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I/0 in Machine Learning Applications on HPC Systems: A 360-degree Survey

NOAH LEWIS, The Ohio State University, and Louisiana State University, USA
JEAN LUCA BEZ, Lawrence Berkeley National Laboratory, USA
SUREN BYNA, The Ohio State University, USA

Growing interest in Artificial Intelligence (AI) has resulted in a surge in demand for faster methods of Machine Learning (ML) model
training and inference. This demand for speed has prompted the use of high performance computing (HPC) systems that excel in
managing distributed workloads. Because data is the main fuel for Al applications, the performance of the storage and I/O subsystem
of HPC systems is critical. In the past, HPC applications accessed large portions of data written by simulations or experiments or
ingested data for visualizations or analysis tasks. ML workloads perform small reads spread across a large number of random files. This
shift of I/O access patterns poses several challenges to modern parallel storage systems. In this paper, we survey I/O in ML applications
on HPC systems, and target literature within a 6-year time window from 2019 to 2024. We define the scope of the survey, provide an
overview of the common phases of ML, review available profilers and benchmarks, examine the I/O patterns encountered during
offline data preparation, training, and inference, and explore I/O optimizations utilized in modern ML frameworks and proposed in

recent literature. Lastly, we seek to expose research gaps that could spawn further R&D.

CCS Concepts: » Information systems — Information storage systems; Storage architectures; Hierarchical storage management;

Computing methodologies — Artificial intelligence; Machine learning.

Additional Key Words and Phrases: I/O access pattern, HPC I/O, storage, machine learning

1 Introduction

Existing High-Performance Computing (HPC) Input and Output (I/O) research has focused on techniques to optimize
performance when running traditional HPC application workloads, which typically include simulations and check-
pointing partial results [53]. Because of the increased popularity of Machine Learning (ML) workloads, there is a rising
demand for I/O systems that can effectively accommodate their distinct I/O access patterns. Write operation bursts
commonly dominate traditional workloads; however, ML workloads are usually read-intensive and use many small
files [65]. Due to the absence of a well-established consensus on the preferred I/O stack for ML workloads, numerous
developers resort to crafting their own ad hoc algorithms and storage systems to accommodate the specific requirements
of their applications [82]. This can result in suboptimal application performance due to the under-utilization of the
storage system, prompting the necessity for novel I/O optimization methods tailored to the demands of ML workloads.

In Fig. 1, we show the I/O stack used to run ML workloads (on the right side) compared to the traditional HPC
I/O stack (on the left side) [53]. The traditional HPC I/O stack has been developed to support massive parallelism.
Applications are typically written in C/C++/Fortran languages that use the MPI programming model and I/O middleware,
such as HDF5 [22, 163] and netCDF [106], which internally use MPI-IO and POSIX-IO interfaces to move (read or
write) data between main memory and parallel file systems (PES). In contrast, ML workloads are typically written in

productivity-oriented languages, such as Python, and use PyTorch and TensorFlow frameworks.
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Although many ML workloads still use the traditional
o O Traditional HPC 1/O Stack
1/O stack on HPC systems, some are shifting to use remote
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Fig. 1. Traditional HPC 1/O stack vs evolving ML 1/0 HPC stack
(adapted from [53]).
storage location, optimizing data retrieval is crucial for

reasonable performance. Despite the lower I/O performance imposed when using a data warehouse, they are still
preferred in many scenarios because they provide a centralized data storage location, facilitate data integration from
various sources, and enable data governance, which can result in higher-quality data. High-quality data is essential
when training ML models because it directly influences their accuracy, reliability, and generalizability [56]. In addition,
the monetary cost needed to purchase and maintain an HPC system can far outweigh the cost of using managed cloud
services [23, 60]. Furthermore, integration of HPC systems with available cloud resources is necessary due to the cloud
being used as a data storage solution from which datasets can be publicly shared and used by all.

The differences listed above in the I/O stacks for ML applications using the traditional PFS compared to cloud
computing systems motivate the development of novel storage system designs and I/O performance optimization
techniques to adapt to the I/O operations commonly found in ML processes. Ideally, the methods would be transparent
to the application developers. Notably, many scientists may lack formal training in software development, as evidenced
by Paul et al. [66]. The study revealed that ML workloads are becoming ever more popular and that developers from
various scientific domains beyond computer science often overlook the utilization of node-local storage (i.e., burst
buffers) within HPC systems. Further evidence for the increasing interest in distributed training is the number of posts
on the popular tech website StackOverflow. The cumulative number of posts discussing distributed training increased
staggeringly from 257 posts in 2015 to 2,061 posts in 2024 [29]. The increasing number of ML workloads that are
running on HPC systems prompts the need for transparent I/O optimization techniques to decrease the complexity
required for scientists to write software that takes advantage of the resources offered by HPC systems.

Furthermore, scientists, I/O performance enthusiasts, and HPC practitioners can gain significant insights from
benchmarks that accurately emulate ML workloads and profilers that capture critical I/O information from the underlying

storage systems. Using these tools, individuals can find potential I/O bottlenecks within their ML applications. Access to
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realistic benchmarking tools and fine-grained profilers is also invaluable for HPC storage research, allowing researchers
to analyze and emulate the diverse range of I/O operations found in ML workloads. Currently, I/O analysis tools often fall
short in a number of ways, including the inability to identify I/O requests at the thread level and only capturing traces
of specific I/O interfaces (i.e., POSIX and STDIO). This makes it challenging to find a general-purpose tool applicable to
a wide variety of workloads, which can reduce the consistency in which I/O traces are captured. In addition, many
tools (i.e., Darshan [69] and Scalasca [84]) target MPI applications limiting their compatibility and effectiveness with
other communication libraries (i.e., GLOO [77], Spark [11], and Dask [33]). It should be noted that Darshan is capable
of capturing I/O traces from applications that do not use MPI through the NONMPI environment variable. However, this
results in the output of a single DXT log for each process instead of the more common single file output that captures
all I/O traces from an application using MPI. In some cases, this leaves developers with the task of manually merging
the results from their non-MPI applications in order to conduct further analysis.

The topic of ML I/O and whether it has a significant role in poor performance has been a debate within the HPC
community. Many point out that HPC systems often have enough node-local storage to cache the dataset, resulting in
minimal time spent waiting on I/O [66, 76, 78, 142]. Others mention that not all HPC systems have large amounts of
node local storage or the datasets used are simply too large to be cached [76, 78, 142, 168]. In addition, due to the random
sampling that commonly occurs during ML training, modern PFSs can often become an I/O bottleneck [72, 76, 134].
Ultimately, whether I/O is a significant issue is subjective to the workload at hand. It depends on various factors such
as dataset size, storage capacity, storage system bandwidth, I/O library implementation and their configurations, and
I/O access patterns of applications. Furthermore, many ML application developers are not HPC storage experts; hence,
even if their system is capable of providing great performance, transparent solutions such as caching and prefetching
are needed to ensure the HPC systems are utilized effectively. Transparent solutions are of particular interest due to
the increasing number of heterogeneous processors used within ML applications. These increase the complexity of
optimally utilizing available compute resources. For these reasons, we believe that I/O and data management are key
areas of interest to the ML community.

There are several common phases in an ML application lifecycle: data generation, data preparation, training, and
inference. The data management found within each phase varies widely due to different I/O access patterns, data sources,
and file formats. We provide a taxonomy of the data management found throughout the ML lifecycle in Fig. 3. The
ML lifecycle begins with data generation, which involves collecting data from various sources (e.g., simulation results
or web scraping), which are then stored using a chosen file format (e.g., .tfrecord, .csv, or .png) and storage location
(e.g., SSD, disk, cloud, or database). This is commonly followed by an offline data preparation phase, which performs a
series of transformations and reductions (i.e., filters, aggregations, or generalizations) over the collected data to increase
the training efficiency and accuracy of the ML model. The training process involves reading samples from the data
sources, which are then fed to computations. The order in which the samples are read largely depends on the chosen
optimizer (e.g., Stochastic Gradient Descent and Adaptive Moment Estimation or Adam, etc.) and training distribution
strategy (e.g., model or data parallelism). Due to many optimizers requiring random sampling and storage systems
being optimized for contiguous sequential reading, training I/O is a potential bottleneck. Once the model has been
trained, it is often deployed and fed “new” data during the inference phase. It is common for the online and offline data
preparation phases to occur before and during the inference phase as well. More details on each phase of ML can be
found in Section 3, but it is important to note the wide range of factors that impact I/O and data management throughout

the ML lifecycle, such as varying file formats, data sources, data preparation requirements, and data modalities, among
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others. It is impractical to cover all possible combinations of the factors mentioned above, and therefore, in this paper,
we aim to discuss the I/O approaches found in the most common ML applications running on HPC systems.

The structure of the paper is as follows. First, in Section 2, we define the scope of the survey and present trends in
the cited literature. Then, in Section 3, we describe the data formats and modalities found in ML workloads and provide
an overview of the typical phases of ML applications and the popular methods of distributing the model training on
HPC systems. Next, in Section 4, we describe the benchmarks and profiling tools scientists and researchers can use
to ensure proper system utilization under ML workloads. In Section 5, we describe the I/O access patterns found in
the offline data preparation, training phase, and inference phases. The training phase is exemplified by analyzing the
currently available representative I/O benchmarks. We then discuss, in Section 6, various I/O optimization techniques
used in modern ML frameworks and those proposed in the recent research literature. Lastly, in Section 7, we discuss

the gaps in the current research of ML I/O in HPC systems.
2 Scope of the Survey

ML applications use various environments, from local machines for small-scale applications to HPC and cloud
systems for large-scale modeling. This survey aims to provide a comprehensive review of the I/O patterns in ML running
on HPC systems. This means that I/O patterns and other data management solutions that may be common in other
environments (e.g., cloud or local) are not relevant. For example, in Sec 5, we discuss only the I/O access patterns found

in common HPC scenarios and exclude I/O access patterns that may be common in cloud or local environments.
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X X X X X X X X X X X 1 [32]

Table 1. I/O-related topics discussed in the surveyed ML papers.

To ensure a comprehensive review of the current literature, we have selected a 6-year time window from 2019 to
2024 and used ACM Digital Library and IEEE Xplore to filter by papers that mention the following keywords: “I/O

»

Access Patterns”, “I/O pattern”, “HPC”, “Storage performance”, and “I/O performance in AI/ML applications”. We found

additional papers through the citations of the work initially discovered using the digital libraries for a total of 39 papers.
The various subjects explored in the papers surveyed are shown in Table 1. We selected papers from leading conferences

and journals in HPC and Al areas including:
~ The IEEE/ACM Int. Conference for High-Performance Computing, Networking, Storage and Analysis (SC)
— The IEEE/ACM International Symposium on Cluster, Cloud and Internet Computing (CCGRID)
— ACM Very Large Database Conference (VLDB)
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- ACM Conference on Cloud Computing, Big Data & Emerging Topics (JCC-BD&ET)

- ACM Transactions on Parallel Computing (TOPC)

- IEEE International Symposium on High-Performance Computer Architecture (HPCA)

- IEEE International Conference on Cluster Computing (CLUSTER)

- IEEE International Symposium on High-Performance Computer Architecture (HPCA)

- IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR)

- IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC)

- IEEE Conference on High Performance Extreme Computing (HPEC)

- IEEE International Parallel and Distributed Processing Symposium (IPDPS)

- IEEE Modeling, Analysis, and Simulation of Computer and Telecommunication Systems (MASCOTS)
- IEEE International Conference on High Performance Computing & Simulation (HPCS)

- IEEE Transactions on Parallel and Distributed Systems (TPDS)

- IEEE Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP)
— USENIX Networked Systems Design and Implementation (NSDI)

- NIPS International Conference on Neural Information Processing Systems (NeurIPS)

- SpringerOpen Journal of Big Data

Software Tools & Frameworks Publication Year Topic File Formats
DeepSpeed [1] N5/[1]
2024 [2]
PyTorchLightning [1] ZARM
Inference [2] MP4 [1]
Chainer [2] 2023 [6] CSY [2]
Veloc [2] PNG [2]
LBANN [3] Apache Parquet [2]
NPZ [3]
MXNet [3] Checkpointing [5]
TAR [3]
Keras [4] JSON [3]
Darshan-[4] g Pickle [4]
T
Horoved 5] . “
——————WebBataset [5]
TensorH

TFRecord [8]
HDF5 [10]

Fig. 2. Trends in cited literature. Each color represents a year. The number to the right of each label represents the total number
of papers associated with that label. The publication year and topic each have 1 paper. These two categories each sum to the total
number of papers 39. The leftmost and rightmost categories sum to more than 39 (a paper can discuss more than one item).

The parallel coordinates diagram in Fig. 2 illustrates the popularity of various software tools, frameworks, topics,
and file formats in the surveyed papers. TensorFlow was discussed in 23 papers, while PyTorch appeared in 30 papers,
making these two ML frameworks the most popular by a significant margin. Training emerged as the most common
area of focus, with a total of 32 papers, followed by checkpointing, with a total of 5 papers, and lastly, inference, with 2
papers. Furthermore, HDF5 and TFRecord were notably mentioned in 8 and 10 of the surveyed papers, respectively.
Based on these results, there has been a strong focus on optimizing I/O for training ML models using TensorFlow and
PyTorch over the last couple of years.

In this paper, our contributions are a presentation and analysis of the I/O patterns found when emulating two
renowned ML workloads: BERT [37], and Unet3D [173]. In addition, we conduct a review of the currently proposed I/O
optimization techniques through R&D efforts and present several areas where future research is needed. Understanding

the I/O patterns found in ML applications allows model training speeds to be reduced. This contributes to the rapid
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development of ML models, which can be used to perform tasks such as medical imaging analysis and help in the
creation of autonomous vehicles. It should be noted that throughout the survey, we use the terms “AI” and “ML”
synonymously, as is commonly done in the industry. However, “ML” is the more precise term referring to the concept

in which machines extract knowledge from data and learn from it.

The analysis of the surveyed papers reveals a significant trend towards optimizing I/O during the training

phase. Additionally, TensorFlow and PyTorch were by far the most popular ML frameworks. Lastly, the HDF5

and TFRecord file formats were the most popular.

3 ML Data: Data Formats, Modalities, and Common Phases

In this section, we describe the ML lifecycle and the data formats and modalities commonly found throughout this
lifecycle. We also discuss the common phases ML applications undergo and the ways of distributing these phases to
exploit the resources offered by HPC systems. We then discuss model checkpointing and its impact on training speeds.

ML applications typically undergo four phases during the ML lifecycle: data generation, dataset preparation,
training, and inference [53]. We show a taxonomy of the data management operations and characteristics throughout
this lifecycle in Fig. 3. During data generation, data is obtained through various sources and methods such as simulations,
web scraping, and public datasets. During this phase, properties such as the dataset modality, file format, and data
storage location are often decided. The data preparation phase is divided into various data preparation steps, including
transformation, augmentation, and splitting. The training arm of the taxonomy consists of data I/O operations across
common training algorithms and checkpointing tasks. Inference includes a taxonomy similar to that of the training
phase. As can be seen, data is a prominent component throughout the entirety of the ML lifecycle.

3.1 Data Formats and Dataset Modalities

Data is at the forefront of the ML lifecycle, and without the correct quantity and quality of data, machine learning
models fail to achieve optimal performance and generalization, disabling their ability to provide accurate insights and
solutions. Here, we describe the file formats and data modalities commonly used during model training and inference.
The file formats described were chosen due to their frequent appearance in the cited literature or their connection with

state-of-the-art ML training and preprocessing frameworks (e.g., .tfrecord — TensorFlow and .parquet — Apache Parquet).

File Format Features

Parallel I/O Chunking Partial Compression Schema Binary File Extension
TFRecord [161] 1 .tfrecord
HDFS5 [163] 5 hdfs 2
Apache Parquet [80] .parquet
RecordIO [10] .rec
NPZ [131] .npz
Image Formats Jjpg .png
Video Formats .mp4 .avi
Audio Formats .mp3 .wav
Text Formats txt .csv

Table 2. A Comparison of commonly used file formats in Al. The partial decompression property indicates that the file format library
transparently performs the decompression operation, possibly after it is enabled or disabled. (* TFRecords are read and written using
Protocol Buffers (protobufs), which require a schema. 2While .h5 and .hdf5 are used commonly, HDF5 allows any file extension.)
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Fig. 3. A taxonomy of data management during the ML lifecycle: Data Generation, Dataset Preparation, Training, and Inference. In
the data generation phase, we show the different ways data is collected and the various data/file models used in application domains.
In the dataset preparation phase, we categorize various operations performed on the data to improve its quality. For the training and

inference phases, we categorize commonly used data access patterns and 1/O optimizations.

There are many file formats, such as those seen in Table 2, which have diverse properties that can affect performance
when storing and retrieving ML datasets. While formats such as HDF5 [163], Apache Parquet [80], and RecordIO [10]
have been created specifically to target efficient distributed data storing and loading, many applications still rely on

unoptimized solutions such as raw text, video, audio, and image formats. These formats are often used due to their ease
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of use and compatibility with common system software such as standard text editors, video players, audio players, and
image viewers. However, in addition to their poor performance, these formats lack schema enforcement.

Schema enforcement gives the developer the ability to confine the domain of the file contents. This commonly
ensures attempting to write data outside the input domain will fail. Without it, the risk to data integrity can lead to
issues such as hard-to-find bugs caused by data corruption. Compression is a common technique used to reduce the
size of data by encoding the information with fewer bits. Partial compression enables data loaders to read and write to
subsets of a compressed file without having to load the file in its entirety. Due to ML applications commonly reading
small random subsets of the data, the inability to read subsets of data without loading the entire file could create a
bottleneck. Chunking refers to the ability to divide the data in the file into discrete, manageable “chunks.”

Apache Parquet and HDF5 enable a high level of parallelism by allowing the user to specify the unit (i.e., row
group size and data page size for parquet and chunk size for HDF5) in which the data is stored. In addition, Apache
Parquet stores data in a columnar format, allowing the file to be split into row groups and processed independently.
HDF5, on the other hand, supports features such as chunking and collective I/O, which enables efficient parallel file
processing. In many cases, such as when the data is stored in a Lustre PFS [86, 155], this enables parallel reads and
writes across independent sections of the file system (e.g., using file striping). Formats such as RecordIO [10], NPZ [131],
and TFRecord [161] store data in a more serialized manner. Due to the variety of possible optimizations offered by
distributed file formats, making the appropriate selection is essential for optimizing performance on HPC systems.

The selection of file formats model developers can choose from is often constrained by the data modality in use.
The dataset modality refers to the mode or type of data being stored (e.g., audio, video, image, etc.). Due to the large
variety of ML model goals (e.g., image recognition, optical character recognition (OCR), relationship detection, etc.),
modalities vary widely. The dataset modality has a significant impact on the viable file formats available and, therefore,
the common I/O operations required to load and use the dataset. In Table 3, we list the dataset modalities commonly
used for ML applications and three corresponding publicly available datasets often used for ML research, exemplifying
each modality. The provided values are approximate and subject to variation depending on which version of the dataset
is selected. For instance, the Charades [149] dataset is available at different video resolutions, while the CIFAR-10 [102]

dataset is available as a custom binary format or as a binary containing a Python “Pickled” object. Additionally, in

Modality Dataset Total Files Total Size  Used File Formats
MNIST [36] 4 101.16 MiB  Custom
Image CIFAR-100 [102] 60, 000 184 MiB  Custom
ImageNet [35] 1,431,167 150 GiB  .jpg, .txt
UrbanSound8K [141] 18733 6.60 GiIB  .wav, .csv
Audio LibriSpeech [132] 10, 000 60 GiB  flac, .txt
AudioSet [85] 2,084,320 2.4 GiB  .tfrecord, .csv
Charades [149] 9,900 55 GiB  .csv, .txt, .mat, .jpg Frames
Video UCF101 [164] 13,320 6.69 GiB  .avi
HMDB [104] 7,000 2GIiB  .txt, .avi
NAB [105] 58 9MiB  .csv
Time Series M4 [113] 13 310 MiB  .csv
UCR Time Series Archive [34] 416 853 MiB  .tsv
Cora [116] 1 270 KiB  .csv
Graph Protein-Protein Int. [2] 1 3,661 KiB  .csv
Amazon Co-purchasing [170] 1 954,597 KiB  .txt
refinedweb [133] 2,858 2.8 TiB  .parquet
Text The Pile [83] 17,103, 059 825GiB  .txt
The Stack v2 [112] 3,028, 000, 000 67.5TiB  Code Files

Table 3. Comparison of different ML dataset modalities.
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Fig. 4. Common phases during the ML lifecycle. The numbers in the top-left corners of each phase indicate their chronological order.
Note that while phases 1 and 2 are sequential, phases 1, 2, and 7, 8 can occur in parallel.

certain cases, like AudioSet, links to the video data are provided rather than the raw video data itself, allowing users to
choose the preferred video format.
3.2 Common ML Phases
The dataset preparation phase is critical in transforming the data into a form that is suitable for model training
and inference. It is a critical step in the ML lifecycle and is commonly performed before both the training and inference
phases. Offline dataset preparation is preprocessing that can be done before the model training or inference phase
begins. In contrast, online dataset preparation is preprocessing that occurs in real-time during the inference or
training phase. There are several major data transformation techniques commonly used during both offline and online
dataset preparation to aid in model training and inference. These are listed below:
- Data Smoothing is a method used to remove noise from the dataset, ultimately allowing models to identify
patterns in the dataset more accurately [154].
- Feature Engineering is used to construct new features from existing attributes in the dataset [165].
- Data Generalization defines hierarchies within the features of the dataset, allowing the data to be analyzed at
varying levels of granularity or abstraction [130].
- Data Aggregation is used to summarize or reduce features from the dataset to produce meaningful statistics
such as mean, median, or sum among many others [95].
- Data Discretization is used to divide continuous values into discrete ones, making analysis easier and improving
the efficiency of many algorithms [98].
- Data Normalization is used to scale the data changing absolute values while preserving the relative proportions
or ratios between data points [44].
- Data Augmentation is a strategy used to generate new data from existing data [82].
Augmenting the dataset allows for training models on a larger dataset, which can lead to better performance. The
augmentation methods employed often depend on the dataset modality. For text datasets, examples of augmentations
include random swap, random insertion, random deletion, and random synonym replacement [148]. In contrast, for

image datasets, augmentations include flipping, cropping, and rotation [147]. The data transformation techniques used
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affect both data preprocessing speeds and the amount of data needing to move from the preprocessing phase to the
training phase. The variety of data transformation techniques that may need to be applied to the dataset causes the file
format to be significant. It has a large impact on data transformation speeds as it affects the time needed to apply a
given algorithm to the dataset, e.g., when performing data aggregation where the dataset is filtered based on a feature
value, processing data in a columnar format (instead of row-based) can be more efficient due to the data locality [41].

The training phase that occurs during the ML lifecycle can further be categorized, as seen in Fig. 4, into a training
phase and a validation phase. The figure shows the training loop and the inference phase. The training loop is often run
iteratively for a certain number of epochs until the desired accuracy is achieved. An epoch is defined as one complete
pass through the entire dataset [21]. It is the responsibility of the model designers to choose the number of epochs that
strikes a balance between enabling the model to find meaningful relationships between the input and target datasets
while avoiding excessive epochs that lead to over-fitting. Over-fitting occurs when the model becomes excessively
entwined with the training data, prioritizing memorization over the ability to generalize and make accurate predictions
on new, unseen data. Furthermore, because the entire dataset is read multiple times, model designers need to select the
proper data format for their dataset that allows efficient data retrieval.

There are three datasets known as the training, validation, and testing datasets [100] used during the training,
validation, testing phases. Although each dataset possesses distinct content, they commonly use the same modality
and file formats. All three datasets often require preparation (i.e., cleaning, augmentation, etc.) before they can be
used in later stages of the ML lifecycle. Dataset splitting involves dividing the dataset into training, validation, and
test sets. Common techniques for this partitioning include random sampling [119], k-fold cross-validation [8], and
stratified sampling [58]. Due to the large amounts of potential I/O and computation required to prepare the data
effectively, parallelization techniques are needed to ensure proper system utilization. ML applications typically use the
parallelization tools provided by their primary ML framework (e.g., PyTorch [135] and TensorFlow [158]) to parallelize
data processing. Once the data has been prepared, it can be fed to the model for training, validation, testing or inference.

During the training phase, data from the training dataset is read into memory and fed to the model. The order
in which the data is fed to the model is largely impacted by the optimization algorithm of choice. Gradient descent
algorithms are a popular set of optimization algorithms used to train ML models. Due to stochastic gradient descent
(SGD) being the most popular gradient descent algorithm for large datasets [125], the algorithms we will present are
batch gradient descent (BGD) [124], SGD [15] and mini-batch gradient descent (MBGD) [16]. SGD is a specific case of
MBGD, and in the future, we will refer to both as SGD unless a distinction is necessary. Deciding which algorithm to
use depends on the dataset size, the computational resources, and the underlying model’s properties. It is important to
note that gradient descent algorithms vary in their mathematical properties [70]. At every epoch, each of the listed
algorithms feeds the entirety of the dataset to the model. However, the frequency at which the model is updated, and
the order in which the dataset is fed to the model differ.

BGD is the most straightforward gradient descent algorithm. This technique is computationally expensive and is
often used only when the entire dataset can fit into memory. The model is trained against the whole dataset before it
can perform one update [140]. If the model cannot cache the entire dataset in a fast storage tier, it necessitates utilizing
underlying storage tiers, leading to increased I/O operations. MBGD is an algorithm where random subsets or batches
are chosen and fed to the model. The batch size varies depending on the specific model being used. However, if the batch
size is small, the model becomes susceptible to noise updates (updates that introduce randomness or variability in the
parameter updates), while large batch sizes, in contrast, may lead to over-fitting. The SGD algorithm involves updating

the model after feeding a single data point. SGD is a specific case of MBGD where the batch size is 1. The random
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nature of the data selection when using SGD makes it difficult to cache the same mini-batches or data points from
previous epochs for future ones. Each epoch involves a new random sampling of the data, introducing variability in the
training process. This commonly leads to an I/O pattern of large amounts of small I/O performed on many random files.
When training models on an HPC platform, datasets are located on a shared Parallel File System (PFS), designed for
reading large batched files rather than a large number of small files. This poses a significant challenge for PFSs [46].

Finally, after a certain number of epochs, it is common practice to assess the model’s performance while tuning
hyperparameters using a separate validation dataset [138]. The same validation dataset to often used after each
epoch to evaluate the model. As the training and validation phases are time-intensive stages within the ML lifecycle,
distribution strategies have been developed to parallelize these tasks. The distribution strategies optimize the utilization
of computational resources, thereby expediting the training process and enhancing efficiency in model development.
Choosing the appropriate training and validation distribution strategy depends on factors such as model size, data set
size, and available computational resources. This decision is pivotal in guaranteeing optimal training performance. It
should be noted that after the model has converged, there is sometimes an additional phase called the testing phase
which evaluates the performance of the model on unseen data using the testing dataset.

3.3 Distributing the Training and Validation Phases

Multiple strategies exist to distribute the training and validation phases to take advantage of the parallelism granted
by HPC systems. Two common techniques used are model parallelism and data parallelism, shown in Fig. 5 and
Fig. 6, respectively. When using model parallelism, a single model is distributed across N workers, and each worker
trains their partition of the model [28]. It is often used when the model is too large to fit into the memory of a single
node. The strategy has two pair synchronization points: one before the validation and another after adjusting each
process’s model partition. Synchronization occurs among pairs of workers and is completed across multiple steps. This
allows pairs of workers who have been updated to continue training without having to synchronize with all other
workers. When using data parallelism, N workers are employed, and the model is replicated N times across each worker
which each train against a different dataset partition. After each iteration, all workers must be synchronized, and the
model weights are adjusted according to the results of the backpropagation. This is the parallelization strategy used in
Section 5.2 to analyze the I/O patterns observed during training. In most cases, model parallelism’s synchronization
and communication overhead far exceeds data parallelism’s [1]. However, both model parallelism and data parallelism
involve inter-device (i.e., TPU, GPU, or CPU) communication to exchange information about model parameters and
gradients. This communication overhead can impact training performance. Strategies such as gradient accumulation,
where model updates are aggregated over several batches before communication or gradient compression [24] can help
reduce the overhead of inter-device communication.

More recent training distribution strategies include hybrid parallelism [4], and pipeline parallelism [38]. Hybrid
parallelism combines data and model parallelism, where the data and the model are partitioned across multiple devices. In
contrast, pipeline parallelism places different layers of the model on separate devices, allowing for efficient overlapping
of computation and communication. Federated learning, introduced by Google in 2016, is a training distribution strategy
where the model is partitioned into multiple devices which train their model partition against private data [114, 117].
After some specified amount of training, devices send their model gradients to a central server, which aggregates the
model gradients and redistributes the results back to the devices. This is beneficial for use cases in which the data being
used to train the model is sensitive, such as in healthcare or finance. The training data is no longer aggregated into

one central location resulting in an increase in privacy and security. The sending and receiving of the model gradients
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Fig. 5. Data parallelism where the dataset is broken into N partitions. Each partition is then fed to the model in N processes. After
validation, all processes must synchronize with each other.
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Fig. 6. Model parallelism where the model is broken into N partitions. Pairs of processes synchronize after both training and validation.
Each model partition is trained against the entire dataset at each epoch.
with a central server can result in significant network communication overhead. Various optimizations can reduce
communication overhead, such as intelligently selecting the nodes or devices that participate in the training, semi-
asynchronous training methods, and clustered federated learning: a strategy in which groups of nodes are prioritized
over others during training based on various factors such as latency or physical distance [169].
3.4 Model Checkpoints

While large amounts of small reads dominate the I/O operations performed when training ML models, a consistent
pattern of writes also occurs [53]. This is due to the need to checkpoint the model as it is being trained. This can
significantly impact the training performance, especially if the checkpoints are done frequently. Checkpoints are
important as they allow long-running training jobs to pick up where they left off in the event of node failures. In
addition, it allows for the analysis of intermediate model features in relation to the training data. Many training
jobs begin from an existing model checkpoint from which fine-tuning for their specific task can be accomplished.
Starting from a pretrained model can reduce the time and data needed for training. When checkpointing a model,
the write size depends largely on the number of parameters the ML model requires [52]. Because of the increasing
complexity of ML models [166], checkpoint sizes can be expected to grow proportionally. Most ML frameworks use

32 bit precision to store model parameters [157], the default parameter size on both PyTorch and TensorFlow. Large
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language models (LLM)s such as GPT-3 and BERT large have 175 billion [20] and 345 million [37] parameters respectively.
The time needed to checkpoint the model depends not only on the number of parameters but also on the file format
used [139], making it an important consideration for training performance. In addition, when using frameworks such
as TensorFlow, checkpointing is done independently by each worker, or a single worker is assigned the job. This can
lead to the stragglers problem due to a single process being responsible for the extra work. When using a single worker
to checkpoint the model, the time required does not shrink as more nodes are added to the training. PyTorch only
recently (October 4, 2023 in version 2.1) added support for distributed checkpointing, allowing for the saving and
loading of models to be accomplished in parallel by multiple ranks. Efforts to optimize model checkpointing include
model compression [26] and asynchronous checkpointing. A description of the popular ML frameworks and their
corresponding checkpoint APIs can be found in Section 6.1.
3.5 BERT Real-world End-to-end ML Workflow

In this section, we present the well-known real-world end-to-end ML workflow of BERT. We discuss BERT in place
of GPT because GPT is a closed source, meaning the details about the exact I/O found throughout its lifecycle are not
fully disclosed. The authors of BERT mention that it has the most comparable existing pre-training method to OpenAl
GPT. The information presented in this section is based on both the original BERT paper and the updated open-source
GitHub repository, which specifies important data management attributes such as file formats and pre-training times.
A more detailed analysis of the BERT training I/O patterns can be found in Section 5.2 where we simulate the BERT
workload using the DLIO [50] benchmark.
Data Generation The data used to pre-train the model is the BooksCorpus dataset [172], which consists of 11,000 books
with a total of 800 million words, and the English Wikipedia consisting of 2, 500 million words.
Offline Data Preparation BERT is an unsupervised LLM, meaning it is trained on a large quantity of publicly available
plain text data. The Wikipedia data is stripped of all texts other than text passages, ignoring lists, tables, and headers.
The text from both datasets is processed into a set of input token sequences, which can then be fed to the model during
pre-training. The input datasets are transformed into a single large plain text file, referred to as the corpus, with each
sentence being separated by a new line. It is noted that the newline-delimited text sequences contained within the
corpus should be actual sentences to enable “next sentence prediction.” Token segmentation is then used to divide
the text into individual tokens using a subword tokenizer named WordPiece [152]. A distinguishing factor of BERT is
that it uses bidirectional contextual representations, i.e., a given word’s representation is based on the words found to
its left and right. This is accomplished by masking out a random 15% of the tokens within each token sequence. The
masked-out tokens are then used as the prediction target for the sequence. The token sequence representation used is
of the form <Question, Answer>, allowing for both a single sentence and a pair of sentences. This is done by placing
special tokens such as [SEP] representing a sentence delimiter and [CLS] representing a token sequence starting point.
The [SEP] token delimiter is used to separate different segments of text (e.g., question and answer pairs). The output of
the data generation is a set of TFRecord files containing the token sequences.
Pre-training The Tensorflow framework is used to train the model during pre-training. This step in the workflow takes
around 4-6 days when using 4 to 16 Cloud TPUs. However, it is a one-step procedure from which specific versions of the
models can be based on during fine-tuning. Notable hyperparameters used to pre-train BERT in the paper are a batch
size of 256 sequences where each sequence is 512 tokens, resulting in 128,000 tokens per batch. During pre-training,
random sentences are chosen in pairs A and B in which 50% of the time sentence B is the sentence following A. This is

done to enable “next sentence prediction”
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Fine-tuning The fine-tuning results presented are relatively inexpensive and can be replicated in at most one hour
on a single TPU or a few hours in a single GPU. All results presented in the paper were fine-tuned on a single TPU
due to memory constraints. To begin, the model is loaded from a previously generated checkpoint generated from
the pre-training phase. The checkpoint consists of three files containing the model weights. The hyperparameters
used for fine-tuning are similar to pre-training other than batch size, learning rate, and number of epochs. The paper
recommends training for 2, 3, or 4 epochs using a batch size of 16 or 32 and a learning rate of 5d-5, 3e-5, or 2e-5. Training
with long sequence lengths in constrained memory environments can result in out-of-memory errors because the
attention method’s memory requirement increases by the square of the sequence length.

Evaluation After a series of pre-training and training steps, an optional validation or testing phase can be enabled
or disabled through the -do_eval parameter. This phase is used to track model performance on validation or testing
datasets, fine-tune hyperparameters, or select the best model to checkpoint.

Inference When using BERT for inference, data preprocessing steps similar to those described above must be done. During
either offline or online inference, text input must be tokenized and processed into token sequences. The distinguishing
factor of online inference is that the token sequences are fed to the model, and their associated predictions must be
processed in real-time. Due to the wide range of possible deployment scenarios, categorizing the data management and
I/O that occur in this phase is challenging. However, notable factors distinguishing this phase are the need to store or

stream the prediction generated from the model and that there is no longer a need to checkpoint the model.

Summary #2

ML applications use a variety of file formats and dataset modalities. The dataset modality impacts what file
format is used, affecting how samples are stored and accessed and what features are available. These choices
often impact the performance and ease of use in accessing data for ML analysis. Furthermore, during the
training phase, SGD is the most popular algorithm in which random batches of samples are fed to the model.
The random nature of SGD and the parallelism resulting from training distribution methods (i.e., model and
data parallelism) cause I/O operations that are challenging for PFSs. Finally, with the increasing complexity of

models, it is crucial to ensure efficient checkpointing methods to achieve fast training speeds.

4 1/0 Benchmarks and Profiling

Many ML benchmarks have been proposed, such as Fathom [67] and BenchNN [48]. However, these tools focus on
identifying the computational requirements of ML workloads and not the I/O requirements [50]. In addition, they target
cloud platforms. This leaves a need for a proper benchmark focusing on I/O that simulates ML workloads.

One attempt to address this gap is DLIO [50], a benchmark designed to simulate I/O access patterns commonly found
in Deep Learning (DL) workloads. DLIO, which has been released as MLPerf Storage Benchmarks [137], allows for
extensive configuration, including the selection of interfaces (HDF5, TFRecord, CSV, NPZ), file access patterns (one
file per process versus shared file per process), data access patterns, I/O types, and transfer buffer sizes. Scientists and
researchers can take advantage of DLIO by configuring the benchmark to mimic the expected I/O patterns of their DL
workloads and using the results to configure their applications effectively. DLIO also supports DALI [129], which is
capable of sending batches to the GPU for preprocessing and model training, primarily for image or video datasets.
Current DLIO limitations include the inability to store multiple samples per file in certain file formats, the inability to

store data/label pairs in separate files, and the assumption that the samples will always be 2D images. The inability to
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store multiple samples per file poses a challenge when comparing workloads across ML frameworks. For example, the
BERT workload uses the TFRecord format, but currently, there is no PyTorch data loader capable of loading TFRecords.
Transitioning to an alternative file format requires configuration modifications, resulting in a workload that diverges
from the original and may not faithfully represent it. Thus, while DLIO effectively captures a broad spectrum of DL
applications, comparing different frameworks on the same workload while maintaining accuracy proves challenging.

Cheng et al. [27] benchmark two object storage systems (MinIO and Ceph) and three key-value databases (MongoDB,
Redis, and Cassandra). Their study attempts to find optimal configurations for parameters such as storage location,
storage disaggregation granularity, access pattern, and data format. Notable takeaways are that the object storage
systems tested were more sensitive to storage location than key-value databases. In addition, the object storage systems
tested were impacted mainly by the storage disaggregation granularity as only one object could be queried at a time.

Many dataset modalities, such as audio, video, and images, have a surplus of public datasets to choose from. In
contrast, high-quality, large-scale graph datasets are hard to find; in addition, most commonly used graph datasets are
too small to emulate the datasets found in the real world. Hu et al. [93] have created Open Graph Benchmark (OGB),
which aims to enhance graph ML research by providing robust and scalable graph datasets. It is capable of producing
graph datasets of three different size categories: small, medium, and large, which have 100, 000 nodes, 1,000, 000 nodes,
and 1, 000, 000, 000 nodes, respectively. OGB enables researchers to analyze large-scale graph datasets, facilitating rapid
growth in distributed graph machine learning (GML).

iBench [19] is a possible solution for distributed inference simulation and benchmarking and aims to provide several
key metrics, including but limited to throughput, latency, ingest rate/bandwidth, pre-processing time, and GPU efficiency.
Compared to MLPerf, they note two primary advantages: (1) the ability to measure distributed inference performance
and (2) a more realistic performance measure. The simulation places a stream load balancer in front of the HPC inference
servers. Client requests are then simulated and scheduled to run via the load balancer. They aim to accurately assess
performance by collecting significant factors such as inference time, network response time, payload preprocessing
and packing time, and investment time. Due to the limited number of available streaming HPC inference benchmarks,
iBench is a promising tool for evaluating network I/O. Current limitations of iBench include the inability to represent
many ML models and deployable HPC edge devices. Brewer et al. [18] evaluated iBench, noting several key takeaways,
including the impact on performance when using different client batch sizes of 16, 32, or 64, and processing requests
asynchronously, the importance of topology-aware GPU-TPU and CPU-GPU communication, and the significance of
CPU-GPU in inference compared to training. The evaluation concludes that linear scaling can be achieved if multiple
client requests are processed asynchronously and the amount of data sent does not saturate the network.

While benchmarking tools allow ML developers to emulate various ML workload I/O patterns, profiling tools
that enable developers to analyze the HPC I/O stack in its entirety are crucial for pinpointing potential bottlenecks.
TensorFlow offers the TensorFlowProfiler, released in version 2.2.0, capable of profiling host-side and GPU tracing.
However, it only provides information at the TensorFlow level, not capturing lower-level I/O operations such as POSIX
or STDIO. Chien et al. [47] created tf-Darshan, a fine-grained I/O profiling tool. It relies on Darshan [69], a highly
popular HPC I/O profiler and tracer. Tf-darshan augments Darshan, enabling the runtime extraction and analysis
of Darshan’s internal data structures. Runtime extraction is accomplished through an augmentation of the Darshan
library. It adds extraction functions that return its internal buffers that store information, such as record counters
for I/O operations, to individual files. This gives ML applications the ability to perform runtime analysis, enabling

I/O optimization techniques such as specialized online I/O schedulers to perform runtime optimizations. Tf-darshan
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Fig. 7. Process level accesses for common organizations of samples within files.

also offers a visualization tool that allows users to understand the I/O performance of their ML workloads intuitively.

Current limitations include exclusive TensorFlow integration and a moderate overhead of 10% - 20%.

Summary #3

Benchmarks play a crucial role in accelerating research within ML I/O. They enable the identification of
I/O bottlenecks in ML workloads, thereby enhancing efficiency and productivity. Due to the increase of
heterogeneity found in HPC architectures, profilers capable of capturing data movement between a wide range
of devices and data sources (e.g., memory, disk, archive, cloud, or database) would be beneficial. Furthermore,
existing benchmarks fail to represent the I/O patterns found during all stages of the ML lifecycle, highlighting

the need for benchmarks capable of emulating I/O at various stages and data sources.

5 Analysis of I/0 Access Patterns

In this section, we aim to present the I/O access patterns commonly found during distributed offline data preparation,
training, and inference. We searched for benchmarks and found DLIO [50] to be the most promising to simulate the
training I/O access patterns of DL applications in HPC systems.

5.1 Offline Data Preparation Access Patterns

During the offline data preparation phase, I/O access patterns differ depending on the specific operations needed to
prepare the dataset for training or inference. Common operations such as data transformations, normalization, or feature
scaling can often be distributed across compute nodes. Due to the high complexity that arises in the programming of
distributed systems applications, big data frameworks such as Apache Spark [11], Apache Hadoop [12], or Dask [33]
are often utilized to easily distribute data preparation tasks across nodes. Several popular file formats, including .json,
.tfrecord, and .npz, do not natively support random I/O access [31]. Instead, data must be read sequentially, enforcing
sequential I/O while eliminating parallelism. These file formats are often ideal for streaming scenarios while hindering
dataset preparation operations such as selections and filtering. To enable parallel processing for file formats that do not
offer random I/O access, the dataset is often sharded, that is, divided into smaller files. Sharding enables distributed
processing among compute nodes on each of the "shards® of the dataset. This often results in each process sequentially
reading a shard of the dataset, increasing I/O throughput. Although sharding is optional and may require additional
processing time, it is often worth the trade-off in reduced I/O times [3]. In general, sharding and the use of big data

frameworks provide essential tools to enable ideal I/O access patterns and effective use of the HPC system.
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5.2 Training I/O Access Patterns

The I/0 access patterns found during the training phase are influenced by the gradient descent algorithm used and
the training distribution strategy. Here, we describe the I/O access patterns found when using SGD, because SGD is
the most popular gradient descent algorithm when training with large datasets. In addition, the presented workloads
use data parallelism, where the model is replicated in each worker and the data is partitioned and distributed among
them [43]. The organization of the samples within the files, as seen in Fig. 7, has an impact on the I/O operations
performed by each worker. Two common organizational strategies are one sample per file, often used with file formats
such as JPEG or WAV, and multiple samples per file, commonly used with file formats such as TFRecord or HDF5. The
choice of sample organization plays a large role in the observed I/O operations [107]. A significant amount of additional
metadata management overhead can occur when using many files [3]. The Luster PFS used in the workloads presented
below has multiple metadata servers (MDS)s which are responsible for providing metadata services such as filename
lookup, directory information, file layouts, and access permission. When using one sample per file with a dataset with
many samples, MDSs can be overwhelmed by concurrent file requests, causing slower training speeds. We show both
sample organizations with the Unet3D workload (one sample per file) and the BERT workload (multiple samples per file).

We obtained the results below by running DLIO and captured the I/O traces using Darshan [151]. All benchmarks
were conducted with Perlmutter’s compute nodes. Perlmutter is a supercomputer located at the National Energy
Research Scientific Computing Center of the United States Department of Energy. Each of the compute nodes has 64
physical cores and 128 virtual cores, with a total memory capacity of 255 GiB. The PFS is an all-flash Luster file system,
containing a total bandwidth of more than 5 TB/sec and supporting 4 million IOPS (4 KiB random). Perlmutter has
16 MDSs and 298 object storage targets (OST)s, and all workloads presented use a 1 MiB stripe size. OSTs are storage
devices in which the user’s file data is stored. For visualization, we used DXT Explorer [45], which is an interactive

web-based tool capable of producing graphs from Darshan DXT logs.
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Fig. 8. DLIO TensorFlow reads during the Unet3D workload from the view of an individual file.

In Fig. 8, we used DLIO to simulate the training of Unet3D, which is used for 3D medical image segmentation tasks.
The workload consisted of 4 compute nodes, each running 4 Python processes. Python processes were given access to 4
physical CPU cores, and the TensorFlow data loader was configured with 4 I/O threads and a batch size of 4 samples.
The dataset for Unet3D consists of one sample per NPZ file where each sample is approximately 146 MiB. There were a
total of 168 samples. The model was trained for 10 epochs. Due to the one-to-one correspondence between the number
of samples per file, the entire file is requested by the same process at each epoch rather than subsets of the file being
requested. In addition, the file was accessed by the same rank (14 in this case) at each epoch.

In Fig. 9, we used DLIO to simulate the training of BERT, which is a large language model (LLM). The computational

setup consisted of 8 compute nodes, each running 4 Python processes. Python processes were given access to 2 physical
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Fig. 9. DLIO TensorFlow reads during the Bert workload from the view of an individual file.

CPU cores, and the TensorFlow data loader was configured with 1 I/O thread. The dataset size was reduced to increase
training speeds; however, we do not expect this to significantly change the overall data access patterns. We reduced the
number of files from 500 to 10, and the number of samples per TFRecord file from 313, 532 to 31, 353. Each sample was
2,500 bytes. Therefore, there were 10 X 31,353 = 313,530 samples in total. The workload was run twice, once with the
original batch size of 48 and a second time with a batch size of 96. The model was trained for three epochs.

Fig. 10 is a zoomed-in view of the second epoch of Fig. 9. There are 21 distinct columns of I/O reads that occur at each
total_samples

number_of _processes-samples_per_batch-total_files

would give us the number of batches that need to be read by every process each epoch with multiple samples per

file. Taking into account the 313, 530 samples, the 48 samples per batch and the 32 MPI processes, there are 3?2131’5?}1% =

epoch from every process. This can be expected because the result of

[20.412...] = 21 batches of samples to read per epoch (rounding up to the nearest integer as the remaining samples

need to be read). To ensure this result, we ran the BERT workload again but doubled the batch size to 96 samples. Fig. 11
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Fig. 10. Reads during the BERT workload zoomed in on the second epoch of Fig. 9.
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Fig. 11. Reads during the BERT workload zoomed in on the second epoch where batch sized was doubled to be 96 samples.
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is a zoomed-in perspective on the second epoch and can be seen to have 11 distinct columns of I/O reads which agrees

with 3321_5;’?100 = [10.206...7 = 11 batches of samples to read per epoch. The non-overlapping nature of the columns is

expected, because all processes synchronize after every batch is read.

Since no caching is used for the workloads presented, every read request must reach the underlying PFS for every
sample needed. The absence of caching poses a potential I/O bottleneck, particularly when dealing with large sample
sizes or a large number of small samples. The dividing of the datasets among the ranks and the subsequent I/O reads for
batches of samples aligns with the observations of other studies documenting ML training I/O access patterns [27, 50, 126].
The interaction between data organization strategies and the underlying PFS significantly influences the performance,
with potential bottlenecks emerging from high volumes of small reads or extensive metadata operations. Understanding
and optimizing these patterns is essential for enhancing the efficiency of training ML models on HPC systems.

5.2.1 Checkpoints As mentioned in Section 3.4, it is common for a consistent pattern of writes to occur during the
training loop to checkpoint the model. Both the Unet3D and BERT workloads use the TensorFlow checkpoint function
described in Section 6.1.2, where each checkpoint consists of three files: an index file, a metadata file, and a data file. In
both workloads, within the checkpoint directory, a file named “checkpoint” has the most recent checkpoint version.
For the Unet3D workload, checkpointing was set to occur after epoch 5, then every 2 epochs thereafter. This resulted
in a total of 3 checkpoints after epochs 5, 7, and 9. For BERT, checkpointing was set to occur after every 250 steps.
Here, we describe the number of checkpoints when using a batch size of 48. Since the total number of samples was
313, 530, the model was trained for 3 epochs, and checkpoints occur every 250 steps, the total number of checkpoints
was {%J = 78. As observed, frequent checkpointing can result in a moderate number of files and, consequently,
increased write operations. While checkpointing is essential for fault tolerance and recovery, it also introduces additional
I/O overhead that may impact training efficiency. ML developers must strike a balance between ensuring node failure
resilience through checkpointing and maintaining reasonable I/O performance to avoid training bottlenecks.

5.3 Inference /O Access Patterns

In this section, we aim to categorize the most common I/O access patterns found during the inference phase within
HPC systems. MLPerf [62] developed by MLCommons is a well-known group aiming to provide ML training and
inference evaluations. They categorize ML inference into four categories: single-stream, multi-stream, server, and
offline [137]. However, these inference categories were not specific to HPC environments, and two of the categories
(single-stream and server) were not found in the cited literature or in our own experience. We have therefore excluded
these categories from this discussion and have found the two categories described below to be representative of most
inference configurations found in HPC systems.

(1) Single-stream: multiple client devices stream single sample queries to the HPC system in parallel.
(2) Offline: data is immediately available, and latency and bandwidth are unconstrained, e.g., data is stored in a PFS.

A key difference between streaming and offline inference is the system driving the inference process. In the offline
scenario, the HPC system requests data from the storage system, whereas, in streaming scenarios, the HPC system is
driven by end users or clients. Latency and bandwidth become more constrained in streaming scenarios, which requires
effective load balancing to manage unpredictable query request times to effectively utilize compute nodes [18, 19]. A
significant amount of research has been done in this area when ML models are deployed on edge computing devices
where constraints such as limited memory, high latency, and limited bandwidth are common [55, 109, 111]. Data

reduction techniques such as compression [74] and intelligent grouping of edge computing resources [111] help mitigate
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network I/O constraints. Although some of the optimizations mentioned above can be used in offline inference, lower
latency and higher bandwidth are often found within HPC systems due to high-speed interconnects.

When inference is compared with training, several distinctions emerge. During inference, data is often not sampled
randomly, which can result in an I/O access pattern of large contiguous reads in scenarios such as offline inference.
High throughput can be expected during offline inference due to PFSs excelling in large contiguous readings. In a
streaming scenario, contiguous reads may not be possible if the data is not readily available. Additionally, checkpointing
is less common in inference because the model is no longer updated. It should be noted that there are some scenarios,
such as online learning and adaptive inference, that may still involve model updates and checkpointing. In addition
to checkpointing, storing the prediction results is another potential source of I/O writes. In a streaming scenario, the

prediction results may need to be sent back to the querying client, causing more contention on the network bandwidth.

Summary #4

Due to the prevalence of SGD, random batches of samples are read into memory at each iteration during model
training. Small random I/O reads can be a bottleneck for PFSs, which motivates the need for I/O optimization
techniques such as prefetching and caching. Inference involves a diverse range of scenarios. When streaming
over the wide-area network, latency and bandwidth constraints are of greater concern. In an offline scenario,

large contiguous reads are possible, which perform favorably on traditional HPC storage systems.

6 1/0 Optimization Techniques

This section discusses commonly used ML frameworks and the I/O optimization options developers can utilize to
distribute their dataset preparation and training phases. Based on the current research, we also discuss potential I/O

optimization techniques ML workloads can use to increase training speeds.

1/0 Feature ML Frameworks

PyTorch  TensorFlow  Scikit-Learn with Dask-ML

Dataset Streaming

Parallel Dataset Preparation
Sample Prefetching

Sample Caching

Distributed Sample Caching
Sample Shuffling
Asynchronous Checkpointing
Distributed Checkpointing

Table 4. 1/0 features from popular ML frameworks.

6.1 Common I/O Optimization Techniques Used by Current ML Frameworks

Here, we explore the data loading and preprocessing capabilities offered by different ML frameworks. We describe
the various classes and methods in state-of-the-art frameworks, including PyTorch, TensorFlow, and Scikit-learn with
Dask-ML. Additionally, we touch upon the usage of tools, including Horovod for distributed deep learning across
various platforms and direct NVIDIA GPU loading for direct loading from storage and network devices to the GPU. The
I/O features supported by each ML framework can be seen in Table 4. It should be noted that ML frameworks often aim
to be generally applicable and extendable, meaning that it is often possible to extend one framework to have a feature
of another. For example, sample caching can be easily integrated into PyTorch even though it does not offer this option
through its API. Table 4 only shows a checkmark for a feature if it is easily enabled through the API without extending

the underlying framework significantly.
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6.1.1  PyTorch PyTorch [135] offers the torch.utils.data.Dataloader class, a Python iterable over a dataset, aimed
to enable efficient data loading and preprocessing. The data loader supports map-style and iterable-style datasets.
Map-style datasets are commonly used when the entire dataset can be indexed efficiently (i.e., the dataset fits into
node local memory). In contrast, iterable-style datasets enable the streaming of large datasets where random reads are
expensive or when the batch size depends on the fetched data. The user defines the data loading order when using an
iterable-style dataset, allowing for implementation optimizations such as chunk reading and dynamic batch sizes. The
data loader uses a single process because it is restricted by Python’s Global Interpreter Lock (GIL).

To allow asynchronicity, the data loader accepts a num_workers parameter to perform multi-process data loading.
At each iteration, worker processes are spawned to fetch the data and then destroyed at the end of the iteration or
when garbage collection occurs. The data loader also has a pin_memory parameter, allowing GPUs to access data faster
because it is in page-locked memory [156].

PyTorch uses the Python pickle utility, a popular serialization tool, to save and load the model through the

torch.save() and torch.load() methods. PyTorch also has recently (October 4, 2023 in version 2.1) added dis-
tributed checkpointing through the torch.distributed.checkpoint APIL This allows the loading and saving of
models to be done by multiple parallel ranks. It produces at least one file per rank and is capable of checkpointing
and loading models in topologies of differing world sizes. To allow the distributed checkpoint to work on different
topologies, the model checkpoint must be resharded. There is no built-in functionality for asynchronous checkpointing;
if necessary, the user must implement it.
6.1.2  TensorFlow TensorFlow [158] offers the tf.data API [123] to build data loading and preprocessing pipelines. It
aims to enable the construction of complex input pipelines from simple reusable pieces. The tf.data.Dataset class is
used to represent a sequence of samples. It can be constructed from data stored in memory or from one or more files. If
the dataset can fit into node local memory, the Dataset object can be converted to tf. Tensor objects, which can then be
fed to the model. Otherwise, the dataset acts as a stream, and data is loaded as needed. The tf.data.Dataset.cache()
transformation method can be used to cache the entire dataset in memory or in local storage. However, this method
should not be used with large datasets that do not fit in memory or local storage as it will lead to cache thrashing.

Asynchronous data loading is possible by prefetching future samples and can be enabled through the Dataset class’s
prefetch() transformation method. The number of samples can be specified as a parameter, or users can set the
parameter to tf.data.AUTOTUNE, causing the runtime to tune the number of samples to fetch dynamically at runtime.
Parallel loading of multiple datasets is possible through the dataset classes interleave() transformation method.
Multiple parameters can be used to configure the interleave method, such as the number of datasets to read specified by
the cycle_length parameter and the level of parallelism to use through the num_parallel_calls parameter, which
can be set to tf.data.AUTOTUNE, allowing TensorFlow to adjust the value at runtime dynamically. To parallelize data
preprocessing, the Dataset object has a map() transformation method that takes a lambda, which can then be run
across multiple CPU cores concurrently. The map () method takes a parameter named num_parallel_calls, which
can be used to specify the level of parallelism to use. TensorFlow recommends setting this value to the number of
cores available as this allows the preprocessing of samples to be run in parallel on multiple cores. If set to one, the
preprocessing of samples occurs synchronously which can negatively impact training performance. In addition, users
can set the value to tf.data.AUTOTUNE allowing TensorFlow to adjust the value dynamically at runtime.

TensorFlow has four checkpointing formats: the SavedModel format, HDF5 format, . keras format, and checkpoint

format. The SavedModel format stores the entire model graph in a binary file that is then stored within a directory



22 Noah Lewis, Jean Luca Bez, and Suren Byna

containing a TensorFlow checkpoint. The format is useful for model sharing and deployment with other platforms
such as TFLite [160], TensorFlow.js [150], and TensorFlowHub [159]. The HDF5 format uses a single HDF5 file and
is the legacy choice by TensorFlow when using the higher level tf.keras APIL The currently suggested format is
the .keras format. It aims to have an efficient name-based saving scheme that enables easier debugging than the
legacy (i.e., HDF5) formats. The checkpoint format uses three files: an index file, a metadata file, and a data file. The
index file contains an index of the model data, enabling fast retrieval of model values. The metadata file contains the
TensorFlow computation graph, which includes the model architecture required to reconstruct the model and the
data file contains the model’s actual data (model weights, optimizer states, etc.). It shards the model across multiple
files to enable parallelism. Asynchronous checkpointing can be enabled through tf.train.CheckpointOptions().
This method takes an enable_async parameter, which, when set to True, moves the checkpointing of the model
off the main thread. The return value can be passed as a parameter to the tf.train.Checkpoint.restore() and
tf.train.Checkpoint.save() methods, which are used to load and save the model.

When performing distributed data parallel training, if the online dataset preparation takes more time than the

model training (i.e., time spent performing forward propagation, backpropagation, and sharing of model weights),
significant time can be spent waiting for samples to be preprocessed. TensorFlow offers an experimental feature
named tf.data.experimental.service [40], which disaggregates the online dataset preparation and training workers.
This allows for the ratio of preprocessing workers to training workers to be scaled independently, ensuring that training
workers do not have to wait for samples to be preprocessed. The number of online dataset preparation workers and
training workers and their CPU/RAM resources can be set either manually or auto-scaled by the service. The service
is also capable of sharing preprocessed data between jobs as well as executing coordinated reads to avoid stragglers,
which are often caused by the varying input data sizes workers use.
6.1.3  Scikit-learn Scikit-learn [143] requires workloads with datasets that fit into node-local memory because it does
not offer data loading utilities such as PyTorch’s torch.utils.data.DatalLoader or TensorFlow’s tf.data. Instead,
developers often use a separate library named Dask-ML [33] to enable the loading of large datasets. This allows models
to be trained against datasets that do not fit in node-local memory. The Client class is the primary way of accessing
large datasets in parallel. The Client class acts as an interface for workers to submit tasks (i.e., Python Futures). The
Dask-ML scheduler will then schedule tasks and run them in parallel if possible.

The Client class takes a parameter named asynchronous, which specifies whether the client acts synchronously
or asynchronously. The dask.dataframe class has several methods that can be used to load large datasets such as
read_parquet(), read_json(), and read_hdf5(), among others. If the requested result of a task is too large to fit
into node-local memory, Dask-ML chunks the result and distributes it among the memory of multiple nodes. This
allows tasks submitted to the Client to be run in parallel by each worker that contains a partition of a distributed
result. For distributed data processing, Dask-ML offers methods such as map() and map_partitions(), which can be
used to apply computations to elements or groups of elements in a collection (i.e., arrays, dataframes, and bags). In
addition, reduction methods such as mean, max, and min are available and can be applied across partitions.

Scikit-learn model saving and loading is commonly done through the Python pickle library. Scikit-learn also
recommends using the Python library joblib to save objects with large numpy arrays, which is common for fitted Scikit-
learn estimators (i.e., any object that learns from data). Similarly to PyTorch, no built-in functionality for asynchronous

checkpointing exists, and if necessary, the user must implement it.
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6.1.4 Direct NVIDIA GPU Loading [90] GPUDirect Storage [127] enables direct data loading from storage to GPU
memory, and GPUDirect RDMA [128] enables direct data loading from a network device to GPU memory. This avoids
loading the data into the CPU memory first, preventing the creation of a bounce buffer. This saves CPU memory and
reduces the overall communication overhead between devices.

6.1.5 TensorFlow/PyTorch with Horovod [144] Horovod is a popular distributed deep learning framework for TensorFlow,
PyTorch, and Apache MXNet [25]. Uber developed Horovod with the goal of making it easier for training scripts written
in common ML frameworks to scale to many GPUs. It uses data parallelism to partition the dataset among the workers
to enable efficient training.

6.2 Proposed 1/0 Optimization Techniques

In this section, we present the current research towards optimizing ML I/O on HPC systems. We explore a range

of strategies aimed at enhancing the efficiency and scalability of ML workflows. The research presented reflects the
ongoing efforts to address the unique storage challenges posed by ML.
Caching During SGD, samples are commonly shuffled based on a seed using a Pseudo Random Number Generator
(PRNG). Each worker is then assigned a partition of the randomly shuffled samples and fetch batches of samples from
their assigned dataset partition. The seed can be used to determine the order and frequency at which a given worker
will require samples. Dryden et al. [51] propose NoPFS, a machine learning I/O middleware, which capitalizes on these
insights to prefetch and cache samples optimally. At the application level, NoPFS can be integrated into the training
pipeline of most ML frameworks with minimal code change. NoPFS reduced I/O and improved overall training time by
5.4x on models using the ImageNet-1k [35], ImageNet-22k, and CosmosFlow [61] datasets.

Importance sampling is a DNN acceleration method in which samples are skipped based on their “importance” value.

The importance value is based on the influence a given sample has on the model’s accuracy. Chen et al. [49] introduce
iCache, a novel caching approach where samples are placed into one of two in-memory caches: the H-cache or the
L-cache. The placement of a sample into either cache is determined by its level of importance, with high-importance
samples placed in the H-cache and low-importance samples placed in the L-cache. The technique exploits the fact that
when using importance sampling, samples with higher importance values should be fed to the model more frequently
than samples with lower importance values. The intelligent caching of samples based on their importance values allows
I/O operations to reach the underlying storage system less frequently.
Scheduling When using data parallel training, the reading and writing of many small files can cause cross-application
I/O interference [101] in the underlying PFS. Burst buffers are a reliable technique to absorb large amounts of reading
and writing in a short period of time (bursts of I/O); however, when many concurrent applications are performing these
operations, congestion may still occur [81]. In addition, not all HPC systems deploy burst buffers, causing scientists to
look for alternative solutions. One possible technique to mitigate the congestion is using specialized I/O scheduling
algorithms. Adaptive Periodic I/O scheduler (APIO) [171] is a low-profile online I/O scheduler that dynamically adjusts
to the periodic and stochastic nature of ML I/O workloads to schedule I/O operations effectively. By controlling the
ordering and timing of concurrent processes issuing I/O requests, APIO can mitigate potential congestion.

Due to many concurrent processes performing I/O operations during ML training, it can be difficult for middleware
to characterize the status of the underlying storage nodes. This makes it challenging to schedule I/O requests to run
optimally. Wang et al. [72] developed a lightweight ML model to predict the status of the underlying storage nodes and

present a case study leveraging their model to effectively balance I/O traffic among the OSSs on a Lustre file system.
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They tested several models, the most accurate was a support vector machine, which achieved an accuracy of 75% when
predicting whether a given OSS was busy or idle.

Shuffling Various shuffling techniques have been proposed to shuffle samples between workers before each epoch.
Global shuffling involves shuffling all samples across all workers, which can make caching and other I/O optimizations
difficult. In contrast, local shuffling involves workers being assigned a subset of the dataset, from which they then reuse
and reshuffle before each epoch. Hash-based shuffling involves applying a hash function to the keys of the samples,
from which the result determines the partition to which the record will be shuffled. Apache Spark uses this technique as
a primary shuffling algorithm as it can help achieve load-balancing across partitions and minimize data movement. The
randomness of the shuffling does affect the convergence rate of the model [118]; however, using alternative techniques
may allow workers to cache the samples because they no longer read the entire dataset. Partial data shuffling, proposed
by Nguyen et al. [126], achieves similar accuracy to global data shuffling while only requiring each worker to store up
to 0.03% of the dataset. The partial data shuffling algorithm combines the technique of global and local data shuffling.
Their paper also discusses that local shuffling achieves accuracy similar to the more common global shuffling strategy
in their experimentation. Integrating their solution into PyTorch requires minor modifications of the training script and
a load handler of the dataset. Jie et al. [96] propose ASRDataset, a system aiming to speed up the training of automatic
speech recognition (ASR) models by implementing chunk-level and batch-level shuffling. Their system allows the
user to specify how many chunks to batch and the number of samples in each chunk. In addition, ASRDataset uses a
high-speed audio data processing library implemented in C++ and CUDA, speeding up audio data augmentation and
extraction. Lee and Bahn [108] proposed shuffling bundles of samples among workers. This groups samples together to
increase locality. To improve buffer caching performance, in each epoch, bundles of samples are accessed in the reverse
order of the previous epoch. This improves locality from the buffer cache, allowing the last bundle in the previous
epoch to be the first in the next epoch. Liu et al. [110] also propose block shuffling by compacting small files into blocks.
They use the ImageNet dataset to test their data-loading pipeline. They cache partially loaded data to avoid redundant
reads to the underlying storage system. In the first epoch, all data is cached in memory. All remaining epochs reuse half
the loaded data and load the other half from disk to form batches, reducing the underlying storage accesses by half.
Asynchronicity Asynchronous I/O enables the overlapping of compute and storage. Sunwoo Lee et al. [59] propose an
asynchronous I/O strategy to speed up data parallel model training by creating a dedicated I/O thread to run alongside
each process. Their model assigns groups of the dataset to training processes and globally shuffles these groups at each
epoch. In addition, each process allocates a buffer large enough to store two or more data groups. Each process’s I/O
thread reads groups of samples as needed into the buffer, which can occur parallel to model training. The strategy has
two drawbacks. The first is the lower degree of randomness due to groups of samples being shuffled, and the second is
the increased memory footprint needed to load the additional data groups asynchronously. Serizawa et al. [145] also
propose overlapping the copying and reading of the dataset for training. They observed 1.38 to 6.19 times speed up
when using their asynchronous strategy compared to using Lustre directly.

Compression Compression is a common technique to reduce the I/O needed to load and store data. Kuchnik et al. [103]
propose using progressive compression techniques to reduce the overhead of loading data. They present a file format
named progressive compressed records (PCRs), which uses progressive compression to store image datasets. Progressive
compression stores data samples (images in this case) in a series of deltas, each with more fidelity. When using formats
such as JPEG, data fidelity must be chosen at encoding time, often causing image datasets to be stored multiple times at

varying compression levels. Using PCR, various models can be trained using the same dataset and accessed at different



I/O in Machine Learning Applications on HPC Systems: A 360-degree Survey 25

fidelities according to their needs. They found that PCR reduced the sizes of images by 5% compared to storing the
images with TFRecords. One downside to PCR is that the decoding time can be up to 2x greater than JPEG.

Dataset distribution Many supercomputing facilities are not yet equipped with large node-local memory devices, which
disables the ability to cache datasets in higher storage. Choi et al. [57] aim to enhance I/O performance by creating a
DDStore, an in-memory data store. DDStore evenly distributes the chunks in the memory of compute nodes, after which
sample accesses from a particular node are made through in-memory read transactions. To reduce possible congestion
due to multiple nodes requesting a batch from the same node, DDStore replicates the dataset and distributes it among
groups of workers. This allows the samples to be globally shuffled while reducing communication congestion. This
strategy makes a large trade-off between reduced node-local memory and fewer PFS I/O operations. Dantas et al. [31]
created Monarch, which aims to exploit storage tiering to enable fast training speeds on single-node workloads. Their
solution aims to be ML framework agnostic acting as a transparent middleware which intelligently caches at different
storage layers that may not fit into host memory. Aizman et al. [3] created a storage system named AlStore aiming
to provide an infinitely scalable namespace. The namespace can be used on an arbitrary number of disks. Metadata
overhead is minimized by enabling dataflow directly between compute nodes and storage targets.

Data redundancy mitigation Multiple executing workers can often prepare the same sample redundantly during
the training phase. Xie et al. [73] introduce JOADER, a data loader aimed at reducing the redundant I/O and data
preprocessing of samples. JOADER is capable of sharing data preparation work on overlapping datasets. It accomplishes
this by dividing the dataset into intersection and difference sets, correlating the selections, and sharing operations that
operate on the intersecting set. They also introduce a domain-specific cache policy with a novel tree data structure
aimed at effectively caching samples. This strategy is more effective when the preparation of a sample takes a significant
amount of time (e.g., image decoding). Jin et al. [97] created MMDataLoader, a data preprocessing pipeline framework
aiming to increase preprocessing throughput and reduce redundant data preparation. It operates at the server level,
allowing it to share results across training tasks. The framework enables batches of data to be preprocessed for multiple
models at the same time, eliminating the need for each task to recompute batches individually.

Storing large models With the increasing complexity of ML models, several methods have been proposed to enable the
training of models that do not fit into accelerator or even clustered accelerator memory. Previous methods aiming to
reduce memory usage during training include materialization and offloading. Materialization removes some activations
during the forward pass. The removed activations are then recomputed during the backward pass. This strategy trades
a larger computational cost for less memory. Offloading moves activations from the limited GPU memory to CPU
memory during the forward pass trading data movement for memory [14]. The limited HPC bandwidth, in addition to
the increased communication caused by the offloading of the model to storage, is a large challenge for these strategies.
Rajbhandari et al. [136], propose ZeRO-Infinity to train large models by leveraging GPU, CPU, and NVMe memory.
ZeRO-Infinity is fully integrated with PyTorch. Jang et al. [94] propose Smart-Infinity to train large models with storage
offloading. Smart-Infinity is also integrated with PyTorch and takes advantage of storage devices to form an extended
memory hierarchy. In contrast to ZeRO-Infinity, they use near-storage accelerators to reduce I/O pressure and increase
training speeds. In addition, gradient compression/decompression is used to reduce the storage congestion incurred
from model offloading. Sun et al. [71] propose STRONGHOLD for large model training. They offload model training
from the GPU to the CPU; however, the minimum amount of data to be kept on the GPU to minimize GPU memory
usage is dynamically determined at runtime. In addition, they use prefetching to load layers of the model in parallel

with GPU computation.
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GPU storage hierarchy In GPU architectures, storage is typically organized into tiers, comprising high-bandwidth
memory (HBM) and on-chip SRAM, facilitating efficient data access and processing [75]. Doa et al. [32] propose
FlashAttention which uses an I/O aware exact attention algorithm to reduce the number of memory read and writes that
occur between HBM and SRAM on GPU devices. It efficiently moves data between the GPU storage tiers, resulting in
faster training speeds while maintaining the same level of accuracy as traditional attention algorithms. FlashAttention has
been adopted into several machine learning frameworks such as PyTorch’s nn. Transformer, Microsoft’s DeepSpeed [68],
and NVIDIA’s MEgatron-LM [146]. In addition, it yields the fastest in MLPerf [62] BERT training on cloud instances in
MLPerf training 2.0 (June 2022) and MLPerf training 2.1 (November 2022).

Multi-modal pipeline overhaul FFCV [54] is a library aiming to speed up the data loading and processing pipeline
while easily integrating into existing PyTorch applications. FFCV offers a custom file format that can store arbitrary
data modalities and enable non-sequential data reading. It stores all samples in a single file but splits the dataset into
pages, which trades space for more efficient data reads. If the dataset can fit into memory, it will be cached, and every
read of a sample after the first will be read from memory instead of the underlying storage system. In contrast, if the
dataset does not fit into memory, FFCV enables efficient data loading by using the PRNG to prefetch data samples.
In addition, it uses quasi-random data shuffling in which a permutation of the data samples is loaded into a memory
buffer large enough for batch_size pages of the dataset. The model then selects from batches existing within the buffer.
This reduces the number of accesses to the underlying storage system. FFCV aims to eliminate unnecessary memory
allocations by having operations in the data loading and processing pipeline declare memory requirements so that
memory allocation occurs only once before each epoch. It also uses just-in-time (JIT) compilation, where possible,
during the data processing pipeline to convert Python code to machine code. Since the machine code is no longer under
the constraints of the Python interpreter, it enables multi-threading, which by extension enables collaborative reading
and writing to and from memory instead of expensive primitives, i.e., threads can share batches of data. Threads also
enable data preparation (data copying and augmentations) to be run in parallel as they share the same CUDA context.
Image pipeline overhaul DIESEL+ [167] is an image data loading and preprocessing pipeline that can be integrated
with frameworks such as TensorFlow and PyTorch. The pipeline aims to speed up the training of models that use JPG
datasets. Diesel+ has a Fast Mode in which JPG files are first processed into an intermediate fast-binary format and
stored in memory for future usage, enabling reduced loading times. There is also a Compatible Mode for images that
require no manipulation. The time required to load JPG images is further reduced by applying an online region of
interest (ROI) technique to decode the images. JPG images are combined into chunks to mitigate the small random
I/O reads often performed during training. These chunks are then shuffled amongst the workers, from which random
individual samples can be selected in memory. In addition, a per-task distributed cache is employed across the workers
to reduce the number of reads reaching the underlying storage system. Finally, to minimize metadata overhead, tasks
take metadata snapshots, eliminating the contention over the metadata server.

Remote storage Deep Lake [91] is a data lake for deep learning. It can be used with object storage systems such as AWS
S3 [7], Google Cloud Storage (GCS) [89], POSIX file systems, or local in-memory storage. Deep Lake has a Tensor Query
Language that extends the SQL Parser from Hyrise [39]. This enables multidimensional array operations and deeper
integration with the data lake, including indexing, slicing of arrays, and a large set of convenience functions. There is
also a data visualizer made available through a web interface, allowing for the visualization of large-scale data. The
Deep Lake streaming data loader delegates data fetching to C++ processes to avoid Python’s GIL. Deep Lake also has a

version control system that keeps track of different branches of the dataset in the same storage. This allows queries
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to be written which specify the dataset version, allowing for more granular and depthful searches. Deep Lake also is
capable of storing non-structured data and metadata in a columnar format resulting in fast data streaming speeds.

Checkpointing With the growing size of Al models, efficient checkpointing methods are needed to ensure scalability.
Nicolae et al. [64] propose DeepFreeze, an asynchronous checkpointing technique built using Very Low Overhead
Checkpoint-Restart (Veloc) [63]. Veloc is a lightweight concurrency-optimized checkpointing library aimed at delivering
high-performance checkpointing on top of heterogeneous storage hierarchies. DeepFreeze is a transparent checkpointing
solution for synchronous data parallel training with layer-wise model parallelism. To increase checkpointing speeds, an
asynchronous multilevel checkpointing approach is used in which a local copy of the learning model is captured and
persisted in lightweight (i.e., node-local storage of neighboring nodes) and heavy (i.e., PFS) storage to block training for
the least amount of time possible. To reduce the overhead of model serialization, a compact binary format is used that
leaves out details such as tensor labels. The model’s layers are sliced into shards equal to the number of MPI ranks. The
ranks then write checkpoints for their partition of the model to local storage. This allows for models to be checkpointed
in parallel, avoiding the stragglers problem. Anthony et al. [9] also propose local process model snapshots, which are
then stored in node-local storage. Their method uses the SCR-Exa library [30], which is a scalable checkpointing tool
for HPC applications. There are two restart methods (cold and hot) available. A cold restart attempts to restart the
application using the checkpointing cache within the same allocation of nodes. The hot restart tries to replace faulty
nodes with idle spare nodes. Check-N-Run [42] is a checkpointing system for deep-learning recommendation models
developed by Facebook. It uses two techniques to address size and bandwidth: differential checkpointing, where only a
fraction of the model changes per iteration, and quantization techniques to reduce checkpoint size. The checkpoint
system is implemented under the PyTorch framework. Check-N-Run keeps training accuracy as a priority as they state
an accuracy loss as small as 0.01% is unacceptable. Maurya et al. [115] introduce DataStates-LLM, an asynchronous
multi-level checkpointing approach to speed up LLM checkpointing. By exploiting the periods of time when tensors
and optimizer state shards are immutable, the strategy lazily copies shards of the model from the GPU during periods of
immutability into a single host and streams the partial checkpoints asynchronously to persistent storage. The copying

from GPU to host and the transfer from host to persistent storage can occur in parallel.

Modern ML frameworks offer many optimization techniques to enable fast training speeds. There have been

many recent advances aiming to optimize ML I/O in HPC systems. From optimized batch shuffling techniques to

specialized I/O schedulers, I/O remains a prominent and continually evolving area of research and development.

7 Future Research Directions of 1/0 for ML

While the ML surge is rushing forward driven by rapidly increasing data collection and application use cases, data
management and I/O software have been significantly lagging, especially in the HPC domain. In this section, we identify
numerous data management and I/O areas that need to be improved to ensure continued progress and innovation in
the training and deployment of ML models.

I/O characterization and benchmarking While the DLIO benchmarks suite, which is used as the MLPerf Storage
Benchmark Suite, focuses on deep learning applications, many more AI models exist and have been evolving whose
I/O patterns have not been represented in existing benchmarks. Some significant examples include reinforcement

learning, Q-learning, and Deep Q Networks, widely employed for decision-making in dynamic environments. These ML
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models may produce unique I/O patterns, motivating the need for additional benchmarks that can mimic these patterns.
Benchmarks that can properly emulate the vast number of Al models play a crucial role in assisting researchers in
identifying optimization techniques, ensuring that I/O does not become a bottleneck in ML workloads. Development of
I/0 benchmarks representing ML used specifically in science applications that run on HPC systems is also needed.
Efficient data preparation strategies When preparing data from remote storage locations such as data warehouses, it
may be necessary to store intermediate forms of the dataset after preprocessing. Further research could involve an I/O
middleware that transparently stores intermediate forms of the dataset in clustered memory or the underlying storage
system, depending on the dataset size. By extending the memory to the underlying storage system, additional questions
arise, such as how data movement between memory and storage can be optimized for high throughput and low latency
and what caching strategies should be used to ensure efficient data access.

Data quality evaluation and monitoring methods With the increasing amount of data for machine learning, ensuring
data quality is essential for model accuracy [56]. A step towards ensuring high-quality data is to use data warehouses
because they often provide data governance tools. However, scientists who use HPC systems for high I/O throughput
could take a significant performance hit if limited by the bandwidth of the external network. This motivates the need for
tools that can aid in obtaining and monitoring high-quality datasets. These tools could offer data management services,
such as integrity constraints, versioning, provenance, and quality assessments, while being scalable and supporting
multiple data modalities. A survey on metrics for Al data readiness [92] exposes a lack of metrics focusing on quality,
bias, and FAIR (Findability, Availability, Interoperability, and Reusability) principle compliance.

Support for multi-modal data Multi-modal machine learning models aim to process and relate information from multiple
data modalities [13]. I/O optimization strategies targeting multi-modal datasets are needed to ensure reasonable training
and inference speeds. Two broad categories for the relationship between the datasets are parallel and non-parallel data.
In parallel data, each sample in one modality corresponds to another in a separate modality. In contrast, in non-parallel
data, the samples within each modality are independent. Future research could exploit data locality by ensuring optimal
data layout grouping related data together depending on whether it is a parallel or non-parallel dataset.

Support for streaming data Due to the rise of cloud-based storage being used by ML workloads, methods of efficiently
streaming data from multiple data sources are needed. In addition, multi-modal models may need to stream data from
several data sources, each with varying data modalities. Future research could involve an I/O middleware capable
of concurrently optimizing I/O from multiple data sources. The middleware would take into account the varying
latencies between the data sources and use methods such as sample caching and sample prefetching to ensure optimal
performance. This would involve a cache eviction strategy in which eviction is based on the dynamic latency of the
data sources. In addition, prefetch scheduling could also occur dynamically, ensuring that samples from high-latency
data sources have a higher priority than low-latency data sources. It would also take into account the sample size when
performing these optimizations to ensure the optimal balance between latency and data size.

ML application specific I/0 optimizations on (1) traditional HPC systems, and (2) heterogeneous systems with GPUs and
domain-specific processing units GPUs have become increasingly popular due to the rise of ML. This is due to their
high level of parallelism when doing mathematical computations and, in particular, matrix operations [153]. This is
possible because GPUs, unlike CPUs, contain thousands of cores. This has led to the development of ML domain-specific
processing units, such as tensor processing units (TPU)s by Google [99]. These are specialized processors specifically
built for ML workloads. With the wide range of hardware available, future research is needed to determine how data

movement and storage techniques should be used effectively across the diverse range of hardware available. Questions
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for future research include where to place and process samples to prioritize processing units and exploit their contrasting
abilities effectively, how to efficiently move data between the diverse range of processing units, and how to provide
transparent and reasonable solutions for developers facing these challenges.

HPC 1/0 inference analysis The large majority of current ML I/O research is aimed at analyzing the training of ML
models. However, the I/O that occurs during model deployment differs widely from training because there is no longer a
need to select random samples of data. This causes many of the previously mentioned I/O optimizations in Section 6 to
be non-applicable. A thorough analysis of the I/O operations that occur during model deployment should be conducted
in order to identify potential I/O bottlenecks. The study could examine a range of model deployment scenarios, including
single-model workloads versus multiple-model workloads, as well as different types of models. In addition, while many
models no longer need checkpointing, investigation of I/O write operations that occur due to the need to store model
predictions could produce valuable insight.

Integration of HPC 1/O and ML programming tools As shown in Fig. 1, HPC I/O and ML I/O stacks have been organically
evolving for faster implementation of the ML algorithms although there is significant scope for higher performance. As
the ML algorithms settle, improving the efficiency of data access in running various applications both on HPC systems
as well as cloud computing environments need to take priority. ML application development should also target obtaining
portability and efficiency on different platforms. Achieving this will require efforts in benchmarking, evaluation of
performance with various programming tools, and developing platform-specific optimization strategies.

Efficient Model Offloading Model offloading is used in memory-constrained environments to move subsets of the model
to lower storage tiers. This has been a prominent area of research in edge computing, where memory constraints are a
common limiting factor. With the growth in size of LLMs, many cannot be held in distributed memory. One example of
such a model is the DOE'’s recently announced one-trillion-parameter (i.e., 4TiB) Al system named “AuroraGPT” [162].
Enabling such a model in a memory-constrained environment requires model offloading. Compounding the issue is
that some inference configurations (e.g., ensemble models or pipeline models) require multiple models to be loaded and
unloaded from device memory to respond to a single query. Moving the model effectively through the storage tiers to

minimize inference response times is a challenging I/O and data management problem where further R&D is needed.

Summary #6

The rapid development of Al and its usage in decision support has pushed for quick, easy, and often dirty ways
to implement them. As the applications and technologies mature, efficiency will be a priority. We listed various
gaps in current research and practice. Addressing the widening gap between computing and storage, additional
R&D in I/O and data management are essential to sustain progress and innovation and achieve efficiency in

ML model training and development.

8 Conclusion

Data plays a pivotal role in machine learning, impacting the learning process and significantly affecting model
performance and accuracy. With a wide array of file formats available, each offering distinct I/O optimizations, machine
learning applications must carefully select the format that best suits their needs. Additionally, the modality of the
dataset influences the choice of file formats, affecting how datasets are accessed and stored throughout the ML lifecycle.

Model training is a critical step in this lifecycle, and due to SGD being the most popular optimization algorithm for

training models on large datasets, high amounts of small random I/O reads present a significant challenge for PFSs.
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Furthermore, training distribution strategies such as model parallelism and data parallelism, in addition to checkpointing,
exacerbate the number of I/O operations PFSs need to handle. In order to find I/O bottlenecks in ML processing, training,
and inference, it is essential to have access to appropriate benchmarks and profiling tools. Existing benchmarks and
profilers allow I/O performance enthusiasts and HPC practitioners to simulate ML workloads accurately, facilitating the
identification of areas of improvement within ML pipelines.

Modern ML frameworks commonly offer several options to optimize data loading and processing, such as parallel
data preparation, dataset streaming, and sample prefetching, to optimize the processing and loading of batches of
samples. However, caching solutions that work with datasets that do not fit into node local memory are not widely
available in ML frameworks such as PyTorch and TensorFlow, often leading to sample accesses always reaching the
underlying storage system, which may lead to an I/O bottleneck. Recent advances toward minimizing I/O time include
specialized shuffling techniques, I/O schedulers, and domain-specific file formats.

While the rate of ML I/O research has continued to increase alongside the popularity surge of Al there are still gaps
in existing research. All-in-one solutions to existing problems are a challenge for researchers due to the wide variety of
data sources where samples are stored, the diverse range of hardware ML training and inference runs on, and the many
different types of data used by ML models. An additional challenge is providing solutions to these problems that are
either transparent or easily incorporated by ML developers. Ultimately, ongoing R&D in ML I/O is a crucial process to

ensure efficient model training and deployment, ultimately aiding in the expanding and ever-growing field of Al
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