Σsid
2 is not the target session (in other words

sid 6= sidtarget), then sim rewinds again and repeats this step. If the number of rewindings

reaches 2n, then sim aborts completely and outputs Rewind Abort.

3. Since sim need to send Σsidtarget
2 in both the main thread and the rewound thread, it must have

obtained two distinct valid de-commitments5 of 〈C,R〉trapAA→sim in the target session sidtarget

4Note that the transcript generated by the execution of look-ahead threads will not be included in the view of the
main thread simulation.

5We prove this as Lemma 8 in Section 8.4.2.
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in both the main thread and the look-ahead threads. At this point, using two distinct valid

de-commitments, sim obtains trapA (see Section 7.4.4). sim executes the rest of the main

concurrent execution with the updated Database1. Notice that a single successful extrac-

tion of trapA in one session suffices to simulate all other sessions.

III. SIMULATION OF INPUT COMMITMENT PHASE.

1. The simulator behaves honestly in the generation of the public key pkAc .

2. Now, we describe simulation strategy in generation of the public key pksim
c . sim starts by

generating a a fresh public key pksim
c along with the secret key sksim

c . It generates the com-

mitment c′sim as the commitment to the zero string. Then, sim receives βsim from A. Finally

sim opens αsim as pksim
c ⊕ βsim. sim executes 〈Pswi, Vswi〉sim→A where sim uses the trapdoor

witness. sim possesses the trapdoor witness since it committed to bit 1 instead of 0 during

the simulation of the trapdoor creation phase.

3. sim generates ysim as encryption of the zero string using the public key pkAc and sends it to

the adversary. (instead of using its actual input and random coins needed for the semi-honest

two-party computation)

4. Upon the receiving yA, the simulator sim extracts the input and randomness xsid
A and rsid

A of

A using the secret key sksim
c . Now, sim adds (sid, xsid

A , r
sid
A ) to Database2.

IV. SIMULATION OF SECURE COMPUTATION PHASE. Let Ssh denote the simulator for the semi-

honest two-party protocol 〈P sh
1 , P sh

2 〉 used in our construction. sim internally runs simulator Ssh

on adversary Ash’s input xA ∈ Database2. Ssh at some point makes a call to ideal functionality

F in the ideal world with an input string xA. Then, sim makes a query (sid, xA) to F . Then, sim

forwards the output returned by F to Ssh. At some point of internal simulation of 〈P sh
1 , P sh

2 〉, Ssh

finally halts and outputs a transcript βSsh,1, βAsh,1, . . . , βSsh,t, βAsh,t and associated random coin r̂A.

sim proceeds with the following instructions.

1. sim computes a random string r̃A such that r̃A = rA ⊕ r̂A. Then, sim sends r̃A to A.
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2. For each round j ∈ [t], sim sends βSsh,j to A. Then, sim executes 〈Pswi, Vswi〉sim→A with A
where sim uses the trapdoor witness, decommitment information of comsim (commitment to

1 instead of 0). If A aborts upon βSsh,j for some j ∈ [t], sim outputs a special abort message

ABORT1.

3. Upon receiving A’s next message βA,j in the protocol 〈P sh
1 , P sh

2 〉, sim plays the honest ver-

ifier in an execution of 〈Pswi, Vswi〉A→sim. For any j ∈ [t], if the jth message βA,j sent by

adversary A is not identical to βAsh,j (obtained from the internal execution of Ssh) and if

〈Pswi, Vswi〉A→sim on βA,j is accepting, then sim aborts and outputs a special abort message

ABORT2.

Finally, the output of simulator sim contains all messages exchanged between the simulator

and the adversary including the output of the adversary in the communication of all sessions.

Lemma 2. Let F be a well-formed functionality. Let Π be a protocol defined as in Section 8.2 and

A be any PPT concurrent adversary in the CD model. Given a black-box access to A, simulator

sim described in Section 8.3.1 runs in expected probabilistic polynomial time and satisfies the

following: for any inputs {~xi}i∈[2],

{
IDEALFsim(n, z, {~xi}i∈[2])

}
n∈N;z∈{0,1}∗

c≡
{

REALΠ
A(n, z, {~xi}i∈[2])

}
n∈N;z∈{0,1}∗ .

In Section 8.4, we provide the formal proof of Lemma 2. In particular we prove that sim runs

in EPPT time and that the distribution of its output is computationally indistinguishable from the

distribution of the adversary’s output.

8.4 Computational Indistinguishability Between The Views

In this section, we formally prove Lemma 2. We first define two experiments denoted by H0 and

H1 as follows.
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ExperimentH0: Simulator sim follows the honest party’s algorithm as specified in the definition

of Π interacting with adversaryA. sim obtains honest party’s inputs. At the end of the experiment,

sim generates the output of the honest party along with the view (including the output) of A. The

output of sim in experiment H0 is identical to the output from the real execution of protocol Π

between an honest party and A.

Experiment H7: Simulator sim simulates the honest parties by employing the simulation strat-

egy explained in Section 8.3.1. For every session controlled by the adversary, the honest party

queries the ideal functionality on its input and outputs the response returned by the ideal function-

ality. The output of this hybrid corresponds to the the output of the honest party and the view of

the adversary A.

We additionally consider a series of six intermediate hybrid experiments denoted by H1, H2,

· · · ,H6. We formally defined these hybrid experiments later in Section 8.4.2. We denote by νi the

distribution ensemble of experimentHi for every i. Thus, Lemma 2 may be re-written in a simpler

notation as follows:

Lemma 3. ν0
c≡ ν7.

The proof of this lemma requires a careful analysis on the distribution ensembles of the above

hybrid experiments, where the proof structure follows those in the previous works such as [BPS06,

GJO10, GGJS12].

8.4.1 The Proof of Lemma 3

In this section, we formally prove that ν0 is computationally indistinguishable from ν7 by a hybrid

argument. We first start with proving general lemmas that we will use throughout.

Soundness Condition. Looking ahead, while proving the indistinguishability of the outputs of

our hybrid experiments, we will need to argue that in each session sid ∈ [m], the soundness

property holds for 〈P ′, V ′〉A→sim and that the trapdoor condition is false for each instance of
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〈Pswi, Vswi〉A→sim. In the sequel, we will refer to this as the soundness condition. Now consider

the instance 〈P ′, V ′〉sid
A→sim in session sid. Let πsid

A denote the proof statement6 for 〈P ′, V ′〉sid
A→sim,

where, informally speaking, πsid
A states that A committed to bit 0 (earlier in the trapdoor creation

phase). Note that the soundness condition “holds” if in each session sid ∈ [m], A commits to a

valid witness to the πsid
A in NMCOM inside 〈P ′, V ′〉sid

A→sim.

To show this, we define m random variables, denoted by {ρsid
i }msid=1 for i ∈ [0, 7] such that ρsid

i

is the value committed to in the NMCOM inside 〈P ′, V ′〉sid
A→sim in hybrid experiment Hi. In the

following, we first show that the soundness condition holds in hybrid experiment H0 (i.e., the real

execution). In order to argue this we first prove the following useful fact.

Lemma 4. In experimentH0, no PPT adversary A corrupting the party PA can output trapH (the

trapdoor information of the honest party) with non-negligible probability.

Notice that trapH is of the form of (pk, sk, σpk) such that pk = g(sk) where g is a pseudo-

random function. Therefore, in the following proof, we focus on an adversary outputting (pk, sk).

Proof. Towards the contradiction, assume that such a PPT adversaryA exits. We start by arguing

for the case when the adversary A corrupts P1. In this case, the adversary A is assumed to output

the trapdoor information trap0
2 = (pk0

2, sk0
2, σpk0

2
) or trap1

2 = (pk1
2, sk1

2, σpk1
2
). The other case when

the adversary corrupts P2 follows in an analogous manner. We first observe that the simulator on

behalf of the honest party P2 uses the trapdoor information trapb22 where b2 is a uniformly chosen

bit.

Two cases arise in this setting. Firstly it is possible that the adversary A always (expect with

negligible probability) outputs the same secret key skb22 as the one used by the simulator on behalf of

honest P2 or the simulator outputs sk1−b2
2 with a non-negligible probability. If the first case happens

with non-negligible probability then we can contradict the strong WI property of the 〈Prszk, Vrszk〉
protocol. On the other hand, if the secret key that the adversary outputs is different from the one

6Recall that the argument system 〈P ′, V ′〉 has a trapdoor condition of the knowledge of the trapdoor information
of the other party. We do not consider it as a part of the theorem statement being proven.
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used by the simulator with non-negligible probability, then we can use the adversary to break the

security of the pseudo-random generator g. The detailed proofs are provided below.

Towards a contradiction, suppose that there exists a PPT adversary A corrupting P1 which

outputs skb22 almost always (except with non-negligible probability), where trapb22 is the trapdoor

randomly used by the honest party P2. Then, we construct a PPT witness-distinguishing adversary

Awi which breaks the strong witness-indistinguishability of 〈Prszk, Vrszk〉 as follows. We will con-

sider a sequence of m hybrids. In the ith hybrid we require that the adversary uses the trapdoor

trap1−b2
2 in the first i sessions while it uses trapb22 in the rest of the sessions. When we change the

trapdoor used to trap1−b2
2 in all the session, relying on the strong WI property, we can claim that

the adversary still outputs the secret key trapb22 . Subsequently, we can use the argument presented

for case two to reach a contradiction.

Consider a challenger C defined as follows: C is provided with the trapdoor trap0
2 and trap0

2

and it commits to one of them in 〈C,R〉 as a committer. It subsequently gives a proof using the

〈Prszk, Vrszk〉 protocol. Observe that the value committed to in 〈C,R〉 computationally hiding. In

other words the theorem statements for the strong WI are chosen from computationally indistin-

guishable distributions.

Now we give proof of indistinguishability among hybrids i− 1 and i. Awi proceeds as follows.

Awi first samples two trapdoors. It samples a random bit b2 and executes all sessions using the

trapdoor trapb22 except the ith session for which it uses the challenger. Note that if C outputs trapb22 ,

then we are in the first hybrid i− 1 and otherwise we are in hybrid i.

Towards a contradiction of the second case, suppose that there exists a PPT adversary A cor-

rupting P1 which outputs trap1−b2
2 with non-negligible probability, where trapb22 is the trapdoor

picked by the honest party P2. Then, we construct a PPT adversary Aow which breaks the security

of PRG g as follows. Consider a challenger that provides pkext such that pkext = g(skext). Our

adversaryAow internally generates pk′2 = g(sk′2), registers the public key to obtain the correspond-

ing signature, and form trapb22 . Then, in the concurrent executions, Aow as honest party P2 uses

trapdoor trapb22 in 〈Prszk, Vrszk〉sid
P2→A for every sid ∈ [m] (Note that this is identical to the honest

player’s strategy) and plays honestly in the rest of the executions. Since A outputs the trapdoor
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of public key which is not used in 〈Prszk, Vrszk〉 with non-negligible probability, Aow breaks the

security of PRG g, which leads to a contradiction.

Next we claim that the soundness condition holds in hybrid experimentH0.

Lemma 5. Let 〈P ′, V ′〉sid
A→sim and πsid

A be as described as above. For every session sid ∈ [m], if

the honest party does not abort session sid before the beginning of the Input Commitment Phase

inH0, then ρsid
0 is a valid witness to the statement πsid

A except with negligible probability.

Roughly speaking, Lemma 4 claimed that no adversary can output the secret key of the honest

party. This coupled with the knowledge soundness of the statistical zero knowledge argument of

knowledge used in 〈P ′, V ′〉 implies that the theorem statement πsid
A must be true. Again based on

the soundness property of the argument of knowledge we can conclude that ρsid
0 is a valid witness

to the statement πsid
A except with negligible probability. For the detailed proof, see [Claim 2.5,

[BPS06]].

The following Lemma generalizes the above lemma over the series of hybrids experiments. We

provide the proof of the following lemma later in Section 8.4.3 as its proof requires the use of other

claims on our hybrids.

Lemma 6. Let 〈P ′, V ′〉sid
A→sim and πsid

A be as described as above. For every i ∈ [7] and each

session sid ∈ [m], if the honest party does not abort session sid before the beginning of the Input

Commitment Phase in Hi, then ρsid
i is a valid witness to the statement πsid

A , except with negligible

probability.

Public-coin property of NMCOM. We now describe a strategy that we will repeatedly use in

our proofs in order to argue that for every session ` ∈ [m], the random variable ρ` (i.e., the value

committed by A in the NMCOM inside 〈P ′, V ′〉`sim→A remains indistinguishable as we change

our simulation strategy from one hybrid experiment to another. Intuitively, we will reduce our

indistinguishability argument to a specific cryptographic property (that will be clear from context)

that holds in a stand-alone setting. Specifically, we will consider a stand-alone machine M∗ that
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runs sim and A internally. Here we explain how for any session ` ∈ [m], M∗ can “expose” the

NMCOM inside 〈P ′, V ′〉`sim→A to an external partyR (i.e.,M∗ will send the commitment messages

from A to R and vice-versa, instead of handling them internally). Note that sim will be rewinding

A during the simulation. However, since R is a stand-alone receiver; M∗ can use its responses

only on a single thread of execution.

In order to deal with this problem, we will use the following strategy. When A creates the

NMCOM inside 〈P ′, V ′〉`sim→A, any message in this NMCOM from A on the main-thread is for-

warded externally to R; the responses from R are forwarded internally to A on the main-thread.

On the other hand, any message in this NMCOM from A on a look-ahead thread is handled inter-

nally; M∗ creates a response on its own and sends it internally to A on that look-ahead thread. We

stress that this is possible because NMCOM is a public-coin protocol.

In the sequel, whenever we use the above strategy, we will omit the details of the interaction

between M∗ and R.

8.4.2 Definition and Indistinguishability of Intermediate Hybrid Experiments

In this section, we provide the formal description of intermediate hybrid experiments and analyze

their distribution ensembles. First, we define the hybrid experimentH1 as follows.

ExperimentH1: In this hybrid, sim behaves identically as inH0 except using the rewinding strat-

egy described in the description of simulation. More specifically, simulator sim behaves according

to the honest party strategy until it needs to send the Σsid
2 for some session session sid ∈ [m]. In

other words, session sid (called target session) is the first session in which the simulator needs to

send the commitment to bit 0 using the commitment scheme PBCOM. We will denote this session

by sidtarget. When this point is reached then our simulator sim executes the following rewinding

strategy (i.e., the execution of look-ahead threads).

1. sim rewinds adversaryA back to the point before sim had sent Σsidtarget
1 toA. Recall that the

message Σsid
1 (or the second message of 〈C,R〉trapAA→sim for session sid) sent by the simulator
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sim corresponds to a random challenge string.

2. In the rewound execution the simulator sim sends to A a fresh random challenge for the

message Σsidtarget
1 and behaves honestly subsequently. If in this rewound execution the first

session in which the simulator needs to send Σsid
2 is not the target session (in other words

sid 6= sidtarget) then simulator rewinds again and repeats7 this step. Otherwise:

3. Since sim needs to send Σsidtarget
2 in both the main thread and the rewound thread it must

have obtained valid de-commitments8 in the execution of 〈C,R〉trapAA→sim in the target session

sidtarget in both the main thread and the look-ahead thread. At this point using the decom-

mitments generated in the main-thread and the look-ahead thread the simulator obtains the

secret key skA corresponding to the public key pkA of the adversary and makes an entry

for the same in Database1. sim executes the rest of the concurrent execution in the main

thread with the updated database Database1. (i.e., the continuation of main thread simu-

lation with the updated Database1)

Subsequently the simulator follows the honest party strategy. Note that sim does not use the

extracted information anywhere in H1. First in Lemma 7, we prove that the rewinding strategy

halts in the expected probabilistic polynomial time. Secondly in Lemma 8, we will prove that

following this strategy the database Database1 is populated with the secret key of the adversary

before Σsid
2 is sent for any session sid ∈ [m]. Here we will also prove that these keys are indeed

valid keys.

Lemma 7. For any PPT adversary A, simulator sim of experiment H1 halts in expected proba-

bilistic polynomial time of security parameter n.

Proof. To prove the lemma, we give an analysis similar to the one in Rosen [Ros04]. Let A
be any PPT adversary (given as a black-box) of running time m. Then, sim starts the simulation

interacting with A by fixing some random coins r for A. At some point of the simulation, sim

reaches a point where it needs to to send Σsid
2 for some session sid ∈ [m] in the main thread. We

7If the number of rewindings reaches 2n, then sim aborts completely and outputs Rewind Abort.
8We will prove this fact in Lemma 8.
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refer to this session as the target session (denoted by sidtarget). In other words sidtarget is the first

session in which sim needs to send the commitment to 0 using PBCOM in the trapdoor creation

phase. We define the event Reach(sidtarget) to happen when sidtarget is the first session in which

sim needs to send the commitment to 0 using PBCOM in the trapdoor creation phase.

We denote the sequence of messages exchanged between sim and A before Σsidtarget
1 by prefix.

Then, let δ = δ(r, prefix) be the probability that Reach(sidtarget) occurs over sim’s random coins

(the random coins used after prefix is completed). Note that these random coins include the chal-

lenge string used in 〈C,R〉sidtarget
A→sim . Further note that sim behaves in an identical manner in both

the main thread and every look-ahead thread. Therefore, we have9 Pr[Reach(sidtarget) = 1] = δ in

both the main thread and a look-ahead thread.

Consider one simulator verifier execution. Let p1(n), p2(n) and p3(n) denote the time taken by

such the execution from start to the point when Σsid
1 is sent, then to the point when Σsid

2 needs to be

sent and and then finally to the completion point. Note that all these are polynomials.

Observe that sim is expected to obtain at least one look-ahead thread such that Reach(sidtarget) =

1 after 1
δ

executions of the look-ahead thread. Therefore, the running time of sim inH1 is:

p1(n)+(1−δ) ·p2(n)+δ ·
(
p2(n) +

1

δ
· p2(n) + p3(n)

)
≤ p1(n)+p2(n)+p2(n)+p3(n) ≤ poly.

Lemma 8. LetE be the event that sim sends Σsid
2 for some session sid ∈ [m] however the database

Database1 does not contain a valid secret key for the public key of the adversary. We claim that

E happens with negligible probability.

Proof. Observe that the simulator sends Σsid
2 for some session sid ∈ [m] only if it has successfully

obtained two threads of execution with the adversary such that in each of the two threads it needs

to send Σsidtarget
2 such that both of them correspond to the same session id sidtarget, which is also

9For simplicity of analysis we ignore the negligible probability cases in which the main thread and the look-ahead
thread have the same challenge messages for the target session and the case when Rewind Abort happens.
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the first session in which Σsid
2 . Finally note that these two threads differ in Σsidtarget

1 for the session

sidtarget. This allows the simulator to evaluate the extract the committed value. Furthermore we

claim that the extracted value will indeed correspond to a valid secret key. This follows from the

soundness of the 〈Prszk, Vrszk〉 protocol in the main thread and the look ahead thread. Observe that

the commitment 〈C,R〉trapAA→sim is statistically binding and therefore if the extracted key is not correct

with non-negligible probability then we can conclude that the adversary is proving a false theorem

and use this adversary to contradict the soundness of the 〈Prszk, Vrszk〉 protocol.

Finally we claim indistinguishability of hybridsH0 andH1.

Lemma 9.

ν0
s≡ ν1, (8.1)

∀sid ∈ [m] ρsid
0

s≡ ρsid
1 . (8.2)

Proof. The only difference between H0 and H1 is that sim outputs a Rewind Abort since the

main-thread and the look-ahead threads are identically distributed. By Lemma 7, the probability

that the simulator outputs a Rewind Abort is negligible in security parameter n. Hence, the

lemma follows.

ExperimentH2: Identical toH1 except that sim uses the extracted secret key skA ∈ Database1
to execute 〈P ′, V ′〉sid

sim→A for all sessions sid ∈ [m]. We now claim that,

Lemma 10.

ν1
c≡ ν2, (8.3)

∀sid ∈ [m] ρsid
1

c≡ ρsid
2 . (8.4)

The proof of the lemma is similar to [BPS06] and is provided in Appendix 8.5.
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Experiment H3: Identical to H2 except that sim commits to bit 1 instead of 0 in the trapdoor

creation phase in all sessions. That is, in Step 4 of trapdoor creation phase in Section 8.2, sim

computes comsim = PBCOM(1) instead of comsim = PBCOM(0) in all sessions. We denote by

comsid
sim→A the commitment in session sid.

Lemma 11.

ν2
c≡ ν3, (8.5)

∀sid ∈ [m] ρsid
2

c≡ ρsid
3 . (8.6)

The proof of the lemma is provided in Appendix 8.5.

Experiment H4: Identical to H3 except that sim uses the trapdoor witness (instead of the real

witness) in each instance of 〈Pswi, Vswi〉 in session sid, denoted by 〈Pswi, Vswi〉sid
sim→A. The trapdoor

witness (the extracted secret key of the adversary A) for the executions of SWI must be stored in

Database1 since it committed to bit 1 instead of bit 0 in session sid.

Lemma 12.

ν3
s≡ ν4, (8.7)

∀sid ∈ [m] ρsid
3

c≡ ρsid
4 . (8.8)

The proof of the lemma is provided in Appendix 8.5.

Experiment H5: Identical to H4 except that sim for the input commitment phase of all sessions

employs the simulation strategy of the Input Commitment Phase described in Section 8.3.1. In

particulary:

1. sim generates the commitment c′sim as the commitment to the zero string.
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2. Simulator changes its strategy in generation of the public key pksim
c . sim starts by generating

a a fresh public key pksim
c along with the secret key sksim

c . Then, sim receives βsim from A.

Finally sim opens αsim as pksim
c ⊕ βsim.

Note that sim is hybridH4 was already executing 〈Pswi, Vswi〉sim→A with the trapdoor witness.

3. sim generates ysim as encryption of the zero string using the public key pkAc and sends it to

the adversary. (instead of using its actual input and random coins needed for the semi-honest

two-party computation)

4. Upon the receiving yA, the simulator sim extracts the input and randomness xsid
A and rsid

A of

A using the secret key sksim
c . Now, sim adds (sid, xsid

A , r
sid
A ) to Database2.

Lemma 13.

ν4
c≡ ν5, (8.9)

∀sid ∈ [m] ρsid
4

c≡ ρsid
5 . (8.10)

The proof of the lemma is provided in Appendix 8.5.

Experiment H6: Identical to H5 except that sim simulates the execution of 〈P sh
1 , P sh

2 〉 in each

session sid as follows. That is, sim behaves identically as in H5 and additionally executes the

simulation strategy for the Secure Computation Phase IV in Section 8.3.1. Let Ssh denote the PPT

simulator for the underlying semi-honest two-party secure computation protocol 〈P sh
1 , P sh

2 〉. sim

internally executes Ssh on A’s input in Database2 in session sid. When Ssh makes a query to

the trusted party with some inputs, sim queries the ideal functionality with this input for session

sid. sim forwards the response from the trusted party to Ssh. At some point, Ssh halts and outputs

a transcript of 〈P sh
1 , P sh

2 〉 and an associated random string for the adversary.

Then, sim forces A to use this transcript and random coin in the subsequent execution of

〈P sh
1 , P sh

2 〉. If A aborts upon any of the messages sent by sim, sim aborts all communication and

outputs a special message ABORT1. If A responds differently than the simulated response while
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it succeeds to generate the accepting SWI proof corresponding to the message, then sim aborts all

communication and outputs ABORT2.

We claim that during the execution of 〈P sh
1 , P sh

2 〉, the messages of A must be consistent with

the transcript generated by Ssh via the internal simulation of sim except with negligible probability.

Notice that soundness condition holds except with negligible probability at this point. This means

that the trapdoor condition is false for every instance of 〈Pswi, Vswi〉A→H in any session sid.

Lemma 14.

ν5
c≡ ν6, (8.11)

∀sid ∈ [m] ρsid
5

c≡ ρsid
6 . (8.12)

The proof of the lemma is provided in Appendix 8.5.

8.4.3 Proof of Lemma 6

We consider the amount of increment in probability whereA violates the soundness condition from

one hybrid experiment to its successive one. Lemma 5 tells us that the probability is negligible in

the first hybrid (the real experiment). We will now argue that the increment is bounded a negli-

gible value for each pair of consecutive hybrids we consider. The argument follows based on the

indistinguishability of the random variables ρsid
i and ρsid

i+1 for every i ∈ [0, 6] and every sid ∈ [m]

by Equations 8.2, 8.4, 8.6, 8.8, 8.10 and 8.12.

8.5 Hybrid Indistinguishability Details

The following text is adapted from the proofs in [GGJS12], which in turn was based in part

on [GJO10, BPS06].
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8.5.1 Proof of Equation 8.3 and 8.4

The proof of this claim follows directly from [BPS06]. However since we do not use any of their

formal claims directly for completeness, we provide a sketch of the argument here.

Recall that in 〈P ′, V ′〉sim→A both parties P ′ and V ′ get x, y as common inputs and the prover P ′

gets a witness w such that (x,w) ∈ RL or (y, w) ∈ R2. Our simulator sim performs the following

steps inH2 to simulate 〈P ′, V ′〉sim→A :

1. sim first commits to trapA (instead of a string of all zeros) using the statistically hiding

commitment scheme SCOM and follows it up with an honest execution of SZKAOK to

prove knowledge of the decommitment.

2. sim commits to an all zeros string (instead of a valid witness to w such that (x,w) ∈ RL)

using the non-malleable commitment scheme NMCOM.

3. Finally, sim proves the following statement using SZKAOK: (a) either the value w com-

mitted to in NMCOM earlier is such that (x,w) ∈ RL, or (b) the value w committed to in

SCOM is such that (y, w) ∈ R2. Here it uses the witness corresponding to the second part of

the statement. Below, we will refer to this witness as the trapdoor witness, while the witness

corresponding to the first part of the statement will be referred to as the real witness.

Consider the sequence of sub-hybrids H1:1,H1:2, . . .H1:m where hybrid H1:i represents the

case in which the simulator sim uses the extracted trapdoor trapA ∈ Database1 to execute

〈P ′, V ′〉sid
sim→A for the first i sessions and follows the honest party strategy for the rest of the session.

In particular, in hybridH1:i, P ′ proves to V ′ that (x,w) ∈ RL for the lastm−i sessions while it uses

the trapdoor trapA ∈ Database1 to prove that (y, w) ∈ R2 in the first i sessions. Additionally

note that the hybridH1:m is same as hybridH2. Now, to prove equations 8.3 and 8.4, we will create

three intermediate hybrids H1:i:1, H1:i:2, and H1:i:3. Hybrid H1:i:1 is identical to H1:i, except that

it changes its strategy to perform step 1 (as described above). Hybrid H1:i:2 is identical to H1:i:1,

except that it changes its strategy to perform step 3. Finally, hybrid H1:i:3 is identical to H1:i:2,

except that it changes its strategy to perform step 2. Note thatH1:i:3 is identical toHi:2.
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We now for all values of i ∈ {1, . . . ,m} claim the following:

νi:1
s≡ ν1:i:1 (8.13)

∀` ∈ [m] ρ`i:1
c≡ ρ`1:i:1 (8.14)

ν1:i:1
s≡ ν1:i:2 (8.15)

∀` ∈ [m] ρ`1:i:1

c≡ ρ`1:i:2 (8.16)

ν1:i:2
c≡ ν1:i:3 (8.17)

∀` ∈ [m] ρ`1:i:2

c≡ ρ`1:i:3 (8.18)

Note that equation 8.3 follows by combining the results of equations 8.13, 8.15, and 8.17. Sim-

ilarly, equation 8.4 follows by combining the results of equations 8.14, 8.16, and 8.18. We now

prove the above set of equations.

Proving Equations 8.13 and 8.14. We first note that SCOM and SZKAOK can together be viewed

as a statistically hiding commitment scheme. Let SCOM denote this new commitment scheme.

Then, equation 8.13 simply follows from the (statistical) hiding property of SCOM.

In order to prove equation 8.14, let us first assume that the claim is false, i.e., ∃` ∈ [m] such that

ρ`i:1 and ρ`1:i:1 are distinguishable by a PPT distinguisher D. We will create a standalone machine

M∗ that is identical to Hi:1, except that instead of simply committing to a string of all zeros using

SCOM, M∗ takes this commitment from an external sender C and “forwards” it internally to A.

Additionally, M∗ “exposes” the NMCOM in 〈P ′, V ′〉`A→sim to an external receiver R by relying on

the public-coin property of NMCOM, as described earlier. Let us describe the interaction between

M∗ and C in more detail. M∗ first sends the trapdoor trapA to C. Now, when C starts the execu-

tion of SCOM in 〈P ′, V ′〉sid
sim→A, M∗ forwards the messages from C toA; the responses fromA are

forwarded externally to C. Note that if C commits to a string of all zeros in the SCOM execution,

then the (C,M∗, R) system is identical toHi:1. On the other hand, if C commits to trapA, then the

(C,M∗, R) system is equivalent to H1:i:1. We will now construct a computationally unbounded

distinguisher D′ that distinguishes between these two executions, thus contradicting the statisti-
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cally hiding property of SCOM. D′ simply extracts the value inside the NMCOM received by R

and runs D on this input. D′ outputs whatever D outputs. By our assumption, D’s output must

be different in these two experiments; this implies that D′ output is different as well, which is a

contradiction.

Proving Equations 8.15 and 8.16. Equation 8.15 simply follows due to the statistical witness in-

distinguishability property of SZKAOK. Equation 8.16 also follows from the same fact; the proof

details are almost identical to the proof of equation 8.14 and therefore omitted.

Proving Equations 8.17 and 8.18. Equation 8.17 simply follows from the hiding property of

NMCOM. To see this, we can construct a standalone machine M that internally runs sim and

A and outputs the view generated by sim. M is identical toH1:i:2 except that inside 〈P ′, V ′〉sid
sim→A,

instead of simply committing (using NMCOM) to a valid witness, it takes this commitment from

an external sender C (who is given the valid witness) and “forwards” it internally to A. If the

external sender C honestly commits to the witness, then the (C,M) system is identical to H1:i:2;

otherwise if C commits to an all zeros string, then the above system is identical toH1:i:3. Equation

8.17 therefore follows from the hiding property of NMCOM.

In order to prove equation 8.18, we will use the non-malleability property of NMCOM. Let us

assume that equation 8.18 is false, i.e., ∃` ∈ [m] such that ρ`1:i:2 and ρ`1:i:3 are distinguishable by

a PPT machine. We will construct a standalone machine M∗ that is identical to the machine M

described above, except that it will “expose” the non-malleable commitment inside 〈P ′, V ′〉`A→sim

to an external receiver R by relying on the public-coin property of NMCOM, as described earlier.

Now, if C commits to the witness to πH , then the (C,M∗, R) system is identical toH1:i:2, whereas

if C commits to a random string, then the (C,M∗, R) system is identical to H1:i:3. From the non-

malleability property of NMCOM, we establish that the value committed by M∗ to R must be

computationally indistinguishable in both cases.
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8.5.2 Proof of Equation 8.5 and 8.6

Equation 8.5 simply follows from the (computationally) hiding property of the commitment scheme

c. In order to prove equation 8.5, let us first consider the simpler case where sim changes the com-

mitted value only in the first instance (in the order of execution) of c in the session with session

identifier sid where the honest party plays the role of the prover. Then, by a standard hybrid

argument, we can extend this proof for multiple commitments.

In order to prove equation 8.6, we will leverage the hiding property of PBCOM and the ex-

tractability property of the non-malleable commitment scheme in NMZK. Let us first assume

that equation 8.6 is false, i.e., ∃` ∈ [m] such that ρ`2 and ρ`3 are distinguishable by a PPT distin-

guisher. Note that it cannot be the case that the NMCOM inside 〈P ′, V ′〉`A→sim concludes before

sim sends the non-interactive commitment comsid
sim→A in session sid, since in this case, the execu-

tion of NMCOM is independent of comsid
sim→A. Now consider the case when the NMCOM inside

〈P ′, V ′〉`A→sim concludes after sim sends comsid
sim→A.

We will create a standalone machine M∗ that is identical to H2, except that instead of com-

mitting to bit 0 in comsid
sim→A, it takes this commitment from an external sender C and forwards

it internally to A. Additionally, it “exposes” the NMCOM inside 〈P ′, V ′〉`A→sim to an external re-

ceiver R by relying on the public-coin property of NMCOM, as described earlier. Note that if C

commits to bit 0 then the (C,M∗, R) system is identical toH2, otherwise it is identical toH3. Now,

recall that NMCOM is an extractable commitment scheme. Therefore, we now run the extractor

(say)E of NMCOM on (C,M`) system. Note thatE will rewindM`, which in turn may rewind the

interaction between C and M`. However, since PBCOM is a non-interactive commitment scheme,

M` simply re-sends the commitment string received from C to A internally. Now, if the extracted

values are different when C commits to bit 0 as compared to when it commits to bit 1, then we can

break the (computationally) hiding property of PBCOM, which is a contradiction.
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8.5.3 Proof of Equation 8.7 and 8.8

Equation 8.7 simply follows from the statistical witness indistinguishability of SWI by a standard

hybrid argument.

In order to prove equation 8.8, let us first consider the simpler case where sim uses the trapdoor

witness only in the first instance (in the order of execution) of SWI in the session with session

identifier sid where the honest party plays the role of the prover. In this case, we can leverage the

“statistical” nature of the witness indistinguishability property of SWI in a similar manner as in the

proof of equation 8.14. Then, by a standard hybrid argument, we can extend this proof for multiple

SWI.

8.5.4 Proof of Equation 8.9 and 8.10

In order to prove these equations, we will define three intermediate hybrids H4:1, H4:2 and H4:3.

Experiment H4:1 is the same as H4, except that sim commits to the zero string as in Step 1 above.

Experiment H4:2 is the same as H4:1, except that sim also generates αsim as described in Step 2

above. Finally Experiment H4:3 is the same as H4:2, except that sim also follows the Step 3 as

described above. Therefore, by definition,H4:3 is identical toH5.

We now claim the following:

ν4
c≡ ν4:1 (8.19)

∀` ∈ [m] ρ`4
c≡ ρ`4:1 (8.20)

ν4:1
c≡ ν4:2 (8.21)

∀` ∈ [m] ρ`4:1

c≡ ρ`4:2 (8.22)

ν4:2
c≡ ν4:3 (8.23)

∀` ∈ [m] ρ`4:2

c≡ ρ`4:3 (8.24)

Note that equation 8.9 follows by combining the results of equations 8.19, 8.21 and 8.23. Simi-

larly, equation 8.10 follows by combining the results of equations 8.20, 8.22 and 8.24. We now
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prove the above set of equations.

Proving Equations 8.19 and 8.20. Proof of equations 8.19 and 8.20 follows is a way identical to

the proof of equations 8.5 and 8.6.

Proving Equations 8.21 and 8.22. Proof of equations 8.21 and 8.22 follows in a way identical to

the proof of equations 8.5 and 8.6 except that we use the pseudo-randomness property of public

keys of the encryption scheme instead of the (computational) hiding property of the commitment

scheme PBCOM.

Proving Equations 8.23 and 8.24. Let us first consider the simpler case where sim makes the

changes only in the first instance (in the order of execution) in the session with session identifier

sid. Then, by a standard hybrid argument, we can extend this proof for multiple encryptions.

We start by giving the proof for Equation 8.23. Consider a distinguisher D such that it can

distinguish betweenH4:2 andH4:3 with a non-negligible probability. We will use this distinguisher

to contradict the semantic security of the encryption scheme or pseudo-randomness property of

the public keys. Given D we can construct a distinguisher D′ that before sending βA has already

extracted αA by rewinding and still succeeds in distinguishingH4:2 andH4:3 with a non-negligible

probability. We will now describe D′. At the point when the adversary expects to receive βA D′

starts a look-ahead thread and sends a random string β′A.10 The adversary will respond by opening

αA with a non-negligible probability. In case the adversary does not open our distinguisher D′

just generates a random guess. On the other hand if the adversary opens αA then D′ uses D to

generate its guess. It is easy to see that our distinguisherD′ still distinguishes with a non-negligible

probability. Now the indistinguishability follows just like proof of Equation 8.21.

The proof of equation 8.24 additionally relies on the non-malleability property of the NMCOM.

First assume that equation 8.24 is false, i.e., ∃` ∈ [m] such that ρ`4:2 and ρ`4:3 are distinguishable by

a PPT distinguisherD. Then just like in the proof of Equation 8.23 we will use the adversaryA and

10We assume that the adversary does open the committed value αA with a non-negligible probability. In case the
probability of opening is negligible then the argument used to prove Equations 8.21 and 8.22 directly extends to our
setting.
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construct another adversary that extracts the value βA and “exposes” the NMCOM in 〈P ′, V ′〉`A→sim

with a non-negligible probability. Now, we can use an argument similar to the proof of Equation

8.23 along with the extractor E of NMCOM to argue that equation 8.24. We omit the details.

8.5.5 Proof of Equation 8.11 and 8.12

Informally speaking, equation 8.11 follows from the semi-honest security of the two-party compu-

tation protocol 〈P sh
1 , P sh

2 〉 used in our construction. We now give more details. In order to prove

equation 8.11, let us first consider the simpler case where sim uses simulator for the two-party

computation protocol only in the first instance (in the order of execution) of 〈P sh
1 , P sh

2 〉 in the ses-

sion with session identifier sid. Then, by a standard hybrid argument, we can extend this proof for

multiple executions of 〈P sh
1 , P sh

2 〉.

We will construct a standalone machine M that is identical toH5, except that instead of engag-

ing in an honest execution of 〈P sh
1 , P sh

2 〉 withA in session sid, it obtains a protocol transcript from

an external sender C and forces it on A in the following manner. M first queries the ideal world

trusted party on the extracted input of A for session sid in the same manner as explained above

for sim. Let xsid
A denote the extracted input of A. Let xsid

H denote the input of the honest party in

session sid. Let O be the output that M receives from the trusted party. Now M sends xsid
H along

with xsid
A and O to C and receives from C a transcript for 〈P sh

1 , P sh
2 〉 and an associated random

string. M forces this transcript and randomness on A in the same manner as sim does. Now, the

following two cases are possible:

1. C computed the transcript and randomness by using both the inputs - xsid
H and xsid

A - along

with the output O. In this case, the transcript output by C is a real transcript of an honest

execution of 〈P sh
1 , P sh

2 〉.

2. C computed the transcript and randomness by using only adversary’s input xsid
A , and the

output O. In this case C simply ran the simulator Ssh on input xsid
A and answered its query

with O. The transcript output by C in this case is a simulated transcript for 〈P sh
1 , P sh

2 〉.

116



In the first case, the (C,M) system is identical toH5, while in the second case, the (C,M) system

is identical to H6. By the (semi-honest) security of 〈P sh
1 , P sh

2 〉, we establish that the output of M

must be indistinguishable in both the cases, except with negligible probability. This proves equa-

tion 8.11.

Proving Equation 8.12. We will leverage the semi-honest security of the two-party computation

protocol 〈P sh
1 , P sh

2 〉 and the extractability property of the non-malleable commitment scheme in

NMZK to prove equation 8.12.

Specifically, we will construct a standalone machine M∗ that is identical to M as described

above, except that it “exposes” the NMCOM in 〈P ′, V ′〉`A→sim to an external receiver R by relying

on the public-coin property of NMCOM, as described earlier. Note that if C produces a transcript

〈P sh
1 , P sh

2 〉 according to case 1 (as described above), then the (C,M∗, R) system is identical to

H5. On the other hand, if C produces a transcript for 〈P sh
1 , P sh

2 〉 according to case 2, then the

(C,M∗, R) system is identical to H6. We can now run the extractor E of NMCOM on (C,M∗)

system. Note that E will rewind M∗, which in turn may rewind the interaction between C and

M∗. However, since this interaction consists of a single message from C, M∗ simply re-uses

(if necessary) the transcript received from C in order to interact with A internally. Now, if the

extracted values are different in case 1 and case 2, then we can break the semi-honest security of

〈P sh
1 , P sh

2 〉, which is a contradiction.
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CHAPTER 9

An impossibility result in the Cross-Domain model

9.1 Introduction

In this section we provide strong impossibility results ruling out constructions for secure MPC

protocols in the CD model. We heavily rely on the recent works of [AGJ+12, GKOV12] in

proving these results. In fact, we show the impossibility result in the simplest case of the CD

model: We show that there does not exist a concurrently secure protocol in the CD model of two

domains when three domains and three parties exist in the system. Since each party belongs to the

distinct domains in the following discussion, we discuss the impossibility result simply focusing

on the parties without considering the KCA functionalities.

We start by showing that string Oblivious Transfer (OT) functionality cannot be concurrently

and securely realized even in the setting of static inputs in the CD model in the setting of three

parties even against adversaries that corrupt two parties playing the same role, i.e. of the sender

or the receiver. Next we generalize this impossibility to essentially all functionalities of interest.

Finally we extend our impossibility result to the setting of larger number of parties. In particular we

show that no n-party protocol in the CD model (for a large class of functionalities, discussed later)

can be concurrently secure in the setting of n+ 1 parties. We use the notation used by [GKOV12]

and some of the text has been taken verbatim from there.
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9.2 The String OT functionality and our impossibility result

String OT is a two-party functionality between a sender S, with input (m0,m1) and a receiver R

with input b which allows R to learn mb without learning anything about m1−b. At the same time

the sender S learns nothing about b. More formally string OT functionality FOT : ({0, 1}p(k) ×
{0, 1}p(k))× {0, 1} → {0, 1}p(k) is defined as, FOT ((m0,m1), b) = mb, where p(·) is any polyno-

mial and only R gets the output.

Note that string OT is a two-party functionality, however, the protocol realizing the string OT

functionality can be executed among multiple parties. We consider the setting of three parties and

each of the parties belongs to distinct domains. We show that for some polynomial p(·) (to be fixed

later), there does not exist a protocol π that concurrently securely realizes the FOT functionality

among these three parties. More specifically we show that there exists an adversaryAwho corrupts

2 parties, registers keys on their behalf, starts a polynomial number of sessions (say `(k)) of the

protocol π with the honest (with pre-specified inputs drawn from a particular distribution D) such

that no ideal-world adversary whose output is computationally indistinguishable from the output of

real-world adversary A exists. We stress that the parties corrupted by the adversary (we construct)

corrupts two parties playing the same role – either the sender S or the receiver R in all the `(k)

sessions.

Theorem 7. (impossibility of static input concurrent-secure string OT in CD model) Let π be

any protocol which implements1 the FOT functionality for a particular (to be determined later)

polynomial p in the CD model. Then, in the setting of 3 parties (assuming one-way functions exist)

there exists a polynomial ` and a distribution D over `-tuple vectors of inputs and an adversarial

strategy A, that corrupts 2 parties, such that for every probabilistic polynomial-time simulation

strategy sim, Definition 9 of concurrent security, cannot be satisfied when the inputs of the parties

are drawn from D.

1We say that a protocol implements a functionality if the protocol allows two parties to evaluate the desired func-
tion. This protocol however may not be secure.
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Implications for bounded concurrency. Observe that the attack described in the above proof

(in the unbounded concurrent setting) has natural implications in the bounded setting as well.

In particular, the number of sessions that our adversary executes, or the “extent” of concurrency

used by the adversary in the proof above in order to arrive at a contradiction is bounded by the

communication complexity of the protocol. More specifically the adversary needs to make one

additional OT call for every bit that the Sender sends in the protocol.

9.3 The Proof of Theorem 7

We start by recalling and building some notation that we will use in our proof. Next we will

consider specifics of our setting. This in particular will include the details on the specifications

of inputs of all parties. Then we will define formally the strategy of the real-world adversary.

Finally, we will argue that the output of this real-world adversary can not be computationally

indistinguishable from the output of any ideal-world adversary.

Notation. Let π be a two-party protocol in the CD model between a Sender S with inputs

(m0,m1) and a Receiver R with a choice bit b. Without loss of generality we assume that S

sends both the first and the last message in the protocol. Further assume that S sends exactly n

messages in the execution of this protocol π. Therefore R sends n − 1 messages. For the sake

of contradiction lets assume that π concurrently securely realizes the FOT functionality when ex-

ecuted among three parties. These parties register their public keys before any execution of the

protocol π.

Let π′ be a protocol between a sender S with inputs (m0,m1) and a receiver R with a choice

bit b and additional inputs m̃ and w. In the protocol π′, S and R first proceed by executing π with

inputs (m0,m1) and b respectively. At the end of the execution of π, R obtains mb. R checks to

see if m̃ = mb and sends w to S if this is indeed the case. Otherwise, it just sends ⊥ to S. Note

that R sends n messages in the execution of this protocol π′.

Now, consider the next message function F (pk, sk, b,m,w, r,M1, M2 . . . Mi) where i ∈ [n] of
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R for the protocol π′ with public key pk and secret key sk. More specifically, Fi(pk, sk, b,m,w, r,

M1, M2 . . . Mi) generates the ith message that an honest R on input (b,m,w) and random coins r

would generate corresponding to the execution in which M1,M2 . . .Mi are sent to R for the proto-

col π′. Let F [pk, sk, b,m,w, r] be a reactive functionality parameterized by pk, sk, b,m,w, r that

can be invoked n times. The ith invocation of F [pk, sk, b,m,w, r] expects an inputMi and outputs

the ith message that R would have sent in π′. The functionality has the values pk, sk, b,m,w, r

which are built into the functionality itself. Let (Yao1, Yao2) be an implementation of the garbled

circuit technique as defined in Definition 11. Roughly speaking Yao1 is an algorithm that takes the

description of a reactive functionality as input and outputs a garbled circuit and the associated keys.

Note that there are two keys for every input wire. Yao2 on the other hand takes as input the garbled

circuit and a key corresponding to each wire and outputs an evaluation of the garbled circuit. Since,

we are in the malicious case the adversary can obtain the keys for input wire adaptively. We deal

with this issues using a technique from [GKR08]. We refer the reader to Section 7.3.2 for details.

Our setting. Here, we describe our setting in which we intend to draw our impossibility. Let S,

R1 and R2 be three parties executing some polynomial invocations of π. Since we are the in the

CD model, the three parties are required to register their public keys before any execution of the

protocol π.2 S plays the role of the sender in all these executions and on the other hand R1 and R2

act as receivers. Since we are in the static input setting we need to specify the inputs of all parties.

More specifically we specify the distribution D according to which the inputs of the parties S, R1

and R2 are sampled.

• Sample (pk, sk) as the public-secret key pair corresponding to a receiver of the protocol π.

• Letm0,m1 ← {0, 1}p(k), b← {0, 1}, r ← {0, 1}∗, w ← {0, 1}k, (GC,Z) = Yao1(F [pk, sk, b,

mb, w, r]). Let µ(k) be the number of input wires in the garbled circuit GC. Then

`(k) = µ(k)+1. Also Z contains two garbled circuit keys corresponding to each wire. More

2For our impossibility result we consider the setting in which there is a synchronization barrier and the adversary
is required to register its public key before any execution of the protocol. Our impossibility naturally extends to the
setting when there is no synchronization barrier.
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specifically it consists of values
(
Z1,0,Z2,0...Zµ(k),0

Z1,1,Z2,1...Zµ(k),1

)
where Zi,0, Zi,1 correspond to the keys for

the ith input wire. We will distinguish the sessions into two categories. We will refer to one

of the sessions as the main session. Rest of the sessions are referred to as additional sessions.

• Input to Honest Sender: Let (m0,m1) be the input of S in the main session. For each

i ∈ [µ(k)], let (Zi,0, Zi,1) be the input of the honest sender in the ith additional session.

• Input to Receivers: Let ȳ be a vector of `(k) bits all chosen randomly. Set ȳ as the input of

the both the receivers.

Description of our real-world adversary A. The real-world adversary corrupts the receivers

R1 and R2 and receives the garbled circuit GC and the public key pk generated in the above

described sampling procedure (distribution D) as auxiliary input. Our adversary registers pk as

the public key for R2 and proceeds as follows. It ignores the inputs D generates for the honest

receivers. Let the messages that S sends to R in the main session be M1,M2, . . . ,Mn (recall that

n is the number of messages S sends to R in the protocol π). Upon receiving Mi where i ∈ [n]

from S, the adversary obtains its response to be sent in the main session by evaluating the garbled

circuit GC on input M1,M2, . . .Mi. Let B denote the concatenation of M1,M2, . . .Mi. In order

to achieve this, the adversary needs the keys Zj,Bj where j ∈ |B|. Note that among these some of

the keys have previously already been received. A obtains the ones that have not been obtained

previously by initiating multiple, concurrent, OT protocols (on behalf of the receiver R1) to which,

by construction, the sender provides (Zi,0, Zi,1), 1 ≤ i ≤ µ(k) as inputs. On obtaining these keys,

A invokes Yao2, and computes the output. For ever i ∈ [n− 1] it responds to S in the main session

using the obtained output. Finally for i = n it outputs the obtained value as its output.

Finally, we remark that the real-world adversary described above always (except with negligi-

ble probability) succeeds in outputting the value w generated by the sampling procedure D. The

pictorial description of our real-world adversary is provided in Figure 9.1.

Adversarial behavior in the ideal world. Recall that we started by assuming that the protocol π

is concurrently secure. Therefore there exists an ideal-world adversary, sim that outputs a distribu-
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Figure 9.1: The description of real-world adversary A

tion that is computationally indistinguishable from the one that our real world adversary described

above generates. Let us recall that sim interacts with the ideal functionality FOT in a main session

and a sequence of additional sessions. The additional sessions however are used just to obtain gar-

bled circuit keys. For notational convenience let K denote the oracle that is used to obtain garbled

circuit keys. More specifically, sim obtains the garbled circuit keys from the key oracle K rather

than the ideal functionality FOT . Next we will convert the simulator sim into an algorithm M that

interacts with the FOT ideal functionality corresponding to the main session only. However, unlike

sim, M does not obtain a garbled circuit and it does not query the key oracle K. Instead it interacts

with an ideal functionality F [pk, sk, b,mb, w, r].

Removing the garbled circuit. Consider an algorithm M that internally executes the simu-

lator sim. According to the security definition of garbled circuits (Definition 11), there exists

a simulator YaoSimsim which interacts with sim in a black-box manner and the ideal function

F [pk, sk, b,mb, w, r] and outputs a computationally indistinguishable distribution.

Note that the machine M just constructed interacts with F [pk, sk, b,mb, w, r] and with FOT
for the main session (in which the honest sender talking to FOT has input (m0,m1)) and is such

that its output and the output or the real-world adversary are computationally indistinguishable.
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This in particular means that the output of M always (except with negligible probability) includes

the value w. However, in order to be able to obtain w from F [pk, sk, b,mb, w, r], M must query

FOT (for the main session) with the bit b. Otherwise, M will fail to output w with probability at

least 1
2
. In particular this mean that M can be used to extract the choice bit b of an external honest

receiver R. This is a contradiction to the stand-alone security of the receiver.

9.4 Extending to all asymmetric functionalities

The goal of this section is to generalize the impossibility result for string OT provided in the

previous section to all finite deterministic “non-trivial” asymmetric functionalities F . Consider

a two-party functionality Fasym between a sender S, with input x and a receiver R with input y

which allows R to learn f(x, y) and at the same time S should not learn anything. More formally,

let f : X × Y → Z be any finite function3 then an asymmetric functionality Fasym is defined

as, Fasym(x, y) = (⊥, f(x, y)) where S gets no output and R gets f(x, y). We show that there

does not exist a protocol π that concurrently securely realizes any complete Fasym functionality as

defined below.

Fasym is said to be complete [Kil00]4 in the setting of stand-alone two-party computation in

the presence of malicious adversaries iff ∀b0,∃b1, a0, a1 such that

f(a0, b0) = f(a1, b0) ∧ f(a0, b1) 6= f(a1, b1).

Lemma 15 (Theorems 1 and 3, [AGJ+12]). Given any protocol ρ that concurrently securely re-

alizes a non-trivial asymmetric functionality F secure under concurrent self-composition in the

static-input, fixed-role setting we have that there exists a protocol Π that securely realizes the FOT
functionality secure under concurrent self-composition in the static-input, fixed-role setting.

The proof of [AGJ+12] is for the setting of plain model but extends to the setting of the CD

model in a direct manner.
3Recall that a function is said to be finite if both the domain and the range are of finite size.
4Recall that a functionality is said to be complete if it can be used to securely realize any other functionality.
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Now any hypothetical protocol for any non-trivial asymmetric functionalityF (using Lemma 15),

we will obtain a protocol for FOT , contradicting Theorem 7. This gives our impossibility result

for the setting of two parties:

Theorem 8. (impossibility of static input concurrent security for asymmetric complete function-

alities) Let π be any protocol which implements any Fasym functionality that is complete in the

stand-alone setting in the CD model. Then, in the setting of 3 parties (assuming one-way functions

exist) there exists a polynomial ` and a distribution D over `-tuple vectors of inputs and an ad-

versarial strategy A, that corrupts two parties, such that for every probabilistic polynomial-time

simulation strategy sim, Definition 9 of concurrent security, cannot be satisfied when the inputs of

the parties are drawn from D.

Extending to n-party protocols So far we have only considered the setting of 3-parties only. We

now explain how these results can be extended to the setting of n+ 1 parties executing an n party

protocol. Consider an n-party functionality f(x1, x2 . . . xn) with x1, x2 . . . xn as input. Let S and

S be disjoint partitions of the n parties such that only a subset of the parties in S get the outputs.

Let g be a two-argument function obtained by viewing f as a function of {xi}i∈S and {xi}i∈S .

For any f , if there exist such partitions S and S such that g is a complete two-party asymmetric

functionality,5 then we can use our impossibility result for concurrently securely realizing g in the

CD model in the setting of 3 parties to argue that f can not be concurrently securely realized in

CD model in the setting of n+ 1 parties. The proof follows in a very similar manner and we omit

the details.

5Note here this implies that at least one party in S and at least one party in S has an input.
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