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To the best of our knowledge there is no previous work in applying adaptivity to configure a 

cache assist memory. However, adaptivity has been applied in various forms. Selected examples 

of its use are: 

Adaptive routing pioneered by ARPANET in computer networks and, more recently, applied 

to multiprocessor interconnection networks [1], [3] to avoid congestion and route messages faster 

to their destination. 

Adaptive throttling for interconnection networks [3]. [16] shows that "optimal" limit varies and 

suggests admitting messages into the network adaptively based on current network behavior. 

Adaptive cache control of coherence protocol choice were proposed and investigated in the 

FLASH and JUMP-1 projects [4], [11]. 

Adapting branch history length in branch predictors was proposed in [9] since optimal history 

length was shown to vary significantly among programs. 

Adaptive page size has been proposed in [14] to improve the page management overhead and 

it is used in to reduce the TLB and memory overhead in [12]. 

Adaptive adjustment of data pre fetch length in hardware was shown to be advantageous [2], 

while in [5] the prefetch lookahead distance was adjusted dynamically either purely in hardware 

or with compiler assistance. A cache with a fixed large cache line is used in [10] in association 

with a predictor to only fetch the parts of the cache line that are likely to be used. 

Adaptive cache line size was shown to improve the miss rate without an appreciable increase 

in bandwidth in [18], [19] and [6]. A scheme for adapting the cache line size dynamically was 

proposed in [18]. A special adaptive controller is incorporated in the cache access controller to 

monitor the memory access pattern of an application and change the line size to double or half 

its original size at a time in order to suit the application's needs. In [18] the cache line is truly 

variable, whereas [19] uses a set of four predefined values for the line size. A scheme that uses 

two fixed sizes was proposed in [6]. 

A method to use compiler provided information t~ do software assistance for data caches was 

proposed in [15]. The compiler decides through static analysis when data exhibits spatial or 

temporal locality and generates code to attach a special spatial/temporal tag. The tag is used 

by the hardware when deciding if cache lines replaced from the cache should be placed in a victim 

cache. 
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Figure 1 shows the components of the system being studied. It consists of a 3-level memory 

hierachy plus a partitionable cache assist memory that can function as either a stream buffer, 

a victim cache or a combination of the two. The cache assist memory consists of N cache-line 

sized buffers connected to Ll fill path. Separate control units utilize the allocated memory as a 

victim cache or as a stream buffer. A fully associative write buffer with a line size identical to 

the Ll line size is also used. 

The 11 cache is direct mapped and the hit latency is assumed to be 1 cycle. The Ll bus 

transfer takes 2 cycles. L2 is a 2-way set-associative with the access latency of 15 cycles. The 

main memory access latency is 100 cycles. 

When the processor requests data, the Ll cached is searched. On a miss the victim cache and 

the stream buffer are searched in parallel. If both miss the request is sent to the next level of 
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memory, otherwise the cache assist supplies the data. 

Associated with the cache assist area are configuration registers. The registers contain the 

size of the victim cache, the size of the stream buffer, and hit counters for both of them. The 

configuration for the cache assist can be changed dynamically at run time using four operations: 

• shrink_stream_buffer( cacheJines_to_shrink) 

• shrink_ victim_cache( cacheJines_to_shrink) 

• extend_stream_buffer( cacheJines_to_enlarge) 

• extend_ victim_cache( cacheJines_to_enlarge). 

Extending the stream buffer marks the new entries as invalid, shrinking it does the same and 

deletes any pending requests from the "issued prefetch" queue. Shrinking and extending the 

victim cache sets the victim cache size register to the new value and marks the added entries as 

invalid in the case of extending. 

The compiler can insert these instructions in places in the program where static anlysis or 

profile based feedback determine that changing the configuration and relative sizes of the cache 

assists will improve the performance. 

4 Experimental Infrastructure 

4.1 Simulator 

The framework provided by the ABSS [13] simulation system is used in this study. ABSS is a 

simulator that runs on SUN Spare systems and is derived from the MINT simulator [17]. 

The ABSS simulator consists of 5 parts: augmentor, thread management, cycle-counting li

braries, user-defined simulator of the memory system and the application program. 

The augmentor program (called doctor) parses the original application assembly code, and 

adds instrumentation code that sends information about the loads and stores executed by the 

program to the simulator. 
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Our custom memory architecture simulator simulates a 3-level memory hierarchy plus a highly 

configurable memory cache assist with modules for modeling a stream buffer and a victim cache. 

The sizes of the victim cache and stream buffer are changeable at run time via commands 

embedded in the simulated program. 

4.2 Compilation 

We have used version 2.95 of the GCC compiler collection to conduct all the experiments. The 

compiler back-end was modified to emit special code sequences before entering a loop, or on the 

code path for exiting a loop. Given that the compiler back-end is common to the C and Fortran77 

compiler we were able to use this instrumentation for compiling all the SPEC95 benchmarks. 

The code sequences were used for adjusting the cache assist allocation, and for collecting 

statistics and identifying the loop (source file name and line number), and signaling to the cache 

simulator that a loop is being entered or exited. 

In order not to modify the behavior of the program, the code sequences leave the processor 

, in the same state as it was before the sequence in question has run. This is achieved by saving 

and restoring all the registers that the code sequence uses, including the flag registers. Further

more, the loop instrumentation is done in the assembly emitting pass of the compiler (the last 

compilation pass), so it does not affect the code generation. 

All the benchmarks where compiled using the -02 optimization flag, the target instruction set 

was SPARC V8plus. 

4.3 Benchmarks 

The set of benchmarks shown in Table 1 was chosen because it has a good mix of both numeric and 

non-numeric programs, because they are fairly memory hierarchy intensive, and because SPEC95 

is a standard set of benchmarks. All benchmark programs were simulated until completion. 

For some of the experiments profiling was used to select an "optimal" cache assist configuration. 

Profiling was performed using the SPEC training input set. The profile information was then 

used to run the benchmarks with the reference input set. We have verified that such profiling is 

accurate. 
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Table 1: Benchmarks used 

Benchmark Decription Instructions Memory references 

go Plays the game GO 3.20e+10 7.76e+09 

lJpeg Image compression 2.70e+l0 7.39e+09 

perl Perl interpreter l.42e+l0 3.42e+07 

aps1 Calculates statistics on temperature 3.74e+l0 l.20e+l0 

fpppp Performs multi-electron derivatives 3.18e+ll l.03e+ll 

swim Solves shallow water equations 3.21e+10 l.32e+l0 

turb3d Simulates turbulence l.13e+ll 2.86e+l0 

wave Solves Maxwell's equations 3.80e+l0 l.20e+ 10 

5 Performance Evaluation 

To compare the relative performance of different cache assist configurations we use two main 

metrics: miss rate and execution time. For each experiment we gather the following kinds of 

data in order to evaluate the cache and cache assist performance. 

• Ll and 12 miss rates 

• number of hits in assist buffer 

• miss rate reduction 

We define the following equation to determine the overall performance improvement for the 

system: 

miss _rat e_r eduction 

(1) 

( old_miss....rate - new_miss_rate) 

*100.0/ old_miss_rate 

We simulate a base cache hierarchy with a 16KB direct mapped Ll cache and a 256KB 2 way 

set-associative 12 cache. The line size is 32 bytes for 11 and 64 bytes for 12. We will call this 

the base system configuration. Figures 2 and 3 show the 11 and L2 miss rates respectively, for 

the benchmarks using the base configuration. Only swim and wave have 11 miss rates that are 

greater than 15% and, except for apsi, all of them have L2 miss rates less than 3%. 
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5.1 The Performance of Individual Cache Assists 

The performance of the individual cache assists is evaluated using the base system configuration 

and either a IKB victim cache or a IKB stream buffer. Figure 4 shows the miss rate reduction 

for each of the assists when compared to the base configuration. 

The effect varies from program to program. In go the stream buffer barely has an impact 

(under 5% miss rate reduction), but the victim cache reduces the miss rate by 50%. The same 

is observed for per! and fpppp where the victim cache reduces the miss rate much more than the 

stream buffer. The reverse is observed in the case of turb3d where the stream buffer reduces the 

miss rate by 55%, but the victim cache only reduces it by 23%. For apsi, ijpeg and wave the 

difference is not as pronounced. 

The above results confirm the advantage of using a cache assist, but the type of cache assist 

that is most useful varies from application to application. Thus we conjecture that a system that 

has a cache assist that can be reconfigured between a victim cache or a stream buff er at run time 

on a per program basis would improve performance. 

The fact that memory accesses in a program very seldom follow a uniform pattern suggests 

that the effect of cache assists also varies within a program. To evaluate the effect of cache assists 

on different portions of the code we instrument and collect performance data for all the inner 

loops in a program. The inner loops' memory access behavior is indicative of the entire program 

behavior since instructions executed in the inner loops often account for more than 98% of the 

memory reference instructions executed by a program. 

Figure 5 shows the miss rate reduction per loop for the apsi benchmark when using either a 

IKB stream buffer or a IKB victim cache for a given loop. For some loops the victim cache 

reduces the miss rate much more than the stream buffer, whereas the opposite is true for other 

loops. 

Figure 6 shows the miss rate reduction compared to a normal cache hierarchy for different 

instantiations of the loop at line 276 from file jidcting.c in the ijpeg benchmark when using a IKB 

victim cache or stream buffer. The miss rate reduction varies a lot between loop instantiations, 

with some instances preferring a victim cache and others preferring a stream buffer. 

The miss rate reduction when using a cache assist varies widely between different loops, and 

between instantiations of the same loop. We can now conclude that cache assist adaptivity is not 
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Figure 4: Miss reduction rate for a lKB cache assist 

only desirable at the program level, but it should also be applied dynamically within a program. 

5.2 Dynamic Combination of Cache Assist Techniques 

So far we discussed using the cache assist memory either as a stream buffer or as a victim cache. 

Given the fact that few program exhibit pure temporal locality or spatial locality, but rather a 

mix of them, one can expect that using both cache assists at the same time would have a better 

performance. To take advantage of the facts presented above a program could change the cache 

assist structure either initially or before entering a loop so that it is either a victim cache or a 

stream buffer, depending on what configuration results in a lower miss rate. The question is, 

given limited cache assist memory, what is the best way to partition it. 

To investigate different possibilities of adaptation we propose four approaches to partitioning 

the total (limited) cache assist space between the victim cache and the stream buffer. They are: 

l. Use the entire cache assist memory either as a victim cache or a stream buffer, changing 

the use for each loop (the dyna_loop approac~). The decision to use one configuration or 

the other is taken based on which achieves a greater miss removal rate for that loop. The 

miss reduction information comes from profiling. 

In the dyna_loop case the cache assist can be used either as a stream buffer or as a victim 

cache for any loop. We conjecture that splitting the cache assist and using a part of it as a 
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stream buffer, and another as a victim cache would further improve the performance. The 

following three strategies use this kind of partitioning. 

2. Partition the cache assist memory between the victim cache and the stream buffer in the 

same ratio as the miss reduction rate of the victim cache and the stream buffer for the whole 

program (the parLbuf approach). The partition is fixed for the duration of the program. 

3. The dyna_buf approach partitions the cache assist memory between the victim cache or 

stream buffer per inner loop, proportionally to the miss removal rate ratio of victim cache 

and stream buff er for that loop. 

4. The half_buf approach uses one half of the cache assist memory as a victim cache, and the 

other half as a stream buffer for the whole program. 

dyna_loop and dyna_buf are dynamically adapting the cache assist configuration whereas 

parLbuf and half_buf are not adaptive approaches, they are studied for comparison. 

Figure 7 shows the miss reduction rates in the dyna_loop case. Profiling information gathered 

in the experiments summarized in Fig. 5 is used to choose the cache assist as a stream buffer or 

as a victim cache for each loop. The performance improvement compared to the best of either a 

stream buffer or a victim cache for the entire program ranges from 25% to 49%. Thus adaptivity 

improves performance when performed at loop level. However the miss rate got marginally worse 

for fpppp (decreased from 63.54% to 62.27%). Almost all memory accesses (98%) are executed 

inside one loop, and for this loop the cache assist is configured in the optimal way, the loss of 

performance comes from the other loops in the program. 

For the programs in which the stream buffer has a very small improvement as compared to a 

victim cache (go, perl) the additional miss reduction rate is minimal because any possible gain 

from using a stream buff er is minimal. 

The results for parLbuf appear in Figure 8. With the exception of fpppp all the benchmarks 

show gains when compared to just using victim cac~e or a stream buffer. Fpppp's loss is deter

mined by the fact that its most dominant loop would need a bigger victim cache than what the 

parLbuf approach allocates. However, the degradation is again minimal, a 2% decrease in miss 

rate reduction. 
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Figure 12: DynaJoop and dyna_buf performance relative to halLbuf for a 256B cache assist. 

instructions at the beginning of the loop. This is the approach we advocate and we are pursuing 

static analysis in our compiler work. The profiling approach was used in this study. 

6 Conclusions and Future Work 

We have studied a memory configuration consisting of a standard cache hierarchy plus a small 

cache assist memory that can be used either as a stream buffer or a victim cache. The cache assist 

is reconfigurable at run time to allocate a certain fraction of memory to victim cache and/ or to 

stream buff er. 

We have shown that using a cache assist reduces the miss rate of the cache and that adapting 

the configuration of the cache assist reduces it even more. Several approaches have been studied 

and we have concluded that an approach that reconfigures the cache assist per inner loop at run 

time achieves best performance. Using a lKB adaptive assist memory, up to 50% additional miss 

rate reduction is achieved by the best of the proposed methods. Simple static assist memory 

partitioning, on the other hand can suffer up to 15% loss of performance. 
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