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Abstract

INTRODUCTION:Successful cognitive aging is related tobothmaintainingbrain struc-

ture and avoiding Alzheimer’s disease (AD) pathology, but how these factors interplay

is unclear.

METHODS: A total of 109 cognitively normal older adults (70+ years old) underwent

amyloid beta (Aβ) and tau positron emission tomography (PET) imaging, structural

magnetic resonance imaging (MRI), and cognitive testing. Cognitive aging was quan-

tified using the cognitive age gap (CAG), subtracting chronological age from predicted

cognitive age.

RESULTS: LowerCAG (younger cognitive age)was related to slower decline in episodic

memory,multi-domain cognition, and atrophyof themidcingulate cortex (MCC). Lower

entorhinal cortical tau was linked to slower decline in episodic memory, multi-domain

cognition, and hippocampal atrophy.

DISCUSSION: These results suggest that aging outcomes may be influenced by two

independent pathways: one associated with tau accumulation, affecting primarily

memory and hippocampal atrophy, and another involving tau-independent structural

preservation of theMCC, benefitingmulti-domain cognition over time.

KEYWORDS

Alzheimer’s disease, brain atrophy, brain maintenance, cognitive decline, exceptional cognitive
performance, PET, successful aging, superaging, tau

Highlights

∙ Younger cognitive age (lower cognitive age gap [CAG]) is related to slower cognitive

decline.

∙ Lower CAG is linked to slowermidcingulate cortex (MCC) atrophy.

∙ Reduced tau in the entorhinal cortex is related to less hippocampal atrophy and

cognitive decline.

∙ Structural preservation of theMCC benefits multi-domain cognition over time.
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∙ Two independent pathways influence cognitive aging: tau accumulation and MCC

preservation.

1 BACKGROUND

Variability in cognitive performance increaseswith advancing age,with

substantial heterogeneity in cognitive aging trajectories. Some indi-

viduals experience cognitive decline associated with brain pathologies

and age-related processes, whereas others show preserved or even

exceptional cognitive functioning.1 Various studies have aimed to elu-

cidate the neural features linked to exceptional cognitive performance

in older adults. These individuals can be referred to as successful

cognitive agers (SAs), and have been described previously using dif-

ferent terms including SuperAgers,2–4 supernormals,5,6 superior,7 or

optimal8 memory performers.

Prior research has used a number of strategies to define SAs,

often based on selecting those with exceptional performance based on

thresholds5,8,9 or comparison to younger individuals.2,4,7 In a recent

study from our laboratory,9 we defined SAs by using neuropsycholog-

ical tests spanning multiple cognitive domains to estimate predicted

age, and then defining a cognitive age gap (CAG) by subtracting the

chronological age from their corresponding cognitive age. Notably, we

observed a robust relationship between lower CAG, indicating better

cognitive performance than expected for age, and thickermidcingulate

cortex (MCC)9 (Figure 1). This same brain region is notable; previous

reports using a variety of definitions of SAs reported greater cortical

thickness2,10 and higher metabolism11 there. In addition to findings in

MCC, individuals with younger cognitive age also showed larger hip-

pocampal volumes and less depositionof pathological tau aggregates in

the entorhinal cortex (EC).9 In this context, theCAGcanbe conceptual-

ized as a continuous measure of cognitive aging, particularly sensitive

to brain features related to SA. However, it is uncertain whether hav-

ing a younger cognitive age also denotes slower cognitive decline over

time in older individuals.

Although investigating the differences between SAs and typical

agers is valid to understand the neural features associated with nor-

mal and superior cognitive performance, here we took a different

approach. We used continuous CAG scores to measure the contin-

uum of cognitively normal aging, ranging from exceptional to typical

cognitive functioning. Previous studies relied predominantly on cross-

sectional data. Although there is limited evidence indicating slower

atrophy over time in the total cortical volume and total gray matter

(GM) volume in SA, there are conflicting results regarding rates of hip-

pocampal atrophy.3,12,13 There are no studies specifically addressing

whether SAs show less longitudinal structural atrophy in the anterior

cingulate cortex (ACC)/MCC, or whether SAs experience less longitu-

dinal tauaccumulation. Thesequestionshaveprofound implications for

our understanding of cognitive aging. It is unclear whether SAs show

a slower cognitive decline due to less age-associated pathology, or

whether they are the beneficiaries of early life advantages that persist

throughout their lifespan.

Ourgoalwas toexamine relationshipsbetweencross-sectionalCAG

and longitudinal changes in (1) cognition (results described in Sec-

tion3.2 anddisplayed in Figure 2), (2) brain structure (results described

in Section 3.3 and displayed in Figure 3), and (3) positron emission

tomography (PET)–measured tau pathology (results described in Sec-

tion 3.4). Finally, we investigated whether (4) change in cognition was

associated with change in MCC GM, EC tau, and amyloid beta (Aβ)
burden (results described in Section 3.5). In more detail, we explored

longitudinal changes in composite scores for episodic memory (EM)

and non-memory cognition (NM)14 and in themulti-domain Preclinical

Alzheimer Cognitive Composite (PACC).15 Changes in GM structure

were investigated in the hippocampus and in a region of interest (ROI)

using amask in theMCCregiondefined fromour previous study,where

we found greater cortical thickness associated with younger cognitive

age (MCC ROI; Figure 1).9 We explored relationships between CAG

scores and changes in each cognitive composite and GM, and inves-

tigated whether and how PET-measured Aβ and tau affected these

relationships. Finally, we examined whether tau accumulation in the

EC and inferior temporal (IT) cortex, and global Aβ accumulation var-

ied based on CAG scores. We hypothesized that lower CAG, indicating

younger cognitive age, would be associated with better longitudinal

outcomes.

2 METHODS

2.1 Sample

This study involved 109 community-dwelling cognitively normal older

adults from the Berkeley Aging Cohort Study (BACS). Because cog-

nition is significantly affected by increasing age, age is a crucial

factor to incorporate in defining SAs.16 Consequently, the present

study included only participants 70 years of age or older, in line

with prior research on SAs.5,9,13 Inclusion criteria involved a base-

line Mini-Mental State Examination (MMSE) score ≥25, normal daily

functioning, and no history of neurological disease or major medical

illness affecting cognition, history of substance abuse, or depression.

Participants remained cognitively unimpaired throughout the study.

Other demographic and clinical features available included the follow-

ing: years of education, apolipoprotein E (APOE) genotyping, history of

hypertension, self-reported family history of dementia, and Geriatric

Depression Scale (GDS) scores. All participants included in the present

investigation underwent two or more cognitive testing sessions, with

a minimum of one tau-PET imaging scan with 18F-Flortaucipir (FTP)



PEZZOLI ET AL. 3 of 14

and one Aβ-PET session using 11C-Pittsburgh compound B (PiB). A

subgroup had two or more T1 structural magnetic resonance imaging

(MRI) scans and PiB scans (n = 92), and a subgroup underwent two or

more FTP PET scans (n= 72).

We aimed to investigate the impact of Alzheimer’s disease (AD)

pathology on the association between cross-sectional CAG (cognitive-

age – chronological age) and (1) cognitive decline, and (2) longitudinal

GM atrophy. For this reason, for each participant, we focused on cross-

sectional CAG scores derived from the cognitive sessions that closely

matched FTP scans (and corresponding PiB). For 83% of participants

(n= 91), the time between FTP scan andCAG-related cognitive assess-

ment was less than 6 months, and less than a year for 94% (n = 103);

for six participants, time interval was slightly over a year (1.15 ± 0.13

years). Because FTP PETwas introduced later in the BACS protocol, to

optimize the use of all cognitive sessions available for each participant,

our longitudinal analyses incorporated cognitive sessions conducted

after the age of 70 both before and after the cross-sectional CAG

for most participants. Notably, 96% (n = 105) of the participants had

at least one prospective neuropsychological evaluation, whereas only

four participants had only retrospective cognitive assessments avail-

able. Similarly, to maximize the use of all MRI scans available for each

participant, our longitudinal analyses incorporated MRI scans under-

taken after the age of 70 both before and after the cross-sectional CAG

aligned with the FTP scans; 82% (n = 75) of the participants had at

least one prospective structural MRI scan. This approach allowed us

to gain amore comprehensive understanding of participants’ cognitive

and structural changes over time, particularly focusing on longitudinal

trajectories after the age of 70.

The institutional reviewboard at theUniversity ofCalifornia, Berke-

ley, and the Lawrence Berkeley National Laboratory (LBNL) reviewed

andapproved the study, and all participants providedwritten, informed

consent.

2.2 Neuropsychological assessment

The BACS protocol includes a comprehensive neuropsychological

assessment evaluating a variety of cognitive domains such as ver-

bal and visual memory, working memory, processing speed, executive

functioning, and attention. In the present study, the following tests

were used: the California Verbal Learning Test (CVLT), Logical Mem-

ory, Visual Reproduction, Trail Making Test (TMT) A and B, Stroop test,

digit symbol task, phonemic verbal fluency F-A-S test, Animal Nam-

ing, VegetableNaming, anddigit span forward andbackward. Repeated

cognitive assessment was available for all participants. EM and NM

composite scores were calculated using confirmatory factor analyses

(CFA) in BACS, as described in detail previously.14 The EM compos-

ite was computed using the following tests: CVLT Short Delay Free

Recall (SDFR), CVLT Long Delay Free Recall (LDFR), Visual Reproduc-

tion I, Visual Reproduction II, Logical Memory Total Score, and Verbal

Paired Associates. The NM composite included the following tests:

Stroop in 60 s, Digit Symbol, TMT-A, TMT-A subtracted from TMT-

B (Trails B–A), Digit Span Backward, Animal Naming, and Vegetable

RESEARCH INCONTEXT

1. Systematic review:We conducted a comprehensive liter-

ature search using PubMed to explore longitudinal brain

features linked to successful cognitive agers (SAs. Previ-

ous studies primarily used cross-sectional data, and the

limited longitudinal evidence showed conflicting results

regarding the rate of hippocampal atrophy in SA. There

is a lack of research addressing longitudinal structural

changes in the midcingulate cortex (MCC) and tau accu-

mulation in SA.

2. Interpretation: Our findings suggest that aging outcomes

may be influenced by independent pathways. One is asso-

ciatedwith tau accumulation, affecting primarilymemory

decline and hippocampal atrophy, and the other appears

to involve tau-independent structural preservation of the

MCC with beneficial effects on multi-domain cognition

over time.

3. Future directions: Future research is needed to explore

the specific mechanisms by which tau-independent

preservation of the MCC contributes to successful cog-

nitive aging. Further work may focus on understanding

how these findings relate to genetic and modifiable risk

factors.

Naming. In the present study, multi-domain cognition was measured

with the PACC, a composite that was designed to be sensitive to early

AD-related cognitive changes.15,17 In the present study, the PACCwas

calculated using the MMSE, Logical Memory total recall, Digit Symbol,

and the CVLT LDFR.15 To compute the PACC, raw individual cognitive

scores were z-transformed within the sample using baseline cogni-

tive assessment’s mean and standard deviation (SD). Then, z-scores for

each cognitive test were summed at each time point, and the resulting

sumwas standardized to themean and SD of the baseline sum score.15

2.3 Cognitive age model

Partial least squares regression (PLSr) was used to estimate partic-

ipants’ cognitive-predicted age from cognitive tests, as described in

detail previously.9 The cognitive age model was developed using inde-

pendent data sets for training (n= 293; 55–96 years of age at baseline)

and testing (n = 238; 56–97 years of age at baseline), with chronologi-

cal age serving as the response variable. The training and test cohorts

did not differ in age, years of education, history of hypertension, dia-

betes, or heart disease, but the training set had a greater proportion of

female participants.9 The model was built using all available neuropsy-

chological sessions from the training cohort (n = 457 sessions), and

the learned parameters were subsequently applied to predict cogni-

tive age in the test cohort (n=1141 sessions). Predictors encompassed
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various tests and subtests (n = 19), contributing to a comprehensive

evaluation of cognitive functioning. These included measures for EM,

executive functioning, processing speed, and language skills. The fol-

lowing tests/subtests were included: CVLT Trials 1-5 Free Recall total,

CVLT SDFR, CVLT Short-Delay Cued Recall (SDCR), CVLT LDFR, CVLT

Long-Delay Cued Recall (LDCR), TMT-A and B, Stroop in 60 s, FAS

test, Animal Naming, Vegetable Naming, Digit Symbol, Logical Mem-

ory total recall, Visual Reproduction I, II and recognition total, Digit

Span Forward and Backward, and Boston Naming Test. To address

potential practice effects, session number was also included as a pre-

dictor, bringing the total number of predictors to 20. The trainedmodel

accurately predicted age in the independent test cohort with a mean

absolute error of 4.36. The variance explained was similar in the test

and training samples, reaching 41% in the test sample and 49% in the

training set.9 A statistical bias correction was then applied to each

predicted age to adjust for a commonly observed bias in age predic-

tion models, where younger adults’ ages tend to be overestimated,

and older adults’ ages underestimated. We used a method based on

the correction proposed by Beheshti et al.,18 which has been uti-

lized previously in brain age prediction models. CAG (cognitive-age –

chronological age) was then computed for each session to represent

individual variability in cognitive aging, where lower values indicate

better cognitive performance than expected for age (younger cogni-

tive age, indicating successful aging).9 In this study, CAG scores reflect

age-bias-corrected CAG scores, computed by subtracting chronologi-

cal age from the bias-corrected cognitive age values. The sample is a

subset of participants selected from the test cohort in our previous

study.9

2.4 Image acquisition

All participants underwent at least one tau-PET imaging visit using

FTP and at least one Aβ-PET imaging visit using PiB, which were per-

formed on a BIOGRAPH PET/CT scanner with previously described

protocols.19–21 A subset of 92 participants had a minimum of two PiB

scans, and72participants underwent aminimumof twoFTPscans. FTP

and PiB were synthesized at the LBNL Biomedical Isotope Facility. CT

scans acquired prior to each PET scan were used for attenuation cor-

rection. For FTP scans, participantswere injectedwith 10mCi of tracer

and scanned from80 to100minpost-injection. For PiB scans, 90min of

dynamic emission data frames were acquired post-injection of 15 mCi

of tracer. FTP and PiB images were reconstructed using an ordered

subset expectationmaximization algorithmwith scatter correction and

smoothedwith a 4-mmGaussian kernel.

A subgroup of 92 participants underwent a minimum of two high-

resolution T1-weighted magnetization-prepared rapid gradient echo

(MPRAGE) structural MRI scans acquired on a 1.5 T Siemens Mag-

netom Avanto scanner at LBNL. The following acquisition parameters

were applied: repetition time (TR)=2110ms, echo time (TE)=3.58ms,

flip angle = 15◦, 1 mm slice thickness, and 1 × 1 mm2 in-plane

resolution.

2.5 Image processing

FTP standardizeduptake value ratio (SUVR) imageswere createdusing

the mean tracer uptake 80–100 min post-injection and normalized to

the inferior cerebellar GM reference region.22 To account for partial

volume effects, we used Geometric transfer matrix partial volume cor-

rection (PVC)on theDesikan–KillianyFreeSurfer-derivedROIs forFTP

data processing.23,24 The Desikan–Killiany atlas was used to define

ROIs of the EC as an early region of tau deposition and the IT cortex

as an early-stage tau accumulation region outside the medial tempo-

ral lobe.25–28 Models including EC and IT FTP were first run using

PVC data, and then rerun using non-PVC data. For models involving

MCC ROI FTP, we used non-PVC SUVRs. When exploring longitudinal

changes in tau, FTP scans were normalized using white matter refer-

ence regions. In particular, a cerebral white matter reference region

was used for PVC data, and an eroded subcortical white matter ref-

erence region for non-PVC data.29 This approach was chosen due to

previous evidence reportingmore stable estimates of FTP change over

time.29,30

To calculate PiB distribution volume ratio (DVR), we used Logan

graphical analysis on PiB frames over 35-90 min post-injection, with

normalization using a reference region in the cerebellar GM.31,32 We

computed global cortical PiB DVR using FreeSurfer-derived cortical

ROIs.33,34 A global PiB DVR threshold of 1.065 was used to determine

Aβ positivity.19 To calculate Centiloid (CL) values we used a conver-

sion equation previously used in our laboratory and developed for our

processing pipeline: CL= (DVR x 142.73) – 141.99.9,35

Structural MRI processing was performed using Statistical Para-

metric Mapping 12 (SPM12; (https://www.fil.ion.ucl.ac.uk/spm/) lon-

gitudinal registration36 and DARTEL (Diffeomorphic Anatomical Reg-

istration using Exponentiated Lie algebra)37 implemented in MAT-

LABR2023a (MathWorks Inc., www.mathworks.com/). Specifically, we

used the serial longitudinal registration to create (1) one midpoint,

average structural MRI image for each participant; and (2) one Jaco-

bianmap for eachMRI scan timepoint, representing the deformation of

each scan to themidpoint average. Then eachmidpoint imagewas seg-

mented into GM, white matter, and cerebrospinal fluid (CSF) in native

space. Next, GM-segmented midpoint images were used to create

GM-weighted Jacobian maps at each timepoint. The DARTEL tool-

box was employed to generate a study-specific template and to warp

individual GM-weighted Jacobian images into Montreal Neurological

Institute (MNI) space. Smoothing was applied to the images using a full

width at halfmaximum (FWHM)8mmGaussian kernel. This procedure

resulted in a smoothed, normalizedGM-weighed Jacobianmap at each

timepoint for each participant.

To examine regional GM change in regions associated with SAs,

we first created an ROI mask in the MCC. This mask was based on

prior vertex-wise analyses, revealing an association between lower

CAG, indicating a cognitive age younger than expected for one’s

chronological age, and greater cortical thickness.9 The cortical sur-

face resulting from the vertex-wise analyses was clustered with a

threshold of p ≤ 0.0001 and subsequently transformed to MNI space.

https://www.fil.ion.ucl.ac.uk/spm/
http://www.mathworks.com/
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The resulting surface label was used to create a cortical volume ROI,

referred to as the MCC ROI, created using Freesurfer 7.1.0 (http://

freesurfer.net/). An ROI encompassing the left and right hippocampus

was obtained using the Brainnetome atlas (https://atlas.brainnetome.

org/). Themean voxel values for the selectedROIswere extracted from

each GM-weighted Jacobian image using theMarsBaRtoolbox toolbox

for SPM (http://marsbar.sourceforge.net/).

2.6 Statistical analyses

Statistical analyses were performed using R version 4.3.1 (https://

www.r-project.org/). We ran linear mixed-effects models (LMEMs)

using the lme4 R package to investigate the effects of cross-sectional

CAG and AD pathology on longitudinal changes in EM, NM, and PACC

composite scores across all available cognitive sessions after the age

of 70. In addition, we explored the impact of CAG and AD pathology

on longitudinal atrophy in GM ROI (MCC ROI and bilateral hippocam-

pus) across all structural MRI scans after the age of 70. In separate

models, each cognitive composite andGMROIwas included as the out-

come variable. Time, cross-sectional CAG, cross-sectional FTP SUVR,

and cross-sectional PiBDVRwere included as predictor variables, with

CAG× time, FTP SUVR × time, and PiBDVR × time as ourmain predic-

tors of interest. Sex and years of educationwere included as covariates,

aswell as each covariate by time interactions. Randomeffects included

subject intercept and time slope. Continuous predictors and covariates

were mean-centered. For each composite score and GM ROI (Jaco-

bians), the following model was performed: Cognitive composite/GM

ROI∼ time+CAG * time+ EC FTP SUVR * time+ PiBDVR * time+ sex

* time+ education * time+ random slope+ random intercept. All mod-

els were repeated using IT FTP SUVR as the tau pathology measure.

First, eachmodel was conducted using FTP PVC SUVRs. Subsequently,

to assess any potential influence of PVC data, we repeated the models

using non-PVC data. The analyses were also repeated using the time

between theCAGcognitive sessionand theFTPPETscanas a covariate

of no interest. Finally, we restricted the analyses to participantswith an

interval between the CAG cognitive session and FTP PET of less than

6-months.

In another set of LMEMs, we aimed to investigate the effects

of cross-sectional CAG on longitudinal tau. In separate models, the

outcome variables were EC and IT PVC FTP SUVRs, whereas CAG,

CAG × time, PiB DVR, PiB DVR × time were included as predictors.

Sex, sex × time, years of education, and years of education × time were

included as covariates of no interest. Subject intercept and time slope

were included as random effects. Continuous independent variables

were mean-centered. The following models were performed: EC or IT

FTP SUVR ∼ time + CAG * time + PiB DVR * time + sex * time + edu-

cation * time + random slope + random intercept. All models were

repeated using non-PVC FTP SUVRs. We also explored longitudinal

change FTP MCC ROI SUVR, and whether it varied by cross-sectional

CAG and PiBDVR.

In a subgroup of participants with a minimum of two cognitive ses-

sions, FTP, PiB and MRI scans (n = 72), we used LMEMs to estimate

longitudinal slopes for EM, NM, PACC, regional MCC GM atrophy,

EC FTP SUVR, and global PiB DVR. We used Pearson partial correla-

tions and multiple linear regression models to assess the relationships

between EM, NM, and PACC longitudinal slopes and (1) MCC GM

atrophy, (2) FTP, and (3) PiB slopes. Age, sex, and years of education

were included as covariates. The following multiple regression model

was performed for EM, NM, and PACC: Cognitive composite slope

∼ MCC ROI GM Jacobian slope + EC FTP SUVR slope + PiB DVR

slope+ age+ sex+ years of education.

To control for multiple comparisons, we applied false discovery rate

(FDR) correction specifically to the interaction terms with time, our

primary predictors of interest (CAG × time, ERC SUVR × time, IT

SUVR × time, and PiBDVR × timewhere applicable). Corrections were

applied separately within each analysis set (cognitive composites, GM

ROIs, PET measures). In addition, FDR correction was applied across

three regressionmodels using cognitive slopes as outcomemeasures.

3 RESULTS

3.1 Cohort characteristics

Cohort characteristics at the cognitive sessions closest to FTP scans

after the age of 70 are summarized in Table 1. The mean (± SD) age

of participants was 77.47 ± 5.04 with 58% females and a mean of

16.97 ± 1.85 years of education. Within our study cohort, 45% were

Aβ positive, determined using a PiB DVR threshold of 1.06519; 25%

were APOE ε4 carriers (ε3/ε4), 8% were APOE ε2 (ε2/ε3), and 66%were

APOE ε3/ε3homozygotes. In addition, therewere two ε2/ε4 carriers (no
APOE ε2/ε2 and ε4/ε4 homozygotes). The average cognitive follow-up

time was 7.10 ± 3.77 years, with an average of 6.17 ± 3.28 cognitive

sessions. In a subsample of 92 participants with two or more struc-

tural MRI scans, the mean follow-up time was 5.91 ± 3.49 years with

an average of 3.40 ± 1.28 scans. In a subset of 72 participants with at

least two FTP scans, the average follow-up time was 3.67 ± 1.98 years

with an average of 2.65 ± 0.79 scans. Cohort characteristics for each

subsample are reported in Table S1.

3.2 Lower CAG predicts slower decline in EM and
multi-domain cognition, beyond the effects of Aβ and
tau pathology

We used LMEMs to investigate longitudinal changes in EM and NM

composite scores,14 and in the multi-domain composite PACC.15 (See

Figure S1 for a spaghetti plot displaying individual trajectories of

cognitive scores over time.) We predicted that lower cross-sectionally

defined CAG, indicating younger cognitive age, should be related to

better longitudinal cognitive outcomes, and investigated whether

cross-sectional AD pathology affected these relationships. The fol-

lowing model was examined separately for each composite score:

cognitive composite ∼ time + CAG * time + EC FTP SUVR * time + PiB

DVR * time + sex * time + education * time + random slope + random

intercept.

http://freesurfer.net/
http://freesurfer.net/
https://atlas.brainnetome.org/
https://atlas.brainnetome.org/
http://marsbar.sourceforge.net/
https://www.r-project.org/
https://www.r-project.org/
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TABLE 1 Cohort characteristics (n= 109).

Characteristic

Age 77.47 (5.04)

Sex, female, n (%) 63 (58)

Education, years 16.97 (1.85)

History of hypertension, years, n (%) 40 (37)

Family history of dementia, years, n (%)a 37 (35)

APOE ε4, n (%)b 26 (25)

PiB+, n (%) 49 (45)

PiB, CLs 23.43 (31.96)

CAG, years −0.21 (4.69)

MMSE 28.69 (1.27)

GDSc 3.50 (3.10)

Race/ethnicity, n (%)

Asian 5 (5)d

Black or African American 1 (1)

Native Hawaiian or other Pacific Islander 1 (1)

Hispanic or Latino 4 (4)e

White n 102 (94)

Cognition, years of follow-up 7.10 (3.77)

MRI, years of follow-upf 5.91 (3.49)

PiB, years of follow-upf 5.92 (3.54)

FTP, years of follow-upg 3.67 (1.98)

Abbreviations: CAG, cognitive age gap; CL, centiloid; FTP, 18F-Flortaucipir;

GDS, Geriatric Depression Scale; MMSE, Mini-Mental State Examination;

MRI, magnetic resonance imaging; PiB, 11C-Pittsburgh compound B. Val-

ues representmean (SD) and n (%) for continuous and categorical variables,

respectively.
amissing data for two participants.
bmissing data for four participants.
cmissing data for one participant.
dIncluding Asian andWpezzohite (n= 1).
eIncluding Hispanic or Latino andWhite (n = 4) and Hispanic or Latino and

Native Hawaiian or other Pacific Islander (n= 1).
fn= 92.
gn= 72.

In the model predicting EM decline, the two-way interactions

between time and CAG, and time and EC FTP SUVR, were significant

(CAG × time: β = −0.15, p = 0.01, FDR p = 0.02; EC FTP SUVR × time:

β=−4.87,p<0.001, FDRp<0.001), but notPiBDVR× time (β=−0.75,
p= 0.52, FDR p= 0.52) (Figure 1). The full model is shown in Table 2. In

the model predicting NM cognition decline, the PiB DVR × time inter-

action was significant, although not surviving correction for multiple

comparisons (β = −3.41, p = 0.04, FDR p = 0.13), but not CAG × time

(β=−0.03, p= 0.71, FDR p= 0.71) and ECFTP SUVR× time (β=−2.43,
p = 0.11, FDR p = 0.11) (Figure 2 and Table 2). In the model predicting

decline in the PACC, the two-way interactions between time and CAG

or EC FTP SUVR were significant (CAG × time: β = −0.005, p = 0.03,

FDR p = 0.049; EC FTP SUVR × time: β = −0.21, p < 0.001, FDR

p < 0.001), but not PiB DVR × time (β = −0.04, p = 0.47, FDR p = 0.52)

(Figure 2 and Table 2). These results suggest that lower CAG scores

and lower ECFTPburdenwere independently associatedwith a slower

decline in EM and in the multi-domain PACC, whereas lower PiB DVR

was related to a slower decline in NM cognition. Using IT FTP SUVR

as the measure of tau pathology, results were similar for both the EM

model (IT FTP× time: β=−5.95, p= 0.003, FDR p= 0.004, CAG× time:

β=−0.12, p=0.046, FDR p=0.14, PiBDVR× time: β=−1.16, p= 0.38,

FDR p = 0.54) and the NMmodels (IT FTP × time: β = −1.36, p = 0.58,

FDR p = 0.56, CAG × time: β = −0.03, p = 0.73, FDR p = 0.77, PiB

DVR × time: β = −4.06, p = 0.02, FDR p = 0.06). In the model predict-

ing PACC decline, IT FTP × time interaction was significant (β = −0.33,
p< 0.001, FDR p< 0.001), but not CAG × time interaction (β=−0.003,
p = 0.18, FDR p = 0.27). Full models are reported in Table S2. To

ensure that these analyses were not influenced by the use of PVC of

FTP data, we repeated the models using non-PVC data, yielding com-

parable results. All results were similar when we added the number

of days between the cognitive session (cross-sectional CAG) and the

FTP scan as a covariate of no interest. Furthermore, restricting the

analyses to participants with less than a 6-month interval between

the CAG-related cognitive session and the FTP scan yielded similar

results.

3.3 Lower CAG is associated with slower atrophy
in the MCC, but not in the hippocampus

Structural MRI scans were processed using a longitudinal pipeline36

to generate GM-weighted Jacobian maps. These maps represent the

divergence of scans at each timepoint relative to a subject-specific

midpoint average image. We used LMEMs to investigate longitudinal

GM atrophy in the MCC region that we previously found was asso-

ciated with younger cognitive age defined at one timepoint (MCC

ROI, Figure 1)9 and also in the hippocampus. The choice of these

regionswas informed by the previously reported associations between

hippocampal and MCC structural integrity and SAs, defined as indi-

viduals exhibiting exceptional cognitive performance. Figure S2 shows

spaghetti plots of GM Jacobian values over time across subjects, illus-

trating individual trajectories for the MCC ROI and hippocampus. We

posited that lowerCAGscores, indicating younger cognitive age,would

be associated with slower atrophy progression. The following model

was examined separately for the MCC ROI and the hippocampus: GM

Jacobians ∼ time + CAG * time + EC FTP SUVR * time + PiB DVR

* time + sex * time + education * time + random slope + random

intercept.

In the model predicting MCC ROI GM atrophy, CAG × time inter-

action was significant (β = −0.0001, p = 0.007, FDR p = 0.01), but

not EC × time (β = 0.0001, p = 0.88, FDR p = 0.88) (Figure 3 and

Table 3). The results were similar using IT FTP SUVR as a measure of

tau deposition (Table S3). Consistent results were found when years of

educationwas removed from themodels. Similar resultswere obtained

when we restricted the analyses to participants with less than a 6-

month interval between theCAG-related cognitive sessionand theFTP

scan. In a model with only time as a predictor, we found a significant

effect (β = −0.002, p < 0.001). In the model predicting hippocampal
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F IGURE 1 Lower CAG is associated with thickerMCC. On the left, an illustration depicting CAG scores computed by subtracting the
chronological age from the corresponding cognitive age, where lower scores indicate younger cognitive age. On the right, previous results from
vertex-wise analyses revealing a significant negative association between CAG scores andMCC thickness (adapted from Pezzoli et al.9). CAG,
cognitive age gap;MCC, midcingulate cortex.

TABLE 2 Predicting longitudinal change in cognition: LMEMs parameter estimates.

Memory Non-memory Multi-domain cognition

Parameter Estimate s.e. p-value Estimate s.e. p-value Estimate s.e. p-value

Intercept 130.68 3.27 <0.001 57.80 3.40 <0.001 −0.12 0.12 0.34

Time −1.09 0.29 <0.001 −1.96 0.43 <0.001 −0.08 0.01 <0.001

CAG −2.35 0.53 <0.001 −2.73 0.56 <0.001 −0.09 0.02 <0.001

EC FTP −46.76 11.14 <0.001 −31.29 11.60 0.01 −1.78 0.41 <0.001

PiBDVR 12.89 12.19 0.29 4.18 12.69 0.74 −0.07 0.45 0.88

Sex −0.17 5.04 0.97 −9.86 5.26 0.06 −0.41 0.19 0.03

Education 5.87 1.36 <0.001 5.09 1.42 <0.001 0.22 0.05 <0.001

CAG× time −0.15 0.05 0.01* −0.03 0.07 0.71** −0.005 0.002 0.03***

EC FTP × time −4.87 1.04 <0.001**** −2.43 1.49 0.11***** −0.21 0.04 <0.001******

PiB DVR × time −0.75 1.15 0.52******* −3.41 1.62 0.04******** −0.04 0.05 0.47*********

Sex × time 0.60 0.46 0.20 0.06 0.67 0.93 0.02 0.02 0.31

Education× time 0.27 0.13 0.04 0.37 0.19 0.05 0.02 0.01 0.004

Abbreviations: CAG, cognitive age gap; DVR, distribution volume ratio; EC, entorhinal cortex; FTP, 18F-Flortaucipir; LMEMs, linearmixed-effectsmodels; PiB,
11C-Pittsburgh compound B; s.e., standard error.

*FDR p= 0.02.

**FDR p= 0.71.

***FDR p= 0.049.

****FDR p< 0.001.

*****FDR p= 0.11.

******FDR p< 0.001.

*******FDR p= 0.52.

********FDR p= 0.13.

*********FDR p= 0.52.

atrophy, EC× timewas significant (β=−0.006,<0.001, FDR p<0.001),

but not CAG × time (β = −0.00003, p = 0.62, FDR p = 0.62). When

IT FTP SUVR was used as a measure of tau pathology, interactions

for CAG × time (β = −0.00003, p = 0.59) and IT FTP SUVR × time

(β=−0.003, p=0.11)were not significant (Table S3). Consistent results

were obtainedwhen years of educationwas removed from themodels.

When we included only participants with less than a 6-month period

between the CAG-related cognitive session and the FTP scan, IT FTP

SUVR × time interaction was significant (β = −0.005, p = 0.02), but

not CAG × time interaction (β = −0.00004, p = 0.55). Findings were
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F IGURE 2 Effects of cross-sectional CAG, EC tau, and Aβ on longitudinal change in EM, non-memory, andmulti-domain cognition composite
scores. CAG, EC FTP SUVR, and PiBDVRwere included in the same linear mixed-effects model for each composite score, controlling for sex and
years of education. Predicted composite scores are plotted over time, measured in years. Lower CAG and EC FTP SUVRwere significantly
associated with slower decline in EM andmulti-domain cognition. Lower PiB DVRwas significantly associated with slower decline in NM.
Continuous predictors weremean-centered. CAG, EC FTP SUVR, and PiB DVRwere included as a continuous variable in themodels but
represented asmean± 1 SD for visualization purposes. CAG, cognitive age gap; DVR, distribution volume ratio; EC, entorhinal cortex; EM, episodic
memory; FTP, 18F-Flortaucipir; NM, non-memory cognition; PACC, Preclinical Alzheimer Cognitive Composite; PiB, 11C-Pittsburgh compound B;
SUVR, standardized uptake value ratio.
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F IGURE 3 Effects of cross-sectional CAG and EC tau on longitudinal GM change in aMCCROI and hippocampus. CAG, EC FTP SUVR, PiB
DVR, sex, and years of education were included in the same linear mixed-effects model for each GMROI. Predicted Jacobians are plotted over
time. Lower CAGwas associated with slower atrophy progression in theMCCROI. Continuous predictors weremean-centered. CAG and EC FTP
SUVRwere included as a continuous variable in themodels but represented asmean± 1 SD for visualization purposes. CAG, cognitive age gap;
DVR, distribution volume ratio; EC, entorhinal cortex; FTP, 18F-Flortaucipir; GM, graymatter; MCC, midcingulate cortex; PiB, 11C-Pittsburgh
compound B; ROI, region of interest; SUVR, standardized uptake value ratio.

replicated using non-PVC data. In addition, we repeated the models

including the MCC ROI FTP SUVR as the tau pathology measure. In

the model predicting MCC ROI GM atrophy, CAG × time interaction

was significant (β = −0.0001, p = 0.009), but not MCC ROI FTP × time

(β = 0.0003, p = 0.68). In the model predicting hippocampal atrophy,

interactions for CAG × time (β = −0.0001, p = 0.26) and MCC ROI

FTP × time (β = −0.001, p = 0.36) were not significant. All results were

similar when we included the number of days between the cognitive

session (cross-sectional CAG) and the FTP scan as a covariate of no

interest.

3.4 Tau and Aβ do not vary by CAG

LMEMs were used to explore longitudinal changes in tau within the

EC as an early site of tau accumulation, as well as within the IT cor-

tex as a region where tau deposition occurs at an early stage outside

themedial temporal lobe (MTL).25–28 The followingmodelswere exam-

ined to predict the longitudinal change in tau independently for EC,

IT and MCC ROI: FTP SUVR ∼ time + CAG * time + PiB DVR *

time + sex * time + education * time + random slope + random inter-

cept.We used an LMEM to predict longitudinal change in PiBDVR: PiB
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TABLE 3 Predicting longitudinal GM atrophy: LMEMs parameter estimates.

MCCROI Hippocampus

Parameter Estimate s.e. p-value Estimate s.e. p-value

Intercept 0.40 0.01 <0.001 0.54 0.01 <0.001

Time −0.002 0.0002 <0.001 −0.004 0.0003 <0.001

CAG −0.0003 0.001 0.73 0.001 0.0011 0.43

EC FTP −0.02 0.02 0.18 −0.04 0.02 0.09

PiBDVR −0.002 0.02 0.92 0.03 0.02 0.22

Sex −0.01 0.01 0.15 −0.02 0.01 0.08

Education 0.001 0.002 0.54 −0.003 0.003 0.37

CAG × time −0.0001 0.00003 0.007* −0.00003 0.0001 0.62**

EC FTP× time 0.0001 0.0008 0.88*** −0.006 0.001 <0.001****

PiBDVR × time −0.0009 0.0007 0.25***** −0.00002 0.0011 0.98******

Sex × time 0.0005 0.0003 0.09 0.0001 0.0005 0.79

Education× time −0.0002 0.0001 0.06 −0.00003 0.0001 0.81

Abbreviations: CAG, cognitive age gap; DVR, distribution volume ratio; EC, entorhinal cortex; FDR, false discovery rate; FTP, 18F-Flortaucipir; GM, gray

matter; LMEMs, linear mixed-effects models; MCC, midcingulate cortex; PiB, 11C-Pittsburgh compound B; ROI, region of interest; s.e., standard error.

*FDR p= 0.01.

**FDR p= 0.62.

***FDR p= 0.88.

****FDR p< 0.001.

*****FDR p= 0.50;.

******FDR p= 0.98.

DVR ∼ time + CAG * time + sex * time + education * time + random

slope+ random intercept.

In the model predicting EC tau accumulation, we found no signifi-

cant PiB DVR × time (β = 0.04, p = 0.12, FDR p = 0.12) or CAG × time

(β = −0.0003, p = 0.76, FDR p = 0.765) interactions. There was a sig-

nificant main effect of PiB DVR (β = 0.31, p = 0.01, FDR p = 0.01). In

the model predicting IT tau accumulation, the main effect of PiB DVR

(β = 0.23, p = 0.001, FDR p = 0.001) and PiB DVR × time interaction

were significant (β= 0.05, p= 0.02, FDR p= 0.048), but not CAG× time

(β = −0.001, p = 0.34, FDR p = 0.69). Full models are reported in

Table S4. These results suggest that tau accumulation rate did not vary

based on CAG score. On the other hand, higher PiB DVR significantly

predicted faster IT tau accumulation. Using non-PVC data to predict

EC tau accumulation, PiB DVR × time interaction was marginally sig-

nificant (β= 0.03, p= 0.05), but not CAG× time (β=−0.0003, p= 0.67).

There was a significant main effect of PiB DVR (β = 0.13, p = 0.03).

Using non-PVC data to predict IT tau accumulation, PiB DVR × time

(β= 0.03, p= 0.06) andCAG× time (β=−0.0005, p= 0.45) interactions

were not significant, but there was a significant main effect of PiB DVR

(β= 0.10, p= 0.03). Finally, we examined longitudinal FTP uptake in the

MCCROI and found no significant CAG× time (β= 0.001, p= 0.41) and

PiB DVR × time (β = 0.05, p = 0.25) interactions. There was, however,

a significant main effect of PiB DVR (β= 0.29, p= 0.01), indicating that

participants with higher levels of Aβ had higher tau deposition in the

MCC ROI, irrespective of CAG. Nonetheless, no differences in the rate

of change were observed. In a model with only time as a predictor, we

foundno significant effect (β=0.01, p=0.20), suggesting that tau in the

MCCROI does not significantly change over time. In themodel predict-

ing longitudinal change in PiBDVR,we found no significant CAG× time

interaction (β= 0.0003, p= 0.49).

3.5 MCC atrophy is related to multi-domain
cognitive decline, beyond the effects of Aβ and tau
pathology

LMEMs were used to estimate longitudinal slopes for EM, NM, PACC,

regional GM atrophy, EC FTP SUVR, and global PiB DVR. Pearson par-

tial correlations and multiple linear regression models were used to

assess the relationships between the longitudinal slope of cognitive

composites and (1) MCC GM atrophy, (2) FTP, and (3) PiB slopes, con-

trolling for age, sex, and years of education. The following regression

model was examined separately for each composite score: cognitive

composite slope ∼ ROI GM Jacobian slope+ EC FTP SUVR slope+ PiB

DVR slope+ baseline age+ sex+ years of education.

After adjusting for age, sex, and years of education, in separate par-

tial correlations, EMslope showed significant associationswith ECFTP

slope (r = −0.32; p = 0.01) and PiB slope (r = −0.28; p = 0.02), but

not with MCC GM slope (r = 0.12; p = 0.32) (Figure 4). When EC FTP

slope, PiB slope, andMCCGM slopewere included as predictors in the

same regression model (adjusted R2 = 0.11, p = 0.03), EC FTP slope

was the only significant predictor of EM slope (standardized β=−0.26;
p = 0.04, FDR p = 0.13), although not surviving correction for multiple

comparisons. The fullmultiple regressionmodel is reported in Table S5.
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F IGURE 4 Linear relationships between each cognitive composite slope and (1)MCCGM Jacobian slope; (2) EC FTP slope; and (3) PiB DVR
slope. Partial Pearson correlation coefficients (r-values) and p-values are reported, controlling for age, sex, and years of education. For visualization
purposes, the plotted data points represent residuals from linear regressionmodels, after adjusting for covariates. DVR, distribution volume ratio;
EC, entorhinal cortex; FTP, 18F-Flortaucipir; GM, graymatter; MCC, midcingulate cortex; PACC, Preclinical Alzheimer Cognitive Composite; PiB,
11C-Pittsburgh compound B.
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Similarly, NM slope was associated with EC FTP slope (r = −0.27;
p = 0.02) and PiB slope (r = −0.36; p = 0.003), but not with MCC GM

slope (r = 0.19; p = 0.12) (Figure 4). In a multiple regression model

(adjusted R2 = 0.15, p = 0.01), PiB DVR slope was the only significant

predictor of NM slope (standardized β=−0.32; p= 0.01, FDR p= 0.02)

(Table S5). In contrast, PACC slopewas associatedwithMCCGM slope

(r = 0.29; p = 0.02) as well as EC FTP slope (r = −0.28; p = 0.02) and

PiB slope (r = −0.29; p = 0.01). Multiple regression analyses (adjusted

R2 = 0.22, p = 0.001) revealed that both MCC GM slope (standard-

ized β = 0.27; p = 0.02, FDR p = 0.058) and PiB slope (standardized

β =−0.25; p = 0.02, FDR p = 0.04) were significant predictors of PACC

slope (Table S5).

4 DISCUSSION

In this study, we quantified SAs using the CAG, which is a continuous

measure of cognitive aging defined cross-sectionally through a cogni-

tive age model in older adults 70 years of age or older. We showed

that participants with lower cross-sectional CAG had slower cognitive

decline in EM and PACC composite scores, as well as slower longitu-

dinal MCC atrophy. Although these associations were not explained

solely by the presence of AD pathology, tau in the EC was also related

to memory andmulti-domain cognitive decline and to longitudinal hip-

pocampal atrophy. Neither longitudinal hippocampal atrophy nor tau

accumulation rates varied by CAG. We also found that slower multi-

domain cognitive decline was associated with slower MCC atrophy

progression. On the other hand, EM decline was associated primar-

ily with EC tau accumulation. Together, these results suggest separate

and independent pathways affecting aging outcomes. One pathway

involves tau accumulation, which affects hippocampal atrophy and

memory. Another pathway is related to the preservation of MCC vol-

ume over time, which is independent of ADpathology and is associated

with preservedmulti-domain cognition.

Our first aim was to investigate whether a lower cross-sectional

CAG was associated with slower cognitive decline, in addition to

indicating a cognitive age younger than expected for one’s chrono-

logical age. We found that lower CAG was associated with a slower

decline in EM and the multi-domain PACC. Notably, all the models

also included measures of Aβ and tau. Predictably, higher levels of

EC tau predicted a faster decline in both composite scores. These

results suggest that CAG captures features of normal cognitive aging

that are unaffected by Aβ and tau pathology. On the other hand,

longitudinal decline in NM did not vary by CAG or tau; instead,

it was associated with Aβ deposition. This result is consistent with

previous findings that linked Aβ pathology to executive function-

ing and processing speed in cognitively normal older adults.38–40

This result, however, did not survive correction for multiple compar-

isons, and therefore needs to be interpreted with caution. It is not

entirely clear why the CAG is more sensitive to longitudinal changes

in EM and PACC, but not NM. The CAG includes multiple cognitive

domains, including EM, executive functioning, processing speed, and

language.

Cross-sectional studies have repeatedly reported greater cortical

thickness in ACC/MCC regions in SAs.2,9,10,41 Although most findings

pertain to individuals with exceptional performance in the memory

domain, the criteria defining SAsvaried across studies,2,7,9,10 indicating

the robustness of this result. Limited evidence indicates that SAs are

characterized by slower global atrophy rates over time.3,12 To the best

of our knowledge, this is the first study showing differential SA-related

longitudinal GM changes in the MCC. Previous studies investigating

longitudinal trajectories in brain structure in SA compared to typical

agers found either no differences,13 or slower atrophy progression

in other regions, including MTL areas.12 In this study, we found that

adults 70 years of age or older with a younger cognitive age exhib-

ited slowerMCC atrophy progression. Critically, these neurobiological

changes occurred independently of AD-related processes. This result

contributes to the existing literature on SAs by employing a novel

methodology. It is important to note that we conceptualize cognitive

aging on a continuum rather than relying on relatively arbitrary cutoffs

and dichotomizations. Our finding further validates our approach and

the use of CAGas a continuousmeasure of cognitive aging, particularly

sensitive to SA-related brain characteristics (e.g., MCC). Although pre-

vious results provide strong evidence of brain reserve, defined as the

brain neurobiological status at a particular time point42 (i.e., greater

ACC/MCC thickness), our study suggests that SAs may be character-

ized also by brain maintenance, specifically in the MCC (i.e., slower

atrophy progression). In this context, better brain maintenance, as

demonstrated by the relative preservation of brain morphology over

time, could sustain a higher brain reserve,42,43 which may partially

explain exceptional cognitive performance in SAs.

In prior cross-sectional studies, bothour laboratory andothers iden-

tified greater hippocampal volume in SAs.8,9 However, when exploring

longitudinal changes, contrasting results emerged.12,13 In this study,

we observed that hippocampal atrophy did not vary significantly based

onCAG inmodels that also accounted forADpathology. Instead, higher

EC tau levels predicted faster hippocampal atrophyover time. Similarly,

there was no evidence supporting a faster tau accumulation rate in EC

and IT in individuals with an older cognitive age. Tau has been associ-

atedwith regionalMTL atrophy in cognitively normal older adults,44,45

indicating a potential link between the pattern of hippocampal atro-

phy and tau accumulation in our study. On the other hand, we found

no evidence that measures of tau or Aβ pathology predicted MCC

atrophy, which was instead associated with CAG scores. These results

may indicate a dissociation between AD-related pathological features

and othermechanisms associatedwith the preservation ofMCC struc-

tural integrity over time. This interpretation finds further support in

our longitudinal cognitive findings, where both CAG and AD pathol-

ogy significantly predicted cognitive trajectories over time. Notably,

the maintenance of the MCC integrity over time was associated with

a slower multi-domain cognitive decline, beyond the effects of Aβ
and tau pathology. Conversely, EM decline was primarily linked to EC

tau accumulation, indicating that MCC structural integrity may reflect

broader aspects of cognitive functions, rather than AD-related spe-

cific processes that preferentially affect EM. This observation aligns

with the characterization of the MCC ROI itself, which arose from its
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association with the CAG, a multi-domain measure of cognitive aging.

Previous cross-sectional investigations have reported lower levels of

tau inSAs in theECand IT.4,9,46 This suggests that SAsmay result froma

combination of processes, including protective factors like brain main-

tenance and reserve, particularly in theMCC, and resistance toADand

age-related tau pathology. However, we found no differences in longi-

tudinal tau, suggesting that once tau accumulation begins, participants

with a younger cognitive age do not exhibit slower accumulation rates.

This study has some limitations. First, it is important to acknowl-

edge that the BACS cohort is racially, ethnically, and socioeconomically

homogeneous and highly educated, which does not reflect the full

range of diversity in cognitive aging. Then, our definition of the

cognitive continuum relies on a cross-sectional measure. Features

associated with exceptional cognitive performance may differ from

those underlying cognitivemaintenance over time. However, obtaining

extensive longitudinal data to assess cognitive maintenance is chal-

lenging. Here we further validate our approach by showing that lower

CAG scores were associated with slower cognitive decline over time.

In this study, we demonstrated that a younger cognitive age not

only indicates exceptional cognitive performance but it is also asso-

ciated with cognitive maintenance and slower atrophy progression

in the MCC. These findings were robust when including measures

of Aβ and tau in the models, suggesting that these features extend

beyond the effects of AD pathology. Conversely, no differences were

detected in longitudinal hippocampal atrophy and tau accumulation

rates in relation to our measure of cognitive age. Taken together,

these results suggest that distinctmechanismsmayunderlie protective

MCC-related processes compared to early AD and age-related patho-

logical changes. The combination of both mechanisms may contribute

to exceptional performance and cognitivemaintenance at an older age.
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