
UC Irvine
ICS Technical Reports

Title
Compiler-directed cache assist adaptivity

Permalink
https://escholarship.org/uc/item/8th9v1tp

Authors
Ji, Xiaomei
Nicolaescu, Dan
Veidenbaum, Alexander
et al.

Publication Date
2000

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8th9v1tp
https://escholarship.org/uc/item/8th9v1tp#author
https://escholarship.org
http://www.cdlib.org/

Notice: This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Compiler-Directed Cache Assist Adaptivity*

Xiaomei Ji Dan Nicolaescu Alexander Veidenbaum

Alexandru Nicolau Rajesh Gupta

Department of Information and Computer Science

444 Computer Science, Building 302

University of Califoxnia Irvine

Irvine, CA 92697-3425

{ xji,dann,alexv ,nicolau,rgupta }@ics.uci.edu

Technical Report #00-17

Compiler-Directed Cache Assist Adaptivity *

Xiaomei Ji Dan Nicolaescu

Alexandru Nicolau

Alexander Veidenbaum

Rajesh Gupta

Department of Information and Computer Science

444 Computer Science, Building 302

University of California Irvine

Irvine, CA 92697-3425

{ xji,dann,alexv ,nicolau,rgupta }@ics.uci.edu

Technical Report #00-17

Dept. of Information and Computer Science

Univ. of California at Irvine

May 2000

*This work was supported in part by the DARPA ITO under Grant DABT63-98-C-0045.

1

Contents

1 Introduction

2 Related Work

3 System Organization

4 Experimental Infrastructure

4.1 Simulator .

4.2 Compilation

4.3 Benchmarks .

5 Performance Evaluation

5.1 The Performance of Individual Cache Assists

5.2 Dynamic Combination of Cache Assist Techniques

5.3 The Effect of Cache Assist Buffer Size

5.4 Compiler Support

6 Conclusions and Future Work

List of Figures

1

2

3

4

5

6

7

8

9

System Design .

11 miss rate of 16KB direct-mapped, 32B line size cache .

12 miss rate of 256KB, 2-way set associative, 64B line size 12 cache

Miss reduction rate for a lKB cache assist

Miss rate reduction per loop (a lKB assist, the apsi benchmark)

Miss rate reduction per loop instantiation in ijpeg benchmark

Miss rate reduction for dynaJoop.

Miss rate reduction for part_buf.

Miss rate reduction for dyna_buf.

3

4

6

7

7

8

8

9

11

12

16

16

19

6

10

10

12

13

13

16

17

17

To the best of our knowledge there is no previous work in applying adaptivity to configure a

cache assist memory. However, adaptivity has been applied in various forms. Selected examples

of its use are:

Adaptive routing pioneered by ARPANET in computer networks and, more recently, applied

to multiprocessor interconnection networks [1], [3] to avoid congestion and route messages faster

to their destination.

Adaptive throttling for interconnection networks [3]. [16] shows that "optimal" limit varies and

suggests admitting messages into the network adaptively based on current network behavior.

Adaptive cache control of coherence protocol choice were proposed and investigated in the

FLASH and JUMP-1 projects [4], [11].

Adapting branch history length in branch predictors was proposed in [9] since optimal history

length was shown to vary significantly among programs.

Adaptive page size has been proposed in [14] to improve the page management overhead and

it is used in to reduce the TLB and memory overhead in [12].

Adaptive adjustment of data pre fetch length in hardware was shown to be advantageous [2],

while in [5] the prefetch lookahead distance was adjusted dynamically either purely in hardware

or with compiler assistance. A cache with a fixed large cache line is used in [10] in association

with a predictor to only fetch the parts of the cache line that are likely to be used.

Adaptive cache line size was shown to improve the miss rate without an appreciable increase

in bandwidth in [18], [19] and [6]. A scheme for adapting the cache line size dynamically was

proposed in [18]. A special adaptive controller is incorporated in the cache access controller to

monitor the memory access pattern of an application and change the line size to double or half

its original size at a time in order to suit the application's needs. In [18] the cache line is truly

variable, whereas [19] uses a set of four predefined values for the line size. A scheme that uses

two fixed sizes was proposed in [6].

A method to use compiler provided information t~ do software assistance for data caches was

proposed in [15]. The compiler decides through static analysis when data exhibits spatial or

temporal locality and generates code to attach a special spatial/temporal tag. The tag is used

by the hardware when deciding if cache lines replaced from the cache should be placed in a victim

cache.

5

Address

Ll
Cache

Victim
Cache

Stream
Buffer

h
Figure 1: System Design

3 System Organization

Data
In

PU
Data
Out

Write
Buffer

Figure 1 shows the components of the system being studied. It consists of a 3-level memory

hierachy plus a partitionable cache assist memory that can function as either a stream buffer,

a victim cache or a combination of the two. The cache assist memory consists of N cache-line

sized buffers connected to Ll fill path. Separate control units utilize the allocated memory as a

victim cache or as a stream buffer. A fully associative write buffer with a line size identical to

the Ll line size is also used.

The 11 cache is direct mapped and the hit latency is assumed to be 1 cycle. The Ll bus

transfer takes 2 cycles. L2 is a 2-way set-associative with the access latency of 15 cycles. The

main memory access latency is 100 cycles.

When the processor requests data, the Ll cached is searched. On a miss the victim cache and

the stream buffer are searched in parallel. If both miss the request is sent to the next level of

6

memory, otherwise the cache assist supplies the data.

Associated with the cache assist area are configuration registers. The registers contain the

size of the victim cache, the size of the stream buffer, and hit counters for both of them. The

configuration for the cache assist can be changed dynamically at run time using four operations:

• shrink_stream_buffer(cacheJines_to_shrink)

• shrink_ victim_cache(cacheJines_to_shrink)

• extend_stream_buffer(cacheJines_to_enlarge)

• extend_ victim_cache(cacheJines_to_enlarge).

Extending the stream buffer marks the new entries as invalid, shrinking it does the same and

deletes any pending requests from the "issued prefetch" queue. Shrinking and extending the

victim cache sets the victim cache size register to the new value and marks the added entries as

invalid in the case of extending.

The compiler can insert these instructions in places in the program where static anlysis or

profile based feedback determine that changing the configuration and relative sizes of the cache

assists will improve the performance.

4 Experimental Infrastructure

4.1 Simulator

The framework provided by the ABSS [13] simulation system is used in this study. ABSS is a

simulator that runs on SUN Spare systems and is derived from the MINT simulator [17].

The ABSS simulator consists of 5 parts: augmentor, thread management, cycle-counting li

braries, user-defined simulator of the memory system and the application program.

The augmentor program (called doctor) parses the original application assembly code, and

adds instrumentation code that sends information about the loads and stores executed by the

program to the simulator.

7

Our custom memory architecture simulator simulates a 3-level memory hierarchy plus a highly

configurable memory cache assist with modules for modeling a stream buffer and a victim cache.

The sizes of the victim cache and stream buffer are changeable at run time via commands

embedded in the simulated program.

4.2 Compilation

We have used version 2.95 of the GCC compiler collection to conduct all the experiments. The

compiler back-end was modified to emit special code sequences before entering a loop, or on the

code path for exiting a loop. Given that the compiler back-end is common to the C and Fortran77

compiler we were able to use this instrumentation for compiling all the SPEC95 benchmarks.

The code sequences were used for adjusting the cache assist allocation, and for collecting

statistics and identifying the loop (source file name and line number), and signaling to the cache

simulator that a loop is being entered or exited.

In order not to modify the behavior of the program, the code sequences leave the processor

, in the same state as it was before the sequence in question has run. This is achieved by saving

and restoring all the registers that the code sequence uses, including the flag registers. Further

more, the loop instrumentation is done in the assembly emitting pass of the compiler (the last

compilation pass), so it does not affect the code generation.

All the benchmarks where compiled using the -02 optimization flag, the target instruction set

was SPARC V8plus.

4.3 Benchmarks

The set of benchmarks shown in Table 1 was chosen because it has a good mix of both numeric and

non-numeric programs, because they are fairly memory hierarchy intensive, and because SPEC95

is a standard set of benchmarks. All benchmark programs were simulated until completion.

For some of the experiments profiling was used to select an "optimal" cache assist configuration.

Profiling was performed using the SPEC training input set. The profile information was then

used to run the benchmarks with the reference input set. We have verified that such profiling is

accurate.

8

Table 1: Benchmarks used

Benchmark Decription Instructions Memory references

go Plays the game GO 3.20e+10 7.76e+09

lJpeg Image compression 2.70e+l0 7.39e+09

perl Perl interpreter l.42e+l0 3.42e+07

aps1 Calculates statistics on temperature 3.74e+l0 l.20e+l0

fpppp Performs multi-electron derivatives 3.18e+ll l.03e+ll

swim Solves shallow water equations 3.21e+10 l.32e+l0

turb3d Simulates turbulence l.13e+ll 2.86e+l0

wave Solves Maxwell's equations 3.80e+l0 l.20e+ 10

5 Performance Evaluation

To compare the relative performance of different cache assist configurations we use two main

metrics: miss rate and execution time. For each experiment we gather the following kinds of

data in order to evaluate the cache and cache assist performance.

• Ll and 12 miss rates

• number of hits in assist buffer

• miss rate reduction

We define the following equation to determine the overall performance improvement for the

system:

miss _rat e_r eduction

(1)

(old_miss....rate - new_miss_rate)

*100.0/ old_miss_rate

We simulate a base cache hierarchy with a 16KB direct mapped Ll cache and a 256KB 2 way

set-associative 12 cache. The line size is 32 bytes for 11 and 64 bytes for 12. We will call this

the base system configuration. Figures 2 and 3 show the 11 and L2 miss rates respectively, for

the benchmarks using the base configuration. Only swim and wave have 11 miss rates that are

greater than 15% and, except for apsi, all of them have L2 miss rates less than 3%.

9

en
en
~ 10

5

swim turb3d apsi fpppp wave go ijpeg perl

Figure 2: 11 miss rate of 16KB direct-mapped, 32B line size cache

~ 2 -t---n:,c,,c,:1--------t

en
.~
~ 1.5

1

0.5

swim turb3d apsi fpppp wave go ijpeg per I

Figure 3: 12 miss rate of 256KB, 2-way set associative, 64B line size L2 cache

10

5.1 The Performance of Individual Cache Assists

The performance of the individual cache assists is evaluated using the base system configuration

and either a IKB victim cache or a IKB stream buffer. Figure 4 shows the miss rate reduction

for each of the assists when compared to the base configuration.

The effect varies from program to program. In go the stream buffer barely has an impact

(under 5% miss rate reduction), but the victim cache reduces the miss rate by 50%. The same

is observed for per! and fpppp where the victim cache reduces the miss rate much more than the

stream buffer. The reverse is observed in the case of turb3d where the stream buffer reduces the

miss rate by 55%, but the victim cache only reduces it by 23%. For apsi, ijpeg and wave the

difference is not as pronounced.

The above results confirm the advantage of using a cache assist, but the type of cache assist

that is most useful varies from application to application. Thus we conjecture that a system that

has a cache assist that can be reconfigured between a victim cache or a stream buff er at run time

on a per program basis would improve performance.

The fact that memory accesses in a program very seldom follow a uniform pattern suggests

that the effect of cache assists also varies within a program. To evaluate the effect of cache assists

on different portions of the code we instrument and collect performance data for all the inner

loops in a program. The inner loops' memory access behavior is indicative of the entire program

behavior since instructions executed in the inner loops often account for more than 98% of the

memory reference instructions executed by a program.

Figure 5 shows the miss rate reduction per loop for the apsi benchmark when using either a

IKB stream buffer or a IKB victim cache for a given loop. For some loops the victim cache

reduces the miss rate much more than the stream buffer, whereas the opposite is true for other

loops.

Figure 6 shows the miss rate reduction compared to a normal cache hierarchy for different

instantiations of the loop at line 276 from file jidcting.c in the ijpeg benchmark when using a IKB

victim cache or stream buffer. The miss rate reduction varies a lot between loop instantiations,

with some instances preferring a victim cache and others preferring a stream buffer.

The miss rate reduction when using a cache assist varies widely between different loops, and

between instantiations of the same loop. We can now conclude that cache assist adaptivity is not

11

70

c 60 0
+::;
(.)
::J 50 "O
Q)
'-
Q) 40

+-' ro
'-
(/') 30
(/')

~ 20
~ 0

10

0
swim turb3d apsi f pppp wave go ijpeg per I

l D vc II sb I

Figure 4: Miss reduction rate for a lKB cache assist

only desirable at the program level, but it should also be applied dynamically within a program.

5.2 Dynamic Combination of Cache Assist Techniques

So far we discussed using the cache assist memory either as a stream buffer or as a victim cache.

Given the fact that few program exhibit pure temporal locality or spatial locality, but rather a

mix of them, one can expect that using both cache assists at the same time would have a better

performance. To take advantage of the facts presented above a program could change the cache

assist structure either initially or before entering a loop so that it is either a victim cache or a

stream buffer, depending on what configuration results in a lower miss rate. The question is,

given limited cache assist memory, what is the best way to partition it.

To investigate different possibilities of adaptation we propose four approaches to partitioning

the total (limited) cache assist space between the victim cache and the stream buffer. They are:

l. Use the entire cache assist memory either as a victim cache or a stream buffer, changing

the use for each loop (the dyna_loop approac~). The decision to use one configuration or

the other is taken based on which achieves a greater miss removal rate for that loop. The

miss reduction information comes from profiling.

In the dyna_loop case the cache assist can be used either as a stream buffer or as a victim

cache for any loop. We conjecture that splitting the cache assist and using a part of it as a

12

100
90

c 80 0
:.;::;
(.) 70 ::J

"'O
60 Q)

I-

Q) 50 .._..
ro

:1--1'1--1

11m~: II Iii :-rlJ +- I- I-

r;:; I- 't-- H

., ' I- I-

I-

40 (/) I- t-- :1--
(/)

~ 30 II H I- I- 1-: 't--

'#. 20 I
~ I---'

II
I- HI H;l--1

10
0

l: II_;

~ I.' I U1 .HI '. Jj 1J [
I I I I I I I

("') l{) ("') N N ""1" N ("') ~ l{) N ,....... ,.......
~ ~

co (.Q (.Q ~ ~ ("') (j) (.Q ,....... -.::!" co ,....... co (j) co
N (.Q N co ("') l{) l{) -.::!" (.Q co (j) co (.Q N ("')
(.Q ~ l{) N ("') ~ ("') (.Q l{) ~ ~ ~ ~ (.Q

loop line nurrt>er jovc lllsb j

Figure 5: Miss rate reduction per loop (a lKB assist, the apsi benchmark)

Cl.
0

.Q
I-
Q)
Cl.

§ c
:.;::; 0
(.) ~
::J :.;::;

~ c
I- .9
Q) (/)

-ro .5
I-

(/)
(/)

~ 20

0
0 ("') (.Q (j)

~ ~

-.::!" ,.......

loop instantiation

N l{) co ~ -.::!" ,....... 0 ("') (.Q (j)
N N N ("') ("') ("') ""1" ""1" -.::!" ""1"

\IC -.-sb I
Figure 6: Miss rate reduction per loop instantiation in ijpeg benchmark

13

stream buffer, and another as a victim cache would further improve the performance. The

following three strategies use this kind of partitioning.

2. Partition the cache assist memory between the victim cache and the stream buffer in the

same ratio as the miss reduction rate of the victim cache and the stream buffer for the whole

program (the parLbuf approach). The partition is fixed for the duration of the program.

3. The dyna_buf approach partitions the cache assist memory between the victim cache or

stream buffer per inner loop, proportionally to the miss removal rate ratio of victim cache

and stream buff er for that loop.

4. The half_buf approach uses one half of the cache assist memory as a victim cache, and the

other half as a stream buffer for the whole program.

dyna_loop and dyna_buf are dynamically adapting the cache assist configuration whereas

parLbuf and half_buf are not adaptive approaches, they are studied for comparison.

Figure 7 shows the miss reduction rates in the dyna_loop case. Profiling information gathered

in the experiments summarized in Fig. 5 is used to choose the cache assist as a stream buffer or

as a victim cache for each loop. The performance improvement compared to the best of either a

stream buffer or a victim cache for the entire program ranges from 25% to 49%. Thus adaptivity

improves performance when performed at loop level. However the miss rate got marginally worse

for fpppp (decreased from 63.54% to 62.27%). Almost all memory accesses (98%) are executed

inside one loop, and for this loop the cache assist is configured in the optimal way, the loss of

performance comes from the other loops in the program.

For the programs in which the stream buffer has a very small improvement as compared to a

victim cache (go, perl) the additional miss reduction rate is minimal because any possible gain

from using a stream buff er is minimal.

The results for parLbuf appear in Figure 8. With the exception of fpppp all the benchmarks

show gains when compared to just using victim cac~e or a stream buffer. Fpppp's loss is deter

mined by the fact that its most dominant loop would need a bigger victim cache than what the

parLbuf approach allocates. However, the degradation is again minimal, a 2% decrease in miss

rate reduction.

14

c
0

:;:::;
(.)
:::J

"'O
()) ,_
())

+-' co ,_
(/)

.!!.?
2
~ 0

80

70

60

50

40

30

20

10

0
swim turb3d apsi fpppp wave go ijpeg per I

jmvc •sb Dpart_buf I

Figure 8: Miss rate reduction for parLbuf.

80 --...-~~~~~~~~~~~~~~~~~~~~~~~~~---.

70 -l--f""......--1

6 0 -t-1' ·0,.4--i

50 -L-1"·'.''"-'

40 -t-t:c· 1--1

30

20

10

0

swim turb3d apsi
.--~---.... ~~~--wave go

EJ v c

Figure 9: Miss rate reduction for dyna_buf.

17

ijpeg perl

-:::I 25 .0
_1
ro
..c

15 I-
Q)

>
0
c 5 0

':+='
(.)
:::I

"'O
Q) -5 I-

Q)
+-' co
I-

en -15
en
~

-25

swim turb3d apsi fpppp wave go ijpeg perl

I El dyna_loop/half • dyna_buf/half I

Figure 10: DynaJoop and dyna_buf performance relative to halLbuf.

80

70

c 60 0
':+='
(.)
:::I 50 "'O
Q)
I-

~ 40
I-

en 30 en
~
:::R 0 20

10

0

swim turb3d apsi fpppp wave go ijpeg perl

El vc sb D dyna_loop D dyna_:_buf • half_buf Im part_buf

Figure 11: Miss rate reduction for all the configurations.

18

- 45 ::::J
..a _,

35 ro
..c
I-
<D 25 >
0
c 15 0
:p
(.)
::::J

"'O 5 <D
I-

<D
-5 -1-'

cu
I-

(/)
(/) -15 ~

cf2. -25
swim turb3d apsi fpppp wave go ijpeg

I• dyna_loop/half D dyna_buf/half j

Figure 12: DynaJoop and dyna_buf performance relative to halLbuf for a 256B cache assist.

instructions at the beginning of the loop. This is the approach we advocate and we are pursuing

static analysis in our compiler work. The profiling approach was used in this study.

6 Conclusions and Future Work

We have studied a memory configuration consisting of a standard cache hierarchy plus a small

cache assist memory that can be used either as a stream buffer or a victim cache. The cache assist

is reconfigurable at run time to allocate a certain fraction of memory to victim cache and/ or to

stream buff er.

We have shown that using a cache assist reduces the miss rate of the cache and that adapting

the configuration of the cache assist reduces it even more. Several approaches have been studied

and we have concluded that an approach that reconfigures the cache assist per inner loop at run

time achieves best performance. Using a lKB adaptive assist memory, up to 50% additional miss

rate reduction is achieved by the best of the proposed methods. Simple static assist memory

partitioning, on the other hand can suffer up to 15% loss of performance.

19

References

[1] Andrew A. Chien and Jae H. Kim. Planar-adaptive routing: Low-cost adaptive networks

for multiprocessors. In Proc. 19th Annual Symposium on Computer Architecture, pages

268-277, 1992.

[2] Fredrik Dahlgren, Michel Dubois, and Per Stendstrom. Fixed and adaptive sequential

prefething in shared memory multiprocessors. In Intl. Conference on Parallel Processing,

1993.

[3] W.J. Dally and H. Aoki. Deadlock-free adaptive routing in multicomputer networks using

virtual channels. In IEEE Transactions on Parallel and Distributed Systems, pages 466-4 75,

1993.

[4] Jeffrey Kuskin et al. The Stanford FLASH multiprocessor. In Proc. 21st Annual Symposium

on Computer Architecture, pages 302-313, 1994.

[5] Edward H. Garnish and Alexander Veidenbaum. An integrated hardware/ software data

prefething scheme for shared-memory multiprocessors. In Intl. Conference on Parallel Pro

cessing, pages 247-254, 1994.

[6] Teresa L. Johnson and Wen mei Hwu. Run-time adaptive cache hierarchy management via

reference analysis. In Proceedings of the 24th Annual International Symposium on Computer

Architecture, 1997.

[7] Norman P. Jouppi. Improving direct-mapped cache performance by the addition of a small

fully-a ssociative cache and prefecth buffer.

[8] Norman P. Jouppi and Steven J.E. Wilton. Tradeoffs in two-level on-chip caching. In Proc.

21st Annual Symposium on Computer Architecture, 1994.

[9] Toni Juan, Sanji Sanjeevan, and Juan J. Navarro. Dynamic history-length fitting: A third

level of adaptivity for branch prediction. In Proceeding_s of the 25th Annual International

Symposium on Computer Architecture, pages 155-166, 1998.

20

[10) Sanjeev Kumar and Christopher Wilkerson. Exploiting spatial locality in data caches using

spatial footprints. In Proceedings of the 25th Annual International Symposium on Computer

Architecture, pages 357-368, 1998.

[ll) T. Matsumoto, K. Nishimura, T. Kudoh, K. Hiraki, H. Amano, and H. Tanaka. Distributed

shared memory architecure for JUMP-I. In Intl. Symposium on Parallel Architecures) Al

gorithms) and Networks, pages 131-137, 1996.

[12) Ted Romer, Wayne Ohlich, Anna Karlin, and Brian Bershad. Reducing TLB and memory

overhead using on-line superpage promotion. 1996.

[13) D. Sunada, D. Glasco, and M. Flynn. ABSS v2.0: SPARC simulator. Technical Report

CSL-TR-98-755, Stanford University, 1998.

[14) Madhusudhan Talluri and Mark D. Hill. Surpassing the TLB performance of superpages

with less operating system support. 1996.

[15) 0. Temam and N. Drach. Software-assistance for data caches. In Proceedings IEEE High

Performance Computer Architecture, 1995.

[16] Steve Turner and Alexander Veidenbaum. Scalability of the Cedar system. In Supercom

puting, pages 247-254, 1994.

[17) Jack E. Veenstra and Robert J. Fowler. Mint: A front end for efficient simulation of shared

memory multiprocessors. In Intl. Workshop on Modeling) Analysis and Simulation of Com

puter and Telecommunication Systems, pages 201-207, 1994.

[18) Alexander V. Veidenbaum, Weiyu Tang, Rajesh Gupta, Alexandru Nicolau, and Xiaomei

Ji. Adapting cache line size to application behavior. In Proceedings ICS)99, June 1999.

[19) Peter Van Vleet, Eric Anderson, Lindsay Brown, Jean-Loup Baer, and Anna Karlin. Pur

suing the performance potential of dynamic cache line sizes. In Proceedings of 1999 Inter

national Conference on Computer Design, November 1999.

21

