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RESEARCH ARTICLE

Leg cycling efficiency is unaltered in healthy aging regardless of sex or training
status

Justin J. Duong, Robert G. Leija, Adam D. Osmond, Jose A. Arevalo, and George A. Brooks
Exercise Physiology Laboratory, Department of Integrative Biology, University of California, Berkeley, Berkeley, California,
United States

Abstract

Muscular efficiency during exercise has been used to interrogate aspects of human muscle energetics, including mitochondrial coupling
and biomechanical efficiencies. Typically, assessments of muscular efficiency have involved graded exercises. Results of previous stud-
ies have been interpreted to indicate a decline in exercise efficiency with aging owing to decreased mitochondrial function. However,
discrepancies in variables such as exercise stage duration, cycling cadence, and treadmill walking mechanics may have affected inter-
pretations of results. Furthermore, recent data from our lab examining the ATP to oxygen ratio (P:O) in mitochondrial preparations iso-
lated from NIA mouse skeletal muscle showed no change with aging. Thus, we hypothesized that delta efficiency (De) during steady-
rate cycling exercise would not be altered in older healthy subjects compared with young counterparts regardless of biological sex or
training status. Young (21–35 yr) and older (60–80 yr) men (n ¼ 21) and women (n ¼ 20) underwent continual, progressive leg cycle er-
gometer tests pedaling at 60 RPM for three stages (35, 60, 85 W) lasting 4 min. Dewas calculated as: (D work accomplished/D energy
expended). Overall, cycling efficiencies were not significantly different in older compared with young subjects. Similarly, trained subjects
did not exhibit significantly different exercise efficiencies compared to untrained. Moreover, there were no differences between men
and women. Hence, our results obtained on healthy young and older subjects are interpreted to mean that previous reports of
decreased efficiency in older individuals were attributable to metabolic or biomechanical comorbidities, not aging per se.

NEW & NOTEWORTHY Muscular power is reduced, but the efficiency of movement is unaltered in healthy aging.

aging; excitation-contraction coupling; human metabolism; muscle mechanical efficiency; oxidative phosphorylation efficiency

INTRODUCTION

Muscular efficiency1 during exercise, the ratio of mechani-
cal work to energy expenditure, has garnered significant in-
terest for its relevance to understanding integration of the
components of bioenergetics, metabolism, and biomechanics.
Although there are several ways to compute muscular effi-
ciency [work, gross, net, and delta efficiency (De)], De, defined
as the change in energy expenditure associated with a change
in power output, is widely recognized as the most valid mea-
sure of muscular efficiency (1, 2). Among the reasons for deter-
miningmuscular efficiency is evaluating the influence of aging
on the components of muscular efficiency during exercise that
have important implications for determining the energetic,
cardiopulmonary, and nutritive demands of activities of daily
living. It has long been known that basal metabolic rate (BMR)
(3) and maximal oxygen consumption capacity (V_ O2max)
decline in aging (4). The age-related decline in aerobic fitness

means that any exercise task is accomplished at a greater per-
centage of V_ O2max and respiratory gas exchange ratio (R ¼
V_ CO2/V_ O2), thereby shifting energy substrate partitioning to-
ward carbohydrate oxidation (5). Several studies have shown
decrements in locomotor efficiency (6) and increased energetic
cost (7, 8) during treadmill walking in older adults. As well,
decreased mitochondrial coupling efficiency has been pro-
posed to play a major role in reduced muscular efficiency with
aging (9–12). Results for cycling efficiency with aging are less
definitive as some studies report lower (10–13), higher (14), or
equal efficiencies (15, 16).

To date, there have been few studies to interrogate the possi-
bility of biological sex-specific differences on muscular effi-
ciency. Of those, most have reported similar efficiencies in
men and women across different exercise modalities (12, 13,
17–19). Some report higher efficiencies in men than women
during arm cranking (20), while others report higher leg cycling
efficiencies in female than male competitive cyclists (21). As
most studies were conducted in young healthy subjects, age-
associated sex-specific differencesmerit further investigation.

Studies of the influence of training status on leg muscu-
lar cycling efficiency have also yielded similarly mixed
results. Evidence suggests that the type of training (22),
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1Muscular efficiency: overall efficiency of energy transduction during
muscle exercise. Muscular efficiency is a collective term involving the
efficiencies of mitochondrial oxidative phosphorylation, excitation-con-
traction coupling, actomyosin interactions, and capture of kinetic energy
during locomotion.
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amount of cycling experience (23–25), or fitness level (25,
26) do not influence cycling De. In older athletes, however,
there are conflicting reports that have shown increased De
in endurance-trained athletes compared with their seden-
tary counterparts (10). Similarly, others have reported
improvements in efficiency as a result of training (9, 11, 12).
Long-term endurance training has been proposed to main-
tain exercise efficiency with aging (27). In contrast, others
have noted significantly decreased efficiency despite train-
ing (28). Despite these studies, the interface between age
and training status has not been thoroughly explored.

Hence, the purpose of this study was to interrogate the
effects of aging on De during submaximal, steady-rate cy-
cling in healthy young and older adults. In addition, we
aimed to determine if sex and endurance training influenced
exercise efficiency. Based on results of our studies on mito-
chondrial preparations isolated from young and old, male
and female NIA mice (29), it was hypothesized that De: 1)
would be unaltered in older compared with young persons
and 2) would be unaffected by sex or 3) training status.

MATERIALS AND METHODS

Subjects

Younger (21–35 yr) and older (60–80 yr) healthy men
(n ¼ 21) and women (n ¼ 20) (ntotal ¼ 41) were recruited
from the University of California, Berkeley campus and
the surrounding community via fliers, word of mouth,
e-mail, and social media. Subjects were included in the
study if they had a body mass index of �18.5 and <30 kg/
m2, were nonsmokers, were diet and weight stable, had a
vital capacity 1-s forced expiratory volume of >70% via
spirometry, and were injury and disease free, as deter-
mined by physical examination by a physician. Body fat
percentage was assessed via skinfold measurements.
Training status was determined from self-reported exer-
cise habits on individual intake exercise history question-
naires and confirmed from V_ O2peak results. Untrained
participants reported <2 days a week of physical activity.
Trained participants reported >5 days of physical activity
per week for a minimum of 30 min per day. This study
was approved by the University of California Berkeley
Committee for the Protection of Human Subjects and
conformed to the standards set by the Declaration of
Helsinki (CPHS 2018-08-11312). Eligible volunteers gave

written informed consent after discussing the purposes,
procedures, and associated risks.

Exercise Testing Protocol

Following initial screenings, all subjects underwent a
graded exercise test (GXT) conducted on an electronically
braked leg cycle ergometer (Lode Gronigen, Netherlands).
Expired respiratory gasses were continuously monitored
throughout the test via an open-circuit automated indirect cal-
orimeter (Parvo Medics TrueOne 2400 Metabolic System, Salt
Lake City, UT) that was calibrated using room air and a certi-
fied calibration gas (16% O2, 4% CO2). Testing began with 5
min of resting data collection with the subject seated quietly
on the ergometer. They were then instructed to begin cycling
for a 2-min warm-up period at 25W at a set cadence of 60 rpm.
This cadence was dictated by ametronome and reinforced vis-
ually using a tachometer displayed on a screen. Following the
2-min warm-up, subjects completed three 4-min stages of 35,
60, and 85 W while maintaining a target cadence of 60 RPM.
These three stages were used to determine efficiency. Subjects
subsequently pedaled at a self-selected cadence for the re-
mainder of the test as power output was increased by 30 W/
min until ventilatory threshold [respiratory exchange ratio
(RER, or R ¼ V_ CO2/V_ O2) 0.97–1.0] for older subjects or voli-
tional exhaustion for younger subjects was reached (2).
V_ O2peak was estimated from measures of ventilatory thresh-
old for the older population using American College of Sports
Medicine (ACSM) Guidelines (30).

Energy Costs of Rest and Exercise

As previously, the energy cost of rest and exercise were
calculated frommeasurements of V_ O2 and RER (1, 31).

Efficiency

Gross, net, and Defficiency (De) were calculated as previ-
ously described by Gaesser and Brooks (1). De was calculated
as the ratio of the change in external work and the associated
change in energy expenditure between stages as follows:

D€ %ð Þ ¼ DWorkAccomplished=DEnergyExpenditure
� �� 100

In addition, De was calculated from the inverse of the
slope of V_ O2 on external power output during the 35, 60, and
85W stages.

Moreover, gross and net efficiencies were calculated as tra-
ditionally (1):

Table 1. Subject demographic information

Young Older

Trained Untrained Trained Untrained

Men Women Men Women Men Women Men Women

n 6 6 4 7 7 5 5 5
Age, yr 30 ± 4 28 ±6 29 ± 1 22 ± 1 69 ± 3 69 ±6 73 ± 2 70 ± 3
Height, cm 178.1 ± 6.2 168.4 ± 8.3 167.6 ± 2.9 157.2 ± 5.3 174.8 ± 6.8 161.8 ± 7.6 174.4 ± 7.2 165.6 ± 8.1
Weight, kg 78.0 ± 7.5 61.1 ± 3.4 80.1 ± 9.6 54.9 ± 5.8 79.2 ± 9.3 59.0 ±8.0 85.1 ± 15.5 66.5 ± 6.4
Body fat, % 10.5 ± 3.8 20.0 ± 4.6 19.3 ± 3.6 23.0 ± 4.4 17.4 ± 1.1 23.0 ±6.3 19.3 ± 3.6 27.3 ± 1.3
V_ O2peak, L/min 4.0 ± 0.3 3.0 ± 0.5� 2.6 ± 0.4$ 1.5 ± 0.2�$ 2.7 ± 0.3# 1.8 ±0.6�# 1.8 ± 0.6#$ 1.4 ± 0.2#$
Rel V_ O2peak, mL/kg/min 52.6 ± 3.7 47.8 ± 6.1� 34.2 ± 1.9$ 29.1 ± 5.7�$ 33.3 ± 4.2# 26.3 ± 4.2�# 20.5 ± 0.3#$ 20.7 ± 1.6#$

All values are means ± SD. �Significantly different from men. #Significantly different from young. $Significantly different from
trained.
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GrossEfficiency %ð Þ ¼ W kcalð Þ=EE kcalð Þ� �
� 100

NetEfficiency %ð Þ ¼ W kcalð Þ= EE kcalð Þ � ER kcalð Þ� � 100
��

where EE ¼ energy of exercise in kcal, ER ¼ energy of rest in
kcal, andW¼ external work done in kcal.

Statistical Analyses

Relationships between age, sex, and training status were
evaluated using three-way repeated-measures ANOVA
(age � sex � training status). When significant F ratios
were identified, Student-Newman Keuls post hoc analy-
ses were performed. A P value of <0.05 was considered
statistically significant. Analyses were performed using
GraphPad Prism 10.2.2 software. Group sample sizes were
predicted based on power analyses using results of our
previous studies. All data are presented as means ± SD.

RESULTS

Subject Characteristics

As anticipated, we observed significant age- and sex-related
differences in height, weight, V_ O2peak, and age (Table 1).
Briefly, older individuals weighed significantly more than
those in the young group (P < 0.05). And, as expected,
V_ O2peak was significantly lower in older individuals than in
younger counterparts (P < 0.05). Also, V_ O2peak was greater in
trained than in untrained individuals (P < 0.05). Moreover,
men had higher V_ O2peak values than women when matched
for training status (P < 0.05), but interestingly V_ O2peak was
not different due to sex in the older untrained groups.

Computed Efficiencies

D Efficiency.
Results of this investigation are presented in Table 2 and Fig. 1,
a plot of metabolic power (W) as a function of external power
output on the leg cycle ergometer (W). All relevant results are
contained in this W/W figure in which slopes of the rise inmet-
abolic rate depend on the external power output. Apparent dif-
ferences in the y-intercept were associated with body size.
Otherwise, for untrained, young, women (UTYW) (r2 ¼ 0.86),
theW/W relationship for all other groups r2� 0.95.Hence, there
were no differences inDe due to age, sex, or training state.

Gross and net efficiencies.
Women exhibited increased gross efficiency (P < 0.01) at all
three stages (Table 3). There were no differences in gross

efficiency due to age or training. Furthermore, there were no
differences in net efficiencies due to age, sex, or training
status.

DISCUSSION

Our aim was to interrogate the influence of age, sex, and
training status on De during leg cycling. We hypothesized
that leg cycling Defficiency (De) would be unaltered during
subventilatory threshold steady-rate exercise regardless of
age, sex, or training status. Our results support the conclu-
sion that cycling exercise efficiency is not impaired in older
adults. Furthermore, in agreement with some existing litera-
ture, we found no difference with training history or biologi-
cal sex (12, 26).

Our preference for using De as opposed to other modes of
computation comes from considerations of first principles as
previously articulated (1, 2, 32). Moreover, while data are
rare, we are aware of two reports in which working leg mus-
cle and whole body V_ O2 were simultaneously measured over
a range of exercise power outputs (33, 34). Slopes of whole
body and leg rates of O2 consumption rose in parallel yield-
ing efficiency values as reported here.

Table 2. Cycling De in young and older volunteers by
exercise stage

Young Older

Men Women Men Women

35–60 W
De, %
Trained 28.8 ± 0.8 29.1 ± 0.8 28.7 ± 2.0 28.8 ± 0.5
Untrained 29.7 ± 2.0 29.0 ± 1.0 29.4 ± 1.4 29.0 ± 2.9

60–85 W
De, %
Trained 26.4 ± 3.3 26.2 ± 2.3 26.5 ± 2.7 26.5 ± 1.9
Untrained 26.4 ± 2.1 26.4 ± 2.0 26.3 ± 2.8 25.4 ± 1.0

All values are means ± SD.
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Figure 1. Metabolic power (Watts) derived from assessments of V_ O2 and
RER (¼V_ CO2/V_ O2) as functions of exercise power during steady-rate exer-
cise in eight study cohorts of younger (Y; 21–35 yr) and older (O; 60–80
yr) healthy men (M; n ¼ 21) and women (W; n ¼ 20) volunteers (ntotal ¼ 41);
see text for details. Relationships between age, sex, and training status
were evaluated using three-way repeated-measures ANOVA (age �
sex � training status). A P value of <0.05 was considered statistically
significant. T, trained; UT, untrained.
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Our indifference to the utility of gross and net efficiency cal-
culations has been previously presented (1, 2, 32). Simply, the
baseline artifacts of gross and net calculations give predict-
able, but invalid results. Net efficiencies are greater than gross
because of subtraction of resting energy expenditure from the
dominator (0.0 and ER, respectively). As well, gross and net
efficiencies rise as power output increases because the con-
stant baseline, ER correction becomes relatively less. To reiter-
ate (1, 32), the apparent rise in muscular efficiency at high
power outputs is an artifact, and contrary to De that is either
constant or decreasing slightly as power output increases.

Of the four typical descriptions of exercise efficiency,
gross and De are the most commonly reported (2, 10, 35, 36).
We and others have previously asserted that De represents
the most reliable measure of muscular efficiency as contri-
butions from metabolic processes not contributing to me-
chanical work are eliminated (1, 6, 17, 37). Although there is
abundant evidence that De and energetic cost of exercise are
altered in older adults during treadmill walking (6–8, 12), the
influence of age on cycling De is not apparent (10, 13, 16).
However, age-related changes in joint biomechanics and
muscle compliance could affect human gait. Therefore, the
biomechanics of walking and running could affect measures
of efficiency and economy in aging. Thus, for studies of the
energetics in the aged and infirm, leg cycling, as opposed to
treadmill walking is the choice to assess muscular efficiency.

In contrast to the results reported here, Conley et al. (13)
reported decreased cycling De in elderly subjects and attrib-
uted it to a decline in mitochondrial-coupling efficiency.
However, like us using steady-rate cycling protocols, Murias
et al. (16) reported no age-related decrements in leg cycling
efficiency.

In comparing results from established laboratories, it
appears that diverse investigators agree on the use of steady-
rate exercise tasks to elicit metabolic responses. At a practi-
cal level, studies of exercise protocols involve continuous or

continual ramp protocols to elicit changes in V_ O2 and RER.
However, depending on the persons tested, exercise ramp
increments could be too large or the time of measurement
too short for subjects to achieve steady rates of O2 consump-
tion with RER < 1.0. Hence, the presence of non-steady rate
O2 responses to exercise may account for variations in V_ O2

kinetics reported on aging individuals. In the present report,
we used small work increments and allowed 4 min for V_ O2 to
respond. Given that persons with overt metabolic or cardio-
vascular diseases were excluded from our study, and that
participants were exercised at the same absolute workloads
and cadence, the lack of difference with age indicates that
mitochondrial coupling was not compromised during sub-
max steady-rate exercise in our subjects. However, in other
study populations, evidence of decreased efficiency during
steady-rate cycling may be used to screen for cardiopulmo-
nary or mitochondrial dysfunction in particular individuals
(10, 13). Indeed, when data from highly competent research
laboratories show compromised muscular efficiencies in
older participants, then a rather simple exercise ergometer
test might be useful in unmasking the presence of mitochon-
drial gene defects, or other metabolic or biomechanical
deficits.

Our data showed no difference in net efficiency across
age, sex, or training status. This is in contrast to several stud-
ies showing decreased efficiency with aging (38–40). Our
results are, however, consistent with those of Gaesser et al.
(6), who found no difference between older adults compared
with their younger counterparts. The lower efficiency in
older subjects reported in previous literature (38–40) is likely
an artifact derived from lower absolute power outputs or the
presence of biomechanical or metabolic comorbidities in
older study participants rather than increased exercise effi-
ciency in younger adults (6).

Sex Differences

We found no differences in delta or net efficiency between
men and women. However, we did see a sex-specific differ-
ence in gross efficiency with women showing increased gross
efficiency compared with their male counterparts, persisting
across age and training status. Most likely, the appearance of
a gross efficiency advantage was due to the effects of body
mass on the baseline V_ O2. For the most part, our results are
consistent with several studies indicating a lack of sex-spe-
cific differences in efficiency during leg cycling (13, 17, 19).
Comparison of elderly adults and their middle-aged coun-
terparts found no differences in De, contractile coupling
efficiency, or mitochondrial coupling efficiency between
sexes (13). This remains true across several exercise modal-
ities including treadmill walking, arm cycling, and cross-
country skiing (12, 18, 19). In contrast, Hopker et al. (21)
reported increased gross cycling efficiency in young
women cyclists compared with men. Although this aligns
with our current results, comparisons at the same absolute
work rates between men and women may not be indicative
of changes of efficiency with sex. As the women in the
present study were significantly smaller in stature and
exhibited lower V_ O2peak values than the men, the contri-
bution of nonwork energy expenditure was likely reduced
as a function of higher relative workloads. Using relative
intensities between men and women, Yasuda et al. (19)

Table 3. Gross and net cycling efficiencies on young
and older volunteers by exercise stage

Young Older

Men Women Men Women

35 W
Gross, %
Trained 13.8 ± 1.4 15.3 ± . 06� 14.2 ± 1.5 16.7 ± 1.5�
Untrained 13.5 ± 1.0 16.0 ± 1.0� 13.9 ± 1.4 15.8 ± 0.8�

Net, %
Trained 23.8 ± 2.4 23.4 ± 1.2 23.8 ± 1.5 25.6 ± 2.7
Untrained 24.2 ± 0.9 24.3 ± 1.3 23.9 ± 2.2 24.8 ± 0.9

60 W
Gross, %
Trained 17.5 ± 1.4 19.1 ± 0.7� 18.0 ± 1.5� 20.3 ± 1.3�
Untrained 17.4 ± 1.1 19.3 ± 1.6� 17.7 ± 1.5� 19.1 ± 0.7�

Net, %
Trained 25.5 ± 1.7 25.5 ± 0.8 25.7 ± 1.6 26.8 ± 1.7
Untrained 26.1 ± 0.8 26.2 ± 0.5 25.7 ± 1.3 26.3 ± 1.4

85 W
Gross, %
Trained 19.2 ± 1.2 20.7 ± 1.0� 20.0 ± 1.7 21.7 ± 1.2�
Untrained 19.2 ± 1.0 21.3 ± 0.7� 19.5 ± 1.6 20.9 ± 0.8�

Net, %
Trained 25.5 ± 1.3 25.6 ± 1.0 26.2 ± 1.8 26.7 ± 1.5
Untrained 25.9 ± 1.4 26.2 ± 0.4 26.0 ± 1.5 26.0 ± 1.2

All values are means ± SD. �Significantly different from men.
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found no changes in gross efficiency during arm or leg cy-
cling in untrained young men and women.

Interestingly, we did find a difference when normalizing
De to lean body mass. This is in contrast to a study by Berry
et al. (41), who saw no effect of body mass on cycling effi-
ciency. Amati et al. (42) found that weight loss had no influ-
ence on gross exercise efficiency. Although Hopker et al. (39)
reported that normalization of leg lean mass was sufficient
to ameliorate differences in cycling gross efficiencies
between men and women, we found that lean mass normal-
ization caused a decrease in cycling De, particularly for older
women. As we only assessed total lean body mass, this could
account for the difference in our results.

Training Status

In agreement with much of the existing literature, we
show no influence of training status on cycling De (6, 23–26).
Mogensen et al. (26) found endurance-trained young males
showed no improvement in cycling De compared with their
untrained counterparts. Examination of isolated mitochon-
dria taken from muscle biopsies in these subjects revealed
no differences in mitochondrial oxidative phosphorylation
coupling efficiency, as defined by P/O ratio, with training.
Furthermore, the authors found no correlation between mi-
tochondrial coupling efficiency and cycling efficiency (26). In
contrast, several studies in older adults have noted increased
exercise efficiency with training and training status (9–12). For
example, Conley et al. (9) reported that after 6mo of endurance
training, older adults were reported to have improved mito-
chondrial energy coupling resulting in increased cycling De. In
addition, Broskey et al. (10) found significantly higher De in
older athletes than in their sedentary counterparts, a difference
that they attributed to improved mitochondrial function and
content. However, they found mitochondrial coupling effi-
ciency was not different between the athlete and sedentary
groups and had no relationship with any measure of exercise
efficiency (10).

Louis et al. (11) found that older cyclists exhibited lower De
than younger cyclists. This difference was eliminated after
the implementation of a 3-wk strength training program.
Then again, it appears that a minimum of exercise experi-
ence is necessary to reliably use ergometry to assess muscu-
lar efficiency. Again, the largest variance in our data was
observed when testing young, untrained female study partic-
ipants (Fig. 1).

Comparison of Empirical Results with American College
of Sports Medicine Guidelines Predictions

The ACSM guidelines (30) are the standard for clinical
exercise testing (CET) and prescription. In fact, we used
ACSM predictions to assess the reliability of our V_ O2max
determinations on some older study participants. Overall,
for all study cohorts, we found excellent agreement between
our measurements of V_ O2 during graded exercise and ACSM
predictions (r2 ¼ 0.95). Use of ACSM prediction equations in
CET and prescription is supported.

Limitations

Subjects were not height- or weight-matched between age,
sex, or training status. We did not investigate in vitro

measures of efficiency or human mitochondrial function;
instead, we relied on studies of mitochondrial preparations
isolated from mouse muscle. We also had relatively small
sample sizes for all groups with most participants having a
university affiliation. An unexpected observation in the
older cohort was that the reported amount of physical activ-
ity was a poor predictor of V_ O2peak; an interpretation of that
result being V_ O2peak is a parameter of cardiovascular
capacity, and not necessarily physical activity level in older
participants. In subsequentmetabolic studies on young indi-
viduals, young women were studied during their midfollicu-
lar menstrual phase (43). However, menstrual cycle phase
was not controlled for in screening of young female
volunteers.

And finally, a limitation in studies of muscular efficiency
is that the exercise tasks used are of low intensities, below
ventilatory and lactate thresholds. This practice is to ensure
the energy expenditure is captured in measuring V_ O2.
However, during higher power outputs that elicit lactatemia,
lactate is disposed of via oxidation (44, 45); the result being
little effect on the V_ O2/power output relationship (46).

Conclusions

We demonstrate that muscular cycling efficiency, as deter-
mined by De during steady-rate, subventilatory threshold exer-
cise was not altered by age in healthy humans. Furthermore,
neither sex nor training status affected muscular efficiency.
These data are interpreted to mean that the coupling of mito-
chondrial oxidative phosphorylation is unaltered in aging. This
conclusion is supported by our work on isolated mitochondria
(unpublished observations). Our results obtained on healthy
young and older participants interpreted that previous reports
of decreasedmuscular efficiencies in older individuals were at-
tributable to underlyingmetabolic or biomechanical comorbid-
ities, not aging per se.

Perspectives and Significance

We show the preservation of delta muscular efficiency
(De) in older men and women. We are cognizant of reports of
diminished muscular efficiency in older individuals. We
accept validity of those results but attribute them to the pres-
ence of comorbidities affecting either the biomechanics of
locomotion or decreased coupling of oxidative phosphoryla-
tion inmusclemitochondrial reticula.
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Data will be made available upon reasonable request.
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