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§ Abstract

In the inverse motion problem in finite hyper-elasticity, the classical formulation relies
on conservation laws based on Eshelby’s energy-momentum tensor. This formulation is
shown to be lacking in several regards for a particular class of inverse motion problems
where the deformed configuration and Cauchy traction are given and the undeformed con-
figuration must be calculated. It is shown that for finite element calculations a simple
re-examination of the equilibrium equations provides a more suitable finite element formu-
lation. This formulation is also shown to involve only minor changes to existing elements
designed for forward motion calculations. Examples illustrating the method in simple and
complex situations involving a Neo-Hookean material are presented.

1 Research sponsored in part by the Engineering Foundation Grant No. RI-A-94-02.
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§1. Introduction

A problem in the design of elastomeric parts is determining the reference/undeformed
shape of a part such that under a given load the part will have a desired deformed shape.
This problem is a type of inverse problem. However, in contrast to many inverse problems,
it is not ill-posed in the sense of Hadamard’s definition. For a brief synopsis of the mathe-
matical issues surrounding inverse problems the reader is referred to LAMM [1993]. Here,
it is merely noted that (in contrast to most ill-posed problems) the present inverse defor-
mation problem does not involve the determination of boundary data for a given interior
solution.

A method for formulating such inverse deformation problems in finite elasticity was
proposed by SHIELD [1967]. This method relies on exploiting a duality in the equations
of finite hyper-elasticity when the role of the spatial and reference coordinates are in-
terchanged. Later CHADWICK [1975] exploited this same duality to formulate Shield’s
equilibrium equations in terms of Eshelby’s energy-momentum tensor, ESHELBY (1956,
1975]. The use of these equations in the finite element analysis of inverse motion prob-
lems, however, appears not to have been performed to date. In this paper, it is shown
that this classical energy-momentum formulation is not the most expedient when dealing
with inverse motion problems as defined above. Rather, a simple re-parameterization of
the standard equilibrium equations leads to a more efficient and straightforward technique
for solving such problems via the finite element method. Additionally, it is found that the
implementation of this new formulation involves only minor changes to elements designed
for computing forward motion problems.

The paper will be divided into three main sections and two appendices as follows:
Section 2 summarizes the problem description and points out some of the difficulties with
the energy-momentum formulation; Section 3 presents the finite element formulation of the
proposed method; in Section 4 a set of examples are presented to illustrate the method;
Appendix A presents a comprehensive set of duality relations for elastostatics; and Ap-
pendix B presents and briefly discusses the weak form equations necessary to solve an
inverse deformation problem using the energy-momentum formulation.

§2. Problem Description

In the standard problem of elastostatics one considers a stress-free reference placement
of a body B c R® and its motion ¢ : B C R3® — R3. Points in the reference placement
are denoted by X € B and map to points £ = ¢(X) in the deformed configuration
S = ¢(B). The motion ¢(X) is usually considered the primary unknown when the body
is subjected to known boundary displacements and tractions; ¢ is determined by solving
the equilibrium equations. The problem of interest here is the inverse of this problem
where the deformed configuration and boundary conditions are known and the reference
configuration and inverse motion ¢(x) = ¢~!(x) are the desired unknowns.

Such problems are typically formulated by exploiting a set of duality relations that
allow one to formulate the inverse problem in a form that appears similar to a standard
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elastostatic problem. These relations, first noted by SHIELD [1967], and later notably
expanded by OGDEN [1975A,B] and CHADWICK [1975] follow from the assumption of a
homogeneous body whose constitutive response is governed by a stored energy function
per unit reference volume W : Liny — R, where Liny denotes the space of second order
tensors with positive determinant. In the standard problem, defining the deformation

gradient
¢

F=-o (2.1)
leads to the relation for the first Piola-Kirchhoff stress tensor
OW(F)
P = ) )
5F (2.2)

The specification of the standard problem is completed by requiring the equilibrium equa-
tions to be satisfied for given boundary conditions. Thus, for all X € B

DIV[P]+B=0 ad FPT=PFT, (2.3)

for all X € 9B;

PN =T, (2.4)

and for all X € 0B _
p=9, (2.5)

where DIV([-] is the divergence operator with respect to X, Bisa given body force per
unit reference volume, T is a given traction function per unit reference area, ¢ is a given
surface motion, 8B; N 8By = @, and 0B; U 8By = 0B the boundary of B. Equations
(2.1)-(2.5) constitute a complete set of equations that may be solved for the unknown ¢.

If the body is assumed to be homogeneous and body forces absent, then the inverse
problem can be formulated in a completely analogous fashion. Start with a stored energy
function per unit deformed volume w : Liny — R defined as

w=W/J, (2.6)
where J = det[F]. Next, define the inverse deformation gradient

_ 9
f=5 (2.7)

And note that f = F~1 o0, where o is the composition symbol; also, for later convenience
define j = det[f] = 1/(J o ¢). Next, define

ow(f)
= , 2.8
P="5; (2.8)
where p is a two-point version of Eshelby’s energy-momentum tensor which may be ex-

pressed as
p=j[(WI-FTP)oy] fT, (2.9)
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where X = WI — FT P is Eshelby’s energy-momentum tensor in essentially CHADWICK’S
notation and I is the second order identity tensor; ESHELBY {1975, §5] denotes X' as P~
and CHADWICK [1975]1 denotes it X7. If one assumes a smooth motion (¢ € C?(B)) and
positive Jacobian (J > 0), then static equilibrium is satisfied if and only if for all z € 5

div[p] = o. and fpl =pfT, (2.10)

where div[] is the divergence operator with respect to z. To complete the statement of the
inverse problem, boundary conditions need to be given. In analogy with (2.4) and (2.5),
these would read: for all € 95,

pn = tem, (2.11)

and for all z € 95,
$=o, (2.12)

where Z.., is a given energy-momentum traction, @ is a given inverse motion, 85; NS, =
@, and 85, U 8S, = 8S the deformed body’s surface.

Remark 2.1. :
Equations (2.7)-(2.12) constitute a complete set of equations that may be used to
compute an inverse motion ¢. Further, because their form is identical to the standard
equations of elastostatics, existing computational methods can be directly exploited.

O

Remark 2.2.
A comprehensive list of duality relations is given in Appendix A. [

Remark 2.3.
There are several obstacles to the practical application of of Equations (2.7)—(2.12).
~ One, the boundary condition (2.11) is not of interest here since the energy-momentum
traction is usually unknown. For a given traction t per unit deformed area the correct

boundary condition is
wn—fipn=1, (2.13)

where n is the boundary normal in the deformed configuration; this relation follows
directly from Eq. (A.3)s. This type of boundary condition, though formally tractable,
greatly complicates numerical computations; see Appendix B. Two, the formulation
is only valid for homogeneous bodies without body forces. And three, symmetry of
the duals to the Cauchy stress, o, and the second Piola-Kirchhoff stress, S, Y and s
respectively, only hold in the case of isotropy. [

t The presence of the transpose in Chadwick’s notation merely reflects a difference in
the convention of which leg of the stress tensor corresponds to the section normal and
which leg corresponds to the traction direction.
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Remark 2.4.
In Appendix B, the weak form of this classical formulation of the inverse problem
is given for completeness and its primary detractions are briefly discussed. In what
follows, however, these relations are not used. Rather, a simple re-examination of
the standard problem leads to a simpler formulation of the inverse problem which is
devoid of the difficulties stated in Remark 2.3. [

2.1. Re-parameterization.

An efficient formulation for the inverse problem relies on the following trivial obser-
vation: Equations (2.3) can be considered as equations in f and hence as equations in
w the inverse motion. This follows from noting that F = f~! o0 ¢. In this regard, it
proves convenient to rewrite Equations (2.2)-(2.5) in terms of the Cauchy stress o and the
known deformed configuration. Thus, the equilibrium equations and boundary conditions
become: for all z € §

divje]+b=0  and o=o0T, (2.14)
for all x € 8S; ‘
on=1, , (2.15)
and for all z € 85,
=@, (2.16)

where b is a given body force per unit deformed volume. The constitutive relation may be
expressed in terms of f as

o=jP(f)fT. (2.17)

§3. Finite Element Formulation

The strong form of the boundary value problem given in the previous section can also
be written in the standard weak form

)= ogsdalio = [d= [ 0

where 17 : § — R? represents an arbitrary admissible variation in a suitably chosen
function spacet, grad[] is the gradient operator with respect to x, a single () between two
vectors denotes the standard dot product in R? and (:) denotes the following inner product
between second order tensors, A : B = trf|AT B]. Note in particular, that S is a known
domain; thus linearization of (3.1) is most easily performed on the Eulerian weak form.

i
II

(3.1)

1 Typically, the configuration space of solutions, C = {¢ : § — R® | j = det[f] >
0 and ¢lss, = @} C [WHP(S)]3, where WHP is the space of k-times weakly differen-
tiable functlons, W*(S), belonging to the classical Lebesgue space L?(S). The choice of p
is dictated by the growth characteristic of the strain energy function; see CIARLET [1988].
The standard linear space of admissible variations, T,C, is the tangent space to C at a
point ¢ € C and is a subset of [W1P(S5)]? as well.
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3.1. Linearization. :

Without loss of generality, we consider the special case of isotropy in what follows.
Thus, the Cauchy stress may be expressed using the representation theorem for isotropic
tensor functions (see e.g. GURTIN [1981, §37]) as solely a function of b the left Cauchy-
Green strain tensor or equivalently in terms of its inverse ¢ = b~! = fTf. Then, the
linearization of (3.1) about a given point(iterate) (*) in the configuration space in the
direction v : S — R? is given by :

LG (@™ m)[v] = G(e™;n) + DiG(eW;m)[v], (3:2)
where
DiGe®im)ie] = 2| Gle® +0vm). (3.3)
6=0
For the case being considered
do
D1G(e™;n)[v] = L2 sym [grad[n]] : 3 sym [FTgrad[v]] , (3.4)

where sym[-] = 1((-) + (-)T) is the symmetry operator. Note that there is no geometric
stiffness in this representation. However, the material tangent operator %% only has minor
symmetries in general; hence any expected computational savings from this observation
are voided. Further, note, this lack of symmetry is consistent with the traditional inverse
formulation in terms of energy-momentum; see Appendix B.

Remark 3.1.

The weak form above can be approximated by defining finite element sub-spaces to
the configuration space and the space of admissible variations. In general, for realistic
nonlinearly elastic materials, incompressibility must be considered. However, for the
sake of simplicity, such problems are not explicitly dealt with here; see e.g. SIMO AND
TAYLOR [1991] for a discussion on techniques appropriate to such problem classes. In
what follows only the standard Galerkin method will be employed. [

8.2. 2-D Matriz Formulations.
The preceding expressions can be converted to standard matrix form except for the
tangent term. Considering the problem on the element level, write

sym [grad[n]] = Bn, 4 (3.5)

where B = [B;, By, *s Bren| is the discrete gradient operator,
Nja 0
-‘B-A = 0 NA72 9 (3'6)
Nag2 Naj
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and nen is the number of element nodes. In the above, N4 are shape functions and n =

(nt,nd, n?,n3, -, npem,npe", )T, where superscripts denote node number and subscripts
denote coordinate direction. Similarly,
sym [fTgrad[v]] = Bf v, (3.7)
where f is the block diagonal matrix
i: diag[f’f""’f]?neannen (38)

and v is ordered in the same fashion as n. Lastly, the tangent operator is mapped to a
3 x 3 matrix D as: -
8011/6c11 60’11/8622 30‘11/8C12
D = | 8o93/8c11 Oog2/0caa  Bo22/0ci2 | - (3.9)
8012/6011 (90‘12/(9622 60’12/8612
Note, this matrix is not symmetric. Thus the tangent term is unsymmetric and on the
element level becomes

ke = / BTDBfT, (3.10)
where the domain of integration is a given element.

Remark 3.2.
It is seen from (3.10) that the modifications necessary to convert a standard elastostatic
element for inverse calculations are relatively minor in this formulatlon when compared
to the energy-momentum formulation. [

§4. Illustrations: Neo-Hookean Material

This section presents a set of example problems which illustrate the capability of this
formulation to correctly solve the inverse motion problem. All problems are 2D plane
strain and use a compressible Neo-Hookean constitutive relationship with the following
strain energy function:

= %(tr[C] —3)—pln(J)+ %(ln(J))Q ; (4.1)

where C is the right Cauchy-Green strain tensor and p and A are constitutive parameters
that reduce to the Lamé parameters in the small strain limit. Given (4.1), the Cauchy
stress

o =ju(c™t = I) = AjIn(G)I (4.2)
and the tangent operator
%Cr_ =jp(iet@c = Ia) —jiu+ XA+ ()T ©c, (4.3)

where indicially

I- — I[zcj.kll

and ® denotes the tensor outer product.

%(C'Lk ]l +cz_llc_;—k1) (44)
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4.1. Simple extension. In this example the method is compared to a problem with an
analytic solution with a uniform stress state. A rectangular (deformed) domain of width
1.17115 and height 0.96011 is loaded with a uniform (Cauchy) traction of 200 along the
vertical surfaces; the material properties are u = 500 and A = 1000/3 (all properties are
assumed to be given in consistent units). This corresponds to a material with a small
strain Poisson ratio of 0.2. The problem is to determine the undeformed configuration.
The exact solution (to the precision given for the geometry) is a 1 by 1 square. Using a
uniform 4 element mesh, the problem is solved in a single load step with 5 Newton-Raphson
iterations required to quadratically reduce the residual norm by 16 orders of magnitude.
The calculated inverse motion produces a 1 by 1 square (to the precision given) and a
uniform lateral Cauchy stress field of 200 as expected from the exact answer.

IIlIIII?E@wwwwwwwvw¢wwv¢+¢wwwwww¢vwwvw¢+¢&$$$$$1111

WMM%MMMMMMMMMMMMMMW

i

FIGURE 4.1. Top: Deformed gasket cross-section with load-
ing, Bottom: Undeformed gasket cross-section. '

4.2. Gasket shape. In this example we consider the determination of the “to be
manufactured” shape of a gasket. The design specifications require the gasket to have
a (deformed) 1.5 cm x 0.4 cm rectangular cross-section and to provide a linearly increasing
clamping traction near the gasket edges to help prevent the gasket from being compromised.
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The initial mesh is shown in the top of Fig. 4.1. Material properties are A = 7.143 MPa
and p = 1.786 MPa. The lateral edges are traction free and the top and bottom faces are
subjected to a constant normal traction of 2 MPa over the center 70% of the gasket. On
the outer 15% of both sides the traction increases linearly to a value of 4 MPa. The lateral
motion on the top and bottom faces is assumed to be zero. By symmetry, only 1/4 of the
shown geometry was actually modeled. Shown in the lower half of 4.1 is the calculated
undeformed shape of the gasket. This is the shape one would need to manufacture to
obtain a gasket with the given performance specifications. The analysis was performed in
a single load step with 6 Newton-Raphson iterations; this reduced the residual norm by
over 9 orders of magnitude.

70

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

deflection at center (3)
e Forward Loading - =« nverse Load Path 1
== Inverse Load Path 2 = = = |nverse Load Path 3

FIGURE 4.2. Snap-through buckling forward and inverse
paths.

4.8. Snap-through buckling. In this example, we consider a problem that has multiple
solutions. A thin concave slab is pin supported on each end and the geometry is discretized
into 20 elements angularly and 4 elements through the thickness; see Fig. 4.2. Dimensions
of the geometry are as follows: R = 1.0 is the radius of curvature, L = 0.2203 is the
distance between the supports, and ¢t = 0.005 is the thickness of the slab. The material
properties are p = 500 and A = 1000/3, where all parameters are assumed to be given in
consistent units. A point load is applied in the center of the mesh with a magnitude large
enough to cause snap-through buckling. To follow the load through the bifurcation point
an arclength method is used; see e.g. CRISFIELD [1983] and references therein. Analysis
of the forward problem leads to the solid response curve shown in Fig. 4.2.

For this problem three inverse calculations were performed from different deformed
configurations. The initial deformed configurations were taken from the output of the
forward calculation. The first corresponds to a center deflection of 0.0283059, the second
a center deflection of 0.0458880, and the third a center deflection of 0.0725270. The
load in the inverse problem is incremented from zero and is increased until it reaches the
desired load value which is known from the forward calculation. The results show that
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the mesh deforms to the correct displacement (known from the forward problem) when
the corresponding load is applied to the inverse problem. In two cases, load paths 2 and
3 in Fig. 4.2, the desired load is reached for multiple configurations. This merely reflects
the non-unique nature of non-linear elasticity problems of this type. Physically it says
that there are multiple undeformed configurations that will produce the same deformed
configuration for given boundary conditions. Each solution of course leads to a different
stress field. Further note that the inverse paths should not be interpreted as unloading
paths.

§5. Closure

This paper has presented an alternative formulation to the energy-momentum formu-
lation for the calculation of inverse motion problems. The energy-momentum formulation
has been shown to have several major drawbacks:

i. It is restricted to homogeneous bodies.
4. It is restricted to problems without body forces.

sii. Tt results in a weak form that requires deformation gradient information on the bound-
ary or C! continuity in finite element methods.

The alternative formulation based simply on equilibrium considerations has been
shown to provide a way around these restrictions in a fashion that fits well within a stan-
dard finite element program architecture. In particular, elements designed for computing
forward motion problems in hyper-elasticity can be easily converted to inverse motion
elements.
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§Appendix A: Duality Relations in Elastostatics

Through the introduction of the stored energy function per unit undeformed volume
W and its counterpart (SHIELD [1967]) per unit deformed volume w [see Equation (2.6)],
a set of duality relations between forward and inverse motion can be developed. Without
expounding on the details of the derivations, the following dual relations are noted:
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Kinematics
Forward Motion - Inverse Motion
z=¢(X) X = p(z)
_ 0¢ _ Oy
F= 80X T Oz (A1)
C=F'F c=fTf
b=FFT B=jffT

In the above, ¢ is the forward motion mapping points X in the reference configuration
to points x in the deformed configuration. ¢ is the point mapping for the inverse motion.
F is the deformation gradient and f is the inverse deformation gradient. C is the right
Cauchy-Green strain tensor and c¢ is its counterpart in the inverse motion; note that
¢ = b~! where b = FFT is the left Cauchy-Green strain tensor whose dual is B = c.
Note that frame invariance requires the energy W(F) = W (C); however, for the energy
in terms of the inverse motion, the requirement is that w(f) = @(B). Worthy of note also
is that isotropy requires W (F) = W(b) and w(f) = @(c).

Constitutive Relations

Forward Motion Inverse Motion
ow
P=5F =57
S = 2% s = 2-88—1“5— (isotropy only) (4.2)
C=4 6662'?/0 K=4 :jgc (isotropy only)

In the above, P is the first Piola-Kirchhoff stress tensor and p a two-point energy momen-
tum tensor is its dual. S is the second Piola-Kirchoff stress tensor and s is its energy-
momentum dual. The given form of s is symmetric but only holds in the case of isotropy;
a more generally valid expression is given below in the stress tensors table. C is the fourth
order material tangent and K is its energy-momentum dual in the case of isotropy.

Stress Measures

Forward Motion Inverse Motion
p= = j(WI — FTP)FT
oF sl o (A.3)
_ T =7
o = ‘:]'PF ]p
S = F-1p s=f"lp=wb-bo

In the above, J = det[F] is the Jacobian of the forward motion and j = det[f] is its
counterpart in the inverse motion. o is the Cauchy stress tensor and X, Eshelby’s energy-
momentum tensor, is its dual (see (2.9) and subsequent comments on different energy-
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momentum tensor conventions). Note that the symmetry of X and s requires that C
and S commute and that b and & commute; this in general happens only in the case of
isotropy.

Conservation Laws

Forward Motion Inverse Motion
divije] = o DIY[E] =0 (A4)
DIV[P]=o divlp] = O
DIV[FS]=o0 div[fs|=0O

In the above, DIV][-] is the divergence operator with respect to the reference coordinates
X and div]-] is the divergence operator with respect to x. Further note that DIV[P] = o
if and only if DIV[X] = O for smooth motions (i.e. ¢ € C?(B)) with positive Jacobian.
This is seen to be true, since under the assumption of smoothness DIV[X] = —FTDIV[P].

§Appendix B: Weak Form For Energy-Momentum Formulation

In this appendix, the weak form of the inverse problem in terms of the energy-
momentum tensor is presented and briefly discussed in the context of isotropic materials
without body forces. Begin by taking the dot product of Equation (A.4)3; by an admissible
variation 5 : § — R* and integrating over the known domain S:

[ n-divfs] =o0. Y
S

Following the standard procedure, integrate Eq. (B.1) by parts and note that n|ss, = 0
to give

[ emadinl (£5)= [ m- gan =0 (B.2)
S 85,
Making use of Eq. (2.13) yields the weak form expression
G(pin) = / grad[n] : (fs) - / n-wf Tn +/ n-fTt=0 (B.3)
S 85, 85,

which must hold true for all admissible 7.

Remark B.1.
This expression has an immediate drawback: The presence of dependencies on f in
the boundary integrals implies the need for gradient information on the boundary of
elements. Typical shape function interpolations do not, however, provide this data
with any accuracy. Note this dependency appears not just in the £~7 terms but also

inw(f). O
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Remark B.2.
A non-standard weighted residual method can be used to circumvent the difficulties
noted in the previous remark at the expense of the integrability requirements on the
finite element function spaces. By taking the dot product of Eq. (A.4)3 with nf7,
one obtains

Ty . _ . 1=
/Sgrad[nf J:(fs) /astn wn+/astn t=0. (B.4)

The boundary term that involves w(f) can then be converted, using the divergence
theorem, to a domain integral to remove all need for gradient information on the
boundary. The detraction, of course, is the higher order continuity conditions that
can not be handled by standard methods in multidimensions. [

For completeness, we give the directional derivative of Eq. (B.3) below:
D1G(p;n)v] = / Grad[n] : (Grad[v]X) +/ Grad[n)] : ¢.(K) : Grad[v]
P(S) P(S)
- / " n-NX:Gradjv] - WN - Grad[v]n (B.5)
®(85:)

- / (F~TE) - Grad[v]n,
p(8Sy)

where Grad][-] is the gradient operator with respect to X, N is the boundary normal in
the undeformed configuration, and ¢.(K) = % fffrK. For a general isotropic material

0. (K) = (4J2W;3 — 2W)I — 4Wsle + 2(W; + ,Wo)I(C, I)
—2WLI(C3I) + (W + 43Wa) I ® I
+ 4(Wiy + Wo + 20 Wa1 + 12Wa)C ® C + 4Wp,C? @ C?
+ (4T3 Wiz + 1 Wa3) = 2(W1 + uWa))I@ C+ C R I)
+ (2W, — 4T W3)(I @ C* + C?* ® I)
—4(Wia+ uWp)(C®C?*+C*C)

(B.6)

In the above, W, = 0W /8., and W,y = 8*W/81,0t, where 1 = tr[b], 1o = 1(:2 — tr[b?)),
and t3 = det[b] (the three invariants of b). Indicially, the operators

I - Lijr = 3(6ikb51 + 6ubji) (B.7)
Ic — 12% = 1(CikCji + CuCji), (B.8)

and 1
I(A,B) - I(A, B)iju = Z(Aikle + AuBgj + AjBix + AjkBu) - (B.7)

Note that Eq. (B.6) has both minor and major symmetries but overall (B.5) is unsym-
metric.





