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Molecular evolution of early onset prostate cancer identifies 
molecular risk markers and clinical trajectories

A full list of authors and affiliations appears at the end of the article.

Summary

Identifying the earliest somatic changes in prostate cancer can give important insights into tumor 

evolution and aids in stratifying high- from low-risk disease. We integrated whole-genome, 

transcriptome and methylome analysis of early-onset prostate cancers (diagnosis ≤ 55 years). 

Characterization across 292 prostate cancer genomes revealed age-related genomic alterations and 

a clock-like enzymatic-driven mutational process contributing to the earliest mutations in prostate 

cancer patients. Our integrative analysis identified four molecular subgroups, including a 

particularly aggressive subgroup with recurrent duplications associated with increased expression 

of ESRP1, which we validate in 12,000 tissue microarray tumors. Finally, we combined the 

patterns of molecular co-occurrence and risk-based subgroup information to deconvolve the 

molecular and clinical trajectories of prostate cancer from single patient samples.

Introduction

One of the biggest unmet clinical needs in prostate cancer (PC) is to stratify clinically 

indolent from aggressive types, particularly in patients diagnosed at young age. Molecular 

markers have shown promise in risk stratification, but the utility is complicated by the 

heterogeneous natural-history. Primary localized PC develops over decades (Pound et al., 

1999), with a typical late age-of-onset (median 66 years of age, seer.cancer.gov). Prior 

studies have revealed a remarkable inter- and intra-tumor heterogeneity in PC (Boutros et 

al., 2015; TCGA, 2015) associated with poor outcome in primary localized PC (Espiritu et 

al., 2018). Prior focus on elderly, late onset patients has hindered the identification of the 

earliest genomic alterations, which could aid in identifying the evolutionary paths and 

clinical outcome of PC. One of the earliest molecular alterations in PC are ETS fusions 

involving the fusion of androgen-receptor (AR) responsive promoters and members of the 
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ETS transcription factor (TF) family genes, most notably the TMPRSS2-ERG fusion 

(Tomlins et al., 2005) present in 50 % of all PC and exhibiting an elevated occurrence in 

early-onset PC (EOPC) (Tomlins et al., 2005; Weischenfeldt et al., 2013). PC has relatively 

few somatic point mutations but has frequent genomic structural variants (SVs), several of 

which are associated with clinical outcome, including disruption or loss of PTEN, TP53, 
NKX3-1 and MAP3K7 (Kluth et al., 2013; Taylor et al., 2010; TCGA, 2015).

Identifying the molecular evolution and clinical trajectories of PC requires analysis of the 

earliest somatic mutation events. A particular relevant subset of PC are early detected 

cancers associated with EOPC (Pritchard et al., 2016; Weischenfeldt and Korbel, 2017; 

Weischenfeldt et al., 2013), here defined as patients with an age-at-diagnosis at 55 and 

below, which are likely to develop a severe disease course and eventually require radical 

treatment. Studies in EOPC, furthermore, offer insights into early mutational processes and 

evolutionary trajectories of PC.

Results

Patterns of somatic genomic aberrations in EOPC

We applied uniform and comprehensive genomics-based profiling of 292 PC cases 

(including 203 EOPCs) (Table S1, Figure 1 and S1A). Profiling included whole-genome 

sequencing (WGS) of tumors and matched peripheral blood from 184 EOPC patients and 85 

late-onset (LOPC) patients, methylomes (450k methylome arrays) in 203 EOPC tumors and 

45 LOPC tumors and mRNA-seq of 96 EOPC samples. Established somatic and germline 

variant calling pipelines were used to identify single-nucleotide variants (SNVs), short 

insertions and deletions (InDels) and SVs. Genome-wide analysis of somatic SNVs revealed 

an expected lower average number of SNVs per Mb in EOPC (median 0.47, interquartile 

range (IQR) = 0.49) as compared to LOPC (median 0.53) (Fraser et al., 2017). TP53 was the 

most frequently affected gene by nonsynonymous SNVs (nsSNV) in the EOPC cohort (6%).

SVs often involve recurrent fusion gene formation or loss of tumor-suppressor genes in PC 

(Fraser et al., 2017; Taylor et al., 2010; TCGA, 2015). We confirmed previous findings, 

namely an increased number of SNVs and SVs with age (p < 0.001) (Figures S1B, S1C). We 

identified recurrent genomic altered loci (RGA), as breakpoint peak regions at minimum 5% 

recurrence (Figure 1A, 1B). Our analysis revealed 70% of the EOPC tumor genomes 

carrying an SV associated with formation of an ETS fusion gene (Figure S1D). The second- 

and third-most frequently altered loci in EOPC were at chromosome 8p (centered at 

NKX3-1, 37%) and 3p14 (centered at FOXP1, 30%). We identified PTEN as the gene with 

the highest rate of biallelic inactivation (12 samples) across the cohort, followed by TP53 (8 

samples). Despite being more often affected by SVs, neither NKX3-1 nor FOXP1 underwent 

recurrent biallelic inactivation, corroborating earlier suggestions of haploinsufficient tumor-

suppressive roles of these genes (Locke et al., 2012; Myers et al., 2017).

To identify RGAs associated with age-of-onset, we performed a parallel analysis of LOPC 

genomes, which revealed similar affected loci but with a more uniform pattern, distinct from 

that of EOPC (Figure S1D, S1E). LOPC displayed an overall higher proportion of RGAs 

affected by genomic losses compared to a higher rate of balanced breaks in EOPC (p < 
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1x10−7 and p < 1x10−4, Fisher’s exact test). Moreover, EOPC exhibited a more monoclonal 

architecture compared to LOPC (66% and 53%, respectively, Figure 1C and S1F), 

suggesting that EOPC tend to be primarily associated with a clonal origin, potentially due to 

the shorter life-span compared to LOPC.

The epigenetic landscape is often altered during cancer progression and impacts on where 

DNA double-strand breaks occur (Aryee et al., 2013; Urbanucci et al., 2017). We previously 

showed that breakpoints in EOPC genomes occur more often in the vicinity of AR-binding 

sites (Weischenfeldt et al., 2013). This raises the possibility that age-associated altered 

chromatin states impact on breakpoint occurrence. We therefore examined genomic 

breakpoints from EOPC tumors in relation to specific chromatin regions (Taberlay et al., 

2014). This revealed a significant enrichment of breakpoints in EOPC near open chromatin, 

active enhancers, TF binding and actively transcribed regions (Figure S1G, S1H). Active 

enhancers are associated with long-range promoter-enhancer DNA-DNA chromatin loops, 

which can increase the likelihood of SV formation between normally distant loci (Chen et 

al., 2018). We integrated publicly available Hi-C data, which revealed significant correlation 

between breakpoints and both the number of chromatin loops and H3K27ac peaks (p < 

0.0001 both, Spearman rho = 0.23 and 0.18, respectively) in EOPC, but to a lesser extent in 

LOPC (p < 0.0001 both, Spearman rho = 0.11 and 0.06 for Hi-C and H3K27ac, respectively, 

Figure 1D), suggesting that the chromatin state and long-range interactions partake in 

shaping the SV landscape in EOPC (Figure 1E).

DNA rearrangement recurrence analysis identifies a putative oncogene associated with 
high cell proliferation and poor outcome

We identified two RGAs in EOPC located at 13q22 (27%) and 8q22 (17%) (Figures 2A, 

2B). The minimal overlap peak region at 13q22 centered on KLF5, encoding a 

transcriptional activator involved in repressing cell proliferation (Xing et al., 2014). Loss of 

13q22 was associated with decreased KLF5 mRNA level as well as a global increase in SV 

and SNV burden (Figure 2C and S2A). We additionally identified a subset of tumors that 

displayed a marked reduction in KLF5 expression and a differentially methylated CpG site 

(q value = 0.002, t-test) proximal to the KLF5 promoter in a CpG island shore that was 

inversely correlated with KLF5 mRNA level (spearman rho = −0.523, q-value = 0.0038, 

CpG #18 in Figure 2D, S2B). A recent study in mouse embryonic stem cells identified a set 

of KLF5 targets, including the ubiquitin ligase gene Spop, that was significantly 

downregulated in response to KLF5 knock-down (Parisi et al., 2010). ChIP-seq data showed 

binding of KLF5 at the SPOP promoter (Yan et al., 2013) and we identified a positive 

correlation between KLF5 and SPOP mRNA levels in our PC cohort (Figure 2E, S2C) as 

well as in the the Cancer Genome Atlas (TCGA) cohort (p < 1x10−4, spearman rho = 0.19), 

but no association with the SPOP mutation status (Fisher’s exact test).

A region at 8q22 displayed recurrent genomic duplications centered on ESRP1 (Figure 2B), 

with the minimal overlapping region residing 33 Mbp away from MYC. ESRP1 encodes an 

RNA-binding protein involved in epithelial-to-mesenchymal transition (EMT) and RNA 

splicing (Jeong et al., 2017). Tumors harboring duplications intersecting ESRP1 displayed 

significantly increased ESRP1 mRNA expression (> 1.5 fold, Figure 2F). While several 
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duplications overlapped both ESRP1 and MYC, only ESRP1 displayed a significant increase 

in mRNA level across the affected samples (Figure 2F, S2D). ESRP1 duplications were 

significantly associated with elevated Gleason Score (GS) (p < 1x10−11, Chi-squared test), in 

fact, more than any other RGA in the cohort. We therefore pursued immunohistochemistry 

(IHC)-based validation in 11,954 tumor specimens on tissue-microarrays (TMA) (Figure 

2G), which confirmed a significant correlation between increased GS and pT and ESRP1 

staining (Figure S2E). High ESRP1 protein level particularly showed association with high 

GS (>4+4), tumor stage (pT3b-pT4), number of lymph node metastases and preoperative 

prostate-specific antigen (PSA) levels. Increased ESRP1 protein levels correlated with 

higher proliferation rate irrespective of GS, as measured by Ki67 index labelling (Figure 

2H). Additionally, ESRP1 protein intensity was associated with adverse outcome, with 

strong ESRP1 staining correlating with significantly shorter time to biochemical recurrence 

(BCR) (Figure 2I, Figure S2F).

A multivariate analysis revealed ESRP1 to be an independent prognostic marker in four 

established clinico-pathological parameters and that high ESRP1 expression was associated 

with shorter BCR irrespective of ERG status (Table S2, Figure S2G, S2H). ESRP1 was 

particularly discriminative in the biopsy setting, where GS is often underestimated and 

additional prognostic markers are needed. In summary, we identified recurrent genomic 

duplications of ESRP1 associated with increased ESRP1 protein expression, higher levels of 

cell proliferation and elevated GS and tumor stage, and demonstrated that ESRP1 expression 

is an independent prognostic biomarker in PC.

Enzymatic activity is associated with the earliest detectable mutational processes in 
prostate genomes

Mutational signatures can be employed to describe intrinsic and exogenous-mediated 

mutational processes acting on tumor cells (Alexandrov et al., 2013, 2015; Nik-Zainal et al., 

2016) (Figure 3A). We observed six mutational signatures: two clock-like signatures (1 and 

5), two related to DNA repair defects (3 and 6) and two related to APOBEC cytidine 

deaminase-attributable mutagenesis (2 and 13). Mutational processes were associated to GS, 

in particular the APOBEC signatures (2 and 13) and the homologous recombination repair-

associated signature 3 (Figure 3B). The clock-like mutational signatures 1 and 5 were the 

predominant signatures across all tumors and both showed significant association with 

patient age (Figure 3C).

Curiously, we also observed clear signs of a clock-like accumulation of APOBEC-associated 

signature 2 and 13 mutations in PC (Figure 3C) and could further corroborate this finding 

using a knowledge-based approach that estimates APOBEC mutagenesis in cancer genomes 

(p = 5.2x10−3, Spearman’s rho = 0.17). APOBEC proteins are cytidine deaminases that can 

act to restrict retroelements during the single strand DNA (ssDNA) replication cycle, but can 

also induce mutations in cancer genomes (Roberts et al., 2012, 2013). These lesions were 

previously suggested to be driven by APOBEC3A (A3A) and/or APOBEC3B (A3B) 

(Swanton et al., 2015). APOBEC associated mutations occasionally arise as clusters of C- 

(or G) strand-coordinated mutational events (C/G clusters) – also termed kataegis events – a 

mutational phenomenon resulting in localized hypermutation (Nik-Zainal et al., 2012; 
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Roberts et al., 2012). Indeed, we observed a strong enrichment of APOBEC mutagenesis at 

C/G clusters in PC (Figure 3D).

We also identified a significant association between patient age and C/G clusters attributable 

to APOBEC enzymes (Figure S3A), which was primarily attributable to A3B-like 

mutagenesis at C/G clusters (Figure 3E). To further substantiate the relevance of A3B-like 

mutagenesis in PC, we genotyped a known ~30 kb germline APOBEC3B deletion, which 

results in complete removal of its protein-coding sequence (Middlebrooks et al., 2016). We 

observed in germline APOBEC3B deletion carriers i) significantly fewer APOBEC-

associated signature 2 and 13 mutation, ii) reduced expression levels of A3B in PC and iii) a 

significant shift from A3B-like to A3A-like mutagenesis (Figure S3B). These findings thus 

suggest that A3B-like mutagenesis is active at a basal level in prostate cells, and that this 

endogenous mutagenic process is responsible for the clock-like accumulation of somatic 

mutations – including the occurrence of localized hypermutation events – in PC. APOBEC-

associated mutations have previously been observed to frequently co-localize with SV 

breakpoints in cancer (Chan and Gordenin, 2015; Roberts et al., 2012). We found a strong 

enrichment of C/G clusters to co-localize with SV breakpoints compared to both non-

coordinated mutation clusters and scattered mutations (Figure 3F), with an increase in co-

localization frequency between 1 kb and 10 kb. Several of these APOBEC-associated SV 

breakpoints resulted in alteration of driver genes in PC, including formation of TMPRSS2-
ERG fusion and PTEN, FOXP1 and BRCA2 disruption (Table S2). Our findings 

demonstrate an age-associated mutational process that involves an endogenous mutagenic 

enzyme, and suggest that mutations attributable to APOBEC enzymes are likely to 

contribute to the earliest mutations seen in PC patients.

Germline mutations also are likely to contribute to early lesions in PC patients, for example 

by modulating somatic mutational processes. Germline protein-truncating variants (PTVs) in 

DNA damage response (DDR) genes including BRCA1, BRCA2, PALB2, ATM, and 

CHEK2 have previously been associated with poor outcome and increased frequency of PC 

metastasis (Na et al., 2017; Pritchard et al., 2016). We detected significant associations 

between germline PTVs in these DDR genes and somatic SVs and SNVs as well as 

APOBEC-like signature 2 and the ‘BRCAness’ mutational signature 3 (Figure 4). In 

summary, we identify three age-associated mutational processes in PC, namely, CpG 

mutagenesis, signature 5 with unknown etiology and A3B-associated mutagenesis. Tumor 

genomes harboring pathogenic germline mutations in genes involved in homologous 

recombination repair exhibited increased genomic instability.

PEPCI, a methylation-based risk score

Normal human prostate tissue is composed of basal, luminal and stromal cells, whereas PC 

loses basal cells and gains tumor-specific luminal (T-luminal) cells as well as infiltrating 

immune cells (Bhasin et al., 2015). Given that DNA methylation profiles are cell type (ct) 

specific, we sought to account for differences in ct composition in methylation analyses by 

using available reference methylomes (Teschendorff and Zheng, 2017). To this end, we 

acquired additional resected samples from benign prostate hyperplasia (BPH) cases and PC 

and performed FACS-sorting to identify the main cts present in PC (STAR Methods) (Figure 
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5A and S4A–C), which enabled us to identify the ct-identity of every methylation site in the 

PC genome.

We found a recurrent shift from basal and luminal cells to T-luminal cells and infiltrating 

immune cells in high GS tumors (Figure 5B, S4C, S4D). Given this relevance of T-luminal 

and immune cell content in identifying high-grade tumors, we combined this information as 

a Purity-adjusted Epigenetic Prostate Cancer Index (PEPCI) of tumor aggressiveness 

(Figures 5A, 5B). We found that high PEPCI was strongly associated with high pT (p < 

1x10−7, Kruskal Wallis), high GS (p < 1x10−17, Wilcoxon) (Figure 5C) and elevated risk of 

BCR (log-rank p < 0.0001). Moreover, PEPCI was able to stratify intermediate-risk (GS7, 

especially GS4+3) cases (Figure 5D, Figures S4E, S4F, Table S3), which we validated in the 

TCGA cohort of primarily LOPC samples (TCGA, 2015) (Figure S4E, S4F; Table S3). 

Finally, our PEPCI score was also able to independently predict GS and BCR (Area under 

the curve (AUC) = 0.831 and 0.702, respectively) (Figure S4G). We examined whether 

particular RGAs were associated with PEPCI-based risk groups (Figure 5E), which revealed 

a striking association between PEPCI-high and gain of ESRP1 (odds-ratio = 15.7, FDR-

corrected p < 1x10−5, Fisher’s exact test, Table S3).

Integrative analysis identifies molecular subgroups associated with disease progression

We sought to identify pathways and processes that underwent transcriptional deregulation in 

EOPC. Using the graph theory-based CLICK algorithm (Sharan et al., 2003) on 96 patients 

with available mRNA-seq data, we identified seven distinct CLICK clusters (abbreviated 

CC1-7) of co-expressed genes, splitting the patients into CC-high and CC-low expression 

groups per CC (Figure 6A, S5A; Table S4). We next integrated CC expression profiles, ct-

content and PEPCI information to further refine the PEPCI-based risk stratification (Figure 

6A–C, see STAR Methods). This led us to identify a prominent PC subgroup 1 of mainly 

PEPCI-high tumors (19 samples) with high content of T-luminal cells and expression of CC7 

(Figure 6B, 6C). CC7 is associated with reactive stroma, which is indicated by an enriched 

myofibroblast signature and the reactive stroma marker ASPN in CC7 (Barron and Rowley, 

2012; Rochette et al., 2017). Subgroup 1 was also associated with prominent loss of CC2 

and CC4 gene expression representing normal basal and luminal prostate epithelium (Strand 

and Goldstein, 2015). CC2 loss and CC7 gain were strongly and independently linked to GS 

(Figure S5B) and BCR (Figure 6D). Multivariable statistics showed that CC2 adds 

significant information on top of GS in predicting BCR in both our cohort and in the TCGA 

cohort (p = 0.003 and p = 0.01, respectively; Table S4). Additionally, CC2-low and CC7-

high tumors were associated with specific RGAs, in particular PTEN loss (p < 0.0001, both) 

and ESRP1 gain (p < 0.0001 and p < 0.0005, respectively, Pearson’s Chi-squared test).

A small group of PEPCI-high tumors, termed PC subgroup 2, was associated with high CC1 

(immune), CC5 (stroma) and CC7 (reactive stroma) expression and very high immune cell 

content, but low T-luminal cell content (Figure 6B, 6C). Consistent with the CC2-low and/or 

CC7-high expression profiles, subgroups 1 and 2 were strongly associated with high GS 

(Figure 6E) and shorter time to BCR (Figure 6F).

PC subgroup 3 was associated with high CC5 (stroma) and represented an intermediate risk 

group. The last subgroup, termed PC subgroup 4, was PEPCI-low and associated with a high 

Gerhauser et al. Page 6

Cancer Cell. Author manuscript; available in PMC 2020 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fraction of normal-like luminal cells, CC2- and CC4 (basal/epithelial) expression and a 

known gene signature associated with less aggressive PC (Jhun et al., 2017) (Figure 6F). We 

observed an enrichment for a TMPRSS2-ERG related gene signature in CC3 (Figure 6A) 

and a significant enrichment for ETS fusions in CC3-high tumors (p < 1x10−13, Mann–

Whitney U test (MWU); Figure S5A). CC3 did not associate strongly with any of the four 

subgroups.

We validated the CCs and clinical relevance of the subgroups in the TCGA cohort of 462 PC 

samples with available RNA-seq data (Figure S6A–E). The subgroups showed an improved 

prediction of BCR compared to GS alone in GS7 cases of the TCGA cohort (p = 0.015; 

Table S4). Importantly, most PEPCI-high GS7 cases in the TCGA cohort belonged to 

subgroup 3 (Figure S6F–H), supporting our hypothesis of an intermediate risk group. 

Comparing subgroups between the two age-of-onset groups identified a higher occurrence of 

subgroup 4 in EOPC (associated with better prognosis) (p = 0.008, adjusted for GS, Table 

S4), suggesting age-associated differences in the subgroups. In summary, our integrated 

analysis of CC signatures and PEPCI score stratified the patients into four prognostic 

relevant subgroups with distinct differences in the expression of biological pathways.

Tracing the temporal order and clinical trajectories of prostate cancer

Defining the temporal order of somatic events during tumorigenesis can give fundamental 

insights into the mutational process, clinical trajectories and ultimately guide therapeutic 

decision making. Prior work have utilized various methods including linear models, tree-

based models, clustering or Bayesian approaches to delineate the most likely sequences of 

somatic events (Lecca et al., 2015; Ramazzotti et al., 2015). A particular relevant question 

that was not previously addressed is to identify both the most likely next molecular event at 

any given point and the associated clinical outcome, conditioned on the occurrence of all 

preceding mutations in that tumor. Our EOPC cohort provides an attractive sample set to 

address this, due to enrichment of the earliest somatic events and higher clonality (Figure 

S7A). To identify the temporal order of events in our cohort, we developed PRESCIENT 

(PREdiction of Sequential Changes In the Evolution of Nascent tumors), a conditional 

probability-based network model to predict the temporal sequence of somatic events in PC 

and associated clinical outcome. PRESCIENT uses the probability of observing two events 

as the exclusive events in the tumor (formulated as Exclusion score (E)), with high 

Exclusion score as a proxy for early, clonal events. ERG had the single highest exclusion 

score (EERG,ERG, diagonal on Figure 7A), followed by ERG together with FOXP1 
(EERG,FOXP1), with both RGAs having a high level of connections to other RGAs (Figure 

S7B), suggesting that ERG is frequently occurring as the initial event, followed by FOXP1. 

A pathway-level analysis showed paths including an initiating ETS fusion event followed by 

events involved in AR-signaling or cell cycle and subsequent pathway-level events (Figure 

7B).

For every node in the network, PRESCIENT uses molecular markers to predict the 

associated Probability of Event-Free Survival (PEFS) (Figure 7A, S7B, S7C). We verified 

the ability of PRESCIENT to infer the order of mutational events by performing random 

subsampling and by cross-validation through WGS and reconstruction of the molecular 
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evolution from 40 PC patients developing local metastases. Cross-validation showed robust 

sensitivity and specificity for PRESCIENT (Figure S7D), providing support that with a 

given patient’s tumor being molecularly profiled, our probabilistic model is able to predict a 

patient’s next mutational event more accurately than frequency-based estimates.

We next sought to test our ability to predict aggressiveness of clones from a tumor 

phylogeny by performing multi-regional WGS of seven EOPC genomes (Figure 7C), 

followed by clonal reconstruction. For every tumor clone in the tree, we applied our 

conditional probability model to predict the PEFS (color-scale in Figure 7B). For tumors 

with divergence in aggressiveness of subclones, i.e. for branches with differences in PEFS, 

the branch with the shorter PEFS was also the more dominant clone, that is, the tumor clone 

with the highest relative contribution to the tumor mass from the sampled areas (see e.g. 

PCA036 in Figure 7C and PCA037 in Figure S7E). This suggested that genomic profiling of 

several areas of a tumor can be used to identify the more dominant, aggressive clone and 

pointed towards the utility of applying a probabilistic modelling in order to predict 

aggressiveness.

PCA041 displayed a particular aggressive molecular evolution involving an early, clonal 

ESRP1 gain. Both branches maintained an aggressive phenotype, with one branch acquiring 

KLF5, BRCA1 and RB1 loss and another branch acquiring two parallel biallelic inactivation 

events of PTEN and TP53 (Figure 7C).

We tested the ability to predict the disease-course based on a single biopsy using 

PRESCIENT. As a first approximation, we used single-sampled areas from PCA035 to 

predict both PEFS and the next molecular alteration (Figure 7D). We note that the 

phylogenetic trees were based on a Bayesian mixture model that uses information from all 

individual sequenced areas of one tumor and a single sample could therefore in most cases 

not uniquely be assigned to one branch. We found that the PEFS predicted from a single area 

of the tumor tended to initiate differently but eventually converged, as exemplified for tumor 

area T5 (Figure 7D), suggesting that the initiating RGAs in T5 were sufficient to predict the 

clinical trajectory of the tumor.

Finally, we assessed the potential to identify targeted therapies (Tamborero et al., 2018) 

based on germline and somatic genomic data. More than 40% of the EOPC patients could be 

matched with at least one targeted therapy in either pre-clinical test or clinical trial for PC. 

The targeted agents included PI3K, mTOR and PARP inhibitors (Figure S7F), with the 

majority of BRCA2 mutated patients showing high levels of somatic BRCAness mutation 

signature 3 and a high mutational burden (see also Figure 3 and 4), suggesting that these 

patients could benefit from PARP inhibitors.

In summary, taking advantage of our EOPC cohort, we developed a statistical framework 

that uses molecular markers to predict the most likely next somatic alteration and associated 

change in event-free survival.
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Discussion

Deciphering the molecular evolution and clinical trajectories of PC require a comprehensive 

and integrative analysis of the early molecular alterations and mutational mechanisms. A 

previous survey identified age-associated mutations as the most common mutational process 

in cancer followed by APOBEC mutagenesis (Alexandrov et al., 2013; Roberts and 

Gordenin, 2014). Our analysis revealed that APOBEC-associated mutations and kataegis 

clusters show a clock-like behavior in PC. This mutational process, in PC, is primarily 

attributable to APOBEC3B activity, likely due to a residual albeit constant enzymatic 

activity. Our data suggest that APOBEC-attributable mutations occur throughout the 

development of PC as well as in the normal prostate tissue prior to transformation. Thus, 

APOBEC mutagenesis and the resulting kataegis events, some of which occur in conjunction 

with SV formation, are likely to contribute to the earliest mutations seen in PC.

Whereas mutational signatures bear trace of the age and exposure of the tissue, somatic SVs 

frequently cause tumor promoting gene-dysregulation. We identified recurrent breakpoint 

hotspots including a potentially clinical relevant biomarker at 8q22, associated with genomic 

duplication of ESRP1. ESRP1 has been demonstrated to take part in RAF-fusion formation 

in PC (Palanisamy et al., 2010), although we did not find evidence for ESRP1 fusion events 

in our cohort. ESRP1 has also been implicated in EMT transition (Ishii et al., 2014) and 

overexpression has been demonstrated to cause anchorage-independent growth and 

metastases in colorectal cancer (Fagoonee et al., 2017). ESRP1 was previously shown to be 

strongly co-expressed with E-cadherin, and increased expression of ESRP1 may therefore 

lead to accelerated proliferation of an epithelial cell state.

PC is a highly heterogeneous disease, but there is a limited understanding of the ct 

composition and how this impacts disease progression. Recent genomic surveys have 

characterized seven subtypes based on somatic alterations (TCGA, 2015), primarily 

involving ETS family genes, but the ct composition and associated clinical relevance 

remained unexplored. Analysis of basal and luminal ct composition has shown biological 

and clinical relevance in another hormone-associated adenocarcinoma - breast cancer 

(Sotiriou et al., 2003). We pursued a complementary approach by integrating methylation 

array and RNA-seq data, which led us to identify four molecular subgroups based on ct 

composition and gene expression patterns in EOPC tumors that showed association with 

clinical outcome independent of GS. The subgroups were able to stratify intermediate-risk 

GS7 PC cases, suggesting that the subgroup information can serve as an independent 

molecular risk score. Tumors that differ in ct composition would likely respond differentially 

to therapies, and further work will be needed to investigate whether the different subgroups 

predict response to therapy.

There is an urgent need for biomarkers that can stratify patients who need definitive 

treatment from those who can follow active surveillance or watchful waiting. Single 

biomarkers are unlikely to be useful in a heterogeneous and complex disease such as PC, 

and multiple biomarkers will thus be required to guide clinical decision making. We utilized 

our comprehensive molecular catalogue of the earliest alterations in PC to develop 

PRESCIENT. PRESCIENT establishes a knowledge-based framework for future genomics-
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informed patient stratification and drug-targeting. The current implementation is limited in 

the sample cohort size, which we expect to improve in both sensitivity and specificity with 

inclusion of more samples. This will involve highly aggressive tumors, including LOPC and 

metastatic cancers, to increase the ability to predict event-free survival and therapy response, 

as well as enable the prediction of secondary alterations associated with metastasis.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Joachim Weischenfeldt (joachim.weischenfeldt@bric.ku.dk)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Subjects—Tumor samples were collected form 251 PC patients. Data was 

supplemented with bam files from 41 published tumor and normal WGS samples (Fraser et 

al., 2017). Informed consent and an ethical vote (institutional reviewing board) were 

obtained according to the current International Cancer Genome Consortium (ICGC) 

guidelines (see http://www.icgc.org). Manufacturing of TMAs and their analysis for research 

purposes as well as patient data analysis has been approved by local laws (HmbKHG, §12,1) 

and by the local ethics committee (Ethics commission Hamburg, WF-049/09 and PV3652). 

All work has been carried out in compliance with the Helsinki Declaration. Radical 

prostatectomy specimens were available from 17,747 patients, undergoing surgery between 

1992 and 2014 at the Department of Urology and the Martini Clinics at the University 

Medical Center Hamburg-Eppendorf. Follow-up data were available for a total of 14,464 

patients with a median follow-up of 48 months (range: 1 to 275 months).

Tissue-microarray processing—Archived formalin fixed tissues were used for the 

TMA analysis, as previously described (Kononen et al., 1998), which involved taking a 0.6 

mm core from a representative tissue block from each patient. The tissues were distributed 

among 39 TMA blocks, each containing 144 to 522 tumor samples. For internal controls, 

each TMA block also contained various control tissues, including normal prostate tissue.

The usage of archived diagnostic left-over tissues for manufacturing of tissue microarrays 

and their analysis for research purposes as well as patient data analysis has been approved 

by local laws (HmbKHG, §12,1) and by the local ethics committee (Ethics commission 

Hamburg, WF-049/09). Informed consent was exempt based on the „Hamburgisches 

Krankenhausgesetz“ HmbKHG 312,1.

METHOD DETAILS

Biospecimens and Quality Control

Sample inclusion criteria: Biospecimens were collected from patients diagnosed with PC. 

Specialized pathologists dissected each prostate immediately after surgery. Dissection 

followed a predefined scheme to represent the position of each block relative to the entire 

prostate. This procedure resulted in 60 – 150 pieces of tissues depending on the size of the 

prostate. An image was taken from each dissected prostate specimen for later reference. 
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After dissection, each tissue block was placed on a separately labeled cork plate covered 

with a special compound for cryopreservation (OCT) before the tissue was frozen to −20°C. 

Cryo-sections were taken from each block and presence as well as content of tumor was 

determined by the pathologist. The tumor cell content is given as the percentage of cancer 

cells relative to the entire tissue block. If necessary, IHC tumor validation (e.g. AMACR, 

34BE12) was performed of the frozen tissue or after secondary paraffin embedding of 

selected frozen blocks. Uni- and multifocal cancers were distinguished according to the 

criteria of Wise et al. (Wise et al., 2002). Tumor areas were defined as part of a single focus 

if they were within 3 mm of each other in any section or within 4mm on adjacent sections.

Except for two patients (PCA125 and PCA176) who received pre-operation hormone 

therapy with LH-RH analogon, the patients did not receive any neo-adjuvant radiotherapy, 

androgen deprivation therapy, or chemotherapy prior to the surgical removal of tumor tissue. 

Tumor samples and one normal prostate control were frozen at −20 °C and subsequently 

stored at −80 °C. Eight additional normal prostate samples were obtained from a previous 

project (Börno et al., 2012). DNA and RNA were extracted as described previously 

(Weischenfeldt et al., 2013).

ESRP1 immunohistochemistry and FISH: TMA sections were freshly cut and used for an 

IHC staining performed on one day and in one experiment. The slides were deparaffinized 

with xylene and a descending alcohol series. Antigens were retrieved by heating for 5 

minutes in an autoclave at 121°C in Tris-EDTA-Citrate buffer, pH 7.8. To prevent non-

specific binding, a hydrogen peroxide blocking solution was applied for 10 minutes. The 

primary antibody specific for ESRP1 (rabbit polyclonal antibody, Sigma Aldrich Germany, 

cat#HPA023720; dilution 1:450) was incubated at 37°C for 60 minutes. The antibody 

(HPA023720) has been validated by the Human Protein Atlas project, which shows i) 
overlapping staining patterns with other anti-ESRP1 antibodies, ii) a band of appropriate 

size in western blots, iii) specific binding to ESRP1 on a protein array. The FISH probe mix 

consisted of a spectrum-orange labeled ESPR1 (8q22.1) probe (made from bacterial artificial 

chromosomes (BACs) RP11-267M23 and BAC RP11-22C11), and a spectrum-green 

labeled, commercial centromere 8 probe (#6J37-08; Abbott, Wiesbaden, Germany). To 

visualize the bound antibody, the EnVision Kit (Dako, Glostrup, Denmark) was used 

according to the manufactureŕs directions. ESRP1 staining was found in the nucleus and 

cytoplasm of positive cells. In ESRP1 positive cancers, staining was usually seen in all 

tumor cells (100%). Hence, the staining intensity in prostate epithelial cells was estimated in 

four categories for each cancer, i.e. negative (not detectable), weak, moderate and strong 

staining.

Pathology review: All prostate specimens were analyzed according to a standard procedure, 

including a complete embedding of the entire prostate for histological analysis (Erbersdobler 

et al., 1997). Histopathological data were retrieved from the patient’s records, including 

tumor stage, GS, nodal stage and stage of the resection margin. PSA values were measured 

following surgery and PSA recurrence was defined as a postoperative PSA of 0.2 ng/ml and 

increasing in subsequent measurements.
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Copy Number Analysis: Copy number and SV profiles for each patient were binned with a 

500 kb sliding bin size. Each bin containing a boolean information if an aberration occurred 

within the bin in the given patient. RGAs were computed by overlapping the binned data of 

each patient computing a cohort frequency of aberrations for each bin, and selecting the 

peak-frequency bins within regions with frequency higher than 5%.

DNA Sequencing and Analysis

Whole genome sequencing: DNA library preparation and WGS was performed on Illumina 

sequencers as described earlier (Weischenfeldt et al., 2013) with a median insert size of 310 

bp (sd 57 bp) and a median WGS coverage of 61-fold for tumor and 38-fold for germline 

control samples.

Read alignment: WGS data was aligned to the human genome Build GRCh37 using BWA-

MEM (Li, 2013) according to Pan Cancer Analysis of Whole Genomes (PCAWG) protocol 

(https://doi.org/10.1101/161638).

Median purity: Tumor purity was calculated as the median of three purity measures, a 

methylation-based score defined by methylation of selected sites in the promoter of the 

GSTP1 (Brocks et al., 2014), a score based on allele-specific copy number profiles (Favero 

et al., 2015), and a score based on the absolute quantification of somatic DNA alterations 

(Carter et al., 2012).

DNA variant calling

Single-nucleotide variant and SV calling: Somatic SNVs were identified by the PCAWG 

implementation of the DKFZ SNV pipeline (https://doi.org/10.1101/161638). Subsequently, 

SNVs overlapping with tandem repeats and strand bias were marked as low-confidence and 

removed from the consecutive analysis.

Somatic SV discovery was pursued across all samples (matched tumor/normal genome) 

using the DELLY2 (Rausch et al., 2012) PCAWG analysis workflow (https://github.com/

ICGC-TCGA-PanCancer/pcawg_delly_workflow). We used a high-stringency SV set by 

additionally filtering somatic SVs detected in ≥ 1% of a set of 1105 germline samples from 

healthy individuals belonging to phase I of the 1000 Genomes Project (1000 Genomes 

Project Consortium et al., 2015), and by removing somatic SVs present in any of the 

PCAWG germline samples. For inference of high-stringency SVs we further required at least 

four supporting read pairs with a minimum mapping quality of 20 and restricted valid 

somatic SV sizes from 300 bp to 500 Mb. Somatic copy number alterations (SCNAs) were 

identified using sequenza (Favero et al., 2015), which was applied to tumor and normal bam 

files. SCNAs near low mappability regions and with logR below 0.2 were removed. Purity 

parameter was selected to match the median purity (see Median purity section), and ploidy 

parameter was selected to fit a diploid state.

We employed freebayes (v1.1.0) in single sample- and paired-sample calling mode for 

discovery of SNVs, multi nucleotide variants, and InDels < 50 bp (used parameters: --min-

repeat-entropy 1, --report-genotype-likelihood-max, --alternate-fraction 0.2, and --no-partial-
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observations), as previously described (http://dx.doi.org/10.1101/208330). Raw variant 

predictions were further filtered for quality (QUAL > 20, QUAL/AO > 2), strand bias 

artifacts (SAF > 1, SAR > 1), read position artifacts (RPR > 1, RPL > 1), and normalized for 

consistent representation across patients with vt (v0.5). Germline variants were annotated 

with the Ensembl Variant Effect Predictor (VEP) (r81). High impact (i.e. damaging) 

germline mutations were defined as frameshift, stop gain, start lost, canonical splice site, 

exon/gene deletions, known (ClinVar; accessed 2017-02-16) damaging non-canonical splice 

site variants, and somatic mosaic mutations (the latter of which are defined as mutations 

present in a subset of normal cells). Putative damaging germline mutations were removed if 

the estimated minor allele frequency (MAF) in at least one continental population was above 

1%, which we judged based on 53,105 sequenced individuals that were assigned to known 

(control) populations and without cancer diagnosis from the ExAC resource (http://

exac.broadinstitute.org), the 1000 Genomes Project (http://www.internationalgenome.org), 

and the NHLBI GO Exome Sequencing Project. Putative gain-of-function (GoF) missense 

variants in TP53 were further evaluated based on information in the IARC TP53 database 

(http://p53.iarc.fr/) and annotated as pathogenic if TP53 mutations were classified as “non-

functional” based on experimental transcriptional activity assays. Finally, all germline 

mutations were excluded from the analysis if annotated as benign in ClinVar. We estimated 

the primary population ancestry (European, African, East Asian, South Asian, and Native 

American) for all patients using a supervised decomposition approach (https://doi.org/

10.1101/208330) and ancestry-informative markers.

Subclonal copy-number analysis: Subclonal copy number were identified by computing 

the cancer cell fractions based on the B-allele frequency CCFbi and the depth ratio CCFri for 

each segment. To compute CCFbi and CCFri we postprocessed the DNA copy number 

segments following the sample-wide analysis with sequenza. A sample-wide analysis 

provides the copy number state estimate for each segment based on the total clonal 

contribution and the global cellularity (ρ) and ploidy (ψ) values.

We assume that subclones share the same ploidy but differ in cellularity.

Using the B-allele frequency and depth ratio models previously described (Favero et al., 

2015), we used a grid search approach for each segment i to find the optimal value of the 

local-cellularities ρbi and ρri given respectively, the observed values of B-allele frequency 

and depth ratio for the segment and the copy number and ploidy estimates from the sample-

wide analysis.

The CCFbi and CCFri are calculated by dividing the estimated cellularity derived by the 

depth-ratio model ρri and the B-allele frequency model ρbi with the sample-wide cellularity 

ρ.

CCFbi =
ρbi
ρ and CCFri =

ρri
ρ
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We then applied a bivariate Dirichlet process to generate 2D clusters CCFbi versus CCFri. 

Clusters with both CCFbi and CCFri values between 0.1 and 0.9 were identified as subclonal 

clusters.

Samples in which the sum of the subclonal segments represent more than 0.1% of the 

genome are classified as polyclonal, otherwise are classified as monoclonal.

DNA methylation analysis

Sample preparation and Data analysis: Normal and tumor basal, luminal and stromal cell 

fractions were generated from fluorescence-activated cell sorted (FACS) cell fractions of 

seven BPH samples (age range 68–90) and seven PC cases (age range 55–79, GS: 3+3 (n = 

3), 7 (n = 1), 4+5 (n = 1), 5+4 (n = 2)) obtained from UT Southwestern Medical Center and 

prepared according to (Henry et al., 2017). DNA was extracted using Qiagen AllPrep 

DNA/RNA/Protein Mini Kit. For the ICGC EOPC and LOPC cohorts, genomic DNA was 

extracted from bulk fresh frozen tumor specimen. DNA was submitted to 

HumanMethylation450 analyses at the Genomics and Proteomics Core Facility of the 

German Cancer Research Center (Heidelberg). Data quality control, preprocessing and beta-

mixture inter-quantile (BMIQ) normalization was done using RnBeads (Assenov et al., 

2014) Further data processing included removal of 27598 cross-reactive probes (Chen et al., 

2013b) and 39752 sites overlapping with SNPs (dbSNP Build 150, Feb. 2017). Array-based 

methylation beta values were independently validated using Agena MassArray EpiTyper 

technology (BLUEPRINT consortium, 2016). For reference-based ct estimation, we used the 

Houseman algorithm (Houseman et al., 2012) with quality-controlled sorted basal, stromal, 

normal luminal and T-luminal cell fractions as reference cts. The fraction of infiltrating 

immune cells for every sample was estimated using the Leukocytes unmethylation for purity 

(LUMP) algorithm (Aran et al., 2015). We selected the 500 most discriminatory CpG sites 

between the different cts to compute the ct composition of our EOPC samples (Figure S4B). 

PEPCI was calculated as the combined fraction of T-luminal cells and immune cells for 

every sample (Figure 5A). The computation of PEPCI was implemented in a dedicated R 

package (KEY RESOURCES TABLE).

The PEPCI R package provides quantitative information on four cts (basal, stromal, normal 

luminal and T-luminal cells) and infiltrating immune cells, inferred from methylation data. 

The PEPCI score represents the combined percentage of T-luminal and immune cells as a 

measure of tumor aggressiveness.

Ct-specific reference methylomes are used to estimate ct composition in bulk tumor samples, 

employing the Houseman algorithm, which is a common tool to deconvolute the 

composition of blood samples. The algorithm selects a specified number of CpG sites with 

most variable methylation between provided reference cts. This process is predefined in the 

PEPCI R package, which processes Illumina 450k or EPIC array data and interrogates 500 

preselected CpG sites. The location of these sites relative to ChromHMM states of prostate 

epithelial cells indicates significant enrichment of T-luminal cell hypermethylation in 

promoter CpG islands, and stromal-specific hypermethylation in enhancer regions (Figure 

S4C, heatmap legend on the right).
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Methylation based principal component analysis was done using RnBeads (Assenov et al., 

2014). Enrichment of CpG sites at chromatin states was performed with EpiAnnotator 

(Pageaud et al., 2018), using ChromHMM states for prostate epithelial cells (Taberlay et al., 

2014). Trees representing sample similarities were constructed from methylation-based 

Euclidean pairwise distances using the algorithm for phylogenetic tree reconstruction of 

Desper and Cascuel (Desper and Gascuel, 2002). Logistic regression models based on 

methylation data and their evaluations using receiver operating characteristic (ROC) curves 

were performed using the R programming language.

Heterogeneity estimates of heterogeneity and multifocal cases were calculated by averaging 

all pairwise dissimilarities between methylation-based ct fractions of the corresponding 

multi-area samples using cosine dissimilarity.

For the TCGA PRAD cohort, HumanMethylation450 raw signal intensities of probes for 

each participant’s tumor sample (n = 498) were downloaded as idat files from the TCGA 

data portal (https://tcga-data.nci.nih.gov) and processed as described for the ICGC cohort.

Tri-nucleotide mutational signature—To identify mutational signatures, we applied 

YAPSA (Yet Another Package for Signature Analysis) (Huebschmann et al., 2016), a linear 

combination decomposition of the mutational catalog with predefined signatures from the 

COSMIC database (http://cancer.sanger.ac.uk/cosmic/signatures, downloaded June 2016) 

computed by non-negative least squares (NNLS). To increase specificity, the NNLS 

algorithm was applied twice; after the first execution, only those signatures whose 

exposures, i.e. contributions in the linear combination, were higher than a certain cut-off 

were kept, and the NNLS was run again with the reduced set of signatures. As the 

detectability of different signatures may vary, signature-specific cut-offs were determined in 

a random operator characteristic analysis using publicly available data on mutational 

catalogs of 7,042 cancers (507 samples with WGS; 6,535 samples with whole exome 

sequencing) (Alexandrov et al., 2013) and mutational signatures from COSMIC. This 

yielded the following signature-specific cutoffs: AC1: 0; AC2: 0.01045942; AC3: 

0.08194056; AC4: 0.01753969; AC5: 0; AC6: 0.001548535; AC7: 0.04013304; AC8: 

0.242755; AC9: 0.1151714; AC10: 0.01008376; AC11: 0.09924884; AC12: 0.2106201; 

AC13: 0.007876626; AC14: 0.1443059; AC15: 0.03796027; AC16: 0.3674349; AC17: 

0.002647962; AC18: 0.3325386; AC19: 0.1167454; AC20: 0.1235028; AC21: 0.1640255; 

AC22: 0.03102216; AC23: 0.03338659; AC24: 0.03240176; AC25: 0.01611908; AC26: 

0.09335221; AC27: 0.009320062; AC28: 0.05616434; AC29: 0.05936213; AC30: 

0.05915355. We removed mutation signature present in fewer than 10% of the samples.

Knowledge-based analysis of APOBEC-associated mutational processes—
Enrichment and mutation load associated with APOBEC mutagenesis were calculated based 

on prior mechanistic knowledge about mutation motifs associated with certain mutagenic 

factors and pathways (Chan et al., 2015; Roberts and Gordenin, 2014). Calculations were 

done for genome-wide mutation calls and for mutation calls only in C/G clusters identified 

as described in (Chan et al., 2015; Roberts et al., 2012). Briefly, the enrichment with a tri- or 

tetra-nucleotide motif pXq → pZq were calculated, where X is the mutated nucleotide, Z is 

the nucleotide after base substitution, p is the −1 nucleotide (or −1 and −2 nucleotides), and 
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q is the +1 nucleotide (within the context of the given mutation type/trinucleotide). For each 

motif, we also included the reverse complement sequence that would represent the 

mutagenic process occurring on the opposite DNA strand. To statistically evaluate whether a 

certain mutation type is enriched in a sample as compared to mutations generated by random 

mutagenesis, a one-sided Fisher’s exact test was performed. To account for multiple testing, 

p values obtained were corrected using the Benjamini-Hochberg method.

The MAF of the germline APOBEC3B deletion in our PC cohort was 7.0%, in line with the 

expected frequency in individuals with a European germline genetic background.

RNA-seq expression analysis

Sample preparation and Data analysis: RNA extraction and sequencing for the samples 

ICGC_PCA1-12 was performed as described in a previously publication (Weischenfeldt et 

al., 2013). DNase digested total RNA from additional 109 EOPC samples and 9 control 

samples was analyzed using RNA6000 nano assays (Agilent 2100 Bioanalyzer) and Qubit 

2.0 Fluorometer. Only samples with an RNA Integrity Number (RIN) > 7.0 were included in 

this study. We used 1–4 micrograms of total RNA from each sample to prepare Truseq 

stranded sequencing libraries (Illumina). In brief, poly-A enrichment, fragmentation, first 

and second strand synthesis, A-tailing, and adapter ligation were performed following the 

manufacturer’s instructions. Libraries were PCR-amplified for 7–20 cycles and qualitatively 

validated on an Agilent 2100 Bioanalyzer of product size and concentration and on Qubit. 

Libraries were sequenced 50 bp paired-end on a HiSeq 2000 flowcell according to 

Illumina’s protocol.

RNA reads were aligned to hg1000 using BWA (v. 0.5.9-r16 for reads up to 51 bases and v. 

0.7.7-r441 for reads with 100 bases) and SAMtools. Uniquely mapped reads were annotated 

using Ensembl v62. Gene expression levels were quantified in reads per kilobase of exon per 

million mapped reads (RPKM) and corrected for RNA composition effects applying TMM 

implemented in the R package edgeR (Mortazavi et al., 2008; Robinson and Oshlack, 2010). 

Multi-area samples of the same patient were merged in to an artificial sample by taking the 

sum of read counts per gene before RPKM calculation resulting in a cohort of 96 RNA-seq 

samples. Hierarchical clustering on the most variable genes revealed batch effects across the 

RNA-seq cohort. Using hierarchical clustering and sample preparation information, a set of 

42 tumor RNA-seq samples without batch effects was manually selected and used to identify 

co-expression clusters applying the algorithm CLICK, part of the software tool EXPANDER 

(v7.11) (Sharan et al., 2003). CLICK was run with default parameters on log2 transformed 

and z-score normalized RPKM values of the 1231 most variable genes. Genes were 

expressed in minimum 3 samples ≥ 0.5 RPKM. 14 CCs were identified showing an overall 

separation of −0.039 and overall homogeneity of 0.632. Seven out of 14 CCs showed a 

homogeneity value ≥ 0.6 and were selected for further analyses (named CC1-CC7). An 8th 

CC also showed a high homogeneity value, but consisted mainly of one protocadherin gene 

cluster and was discarded. We calculated a mean pattern value for each CC in each of the 

EOPC samples. A mean pattern value for one sample is defined by taking the trimmed mean 

across log2 and z-score transformed RPKM values of genes in a particular CC. Based on the 

mean pattern values obtained for each CC, tumor samples were divided into two subgroups 
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(called CC-high and CC-low) using partitioning around medoids (pam). We compared the 

subgroups in an CC using edgeR and selected differentially expressed genes following the 

expression pattern in a CC with |log2(FC)| ≥ log2(2), FDR ≤ 0.01 and difference of median 

expression > 1, resulting in overall 417, 282, 189, 176, 117, 96, 86 and 21 genes in CC1-

CC7, respectively (Table S4). After the establishment of the CCs, the remaining 54 EOPC 

RNA-seq samples were reintegrated. Mean pattern and CC subgroups were recalculated as 

described above taking the whole RNA-seq cohort of 96 samples (Table S4). CCs were 

functionally annotated applying gene set overrepresentation analysis of the GePS Genomatix 

software (v3.80116). For additional annotation and comparison of the CCs to the literature, 

we integrated external signatures that are associated with high risk PC (BROMO10), 

Gleason score, stroma or reactive stroma into the mean pattern matrix (Jhun et al., 2017; 

Planche et al., 2011; Stuart et al., 2004; Urbanucci et al., 2017).

RPKM values for the TCGA cohort (495 samples) were calculated as described above. 

Batches with the ID 312 and 320 were excluded due to batch effects resulting in a cohort of 

462 samples. To classify TCGA samples into CC subgroups, RPKM values were log 

transformed and z-score normalized, and mean pattern values for each sample and CC were 

calculated. Based on the mean pattern values, samples were assigned to the CC subgroup 

with nearest medoid. Here, the medoids originate from the calculations on the ICGC EOPC 

cohort.

In TCGA, subgroup 1 (97 samples) and subgroup 3 (143 samples) could be derived from the 

hierarchical clustering using the same features as in our ICGC EOPC cohort. To annotate 

subgroup 2 in the TCGA data, we applied criteria defined from our ICGC EOPC cohort. As 

described above, the samples belonging to the “Immune” subgroup showed a high immune 

cell content and high expression of CC5 and CC7. Here, the lowest immune cell content in 

subgroup 2 ranked at the 94th percentile considering a normal distribution, and the mean and 

standard deviation of the estimated immune cell content across the 96 EOPC samples with 

RNA-seq. In total nine TCGA samples were assigned to subgroup 2 based on high PEPCI 

score, CC5-high and CC7-high, and a high immune cell content defined by the 94th 

percentile of immune cell content values.

Before the comparison of subtype fractions in ICGC EOPC, TCGA EOPC (100 cases) and 

TCGA LOPC (360 cases), GS composition differences were adjusted to the ICGC EOPC 

cohort (fractions of GS in ICGC: GS6 = 0.135, GS7 = 0.72, GS8 = 0.01, GS > 8 = 0.135). 

The GS-corrected subtype fractions in the TCGA EOPC and TCGA LOPC cohorts were 

calculated using 1,000 bootstrap samples. A single resampling was performed by extracting 

TCGA EOPC/LOPC cases according to the GS, and by drawing a bootstrap sample of these 

cases for each GS (GS6, GS7, GS8, GS >8) independently. Here, the samples size of a GS 

bootstrap in TCGA related to the GS fraction in ICGC EOPC (e.g. for GS6 and TCGA 

LOPC the sample size is equal to 360*0.135). From the GS-corrected bootstrap samples the 

fraction of subgroups was calculated. The p value of the differences in subgroup fraction 

was based on a permutation test.

Based on gene expression, the heterogeneity of multi-area samples belonging to the same 

patient was estimated by taking the average of the pairwise dissimilarity values between 
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multi-area samples. To calculate the pairwise dissimilarity values we took the mean of the 

cosine dissimilarity between multi-area samples in the different CCs. Here, the cosine 

dissimilarity was measured across the gene expression values of a particular CC.

Breakpoint-association with chromatin data—Chromatin-related data from PC tissue 

and cell lines were downloaded from different studies to generate chromatin states 

(ChromHMM). ChromHMM from normal prostate epithelial cells PrEC and PC3 cells were 

downloaded from GSE57498. Similar 9 ChromHMM states were produced for LNCaP and 

VCaP cells using ChromHMM software (Ernst and Kellis, 2012). To learn ChromHMM 

states in LNCaP cells we computed H3K27me3, H3K27Ac, H3K4me1, and H3K4me3 

profiles (Barfeld et al., 2017), CTCF binding profile (ENCODE), and Phospho S5 RNA Pol 

II binding profile (Massie et al., 2011). For VCaP cells we computed H3K27me3, 

H3K4me1, H3K27me3 (Yu et al., 2010), RNA pol II profiles (Asangani et al., 2014), and 

CTCF and H3K27Ac profiles (ENCODE). The resulting 9 chromatin states for PrEC, PC3, 

LNCaP, and VCaP cells were reduced to 7 by combining “enhancer+CTCF” and “promoter

+CTCF” states together with “enhancer” and “promoter”, respectively. The derived 7 

ChromHMM states were then used to annotate DNA methylation data. For enrichment 

analysis of DNA breaks we excluded the states “transcribed” and “bound by CTCF”.

SV breakpoints from EOPC and LOPC samples were assessed by performing intersection 

between chromatin states and SV breakpoints using bedtools v2.25.0 (Quinlan and Hall, 

2010), adding 5 kbp to both sides of the peaks. To compute an expected overlap frequency, 

breakpoints were randomly shuffled 100 times on the genome (excluding telomere and 

centromere regions, downloaded from UCSC, hg19) and keeping the SV size and 

chromosome fixed before performing overlap.

Association of SVs with DNA-DNA interaction and open chromatin marks was measured in 

a correlation-based analysis between breakpoint density and marks of physically interacting 

and open chromatin. We divided the genome in 1 Mb sliding windows using a 100 kb step 

and overlapped each bin with the SV breakpoints, retaining maximum 1 overlap per patient 

per bin, the number of chromatin loops and PC-specific H3K27ac peaks. Spearman’s Rho 

was estimated by correlating the EOPC and LOPC breakpoints with the number of Hi-C 

loops and H3K27ac peaks, respectively.

For Hi-C, we combined the loop annotations from 8 human cell-lines (GM12878, Hela, 

HMEC, HUVEC, IMR90, K562, KBM7, NHEK), obtained from GSE63525 (Durand et al., 

2016; Rao et al., 2014), and removed duplicate chromatin loops. H3K27ac PC-specific 

peaks were obtained from (Kron et al., 2017).

Exclusion score estimate—Here we define Exclusion score (E) as a metric to evaluate 

the preference of an aberration to occur as a sole event, or in tandem with many aberrations.

For every patient x, we construct an aberration index Ax that contains a list of all the Ii(x) 

deleted genes/regions for that patient, e.g. Ax = {BRCA1, ERG, ELK4}. The exclusion 

score is defined as the fraction of the observed aberration, in this case 1, and the total 

number of aberrations for that patient:
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Ei(x) = 1
Ax

, i ∈ Ax

The exclusion score for a given aberration i, is defined as the mean exclusion score across all 

patients:

Ei = 1
N ∑

n = 1

N
Ei(n)

The exclusion score is confined between 0 and 1 and the interpretation is such that, the 

higher the exclusion score of an aberration, the more frequently it tends to occur as a single 

event or in combination with very few events and vice versa.

Pairwise exclusion score: In a similar manner we can compute the exclusion score for a 

pair of aberrations i and j which is the “preference” of that pair to occur with few or many 

over events,

Ei, j(x) = 2
Ax

, i, j ∈ Ax

and compute the mean pairwise exclusion score respectively,

Ei, j = 1
N ∑

n = 1

N
Ei, j(n)

Survival analysis—We employed Random Survival Forests (RSF) to predict the PEFS, 

using the time (in months) from diagnosis to BCR as the response variable. The model was 

implemented in R using the randomForestSRC package (Ishwaran et al., 2008), with n.tree = 

5,000. Missing data were imputed each time a tree node performed a split on samples with 

missing values. Split statistics were aggregated over all trees to determine the median split 

value for each variable (PEPCI 69.1). We chose a random forest approach to binarize the 

PEPCI-score since it is able to treat continuous right-censored survival data and identify the 

optimal split that separates the samples into high and low risk groups.

For BCR analyses incorporating GS, samples were grouped into the categories GS6, GS3+4, 

GS4+3 and GS8-10 for ICGC, and GS6, GS3+4, GS4+3 and GS8, GS9-10 for TCGA. In 

ICGC, only one case showed GS8 and therefore included into the GS9-10 group. Time to 

BCR was right-censored at 100 months for TCGA PRAD. Prediction of BCR was analyzed 

using Kaplan-Meier curves and log-rank test, and cox proportional hazards regression model 

(CPHM). Fitted CPH models were compared using log-likelihood ratio test. Here, we tested 

a full model incorporating GS, and the introduced PEPCI groups, CC2/CC7 groups or 

subgroups against a model incorporating GS only. All analyses were done using R (R-3.3.3) 

Gerhauser et al. Page 19

Cancer Cell. Author manuscript; available in PMC 2020 August 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and the R packages survminer (v0.3.1) and survival (v2.41-3) (Therneau and Grambsch, 

2000). CPHM and LRT related results were provided in Table S4.

We assessed the predictive advantage of ESRP1 gain over MYC gain by comparing the 

variable importance (VIMP) values of the two features in a RSF model, using PSA, pT, GS, 

Age, CC2, and PEPCI, to predict BCR. We trained 1,000 models to get the VIMP 

distribution of ESRP1 and MYC. A one-sided Wilcoxon test shows that VIMP associated 

with ESRP1 gain is significantly higher than MYC gain (p value < 2.2e-16)

PRESCIENT tumor evolution model—PRESCIENT (https://bitbucket.org/

weischenfeldt/prescient) uses conditional probability to predict the order of molecular 

events, given a known or observed co-occurrence matrix. It differs from similar algorithms 

previously published including CAPRI (Ramazzotti et al., 2015) and TO-DAG (Lecca et al., 

2015) by the ability of predicting the next event in a progressive manner rather than compute 

an overall general consensus evolution tree, and use the estimate of event free survival to 

predict patient outcome based on genomic evolution. Additionally it includes a novel metric, 

Exclusivity Score, which measure the tendency of an aberration to occurs with other events.

PRESCIENT is based on the following assumptions i) molecular events that are often 

observed in the same tumor are more likely to be phylogenetically closely related ii) 

molecular event(s) that are often observed as the exclusive events, are more likely to occur 

early in the tumor evolution. As molecular events, we used the RGAs and used the presence 

or absence in each patient to generate a co-occurrence matrix. PRESCIENT constructs an 

expected frequency distribution F(f) to identify the most probably initiating RGA event. The 

RGA co-occurrence matrix is bootstrap sampled 10,000 times, and at each iteration, a new 

exclusion score matrix and RGA co-occurrence frequency matrix is computed. The co-

occurrence and exclusion score matrices were used to compute the P(f)i and P(e)i for each 

RGA respectively, and the probability Pi = P(f)iP(e)i of an RGA i to occur. The first event in 

the branch corresponds to the event with the highest probability Pi. This RGA is then 

removed from the RGA co-occurrence matrix, and the resulting subset is used to recompute 

a new P(f)i and P(e)i for each remaining RGA. The same approach is applied to assign the 

following RGA in the branch until no events are left in the resulting RGA co-occurrence 

matrix. Each permutation yields a putative evolution trajectory formed by an ordered series 

of events.

PRESCIENT associates a probability score for each node in the trajectory. Using these 

precomputed trajectories, PRESCIENT can take as input a set of RGAs detected in a patient, 

to predict the most probable next RGAs in the trajectories of the patient and the associated 

patient disease progression.

Clonal reconstruction—Clonal reconstruction was done for multi-region tumors. To 

identify the clonal evolution from tumor samples with multiple sequenced tumor regions, we 

applied the R package Canopy (Jiang et al., 2016), using default parameters. As input for the 

reconstruction, we used nsSNVs, tumor/normal depth ratio and allele frequency information 

from sequenza (https://bitbucket.org/sequenza_tools/sequenza_canopy). Reconstructed 

evolution trees were curated following the guidelines in the R package documentation.
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PRESCIENT method validation—From a cohort of 40 patients with 30x WGS primary 

PC and local lymph node metastasis, we estimated the phylogenetic trees for each patient as 

described in the heterogeneity cases (with Canopy).

The PRESCIENT method was compared to a naive-frequency approach, in which each RGA 

have the probability of occurrence given by its frequency in the cohort.

We tested the ability to predict the next RGA in the phylogeny, which served as a true 

positive set. To compute a true positive prediction, PRESCIENT prediction and the 

frequency-based prediction were compared to the observed RGA for every node in the tree. 

A false-positive set was calculated using both methods, by extracting the most abundant 

RGA in the cohort, which was not present in the patient.

To further assess the robustness of the method, we compared the main evolution trajectory 

predicted by PRESCIENT with the estimated probability of the same trajectory calculated 

by random subsampling (10% of the dataset, 10,000 times). We found overall highly similar 

probabilities, with random-subsampling based probability of the first node within 1.5 

standard deviations from PRESCIENT prediction and 1.55 for the second node.

Drug-variant targets—Drug-variants were downloaded from https://

www.cancergenomeinterpreter.org (April 15, 2018) (Tamborero et al., 2018). Germline SNP, 

somatic SNV, SCNA and SV variant types were matched with Biomarker types (e.g. a 

Biomarker fusion type was matched with SV-mediated fusions and Biomarker deletion 

matched with SCNA deletion in our dataset). All predicted damaging germline PTVs were 

considered irrespective of the Biomarker amino acid change. Only Biomarkers associated 

with a Responsive effect and in pre-clinical or clinical trial or currently in clinical guidelines 

for PC were considered. BRCAness was scored as tumor genomes with at least 40% 

contribution of mutation signature 3 and minimum 1,000 somatic SNVs.

QUANTIFICATION AND STATISTICAL ANALYSIS

Quantification and statistical analysis methods are described in the STAR Methods detail 

subsections.

DATA AND SOFTWARE AVAILABILITY

The raw data for WGS, RNA-seq expression and array-based methylation were submitted to 

EGA under study identifier EGAS00001002923. Somatic variant calls are available through 

Mendeley Data doi:10.17632/6gtrrxrn2c.1. Oncological outcome data were collected via the 

Progether PROMś (patient reported outcome measurement) interface (www.progether.com/

proms) and the martini-clinic database.

Softwares used for each analysis are described and referenced in Methods Detail subsection 

and listed in KEY RESOURCE TABLE.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Significance

We used a set of tumors diagnosed early in life and thus harboring the earliest molecular 

lesions detectable in prostate cancer which led us to identify an APOBEC-driven clock-

like mutational process driving the earliest somatic mutations in prostate cancer. We 

identified somatic alterations of ESRP1, a molecular driver of the disease with a 

particular value in the pre-operation setting where biomarkers are desperately needed. By 

integrating DNA methylation and RNA expression data from tumors diagnosed with 

early-onset, we identified four robust subgroups that readily stratify patients into high and 

low-risk groups. We combined our cohort of early-onset patients and identified risk-

stratification groups to develop a framework to predict the temporal and clinical outcome 

order of somatic alterations.
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Highlights

• Clock-like mutation process attributed to APOBEC3 mediates earliest 

mutations in PC

• Identification of four molecular subgroups that stratifies intermediate-risk 

disease

• Rearrangements at the ESRP1 locus associated with aggressive and 

proliferative cancer

• Development of method to predict clinical trajectories of PC from DNA 

sequencing data

Gerhauser et al. molecularly characterize prostate cancers diagnosed before 56 years old, 

which reveals an APOBEC-driving mutational process and identifies an aggressive 

subgroup with increased expression of ESRP1. They develop a framework to predict the 

order of somatic alterations and clinical outcome.
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Figure 1. Somatic alteration landscape and age-at-diagnosis
(A) Genome-wide SV breakpoint recurrence pattern across 292 PC samples, color-coded 

separately for each chromosome.

(B) An Oncoprint summarizing the mutational landscape of RGA regions in PC, color-coded 

by the mutational event-type and separate into EOPC and LOPC. The barplot at the left 

quantify the recurrence of each RGA in the PC cohort. The patient age and GS are shown at 

the bottom.

(C) Fraction of EOPC and LOPC tumors from localized PC associated with either clonal or 

polyclonal paths (p = 0.18, Chi-square test).

(D) Correlation between breakpoints and Hi-C chromatin loops (combined across eight cell 

lines) and PC-specific H3K27ac peaks in 1 Mbp bins, separated into localized EOPC and 

LOPC.

(E) “Chromatin-state”-model of age-associated breakpoint patterns in PC. See also Figure 

S1 and Table S1.
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Figure 2. Recurrent alterations target KLF5 and ESRP1
(A, B) SV recurrence plot at 13q22 (A) and 8q22 (B) with vertical red and blue lines 

represents genomic gain and loss, respectively (n tumor samples = 292). The smallest 

overlapping SV is shown in case of multiple SVs per tumor sample.

(C) Number of somatic SVs from our total cohort of tumors according to presence (SV+) or 

absence (SV−) of SVs affecting the KLF5 locus. MWU-based p value.

(D) KLF5 gene expression of different methylation and somatic SV states with x-axis 

representing KLF5 promoter-proximal methylation status and somatic SV states.

(E) Correlation between KLF5 and SPOP expression, with each dot representing a tumor, 

color-labeled with GS.

(F) Boxplot of ESRP1 mRNA expression separated by tumors with an SV gain of ESRP1 
(SV+) and without (SV−). MWU-based p value.
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(G) ESRP1 protein expression stained in 11,954 TMA samples and scored as “negative” 

(dark blue), “weak” (light blue), “moderate” (yellow) or “strong” (red).

(H) Barplot showing Ki67 labelling index separated by GS and ESRP1 staining. Number of 

tumors for each category is labelled below each bar. ***: p < 0.001, NS = not significant (a 

= 0.05). The colors of bars correspond to those in (G).

(I) Kaplan-Meier plot, showing PSA-recurrence-free survival for patients stratified by 

ESRP1 staining intensity.

Boxplots show median (line), upper and lower quartiles (boxes), and lines extending to 1.5 x 

IQR (whiskers).

See also Figure S2 and Table S2.
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Figure 3. Age-related mutational signatures in prostate cancer
(A) Barplot of the absolute (top) and relative (bottom) proportion of exposure of six 

mutational signatures (1, 5, 3, 6, 2 and 13, colored bars) per individual tumor of patients 

with localized PC, sorted by age-at-diagnosis (x-axis, range from 32 to 75 years).

(B) Association between mutation signature burden (y-axis) and GS. POLR p values. 

Boxplots show median (line), upper and lower quartiles (boxes), and lines extending to 1.5 x 

IQR (whiskers).

(C) Correlation between the mutation signature burden and age-at-diagnosis.

(D) Fold-enrichment of APOBEC signature in scattered mutations (light grey), C/G clusters 

(orange) or non-coordinated clusters (dark grey).

(E) Age-association between A3A (“ytCa” signature, left) or A3B (“rtCa” signature, right) 

in C/G clusters of mutations as a function of age (binomial logistic regression). Generalized 

linear model (GLM) logit p values.
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(F) Fraction of mutations close to SV breakpoint for C/G cluster mutations (orange, n = 

1,694), non-coordinated cluster mutations (dark grey, n = 8,408) and non-clustered 

mutations (light-grey, 100 bootstraps of 456,406 SNVs, 95% confidence interval shown). X-

axis displays log10 distance between SNV and breakpoint.

See also Figure S3.
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Figure 4. Predisposing germline mutations associate with specific somatic alteration landscapes
Association between individuals carrying germline PTV in the indicated cancer 

predisposition gene and total number of somatic SVs, total number of somatic SNVs, 

exposure to mutational signature 2 and mutational signature 3. X-axis represent patients, 

sorted in ascending order of the phenotype.
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Figure 5. PEPCI, a methylation-based risk group score
(A) A schematic representation of methylation-based estimation of ct composition of each 

bulk tumor sample.

(B) Stacked barplots of ct composition, tumor stage, GS and PEPCI per PC.

(C) Association between PEPCI and GS (left) and pT (right). Boxplots show median (line), 

upper and lower quartiles (boxes), and lines extending to 1.5 x IQR (whiskers).

(D) Kaplan-Meier curves of localized EOPC patients stratified according to PEPCI-high and 

PEPCI-low, for all cases (left) and for GS7 only (right).

(E) Chord-diagram showing proportions of tumors with a specific RGA and the associated 

PEPCI-high and -low risk group, colored by each RGA.

See also Figure S4 and Table S3.
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Figure 6. Integrative expression and methylation analysis
(A) Summary of the most prominent characteristics of CCs. Sources of gene sets are 

indicated in the brackets: GMX, Genomatix curated gene sets; GO-MF and GO-BF, 

molecular and biological functions in gene ontology terms, respectively; CP, Genomatix 

canonical pathways. FDR-corrected p values < 0.05.

(B) Heatmap of the four PC subgroups and their average ct compositions and CC mean 

pattern values.

(C) Hierarchical clustering heatmap of ct content, CCs, three external gene signatures and 

indicated PC subgroups across 96 EOPC samples and eight normal prostate controls. CCs 

and external gene signatures are represented as mean pattern values. Clustering was based 

on PEPCI-related features and CC information (excluding CC6 due to low information 

content). Patient number 1 and 3: PEPCI score just below the Inflection point, #2 multi-area 

sample with varying PEPCI score, #4 and #5: high stromal content.
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(D) Kaplan-Meier curves between subgroups in CC2 and CC7 and event-free survival (log-

rank test).

(E) Stacked barplot of fraction of GS in the four PC subgroups.

(F) Kaplan-Meier curves of the four PC subgroups using ICGC EOPC samples with 

available methylation and RNA-seq data (left, n= 83) and a subset of GS7 cases (right, 

n=62).

See also Table S4 and Figures S5 and S6.
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Figure 7. Molecular evolution of prostate cancer
(A) Outline of the PRESCIENT method.

(B) RGAs were labelled with a molecular pathway, which was used as an event in 

PRESCIENT.

(C) Molecular reconstruction of individual EOPC tumors, using a Bayesian mixture model 

with each node annotated with RGAs and event-free survival prediction (color-range). The 

clonal status is annotated with percentages at each branch. Mutations in COSMIC genes are 

annotated in grey for each node. Branches are labelled by background color based on PEPCI 

score for PEPCI-high and PEPCI-low.

(D) A schematic representation of PCA035 (left) and application of PRESCIENT prediction 

to T5 (middle) and T6 (right) regions of the tumor.

See also Figure S7.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-ESRP1 rabbit polyclonal antibody Sigma Aldrich, Germany Altas antibody Cat# HPA023720, AB_1856125

Anti- CD45 antibody BioLegend, US AB_1236444

Anti- CD326 antibody BioLegend, US AB_400261

Anti- CD271 antibody BioLegend, US AB_2282827

Anti- CD26 antibody BioLegend, US AB_10913814

Anti- CD31 antibody BioLegend, US AB_2562179

Biological Samples

Primary and metastasis tumor samples and 
normal samples

This paper

Critical Commercial Assays

Qiagen AllPrep DNA/RNA/Protein Mini Kit

EnVision Kit Dako, Glostrup, Denmark Cat#K4003

RNA6000 nano assays Agilent Cat#5065-4401

RNA Fragmentation Reagents Ambion Cat#AM8740

Deposited Data

Raw sequencing data This paper EGAS00001002923

Somatic variants This paper doi:10.17632/6gtrrxrn2c.1

Software and Algorithms

R-3.4 R Core Team 2017 https://www.R-project.org

randomForestSRC 2.5.1 Ishwaran et al., 2008 https://cran.r-project.org/package=randomForestSRC

YAPSA Huebschmann et al, 2016 https://bioconductor.org/packages/YAPSA/

SAMtools Li et al., 2009 http://www.htslib.org/

Freebayes v1.1.0 Garrison et al., 2012 https://github.com/ekg/freebayes

Sequenza v2.2.0.9000 Favero et al., 2015 https://bitbucket.org/sequenza_tools/sequenza_canopy)

CLICK algorithm Sharan et al., 2003 http://acgt.cs.tau.ac.il/expander/

Canopy 1.1.1 Jiang et al., 2016 https://CRAN.R-project.org/package=Canopy

PEPCI This paper http://computational-epigenomics.com/downloads/
PEPCI.R

DKFZ SNV pipeline https://doi.org/10.1101/161638

BWA-MEM Li, 2013 http://bio-bwa.sourceforge.net/

PCAWG delly workflow Rausch et al., 2012 https://github.com/ICGC-TCGA-PanCancer/
pcawg_delly_workflow

LUMP algorithm Aran et al, 2015 www.ncbi.nlm.nih.gov/pubmed/26634437

RnBeads Assenov et al., 2014 https://bioconductor.org/packages/RnBeads/

EpiAnnotator Pageaud et al., 2018 http://epigenomics.dkfz.de/EpiAnnotator/

NNLS algorithm https://cran.r-project.org/web/packages/nnls

Houseman algorithm Houseman et al., 2012 www.ncbi.nlm.nih.gov/pubmed/22568884
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REAGENT or RESOURCE SOURCE IDENTIFIER

edgeR Mortazavi et al., 2008; 
Robinson and Oshlack, 2010

http://bioconductor.org/packages/edgeR/

Genomatix software(v3.80116) http://www.genomatix.de/

PRESCIENT This paper https://bitbucket.org/weischenfeldt/prescient

R package survminer v0.3.1 https://cran.r-project.org/web/packages/survminer/
index.html

R package survival v2.41-3 Therneau and Grambsch, 2000 https://cran.r-project.org/web/packages/survival/
index.html

Cytoscape v3.4.0 http://www.cytoscape.org/

Other

Cancer Genome Interpreter drug-variant list Tamborero et al, 2018 https://www.cancergenomeinterpreter.org/data/
cgi_biomarkers_latest.zip

H3K27me3, H3K27Ac, H3K4me1, and 
H3K4me3 ChIP data from LNCaP cells

Barfeld et al. 2017 https://www.ncbi.nlm.nih.gov/m/pubmed/28412251/

Phospho S5 RNA Pol II ChIP data Massie et al. 2011 https://www.ncbi.nlm.nih.gov/pubmed/21602788

H3K27me3, H3K4me1, H3K27me3 ChIP 
data from VCaP cells

Yu et al. 2010 https://www.ncbi.nlm.nih.gov/pubmed/20478527

RNA pol II ChIP data from VCaP cells Asangani et al. 2014 https://www.ncbi.nlm.nih.gov/pubmed/24759320

Ensembl Variant Effect Predictor (VEP) https://www.ensembl.org/info/docs/tools/vep/index.html

Exome Aggregation Consortium(ExAC) http://exac.broadinstitute.org

IARC TP53 database http://p53.iarc.fr/

ClinVar https://www.ncbi.nlm.nih.gov/clinvar/

1000 Genomes Project http://www.internationalgenome.org

NHLBI GO Exome Sequencing Project https://esp.gs.washington.edu/drupal/

COSMIC database http://cancer.sanger.ac.uk/cosmic/signatures

TCGA-PRAD RNA seq (Downloaded: 05 
April 2017)

https://portal.gdc.cancer.gov/

TCGA-PRAD Level 3 SNP-array 
segmentation (Downloaded: 25 June 2018)

https://portal.gdc.cancer.gov/
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