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Abstract. We present a comparative study of soil CO2 flux (FCO2) measured by

five groups (Groups 1-5) at the IAVCEI-CCVG Eighth Workshop on Volcanic Gases

on Masaya volcano, Nicaragua. Groups 1-5 measured FCO2 using the accumulation

chamber method at 5-m spacing within a 900 m2 grid during a morning (AM) period.

These measurements were repeated by Groups 1-3 during an afternoon (PM) period. All

measured FCO2 ranged from 218 to 14,719 g m−2d−1. Arithmetic means and associated

CO2 emission rate estimates for the AM data sets varied between groups by ±22%.

The variability of the five measurements made at each grid point ranged from ±5 to

167% and increased with the arithmetic mean. Based on a comparison of measurements

made by Groups 1-3 during AM and PM times, this variability is likely due in large

part to natural temporal variability of gas flow, rather than to measurement error.

We compared six geostatistical methods (arithmetic and minimum variance unbiased

estimator means of uninterpolated data, and arithmetic means of data interpolated by

the multiquadric radial basis function, ordinary kriging, multi-Gaussian kriging, and

sequential Gaussian simulation methods) to estimate the mean and associated CO2

emission rate of one data set and to map the spatial FCO2 distribution. While the CO2

emission rates estimated using the different techniques only varied by ±1.1%, the FCO2

maps showed important differences. We suggest that the sequential Gaussian simulation

method yields the most realistic representation of the spatial distribution of FCO2 and

is most appropriate for volcano monitoring applications.
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Introduction

Measurement of soil CO2 flux (FCO2) and its natural spatial and temporal

variability in volcanic, geothermal, and metamorphic (VGM) environments has

important implications for volcano monitoring, geothermal exploration, delineation of

fault and fracture zones, and estimation of the contribution of CO2 from VGM sources to

the global carbon cycle. Numerous studies have been conducted during the past decade

to measure FCO2, map its areal distribution, and estimate total CO2 emission rates

from VGM areas of interest [e.g., Farrar et al., 1995; Giammanco et al., 1997; Chiodini

et al., 1998; Werner et al., 2000; Gerlach et al., 2001; Bergfeld et al., 2001; Gerlach

et al., 2001; Salazar et al., 2001; Rogie et al., 2001; Chiodini et al., 2001; Lewicki et al.,

2003a; Cardellini et al., 2003]. However, these investigations have applied a wide range

of measurement and statistical methodologies to accomplish these goals. Importantly,

the choice of these methodologies may largely affect individual FCO2 measurements and

characterization of their natural spatial and temporal variability, the total CO2 emission

rate estimated for a given area, and the ability to assess the uncertainty associated with

this estimate.

The primary sources of variability of individual FCO2 measurements in VGM

systems are measurement methodology and the natural spatial and temporal variability

of subsurface and surface parameters that influence gas flow. Natural changes in the

system may include spatial and temporal variations in the physical properties of the

medium (e.g., porosity, permeability), biogenic respiration, meteorological parameters
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(e.g., atmospheric pressure, temperature, and wind speed and direction), and the deep

CO2 source.

Most investigations of VGM FCO2 use accumulation chamber methods for FCO2

measurement. While the use of an accumulation chamber with an infrared gas analyzer

provides a simple and rapid measurement, placement of the chamber on the soil can

alter the FCO2 from its natural undisturbed rate. For example, chambers can disturb the

FCO2 by altering the air pressure within the chamber, changing the CO2 concentration

gradient across the soil-air interface, diverting gas flow around the chamber, and causing

a build-up of water vapor within the chamber [e.g., Welles et al., 2001; Evans et al.,

2001]. In addition, to ensure a seal between the chamber and the soil surface that

minimizes inflow of atmospheric air during the measurement, it may be necessary to

disturb the soil, either by direct placement of the chamber on the soil or by insertion

of a ”collar” into the soil on which the chamber rests. This alteration of soil physical

properties also has the potential to change the natural FCO2 [e.g., Gerlach et al.,

2001]. While techniques were developed to reduce the effects of the chamber presence

on the natural FCO2, these effects may be difficult to prevent entirely and should be

considered in the interpretation of measured FCO2. Together, natural and measurement

related effects will lead to variability of measured values within a given data set and

between different researchers data sets. While the researcher is generally interested to

characterize the natural variability of FCO2, it can be difficult to separate this from the

variability introduced by the FCO2 measurement technique. Although laboratory tests

on imposed CO2 fluxes using multiple measurement techniques have been described
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[Evans et al., 2001], comparative measurements of FCO2 in VGM environments have not

yet been presented in the literature.

Maps of FCO2 may be produced using a variety of methods. If FCO2 measurements

are made at both evenly and tightly spaced intervals along a grid, an uninterpolated map

can be constructed representing the spatial distribution of FCO2. However, it is often

the case that FCO2 measurements are made at widely and/or unevenly spaced intervals

within an area. In this case, statistical methods must be employed to interpolate FCO2

values at unsampled locations. This has been accomplished most commonly by kriging

methods [e.g., Salazar et al., 2001; Rogie et al., 2001; Gerlach et al., 2001] and, more

recently, by a sequential Gaussian simulation technique [Cardellini et al., 2003].

The primary techniques used to estimate the total CO2 emission rate from a given

area are (1) multiplying the arithmetic mean of measured FCO2 values by the surveyed

area, (2) multiplying the mean of FCO2 values estimated by minimum variance unbiased

estimators [Finney , 1941; Sichel , 1952] by the surveyed area, (3) applying volume and

area integration algorithms to an interpolated FCO2 grid, (4) applying a graphical

statistical approach (GSA) described by Chiodini et al. [1998], or (5) applying sequential

Gaussian simulations [Deutsch and Journel , 1998; Cardellini et al., 2003]. While the

choice of these methods has the potential to significantly affect the resulting FCO2 map

and the estimated CO2 emission rate, to date, the range of methods have not been

applied to a single VGM FCO2 data set for comparison.

The Eighth Field Workshop on Volcanic Gases (25 March to 2 April, 2003),

sponsored by the Commission on the Chemistry of Volcanic Gases (CCVG) and
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the International Association of Volcanology and Chemistry of the Earth’s Interior

(IAVCEI) [Wardell et al., 2003] provided the unique opportunity for multiple groups

of researchers to make comparative FCO2 measurements in an area of elevated diffuse

degassing on the flanks of Masaya volcano, Nicaragua (Figure 1). Here, we compare Figure 1.

the measured FCO2 data sets, present a range of interpolation and estimation methods

applied previously in VGM studies, and apply these methods to map FCO2 and estimate

total CO2 emissions from the study area. Furthermore, we discuss the potential sources

of discrepancies between the different FCO2 measurements and estimated CO2 emission

rates and implications for future FCO2 studies in VGM areas.

Study Area

The study area is located adjacent to Comalito cinder cone on the northeast flanks

of Masaya volcano, Nicaragua (Figure 1). Masaya is a basaltic shield volcano that has

displayed cycles of voluminous degassing, the most recent of which began in 1993 and

continues from the active Santiago crater [e.g., Delmelle et al., 1999]. Numerous plume

degassing studies have been conducted at Masaya [e.g., Stoiber et al., 1986; Horrocks

et al., 1999; Burton et al., 2000; Delmelle et al., 2002; Duffell et al., 2001]; however,

relatively little attention has been focused on characterization of diffuse degassing from

the flanks of Masaya, which, in the case of CO2, may be a significant contribution to

total volcano emissions [St-Amand , 1998; Pérez et al., 2000; Lewicki et al., 2003a].

The study area adjacent to Comalito is characterized by steam emissions through

porous and highly fractured lavas and scoria. Soils here are poorly developed with little
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vegetation growth. Anomalously high soil temperatures (up to 80oC) and FCO2 (up to

5.0 x 104 g m−2d−1) of deep magmatic/metamorphic origin have been observed within

or around the area [Lewicki et al., 2003a]. Spatial trends in, and correlation between

soil gas flux and temperature are consistent with advective transport of heat and CO2

with steam along a highly permeable fault and/or fault-related fractures [Lewicki et al.,

2003a]. A map of FCO2 measured by Group 5 (see Methods section) from 27 to 28

March, 2003 in the area surrounding the study site shows elevated FCO2 on the crater

rim of Comalito, along a northwest-trending zone in the immediate vicinity of the study

site, and southwest of the study site. (Figure 2). The total CO2 emission rate from this Figure 2.

area (38,097 m2) was estimated to be 20.2±2.16 metric tons per day (hereafter referred

to as t d−1).

Methods

Field Measurements

Soil CO2 flux measurements were made by five groups (Groups 1-5) using the

accumulation chamber (AC) method whereby an open-bottomed AC was placed directly

on the soil surface, the contained air was circulated through the AC and an infrared gas

analyzer (IRGA), and CO2 concentration ([CO2]) was recorded. Water was removed

from the air with Mg(ClO4)2 or molecular sieve desiccant before the air entered the

IRGA. Groups 1-4 calculated FCO2 according to
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FCO2 =
(

ρV

A

)

(

d[CO2]

dt

)

(1)

where ρ is the molar density of air, V is the system volume, A is the AC footprint area,

and d[CO2]/dt is the initial rate of change of [CO2] in the AC after the AC is placed on

the soil surface. All groups report FCO2 in units of g m−2day−1. In a laboratory setting,

Chiodini et al. [1998] measured CO2 flux values within 15% of the imposed flux, whereas

Evans et al. [2001] recognized a systematic underestimation of flux (average of -12.5%)

over an imposed flux range of 200 to 12,000 g m−2d−1. In a field test, Carapezza and

Granieri [2004] made repeat FCO2 measurements at two sites with medium (average

= 997 g m−2d−1) and low (average = 5.7 g m−2d−1) FCO2 and found measurement

uncertainties of ±12% and 24% for the medium and low FCO2 sites, respectively.

Group 5 conducted laboratory experiments prior to field measurements to assess

the factor (cf) to convert the measured d[CO2]/dt (g m−3d−1) to FCO2 (g m−2d−1 =

g m−3d−1 x cf). A ”synthetic soil” was constructed of dry sand (10 cm thick) inside a

plastic box with an open top and a range of CO2 fluxes (90 to 5000 g m−2d−1) were

imposed though this soil using pure CO2. Several measurements were made at each

imposed flux. The best-fit line to the imposed CO2 flux versus measured d[CO2]/dt

was determined by linear regression and the slope of this line (i.e., cf) was 0.1345 m.

This value was higher than the cf determined theoretically (0.1188 m) for the flux

instrumentation used [Chiodini et al., 1998], indicating that the real measurement

deviates in some way from the theoretical one. This discrepancy may in part explain the
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systematic underestimation of FCO2 by the AC method reported by Evans et al. [2001].

The IRGA model and measurement range, A, and V varied between

Groups 1-5 (Table 1). Also, Groups 1-4 used WEST Systems Fluxmeters Table 1.

[http://www.westsystems.com], whereas Group 5 used a custom-built portable

AC measurement system [http://ipf.ov.ingv.it ]. With the exception of Group 4, all

groups either calibrated their IRGA with zero and span gases or checked their IRGA for

accuracy using a standard gas within several days before field measurements on Masaya

on 27 March, 2003.

Thirty-six FCO2 measurement locations were sited on evenly spaced (5 m) points

within a 30x30 m grid using a compass and tape measure. At each grid point, Groups

1-5 sequentially made a FCO2 measurement within the same footprint area within

a few minutes of each other. The entire measurement grid was completed by all

groups between 10:00 and 13:00 (hereafter referred to as AM measurement time). The

measurement grid was repeated by Groups 1-3 between 14:00 and 16:00 (hereafter

referred to as PM measurement time).

Data Analysis

To compare the mean FCO2 and total CO2 emission rate associated with each of

the FCO2 data sets measured by Groups 1-5, we chose to apply a single simple statistical

method (see Arithmetic Mean section below) to all of the data sets. In addition, to

compare the different geostatistical estimation methods, we applied a range of these

methods to a single FCO2 data set (the Group 1 AM data set).
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Arithmetic Mean The arithmetic mean is the preferred method to estimate

the mean of a normally distributed population and has the advantage that it is easy

to calculate. However, the arithmetic mean can be sensitive to high data values and

does not have the smallest variance when the underlying distribution is lognormal [e.g.,

Gilbert , 1987]. The arithmetic mean and standard deviation were calculated for the

FCO2 data sets measured by Groups 1-5. Also, the standard error of the mean was

calculated for each data set by dividing the standard deviation by the square root of the

sample number. To estimate the total CO2 emission rate from the study area for each

data set, the arithmetic mean FCO2 was multiplied by the grid area (900 m2).

Minimum Variance Unbiased Estimators The W test of Shapiro and Wilk

[1965] was used to determine the underlying distribution of the Group 1 AM data

set and results show within a 95% confidence interval that the data are lognormally

distributed. Therefore, minimum variance unbiased (MVU) estimators [e.g., Finney ,

1941; Sichel , 1952; Gilbert , 1987] were used to estimate the mean and variance of the

Group 1 AM log-transformed FCO2 data set (Appendix A1). The advantages of using

MVU estimators on positively skewed data are that they yield both a statistically

unbiased estimate of the mean FCO2 and the smallest variance of unbiased estimators of

FCO2 [e.g., Gilbert , 1987]. This approach is therefore generally preferred over calculation

of the arithmetic mean when the data are positively skewed. To estimate the total CO2

emission rate from the study area based on the Group 1 AM data set, the MVU mean

FCO2 was multiplied by the grid area.
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Multiquadric Radial Basis Function In many cases (e.g., when sampled data

are unevenly or widely spaced), it is desirable to estimate the value of a variable at

unsampled locations within an area of interest. The multiquadric radial basis function

method (RB) of interpolation [e.g., Hardy , 1971; Watson, 1992] produces a surface that

is a combination of a set of circular hyperboloids, each of which is centered on a sampled

point (see Appendix A2 for equations). RB tends to interpret small data sets (<250

observations) well and produces a smooth surface that remains faithful to the original

sample data. One disadvantage of RB is that boundary effects can produce errors at the

edge of the interpolated surface [Fornberg et al., 2002]. RB was used to interpolate FCO2

values at one-m spacing in the study area based on the Group 1 AM data set and these

values were plotted as an image map using Surfer [Golden Software, Golden, Colorado].

The arithmetic mean and standard deviation of the FCO2 estimates were calculated.

The total CO2 emission rate was estimated by multiplying each FCO2 value by 1 m2 and

summing these products.

Kriging Ordinary kriging (OK) allows FCO2 values to be estimated at unsampled

locations as a weighted linear combination of neighboring observations (see Appendix

A3 for equations). OK is an unbiased estimator and aims to minimize the estimation

variance. OK was used to interpolate FCO2 values at one-m spacing in the study

area based on the Group 1 AM data set using Surfer. For consistency between the

following geostatistical methods (OK, multi-Gaussian kriging, and sequential Gaussian

simulation), the program GSLIB [Deutsch and Journel , 1998] was used to calculate all

experimental semivariograms for the Group 1 AM data set and model them. For OK,
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the experimental semivariogram was calculated using the measured FCO2 values and a

spherical model (Appendix A3) was fit to the data (Figure 3a). FCO2 values were then Figure 3.

estimated at unsampled locations using OK and the modelled semivariogram values and

plotted as an image map using Surfer. The arithmetic mean and standard deviation

of the FCO2 estimates were calculated. The total CO2 emission rate was calculated by

multiplying each FCO2 value by 1 m2 and summing these products.

Prediction performances of OK may be better when the sample histogram is

normally distributed [e.g., Saito and Goovaerts , 2000]. Multi-Gaussian kriging (MGK)

was therefore applied to the Group 1 AM data set to interpolate FCO2 values at one-m

spacing over the study area. The FCO2 distribution was normalized by performing a

normal-score transform using GSLIB. An experimental semivariogram was calculated

based on the FCO2 normal scores and a spherical model was fit to the data using GSLIB

(Figure 3b). The normal-score FCO2 values were estimated at unsampled locations by

OK using Surfer. The normal-score FCO2 estimates were then back-transformed into

FCO2 estimates by applying the inverse of the normal-score transform using GSLIB and

were plotted as an image map. The arithmetic mean and standard deviation of the FCO2

estimates were calculated. The total CO2 emission rate was calculated by multiplying

each FCO2 value by 1 m2 and summing these products.

Sequential Gaussian Simulation A stochastic simulation procedure based on

a sequential Gaussian simulation algorithm (sGs) from GSLIB [Deutsch and Journel ,

1998] was used to map FCO2 and to estimate the total CO2 emission rate from the

study area for the Group 1 AM FCO2 data set, following the approach described by
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Cardellini et al. [2003]. The stochastic simulation generates a set of equiprobable

representations (realizations) of the spatial distribution of an attribute (e.g., FCO2)

that reasonably reproduces the global statistic and spatial features of the data samples

(i.e., the sample histogram and semivariogram model). This technique thus differs

from methods (e.g., kriging) which produce a single representation of the attribute’s

spatial distribution and yield the minimum error variance at each location [Deutsch and

Journel , 1998]. Moreover, differences among many realizations can be used as a measure

of the uncertainty of the attribute estimation [Goovaerts , 2001; Cardellini et al., 2003].

SGs operates by considering FCO2 as the realization of a stationary multivariate

Gaussian random function. FCO2 is simulated at locations defined by a grid covering the

area of interest. The simulation is conditional and sequential (i.e., FCO2 is simulated

at each unsampled location by random sampling of a Gaussian conditional cumulative

distribution function defined on the basis of the original data and previously simulated

data within its neighborhood, as the computation proceeds). Because the sGs procedure

requires a multi-Gaussian distribution, a non-normally distributed FCO2 data set is

transformed into a normal distribution by a normal-score transform [Deutsch and

Journel , 1998]. The transformed data are then used in the simulation procedure. Based

on the semivariogram model of normal scores, simple kriging is used to estimate FCO2

and the associated variance at each location. The estimate and variance are then used

to define a Gaussian conditional cumulative distribution function at each location. A

random value is drawn from the conditional cumulative distribution as one ”reasonable”

simulated value for that location. This value is then added to the data set and can be
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used together with the original data to estimate the variable at the next location within

the grid. The simulation proceeds to the next grid location and loops until all nodes

are simulated. The simulated normal scores are then back-transformed by applying

the inverse of the normal-score transform [Deutsch and Journel , 1998]. N alternative

simulations are performed and N equiprobable realizations are drawn by changing the

starting location of the simulation procedure and thus changing the random path of

grid nodes visited. Each of these realizations honors the sampled data at their locations

and reproduces the univariate statistics and bivariate properties of the data, within

reasonable ergodic fluctuations [Deutsch and Journel , 1998; Cardellini et al., 2003].

Based on the Group 1 AM data set, one-hundred simulations were conducted.

The total CO2 emission rate from the study area was calculated for each realization

by multiplying the simulated FCO2 value for each grid cell by 1 m2 and summing these

products. The mean and standard deviation of the total CO2 emission rates simulated

for N realizations are assumed to be the characteristic CO2 emission rate for the study

area and its uncertainty, respectively. The set of realizations is also used to produce

a map of the FCO2 values ”expected” at the grid cells (E-type estimates) using a

point-wise linear average of all of the realizations.
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Results

Comparison of Soil CO2 Flux Data Sets

FCO2 values measured by Groups 1-5 during AM and PM times range from 218 to

14,719 g m−2d−1 (Table 2). Based on the W test [Shapiro and Wilk , 1965], the data are Table 2.

lognormally distributed within a 95% confidence interval. Skewed distributions are also

observed on a histogram of FCO2 measured by Groups 1-5 during AM time (Figure 4). Figure 4.

The five measurements made by Groups 1-5 at each grid point show that the

variability of FCO2 increases with increasing arithmetic mean (Figure 5), and ranges Figure 5.

from ±5 to 167%. To compare the FCO2 data sets measured by Groups 1-5, the

mean and variability of each data set was estimated by calculation of the arithmetic

mean and standard deviation (Table 2). The total CO2 emission rates were then

estimated by multiplying the arithmetic mean of each group’s FCO2 population by the

measurement area (900 m2). For the AM measurement time, arithmetic means of FCO2

data sets ranged from 1509 to 2425 g m−2d−1, with corresponding total CO2 emission

rates of 1.36 to 2.18 tons d−1. To assess the variability of the estimated FCO2 means

and associated total CO2 emission rates between the different groups’ data sets, we

calculated the arithmetic mean and standard deviation of the arithmetic means (or

emission rates) for the AM data sets measured by Groups 1-5. The arithmetic means

and associated emission rates vary by ±22% between the different groups. From AM

to PM measurement times, arithmetic means of FCO2 data sets increased from 1607 to

1618 g m−2d−1 (total CO2 emission rates = 1.45 to 1.46 tons d−1) for Group 1, from
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1509 to 1803 g m−2d−1 (total CO2 emission rates = 1.36 to 1.62 tons d−1) for Group 2,

and from 1767 to 1915 g m−2d−1 (total CO2 emission rates = 1.59 to 1.72 tons d−1) for

Group 3. In addition, the standard deviation of FCO2 data sets measured by Groups 1-3

consistently increased from AM to PM times.

Figures 6a-c show that there is a near one-to-one relationship between FCO2 Figure 6.

measurements made by Groups 1-3 from AM to PM times; however, the slopes of the

best-fit lines to these data are consistently >1 (1.1 to 1.2). Measurements made in

the AM are moderately correlated (C = 0.65) with those made in the PM by Group 1

(Figure 6a), while those made in the AM are well correlated (C = 0.84 and 0.82) with

those made in the PM by Groups 2 and 3 (Figures 6b and c). During the AM time

(Figures 6d-f), measurements made by Groups 1-3 are well correlated (C=0.75 to 0.89)

with each other. During the PM time, (Figures 6g-i), Group 1-3 measurements are

similarly well correlated (C=0.85 to 0.95) with each other. Groups 1-3 measured their

highest FCO2 at the same grid point in the PM. Also, the second highest FCO2 measured

by Groups 1 and 2 and the fourth highest FCO2 measured by Group 3 were measured

at the same grid point in the PM. The locations of the two highest fluxes measured by

Groups 1 and 2 are also the location of the highest temporal change in flux measured

by these groups.

Figures 7a-f show maps of FCO2 measured by Groups 1-3 during the AM and PM Figure 7.

times where each 25 m2 area represents a FCO2 measurement made in the center of the

area. Maps a-f are arranged sequentially in terms of measurement time and the time

elapsed between maps ranges from several minutes (between maps a-c and maps d-f)
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to several hours (between maps c and d). The spatial distribution of FCO2 is generally

consistent between the different maps. For example, regions of relatively high FCO2 are

located in the lower and upper left-hand corners of all maps. The upper left-hand area

shows increasing FCO2 from the Group 1 AM to the Group 3 PM measurement times

(Figures 7a-f), and the lower left-hand area shows increasing FCO2 from the Group 1

AM to the Group 1 PM measurement times (Figures 7a-d), then FCO2 decreases from

the Group 1 to Group 3 PM measurement times (Figures 7d-f).

Comparison of Geostatistical Methods

The means determined using arithmetic and MVU estimators on the raw Group 1

AM data set and the arithmetic means of data sets interpolated/simulated using RB,

OK, and sGs are similar (Table 3). To gain an understanding of how the estimated Table 3.

FCO2 means and associated total CO2 emission rates vary between these methods, we

calculated the arithmetic mean and standard deviation of the means (or emission rates).

The estimated means and associated total CO2 emission rates vary between the methods

by only ±1.1%. The arithmetic mean of the data set interpolated by MGK is relatively

low (Table 3), and when MGK is considered, the estimated means and associated total

CO2 emission rates vary between all methods by ±8.0%. The standard deviation of the

raw Group 1 AM data set (±1401 g m−2d−1) is greater than the standard deviation

estimated using MVU estimators (±1376 g m−2d−1). OK and MGK yield the smallest

standard deviations (±963 and 809 g m−2d−1, respectively) of all geostatistical methods

applied to raw and interpolated data sets.
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Figure 8a shows an uninterpolated image map of FCO2 data measured by Group 1

during the AM time. In this map, each 25 m2 area represents a FCO2 measurement Figure 8.

made in the center of the area. For comparison, each of the statistical interpolation

methods was used to construct a map of FCO2 at 1-m spacing based on the Group 1 AM

data set (Figures 8b-e). All maps display the same general spatial trends in FCO2 within

the study area, with the area of highest FCO2 located in the lower left-hand corner of the

maps. Maps interpolated by RB and OK display the smoothest and most continuous

spatial variations in FCO2, while the map simulated using sGs shows the most spatially

heterogeneous distribution of FCO2. Also, the RB and sGs maps preserve the highest

and lowest measured FCO2 values, while the OK and MGK maps ”dampen” the extreme

values.

Discussion and Conclusions

Sources of Variability of FCO2 Measurements

The arithmetic mean FCO2 and associated total CO2 emission rate varies by ±22%

between Groups 1-5 AM measurements. This variability may be due to measurement

error and/or natural change in CO2 emissions from the study area over time. In

addition, the variability of FCO2 measurements made by Groups 1-5 at each grid point

ranges from ±5 to 167%. The trend of increasing variability of measured FCO2 values

as the mean FCO2 increases may be due to greater measurement error and/or natural

temporal variability of gas flow through the system at relatively high FCO2. While it



19

is difficult to separate these effects in a field environment where true FCO2 is unknown

and varies with time, measurements made by Groups 1-3 during AM and PM times can

be compared to look for consistency within each group’s, and between different group’s

data sets to better understand whether high measurement variability is due in greater

part to measurement error or to natural temporal variability of the system.

The slopes of the lines fit to PM versus AM measurements for Groups 1-3

consistently suggest an increase in FCO2 over this time (Figures 6a-c). Because the

several highest FCO2 values measured by Groups 1-3 were measured during the PM time

at the same grid locations, it appears that these values reflect true FCO2 and are not

artifacts of the individual group’s measurement methodology. Furthermore, the good

correlation observed between measurements made by Groups 1-3 from AM to PM times

(Figures 6a-c) and between the different groups measurements during either AM or PM

times (Figures 6d-i) indicate good consistency within each group’s, and between the

different group’s, measurements and measurement methodologies. Spatially consistent

FCO2 measurements made between Groups 1-3 over time are also reflected in the time

series of flux maps (Figures 7a-f). Therefore, based on the 1) consistent increase in

average FCO2 measured by Groups 1-3 from AM to PM times, 2) the consistent locations

and times of high FCO2 measured by Groups 1-3, 3) the good correlation of measurement

made between the different groups, and 4) the spatially consistent changes in FCO2 maps

observed over time, we suggest that the high variability of FCO2 observed at relatively

high FCO2 is due in large part (although likely not entirely) to natural temporal changes

in gas flow through the system, rather than measurement error. It is also likely that the
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increase in average FCO2 measured by Groups 1-3 from AM to PM time reflects a true

increase in FCO2 from the study area over this time period.

Overall, our results highlight the sensitivity of high FCO2 values to large temporal

fluctuations over short time scales. The time series of FCO2 maps we present for Groups

1-3 (Figure 7) capture changes in FCO2 over very short time scales (minutes to hours).

To the best of our knowledge, these are the shortest time scales captured to date in

repeat measurements of FCO2 grids. These fluctuations are likely due in large part to

effects of meteorological parameters on advective gas flow through highly permeable

pathways (e.g., fractured lavas and scoria). Wind speed and direction can display

large fluctuations over relatively short time scales (i.e., seconds to minutes), where as

atmospheric pressure and temperature typically display large fluctuations over longer

time scales. Also, wind speed and FCO2 have been observed to be correlated at short

time lag between measurements of these parameters, suggesting that FCO2 may respond

rapidly to changes in wind speed [e.g., Lewicki et al., 2003b]. The influence of rapidly

fluctuating wind speed and direction on soil gas flow may therefore account for the large

variations observed in FCO2 within the study area over relatively short time periods.

Interestingly, FCO2 measurements made by Group 1 during the AM time are

moderately correlated with their PM measurements (Figure 6a), while there is higher

correlation of measurements from AM to PM times for Groups 2 and 3 (Figures 6b and

c). In addition, there is improved correlation of Group 1 measurements with those of

Groups 2 and 3 in the PM relative to the AM time (Figures 6d, e, g, and h). Group

1 made the first FCO2 measurements on 27 March, 2003. It is therefore likely that the
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highest degree of disturbance of soil and gas flow though this soil during the survey

time was caused by Group 1 as they created a new measurement footprint for the AC

at each grid location. Gerlach et al. [2001] demonstrated that surface disturbances can

dramatically alter measured FCO2. The initial soil disturbance by Group 1 during the

AM time may account for the lower degree of correlation observed within Group 1 from

AM to PM times relative to the correlation of measurements within Groups 2 and 3, as

well as the improved correlation of Group 1 measurements with those of Groups 2 and

3 from AM to PM times. While it is impossible to entirely avoid disturbance of the soil

when using the AC technique, precautions should be taken to minimize this disturbance.

For example, researchers should wait for an appropriate amount of time following

disturbance of the soil until FCO2 measurements are made. Furthermore, the influence

of soil disturbance on FCO2 measurements should be considered in interpretations of

these measurements.

Sources of variability of FCO2 estimates and maps

The means of the Group 1 AM FCO2 data set and associated total CO2 emission

rates estimated by the different geostatistical methods we present compare well (i.e.,

vary by only ±1.1%), with the exception of those estimated by MGK, which are lower.

Gerlach et al. [2001] found that kriging models are not seriously distorted by the lack

of normal FCO2 distributions. Our results show that the arithmetic mean of the OK

interpolated data set compares well to the means of the data sets interpolated using

the RB and sGs methods and to the arithmetic mean and MVU estimated mean of
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the raw uninterpolated data set. These results suggest that OK has performed well

as an estimator when applied to a lognormal distribution. However, the relatively

low arithmetic mean of the data set interpolated by MGK suggests that MGK as

implemented here does not perform well as an estimator of a lognormal distribution

(i.e., has produced underestimates of FCO2). This is likely due to our application of the

inverse of the normal-score transform following kriging of the normal-scored data set,

which can lead to a biased estimate of FCO2 [e.g., Deutsch and Journel , 1998; Saito and

Goovaerts , 2000].

Since the variability of the means and total CO2 emission rates of a single FCO2

data set estimated using a range of geostatistical methods (±1.1%) is much less than

the variability of the arithmetic means of the Groups 1-5 AM data sets (±22%), it may

be more important to assess the influences of natural fluctuations of gas flow and/or

measurement error on these estimates than it is to assess discrepancies introduced by

geostatistical methods. It should be noted, however, that while the mean FCO2 and

associated emission rate estimated using the different geostatistical methods compare

well, these methods were applied to data collected along a regularly spaced grid. The

effects of spatial clustering of measurements on estimates made by different geostatistical

methods were therefore not tested in this study and should be considered in future

comparative investigations. Also, while sGs yields a total CO2 emission rate estimate

similar to other techniques, it provides the benefit of a measure of the uncertainty

associated with this estimate, whereas the other methods considered here do not. This

is an important benefit if diffuse CO2 emissions are to be used to monitor volcanic
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activity.

While the differences between the total CO2 emission rates estimated by the

range of geostatistical methods we consider are relatively small, there are important

distinctions between the FCO2 maps produced by these methods. For comparison, we

present an uninterpolated map of the Group 1 AM FCO2 (Figure 8a). Although it is

valuable to first visualize a raw data set without geostatistical interpolation, it is unlikely

that a single ”point” FCO2 measurement is representative of an entire 25 m2 area. In

other words, we expect a higher degree of spatial heterogeneity of FCO2 within this area

due to the heterogeneous nature of the medium. For example, Lewicki et al. [2003a]

presented FCO2 measured along profile lines at one-m spacing near our study area and

showed a high degree of variability of FCO2 on this small spatial scale (Figure 9). Figure 9.

As a result, it is necessary to interpolate FCO2 at smaller spatial intervals than at which

our measurements were made. The FCO2 map produced by OK is locally accurate

and smooth and is therefore appropriate for visualizing general spatial trends in the

data. However, OK is likely inappropriate for gas flow modelling where extreme FCO2

values and spatial heterogeneity of FCO2 are important to consider. In our example,

RB preserves the extreme measured FCO2 values, but it also yields a FCO2 surface

that is smooth and continuous and likely not representative of gas flow through the

heterogeneous medium at our study site [Lewicki et al., 2003a]. Relative to OK and RB,

sGs produces a spatially heterogeneous distribution of FCO2. SGs honors the sample

histogram and the spatial variability of the data and in this way, it produces the most

realistic representation of the spatial distribution of FCO2.
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Appendix A: Data Analyses

A1. MVU Estimators

The mean of the lognormal distribution was estimated using the MVU estimator µ̂

according to

µ̂ = exp

(

ȳ +
s2

y

2

)

(A1)

where ȳ is the arithmetic mean of the n log-transformed values yi, calculated according

to

ȳ =
1

n

n
∑

i=1

yi (A2)

and s2
y is the variance of the n transformed values, calculated according to

s2
y =

1

n − 1

n
∑

i=1

(yi − ȳ)2 (A3)

[e.g., Gilbert , 1987]. The variance of the lognormal distribution was estimated using the

MVU estimator σ̂ according to

σ̂ = µ̂2
[

exp
(

s2
y

)

− 1
]

(A4)

A2. RB

RB estimates the value ẑ(u) at unsampled location u (a vector of spatial

coordinates) as a weighted linear combination of multiquadric radial basis functions
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associated with surrounding observations:

ẑ(u) =
n
∑

i=1

wi(u)C(ui − u) (A5)

where n is the number of sampled points in the data set,

C(ui − u) = ((ux − uix)
2 + (uy − uiy)

2 + e2)0.5 (A6)

is a basis function of the distance on the x-y plane between u and ui modified by the

arbitrary nonnegative constant e, and wi is the weight assigned to each basis function

[e.g., Watson, 1992]. The weights are found through the solution of a system of linear

equations:

n
∑

j=1

wj(u)C(ui − uj) + µ = z(ui) i = 1, ..., n(u) (A7)

n
∑

j=1

wj(u) = 0 (A8)

where µ is the Lagrange parameter to satisfy the condition that the weights sum to zero

(Equation A8).

A3. OK

OK estimates the value ẑ(u) at unsampled location u (a vector of spatial

coordinates) as a weighted linear combination of surrounding observations:
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ẑ(u) =
n
∑

i=1

wi(u)z(ui) (A9)

where n is the number of sampled points in the data set, z(ui) is the value of the

sampled point, and wi is the weight assigned to each sampled point [e.g., Isaaks and

Srivastava, 1989]. The weights are found through the solution of a system of linear

equations:

n
∑

j=1

wj(u)γ(ui − uj) + µ = γ(ui − u) i = 1, ..., n(u) (A10)

n
∑

j=1

wj(u) = 1 (A11)

where γ(ui − uj) is the semivariogram model evaluated at the distance between

points i and j and µ is the Lagrange parameter. Constraining the weights to sum

to unity (Equation A11) maintains the unbiasedness of the estimator. The spherical

semivariogram model equation is

γ(ui − uj) =







































1.5ui−uj

a
− 0.5(ui−uj

a
)3 if (ui − uj) ≤ a

s if (ui − uj) > a

n (ui − uj) = 0

(A12)

where s, a, and n are the sill, range, and nugget effect, respectively, each determined

from the statistical properties of the sampled data [e.g., Isaaks and Srivastava, 1989].
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Figure Captions

Figure 1. Areal photograph showing study site location adjacent to Comalito cinder

cone on the flanks of Masaya volcano. Also shown are the summit Nindiri, San Pedro,

Santiago (active), and Masaya craters.

Figure 2. (a) Map of FCO2 within area surrounding the study site (white box) simulated

using the sGs method (see Data Analysis section). Map shows mean FCO2 determined by

point-wise linear averaging of 300 simulations. White dots show measurement locations.

(b) Experimental (dots) and model (line) semivariograms of FCO2 normal scores used in

the sGs procedure .

Figure 3. Experimental (dots) and model (line) semivariograms of (a) FCO2 and (b)

FCO2 normal scores (Group 1 AM data set). The spherical model parameters are shown.

Figure 4. Histogram of AM FCO2 data sets for Groups 1-5.

Figure 5. Plot of standard deviation (σ) versus arithmetic mean (µ) of FCO2 measured

at each grid point during the AM measurement time by Groups 1-5.
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Figure 6. Plots of FCO2 measured during PM versus AM times for (a) Group 1, (b)

Group 2, and (c) Group 3. Plots of FCO2 measured during AM time by (d) Group 2

versus Group 1, (e) Group 3 versus Group 1, and (f) Group 3 versus Group 2. Plots

of FCO2 measured during PM time by (g) Group 2 versus Group 1, (h) Group 3 versus

Group 1, and (i) Group 3 versus Group 2. Also shown on each plot are a line (solid)

showing one-to-one correlation, the best-fit line (dashed) to data determined by linear

regression, the equation for this line, and the correlation coefficient (C) for the data.

Figure 7. Time series of uninterpolated maps of FCO2 measured by Groups 1-3 during

AM and PM times. Each 5x5 m area represents a FCO2 measurement. Black dots show

measurement locations.

Figure 8. (a) Uninterpolated map of FCO2 measured by Group 1 during AM measure-

ment time. Each 5x5 m square represents a separate FCO2 measurement. Black dots

show measurement locations. (b), (c), (d), and (e) Maps of FCO2 for the RB, OK, MGK,

and sGs methods, respectively.

Figure 9. Log FCO2 versus distance along a profile line near the study site (modified

from Lewicki et al. [2003a]). FCO2 measurements made at one-m spacing show a high

degree of variability on this spatial scale.
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Tables

Table 1. IRGA, A, and V of AC measurement systems used by Groups 1-5.

Group IRGA model IRGA range A V

ppmv CO2 m2 m3

1 LI-COR LI-800 0-20,000 3.2e−2 6.3e−3

2 LI-COR LI-820 0-2000 3.1e−2 6.2e−3

3 LI-COR LI-820 0-10,000 3.8e−2 2.9e−3

4 LI-COR LI-800 0-5000 3.1e−2 3.1e−3

5 LI-COR LI-800 0-20,000 3.1e−2 2.1e−3
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Table 2. FCO2 range, arithmetic mean (µ), standard deviation (σ), standard error of

the mean (σµ) and total CO2 emission rate from study area for Groups 1-5.

Group Measurement time FCO2 range µ σ σµ CO2 emission rate

g m−2d−1 g m−2d−1 g m−2d−1 ton d−1

1 AM 299-6905 1488 1401 234 1.34

2 AM 362-7006 1767 1518 253 1.59

3 AM 231-9292 1509 1633 272 1.36

4 AM 218-11,924 2425 3216 536 2.18

5 AM 351-12,277 2188 2398 400 1.97

1 PM 255-14,719 1618 2645 441 1.46

2 PM 341-11,158 1915 2226 371 1.72

3 PM 267-11,134 1803 2319 387 1.62

AM refers to grid measured between 10:00 and 13:00 and PM refers to grid measured

between 14:00 and 16:00. Total CO2 emission rates were calculated by multiplying the

measurement area (900 m2) by the arithmetic mean of each FCO2 population.
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Table 3. Mean, standard deviation, and total CO2 emission rate estimated for the Group

1 AM data set using different geostatistical methods.

Method µ σ CO2 emission rate

g m−2d−1 g m−2d−1 ton d−1

Arithmetic 1488 1401 1.34

MVU 1471 1376 1.32

RB 1493 1161 1.34

OK 1492 963 1.34

MGK 1210 809 1.09

sGs 1516 1.36±0.154

The mean FCO2 reported for sGs is the mean of the 100 simulations.
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Figure 1. Areal photograph showing study site location adjacent to Comalito cinder

cone on the flanks of Masaya volcano. Also shown are the summit Nindiri, San Pedro,

Santiago (active), and Masaya craters.
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Figure 2. (a) Map of FCO2 within area surrounding the study site (white box) simulated

using the sGs method (see Data Analysis section). Map shows mean FCO2 determined by

point-wise linear averaging of 300 simulations. White dots show measurement locations.

(b) Experimental (dots) and model (line) semivariograms of FCO2 normal scores used in

the sGs procedure .
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Figure 3. Experimental (dots) and model (line) semivariograms of (a) FCO2 and (b)

FCO2 normal scores (Group 1 AM data set). The spherical model parameters are shown.
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Figure 4. Histogram of AM FCO2 data sets for Groups 1-5.
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Figure 5. Plot of standard deviation (σ) versus arithmetic mean (µ) of FCO2 measured

at each grid point during the AM measurement time by Groups 1-5.
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Figure 6. Plots of FCO2 measured during PM versus AM times for (a) Group 1, (b)

Group 2, and (c) Group 3. Plots of FCO2 measured during AM time by (d) Group 2

versus Group 1, (e) Group 3 versus Group 1, and (f) Group 3 versus Group 2. Plots

of FCO2 measured during PM time by (g) Group 2 versus Group 1, (h) Group 3 versus

Group 1, and (i) Group 3 versus Group 2. Also shown on each plot are a line (solid)

showing one-to-one correlation, the best-fit line (dashed) to data determined by linear

regression, the equation for this line, and the correlation coefficient (C) for the data.
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Figure 7. Time series of uninterpolated maps of FCO2 measured by Groups 1-3 during

AM and PM times. Each 5x5 m area represents a FCO2 measurement. Black dots show

measurement locations.
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Figure 8. (a) Uninterpolated map of FCO2 measured by Group 1 during AM measure-

ment time. Each 5x5 m square represents a separate FCO2 measurement. Black dots

show measurement locations. (b), (c), (d), and (e) Maps of FCO2 for the RB, OK, MGK,

and sGs methods, respectively.
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Figure 9. Log FCO2 versus distance along a profile line near the study site (modified

from Lewicki et al. [2003a]). FCO2 measurements made at one-m spacing show a high

degree of variability on this spatial scale.




