
UCLA
UCLA Electronic Theses and Dissertations

Title
Improving the Range and Latency in 802.11ac Networks

Permalink
https://escholarship.org/uc/item/8t96w5xz

Author
Yin, Patrick

Publication Date
2020

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/8t96w5xz
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA

Los Angeles

Improving the Range and Latency in 802.11ac Networks

A thesis submitted in partial satisfaction

of the requirements for the degree

Master of Science in Electrical and Computer Engineering

by

Patrick Yin

2020

© Copyright by

Patrick Yin

2020

ABSTRACT OF THE THESIS

Improving the Range and Latency in 802.11ac Networks

by

Patrick Yin

Master of Science in Electrical and Computer Engineering

University of California, Los Angeles, 2020

Professor Songwu Lu, Co-Chair

Professor Greg Pottie, Co-Chair

As IoT and drone applications become increasing popular, there exists a demand to be

able to increase communications range. In addition, with possible applications in video

streaming/AR/VR, the necessity for a low-latency scheme to reduce overall transmission

delay becomes more critical. Therefore, we approach this problem on two fronts – one on

the PHY layer to solve the long-range issue, and the other on the MAC layer to solve the

latency issue. There are preexisting works on long range communications, but these use

directional antennas, high powered amplifiers, and protocol customizations on the MAC

layer. Unfortunately, these approaches are not suited for the spread out and mobile nature

of IoT and drone applications. Therefore, we focus on the PHY layer, specifically on the

concept of predistortion, to offer our solution: increased linear power that would offer a boost

in omnidirectional range without the need of directional antennas. Although much work has

been done to reduce overall latency, the methods do not completely address our problem.

To meet millisecond level requirements for delay sensitive applications, we recognize that

the long tail of the packet delay distribution poses a significant issue. Although different

ii

mitigation techniques can be developed on various layers, we choose a path that would

offer maximum marketability: a software-based solution at the MAC layer that offers the

maximum amount of delay reduction without changing components at the physical level.

We can therefore couple our long-range solution in PHY with our low latency resolution in

MAC in the form of an API that would allow for easy installation and customizations of

commodity Wi-Fi systems.

iii

The thesis of Patrick Yin is approved.

Izhak Rubin

Greg Pottie, Committee Co-Chair

Songwu Lu, Committee Co-Chair

University of California, Los Angeles

2020

iv

TABLE OF CONTENTS

1 Introduction . 1

2 Background . 3

2.1 Related Work: Range . 4

2.1.1 Forward Error Correction . 4

2.1.2 Ultra-Long Range and Satcom Networks 5

2.2 Related Work: Latency . 6

2.2.1 Rate Adaptation in LTE . 7

2.2.2 VR and Large Scale Networks . 8

3 PHY Layer: Digital Predistortion . 10

3.1 Challenges to Range Increase . 10

3.2 Predistortion Algorithm: Introduction . 13

3.3 Predistortion Algorithm: Analysis . 16

4 MAC Layer: Reducing Tail Latency . 19

4.1 Critical Metrics of Tail Latency . 19

4.2 Low Latency Rate Adaptation Algorithm: Introduction 20

4.3 Low Latency Rate Adaptation Algorithm: Analysis 23

4.3.1 Low Latency Rate Control . 24

4.3.2 Frame Aggregation Scheduling and Retransmission Dispatching . . . 25

4.3.3 Light-weight probing . 27

v

5 Implementation and Evaluation . 28

5.1 Introduction to Our Test Bed . 28

5.1.1 AD9371 Transceiver . 28

5.1.2 KC705 FPGA . 29

5.2 Implementation in Tick . 30

5.2.1 Transceiver Device Characterization 31

5.2.2 Algorithm implementation . 32

5.3 Evaluating the Algorithm . 35

6 Conclusion . 36

References . 37

vi

LIST OF FIGURES

2.1 Signal Constellations of 16-APSK (left) and 16-QAM (right) 6

3.1 Maximum Correctable Power (right) and Predistortion Feedback Circuit (left) . 15

3.2 Output Transmit Architecture of AD9371 . 16

3.3 Example of a Feedforward Predistortion Circuit with a Mixer 17

4.1 Hardware Retry and Software Reschedule flow 23

4.2 Example Flow Diagram of the Search Algorithm 25

5.1 Tick Setup . 31

5.2 Search Algorithm Snippet for Theorem 3 . 34

vii

LIST OF TABLES

4.1 PER Threshold vs retransmission count . 26

4.2 Probing Transaction Example . 27

viii

ACKNOWLEDGMENTS

Firstly, I would like to acknowledge and express sincere appreciation to my research advisor

and committee co-chair, Professor Songwu Lu, for giving me the opportunity to contribute

to the frontier of this technology frontier in the form of a novel research project. Without a

doubt, this experience has been the defining point of my academic career. It was his direction

and leadership that made this all possible.

I would also like to give special recognition and thanks to my academic advisor and

committee co-chair Professor Greg Pottie, who has been a steady well of insight and guidance

throughout my time at UCLA. It was his guidance that pushed me towards a thesis track,

and it was his brief hints and insights that allowed me to make the progress that I have

made. Under his tutelage, I was able to push myself to new and greater heights.

An additional special thanks to Professor Izhak Rubin for, when he allowed me to TA

for his ECE 132B class, provided me an environment where I could refresh my knowledge of

the MAC layer and discover addition inspiration to further my research.

Finally, I would like to express the deepest gratitude to Zhaowei Tan for mentoring me

through the process. It was his patience and advice that allowed me to transition from

an industry-based mindset to an academia-based approach when it came to research. Our

weekly meetings for the better part of a year were a wonderful exchange of thoughts and

ideas, and I would like to recognize him for integral role he played in this process.

ix

CHAPTER 1

Introduction

With Wi-Fi connectivity slowly permeating to the more rural parts of the world, we expect

demand to rise for a Wi-Fi network with capabilities beyond that of a standard commercial

system. Not only would the need for a wide-area outdoor network arise, but applications

beyond that of simple internet access become critical. Low-latency sensitive applications like

virtual reality or augmented reality require lower latency than what can currently be met.

We therefore aim to create a solution in the form of a customizable API as a supplement to

current 802.11 systems that focuses on improving the range and latency independently.

When talking about range within a home network, the concept of multipath is critical.

Multipath is the bouncing of a signal off objects such that the same signal may be received

multiple times from different paths. In such a case, the delay spread of such interference

must be accounted for in the duration of the individual transmitted symbols, otherwise

fading channels and uneven in-band frequency responses would occur. Within the rural

environment that we are focusing on, multipath does not serve as a large hindrance towards

range [1]. Since we want a customizable solution, we look at improvements that can be made

in the form of a software installation. We do not look at any kind of channel coding, as most

range related work has gotten close to theoretical limits. Instead, we look at the circuitry

within the actual transceiver. Although more promising changes can be made at the device

level, we choose to look at reducing the sideband interference generated at high power by

the output amplifier. In a nonlinear device such as an amplifier, as it gets driven more into

the non-linear region, where the power gets diverted away from the fundamental signal and

1

more into the harmonics and intermodulation products. These are detrimental as they may

cause interference in neighboring bands in the frequency domain. We look to reduce the

magnitude of these products with linearization. In this way, we can pre-process the signal

using a set of pre-determined coefficients in a lookup table applied at the FPGA level.

The latency we are looking to reduce occurs mostly at the MAC layer. More specifically,

we look to minimize the time between when a packet enters the queue at the link layer

from the upper layers of the transmitter and when it receives ACK from the receiver. The

specific mechanisms that affect this time would naturally be the retransmission rate, and

how long a given packet spends in the queue. Quite obviously, increasing the data rate

of a given flow would reduce the latency, due to the time saved during transmission [2].

However, it has been shown [3] that these increased rates do not necessary improve tail

latency, which is defined in various papers as the ath percentile, generally 90th or higher,

of a packet latency distribution. The tail latency becomes important in AR/VR and other

latency sensitive applications that would require a very high ath percentile of packets received

within a specific time. In this paper we will analyze how these delays are incurred, and our

proposed improvement algorithm.

2

CHAPTER 2

Background

With advancements in drone and IoT technology, we expect increasingly complex demands,

including a need for increased range. Our specific target application would be an outdoor

drone network, for geological or oil field survey purposes. Even more simply, local farmers

can use a form of that application to search for lost members of their herd, broken or failing

infrastructure that needs repair, or just an aerial view for an additional vantage point. This

would necessitate a cheap, commonly available, and highly customizable product that can

be installed without large amounts of pre-requisite equipment. Therefore, we look towards

a standard home Wi-Fi access point to service these highly mobile drones.

The requirements for this solution would be a customizable API that can not only support

longer range than a standard home access point, but for live survey purposes, would also

need to support the higher data rate and lower latency requirements for HD video streaming.

Drone video capture is nothing new, but these surveys necessitating real-time decisions

would either require highly sophisticated general image recognition, or a human monitoring

a live video stream. As such a sophisticated image recognition program implies a large and

expensive neural network, it would not only be simpler but a lot cheaper to implement the

network requirements for HD live streaming, and by extension, an AR/VR interface.

While our proposed application may be a lofty goal by the most optimistic standards,

the individual aspects of increased range and decreased latency do hold value. We can split

the problem and approach it from two independent fronts, with a combined solution aiming

to be a supplement to pre-existing 802.11 standards. To do this, we will need to target areas

3

that are either insufficient or are unspecified within the current standard.

Neither problem is unique: long range communications exists in form of LTE and Satcoms

to name a few, and AR/VR/HD video streaming already exists in one capacity or another.

We therefore look at the technology implemented by these systems, not with the goal of

breaking the record for any metrics, but to survey the current state of the art and see

whether novel improvements can be made on our end.

2.1 Related Work: Range

The fundamental roadblock to range is the perceived signal to noise ratio (SNR) at the

receiver. Intuitively, the farther away a receiver is from a source, the harder it is to distinguish

what is being transmitted, due to the relative noise power received. At the edge of the

network, the received signal strength is low, corresponding to a low SNR and indicating a

high probability that the receiver makes an error, for example perceiving a bit stream of

1111 to be 1110. This error would be less likely to happen closer to the source with a higher

SNR. The goal is to then somehow increase the SNR such that these errors do not happen.

2.1.1 Forward Error Correction

Error correction, and more specifically forward error correction, allows us to do precisely

this. The method involves sending redundant bits such that the system is more tolerant of

errors. For example, a very simple algorithm can transmit a single bit 3 times, such that

111, 110, 101 etc. would all be interpreted as a 1 at the receiver, allowing for errors to

be made, and act as the equivalent of signal gain. There are obvious bandwidth tradeoffs,

but mathematically, due to the Shannon limit [4], we can achieve a theoretical gain of 9dB.

Therefore, it would make sense to target this method and analyze whether any improvements

can be made. In fact, most protocols come standard with some kind of FEC, implemented

on the PHY layer as part of the MCS (modulation and coding scheme) table [5] [6]. However,

4

the primary issue is that these techniques are already so advanced that the standard code

specified by 802.11, LDPC (low density parity check), is already very close to the Shannon

Limit. Most current research focuses on decreasing the latency or complexity of the process,

so there is not much in terms of range improvements on this front.

2.1.2 Ultra-Long Range and Satcom Networks

Recognizing that there are other networks and systems that have achieved long range com-

munications, we will take this section to analyze the methodology of two in particular: ultra

long range Wi-Fi networks and satellite communications systems, and subsequently com-

ment on the suitability, aspects of potential interest, and ways they can be built upon to

yield a better solution.

For ultra long range networks like WiLDNet and DakNet [1] [7], which can achieve

links of up to 100km, they are able to satisfy the link budget deficiency by utilizing high

power wireless cards or amplifiers with highly directional antennas set on high locations,

thus avoiding multipath propagation issues. With up to 24dBi antenna gain per node, these

networks are thus able to operate their amplifiers in the linear region and avoid nonlinear

distortion. Coincidentally, another aspect of their approach was to implement what was at

the time a novel FEC algorithm to supplement the link budget. However, given that the

antennas have a very narrow coverage area over a long distance, very precise tuning is needed

to align a pair of nodes, making mobility infeasible. Additionally, the error correction they

implemented is now being outperformed by conventional codes [1] [6]

It is well known that satellite communications operate their amplifiers in saturation, or

close to, for efficiency reasons [8]. For those applications, efficiency becomes a more critical

specification, and therefore different modulations are used to accommodate the fact. While

standard 802.11 protocols have an MCS lookup table that utilizes different orders of QPSK

and QAM modulation under varying channel conditions, satcoms tend to employ an APSK

scheme, as the circular constellation provides a better PAPR than QAM at higher orders,

5

Figure 2.1: Signal Constellations of 16-APSK (left) and 16-QAM (right)

as shown in Figure 2.1 [9]. In addition, a popular standard for satellite communications,

IRIG, defines several alternative modulation schemes for space-based communications like

a pulse code modulation (PCM)/frequency modulation known as filtered continuous phase

frequency shift keying (CPFSK) [10], shaped offset quadrature phase shift keying (SOQPSK-

TG), or Feher’s quadrature phase shift keying (FQPSK-B); the latter two of which are used

for higher bandwidth efficiency requirements. All such modulations are employed due to

the constant envelope characteristics which provide minimal spectral regrowth and signal

degradation under nonlinear amplifier operation (saturation). However, QAM modulations

are more resistant to Rayleigh fading channels; a type of scattering of the propagation of

radio waves more common in ground-based wireless communications [11]. Since our goal is

a customizable API targeting earth-bound applications, the current MCS index of 802.11ac

works well enough that a new modulation scheme does not provide enough benefits to justify

the complexities and difficulties of such a change.

2.2 Related Work: Latency

A natural area to look at when reducing latency is the number of retransmissions of the

packets being sent. Re-transmission, fundamentally, is a product of error control methods

such as ARQ, implemented on the MAC layer. A re-transmission is made when a packet

is received in error. To limit the number of re-transmissions during a link, one would rea-

6

sonably try to limit the number of errors made. These errors present at the bit level, and

on a larger scale, the packet level, and correspond to the bit error rate (BER) and packet

error rate (PER), respectively. As it is impossible to transmit wireless without errors, meth-

ods such as Forward Error Correction (FEC) and Cyclic Redundancy Checks (CRC) allow

for some transmissions to be made in error and still maintain a given throughput. The

presence of channel coding effectively as signal gain, improving SNR and allowing normally

incoherently noisy signals to be received correctly. The utilization of an MCS lookup table

at PHY provides further resiliency against poor integrity channels, as a network can auto-

matically decrease the data rate to support a very lossy link, without having to terminate

the connection entirely. However, there are mathematical limits to these mechanisms [4],

and re-transmission is unavoidable. Ultra long range networks like WiLDNet have utilized a

bulk acknowledgement mechanism at MAC to reduce the latency from re-transmissions and

increase utilization of the channel [1]. This was done to compensate for the long round trip

times (RTT) of each link and does not specifically target the long tail latency that we are

concerned with.

2.2.1 Rate Adaptation in LTE

We therefore must acknowledge that different protocols approach this problem differently

and optimize their algorithms for different parameters. LTE, for instance, implements a

channel estimation algorithm at the PHY layer, dynamically calculating channel coefficients

in the form of the H matrix, in a system modelled as y = Hx + n, with x and y being the

transmit and receive signal, and n being the associated noise vector. In this way, the channel

coefficients can be used to determine SNR and the subsequent fastest transmission rate via

a modulation and coding scheme (MCS) lookup table. On the other hand, 802.11 protocols

determine data rate a bit differently. While LTE uses SNR to determine the largest mod-

ulation supported by the channel, Wi-Fi standards generally implement channel estimation

at the MAC layer, in the form of implicit or explicit probing of packets to determine packet

7

error rate (PER). Explicit probing involves using specific test packets to determine the best

data rate that a transmitter should transmit at, given the channel conditions at the time.

Implicit probing on the other hand uses live data packets. Given a current transmitting rate,

during the probing period, an implicit probing method involves sending live packets at one

rate higher than the current rate (determined by the MCS). It will repeat this process until

it is transmitting at an unacceptable PER, and it will then settle for the lower rate. This

leaves a lot of room for improvements, and we analyze possible methods of improving our

latency. While current standards have specific rate adaptation algorithms to maximize the

throughput (lost packets will affect data rate too), no central scheduler is specified within

802.11 [12], so latency times are not guaranteed or regulated.

2.2.2 VR and Large Scale Networks

Building on this, we recognize that while latency reduction has been studied extensively,

not a lot of work has been done on latency specific rate adaptation. Solutions have been

put forth targeting specific applications, like adaptive probing for latency reduction in HD

video streaming. While not as stringent, the large amount of data being transferred also

requires some latency consideration. While encoding techniques like VBR (Variable Bit

Rate) video encoding have drastically reduced the average streaming, it has been found that

insufficiencies still exist on the link [13]. In other words, although the specific 802.11 link

was rated up to a certain speed, given the different MIMO modes, correctable packet losses

were still happening in the form of implicit probing. Implicit probing, done on almost all

legacy rate adaptation protocols to reduce overhead [14], is the practice of sending a packet

at a higher PHY rate that the current rate. If the packet was successful, then the channel

was deemed adequate to support this new rate, and the next highest rate is probed. The

process continues until a predetermined number of packets fail, then the last successful rate

is chosen. Quite obviously, this is quite inefficient and incurs large amounts of packet losses

as inadequate rates are being tested. It will be shown in this thesis that the packet losses

8

are critical metrics for latency at the MAC layer. This is the rate adaptation that we will

build our own algorithm from.

Outside of a rate adaptation algorithm, there are other methods to determining and

reducing latency. These efforts usually occur on higher layers, utilizing protocols such as

the Simple Network Management Protocol on the application layer. One such work targets

latency in large scale networks [15]. However, they measure end-to-end latency, all the way

up to the application layer. This incurs large delays at the Transport and Network layer.

Although they recognized that low latency can be exacerbated with a bad connection, and

within a large enterprise wireless network, (i.e., campus, metropolitan area, IoT network),

a user device does not choose the best access point in terms of latency and speed. It

identifies that channel utilization, channel congestion, and SNR are most important for

latency sensitive AP selection rather than the widespread RSSI (received signal strength

indicator). They then construct a decision tree and use a machine learning algorithm to

choose the best AP. Based on these factors, although they validate our initial theories on

latency reduction, the effort is deemed out of scope.

9

CHAPTER 3

PHY Layer: Digital Predistortion

3.1 Challenges to Range Increase

First, we look at range at the PHY layer. From the Friis transmission equation, we know

that the ratio of power received to power transmitted is inversely proportional to distance

squared. Various models of transmission under different conditions (i.e., free space, two-ray,

Okumura-Hata) also confirm the relationship of transmitted power to distance of varying

orders. Therefore, we can conclude that, fundamentally, if we want to increase the range of

our system, we need to increase the power of the output transmitter. However, an increase in

power comes with a cost: as the amplifier is driven harder, the device is pushed into a satu-

ration region where non-linearities start showing up and affecting the signal integrity. These

non-linearities show up as spurs in the neighboring frequency bands, which will interfere

with our intended signals and prevent coherent transmission.

A nonlinear device, by definition, is a device where the input power and output power

does not plot as a straight line. Most amplifiers are linear backed off, but once it is driven

close to the rails, the signal starts clipping, and the output power stagnates. This is called

the saturation region of the amplifier and is nonlinear in nature: while the input power

increases, output power does not increase by the same amount. Generally, the response for

an amplifier can be written as follows:

Y = A0 + A1x+ A2x
2 + · · ·+ Anx

n (3.1)

10

where Y is the output and x is the input. For amplifiers in the linear region, coefficients

Ai = 0 ∀ i > 1. As the amplifier gets more into saturation, the excess power is diverted

into the nonlinear products: x2, x3, etc. The magnitudes of the coefficients of these products

change the closer the amplifier gets to saturation and is responsible for the deviation away

from the linear equation. Assuming x is a single sinusoidal input with frequency ω, x =

Acos(ωt + φ), the non-linearities present as harmonics: x2, x3 correspond to 2ω and 3ω on

the frequency domain. This can easily be proven by expressing the input as the first term

of its Euler form, where x = Kej(ωt+φ) [16].

However, the input is seldom a single tone. And particularly for 802.11ac, the transmis-

sion is at least a 64 sub-carrier OFDM signal. We can approximate what happens with a

two-tone analysis, x = xa + xb. The expansion for the first 3 terms is as follows:

A1 × x = A1(xa + xb) (3.2)

A2 × x = A2(xa + xb)
2 = A2(x

2
a + 2xaxb + x2b) (3.3)

A3 × x = A3(xa + xb)
3 = A3(x

3
a + 2x2axb + 2xax

2
b + x3b) (3.4)

The first term is a linear representation. If the device is fully linear, then the output will

only yield the original input terms.

The second term yields a square product and produces cos2(x) = 1
2
(cos(2x) + 1). While

this yields a harmonic at twice the frequency, 2ω, it also produces a DC term. This term is

the DC offset and will directly raise the noise floor as part of the 1
f

flicker noise. This would

not be an issue for standard superheterodyne receivers, as the low frequency components

get filtered out by the receive filter. However, our setup, as well as all cellphones and

most Wi-Fi enabled devices, use a direct conversion receiver architecture, which necessitates

consideration of the DC offset product and flicker noise. Direct conversion receivers couple

the input into the LO to self-mix the received signal to baseband. Because of these, it is

11

extremely susceptible to sensitivity degradation from the aforementioned products [17] [18].

Sensitivity is measured as the weakest signal that a receiver can identify, measured against

the noise floor. If a transmitter sends a DC component along with its intended signal, the

noise floor at the receiver will rise and require a higher signal power to accurately resolve.

With the third term, the primary issue is the 3a2b and 3ab2 which will yield 2ωa −

ωb and 2ωb − ωa terms, from the Euler identity. If ωa and ωb are closely spaced, which

they will be in a OFDM scheme, these intermodulation products will show up in the side

band, close to the original signals, causing interference with neighboring subcarriers. In

addition, 802.11ac is capable of modulation schemes up to 256-QAM, which will necessitate

consideration of nonlinear amplifier effects on accuracy of demodulation. In QAM, edge

points on the constellation diagram require higher power than the center points due to

the modulation scheme, which modulates both amplitude and phase. This creates peak to

average power ratio issues, as it requires a greater range of linear power from the amplifier to

properly transmit, otherwise either edge points will saturate and cause sideband interference,

or center points will not have the power to coherently transmit to the receiver. Again, a

receiver’s ability to resolve an input signal depends on its signal-to-noise ratio (SNR), which

is a direct function of the power at the receiver. A low input power means a low SNR, which

will cause demodulation errors, and prevent accurate information transfer.

One can therefore conclude that for a fixed output amplifier, a device operating under

the 802.11ac protocol is inherently range limited. Beyond a certain distance, the dynamic

range required to maintain a set data speed is unachievable, as one would either generate

sideband interference at high power, or high SNR leading to bit errors at low power.

Now that we have analyzed all problems associated with increasing the drive of an ampli-

fier as well as the various incompatibilities of pre-existing solutions, we identify the concept

of predistortion as the most suitable path forward for our application. Predistortion is part

of a family of linearization techniques, primarily used to improve the efficiency and output

power of amplifiers. One of the more well-known applications is in the implementation of a

12

Doherty amplifier, which has seen a resurgence in 4G and 5G MIMO systems for its high

efficiency at back off. With up to 256-QAM modulation in 802.11ac, the probability of an

amplifier operating at peak power is very low, so high efficiency is required when the ampli-

fier is backed off from saturation. Modern implementations of the Doherty utilize dynamic

load modulation [19], which modulates the load to improve back off efficiency. This is sup-

plemented by the predistortion linearizer, which suppresses the additional spurs generated

from load modulation.

For us, we will use the subsequent sections to analyze how predistortion can mitigate the

adjacent channel leakage ratio (ACLR) and the sideband spurs generated when our system

is run close to saturation.

3.2 Predistortion Algorithm: Introduction

Predistortion is a method of pre-processing the input signal to invert the coefficients of

the expected nonlinear products generated by the amplifier such that the magnitude of the

intermodulation products at the output are significantly lower than what it would be without

the processing. However, certain variables like number and density of coefficients, and most

noticeably the dynamic range of the ADC, will create a limit on the correctable power [20],

as shown in Figure 3.1. Even so, a predistorted signal would still experience a higher output

power and lower intermodulation products given the same input power, allowing for an

increase in range.

This fits into our intent of delivering a customizable API without the need of modifying

the hardware at the transmitter.

There are essentially two methods of predistortion: feed-forward and feedback. The sim-

plest approach is feedback, where we take the output of the amplifier in question, apply some

adaptation or processing, then feed it back to the input. Once again, this type of feedback

can be split into RF or analog predistortion and digital predistortion. RF predistortion is

13

an implementation of the most basic concept: it directly routes the processed output back

to the input of the amplifier. This does not take into account the noise generation, insertion

loss, and nonlinearities of the previous stages, namely the mixer, the filter required to main-

tain the bandwidth expansion, and the digital to analog converter converters [21]. The noise

requirements of these components would require additional filtering and consideration at the

output of the amplifier. Therefore, we turn to digital predistortion, which downconverts the

output signal before applying some adaptation algorithm directly to the digital baseband,

bypassing the aforementioned requirements.

Digital predistortion implementation methods can be categorized into either memoryless

models or models with memory. Memorylessness, via a statistical definition, is the char-

acterization that the future evolution of the process is independent of the past given the

present state. A linear amplifier is memoryless as its output only depends on the input with

some gain and a constant time delay, as the signal needs to propagate through the amplifier.

It is only when we get into the nonlinear region that we need to consider memory effects.

As shown above, nonlinearity generates intermodulation products in the frequency domain.

Including the consideration of the phase φ in the equation x = kej(ωt+φ), it becomes clear

that the phase shift is frequency dependent. In the event that two or more products land on

the same frequency, which is inevitable given the OFDM nature of our application, the am-

plitude then becomes phase dependent. This proves that a nonlinear amplifier has memory

effects, as a frequency dependence in the frequency domain is time dependence in the time

domain.

Given the nonlinearity was previously described using a Taylor series expansion, nonlin-

earity with memory can be modelled using the expanded Volterra series and its derivatives.

The complexity of its implementation and large number of coefficients required make this

impractical. Additionally, memory effects become more apparent under wider bandwidth

and higher power [22], so for our applications we can safely focus on the memoryless model.

This model assumes instantaneous nonlinearity, characterized by the AM/AM and AM/PM

14

Figure 3.1: Maximum Correctable Power (right) and Predistortion Feedback Circuit (left)

responses. For this model, we use a lookup table-based algorithm, shown in Figure 3.1. In

this method, the output of the amplifier is coupled off using a directional coupler with about

20 dB of coupling loss, causing negligible degradation of the signal output. However, since

we are at the output of the amplifier, the signal has already been modulated and converted

to analog. To bypass the mixer products and filter requirements, the signal needed to be

demodulated and converted to digital. There, we can use our algorithm to analyze the coef-

ficients of the nonlinear products at a given power level. We can then apply a look up table

and effectively pre-distort the signal such that the new signal into the amplifier contains the

inverse of the nonlinear coefficients produced by the amplifier, creating a more linear signal.

This method does require a feedback path, which for our implementation, using an Analog

Devices AD9371 Transceiver, does not exist, as shown in Figure 3.2 [23]. However, there is

a work around: we can manually retrieve the output signal at a range of power levels, and

externally apply the adaption algorithm to populate our look up table values as a function of

input power. The measurement device used to extract nonlinear data, the spectrum analyzer,

will have its own nonlinearities that must be taken into consideration. We will go into this

in a later section.

15

Figure 3.2: Output Transmit Architecture of AD9371

3.3 Predistortion Algorithm: Analysis

Since we lack a feedback path, we can also pursue an alternative feed-forward approach;

where we can measure the nonlinear behavior and apply the coefficients via FPGA without

the need for feedback. In this approach, we make use of a vector modulator, which can

split a signal into an in-phase and quadrature component, 90 degrees apart in phase [24],

with the additional feature of amplitude control, using a mixture of pin diodes and hybrid

couplers. This technique is a novel implementation of predistortion in mixers, whereas

previously predistortion has only been explored in amplifiers [25]. However, it is analogous

to the predistortion methods implemented in amplifiers, which suit our setup perfectly as

the AD9371 does not make use of an output amplifier; rather it connects an active mixer

directly to the output [23]. In this feedforward approach, the input signal is split into a

distortion path and a delay path. The distortion path is further split into another delay

path and the IMD path. IMD error signals are then generated and fed through the vector

modulator before being recombined with a delay path signal to rectify the intermodulation

products (Figure 3.3).

The IMD generator in the figure is a simple nonlinear amplifier that can generate in-

termodulation products. This is for theoretical purposes, as we do not intend on adding

another amplifier into our signal chain. Given that this is a simple nonlinear amplifier, simi-

lar to equation 3.1, we can model the output of the IMD generator as a Taylor series. Using

the same two-tone example from before, x = Acos(ω1t) + Acos(ω2t), the Taylor series then

16

Figure 3.3: Example of a Feedforward Predistortion Circuit with a Mixer

becomes:

IMDout = a0+a1A[cos(ω1t)+cos(ω2t)]+
3

4
a3A

3[cos(2ω1t−ω2t)+cos(2ω2t−ω1t)]+··· (3.5)

We can then apply the vector modulator, which has amplitude control, to remove the funda-

mental signal. Applying a phase delay and another vector modulator, we can expect some

phase delay and amplitude change, and express the output right before the mixer, PDout as

follows:

PDout = b0+b1[cos(ω1t)+cos(ω2t)]+b2[cos(2ω1t−ω2t+α)+cos(2ω2t−ω1t+α)]+ · · · (3.6)

Here we are expressing bn as some amplitude variable and α as some phase delay, both of

which can be controlled via the vector modulator. With a general mixer having an output

described by:

Mout = c0 + c1x+ c2x
2 + · · ·+ cnx

n (3.7)

where x is the product of the LO signal Lcos(ωLt) and the original signal x, and the general

17

nonlinear coefficients of the mixer are cn, then the output of the overall circuit, after selective

low pass filtering, and with some phase delay for the nth harmonic being φn, becomes:

IFout = b1c2Lcos(ω1t− ωLt+ φ1)

+ b1c2Lcos(ω2t− ωLt+ φ1)

+ b2c2Lcos(2ω1t− ω2t− ωLt+ φ2)

+ b2c2Lcos(2ω2t− ω1t− ωLt+ φ2)

+
3

4
c4b1

3Lcos(2ω1t− ω2t− ωLt+ α + φ3)

+
3

4
c4b1

3Lcos(2ω2t− ω1t− ωLt+ α + φ3) + · · ·

(3.8)

Since we are specifically targeting the 3rd intermodulation product, the most important of

which was shown in the sections above to be 2ωa−ωb and 2ωb−ωa, we can therefore isolate

those products, and conclude that we can effectively cancel it when:

b1c2 =
3

4
c4b1

3

φ2 = α + φ3 + 180o
(3.9)

The former equation is the amplitude condition, and the latter is the phase condition. Note

that the mixer amplitude L has been cancelled, so that it is independent of our calculations.

In the same way, it can be shown that the higher order intermodulation products can be

cancelled or mitigated in the same way. As a note: for this to work, the output mixer needs

to be thoroughly characterized such that all cn and φn coefficients are known to a precise

degree. In addition to that, the bn and α coefficients are controlled by the vector modulator.

Since we do not have the real estate to add the necessary circuitry, these coefficients

can be manually calculated for our specific set up, and a look up table can be generated

according to Figure 3.1, with the algorithm being applied at the FPGA level according to

the Tick setup. This is all being done with the understanding that these procedures can be

avoided with a proper feedback path.

18

CHAPTER 4

MAC Layer: Reducing Tail Latency

4.1 Critical Metrics of Tail Latency

The second half of our design involves reducing the latency of our transmission. If we were

to target mobile AR/VR applications, a high data rate at an ultra-low latency is critical.

Mobile augmented reality (AR) latency requirements have been shown to be on the order

of 1-3ms [26]. Previous generation 802.11n networks specified speeds up to 600Mbps for a

single AP while current generation 802.11ac networks offer similar speeds at close distances

and up to 7Gbps for an 8x8 MIMO setting [5]. Tests of the stock protocol 802.11n under

average speed conditions have shown latency delays as low as 5ms [2]. This would suggest

that the 802.11ac stock protocols we are looking at is somewhat close in meeting these

requirements. However, the overall 802.11 Wi-Fi standard does not specify a centralized

scheduler, which means there is no guarantee of throughput or latency for any client [12].

In addition, it has been shown that a higher data rate does not always imply lower overall

latency [3]. In the past, the assumption was that a higher data rate meant lower latency

delays. The faster the transmission rate, the quicker the information gets transmitted and

received, and the less time it takes for an overall transmission. However, further analysis and

experimentation shows that this is not the case. Rather, while a higher data rate may lower

average latency, it does not have the same effect on the tail end of the delay distribution, as

packets landing in that range will experience higher overall delays due to increased queuing

and service times. Instead, the latency, and specifically the tail latency, is dominated by the

retransmission rate. While some time can be saved by transmitting faster, the rate of error

19

inevitably goes up, and a small percentage of packets need to be sent again. Due to the

lack of a central scheduler, or rather the lack of priority assigned to retransmitted packets,

these retransmitted packets may or may not get stuck in the queue behind higher priority

packets. While they may as whole take longer to be successfully transmitted, the fact that

the majority of packets are transmitted faster lowers the average latency and hides this

issue. This becomes an issue in high latency sensitive applications like ours, contributing to

unacceptable lag times and quality of service degradation. Based on this, it is clear that the

standard 802.11 rate adaptation algorithm prioritizes high goodput over latency, creating a

prime opportunity to target that area in lowering our latency.

In terms of tail latency reduction, previous work has been done in the form of the Low La-

tency Rate Adaptation algorithm (LLRA) [3] and the MIMO Rate Adaptation (MiRA) [27],

implemented on 802.11n networks. These will be our primary reference moving forward. In

brief, LLRA targets the tail latency in 802.11n networks, while MiRA introduces the novel

rate adaptation and lightweight probing mechanism to reduce packet loss, while still main-

taining an implicit probing method. We build on this algorithm by implementing in 802.11ac

networks. The primary difference between the 802.11ac and 802.11n is the sophistication of

the MIMO modes, increasing from 4x4 to 8x8, and allowing for MU-MIMO. In addition, the

introduction of beamforming in 802.11ac allow for more efficient transmissions.

4.2 Low Latency Rate Adaptation Algorithm: Introduction

With a clear path forward, we can now analyze the rate adaptation algorithm for our specific

use. Given that the 802.11 standard does not fully specify any rate adaptation, we can

therefore craft our algorithm to fit within the standard and satisfy our goal of a customizable

API without large scale changes and incompatibilities.

Firstly, we want to know what the best rate given a specific channel condition is. As

stated before, the fastest data rate may not always yield the lowest latency. Therefore, we

20

implement the concept of rate control to answer this question. While 802.11 standards do

not regulate latency, some rate control is applied in the form of a lookup table at the PHY

layer to maximize throughput. With the advent of MIMO and beamforming technology in

802.11ac, we now have a diverse variety of rates vs spatial streams to choose from. It has been

shown that there is a non-negligible, non-monotonic relation between the rate option and

error rates when considering all rates in both single stream and double stream modes [27].

As we know that error rates are directly related to increases in latency [3], we can therefore

apply a rate control algorithm to find the rate that yields the lowest latency.

Secondly, we can use the concept of frame aggregation. Building on the bulk acknowl-

edgement mechanisms from the past [1], we can pack multiple packets into an aggregated

frame and send all at once to avoid the delays associated with the individual acknowledge-

ments of each packet. The maximum size of the aggregated frame is bound by the round-trip

time (RTT) of the frame, and therefore, the transmission time. With an increase in data

rate, we can increase our frame size.

Finally, we address the frame failure possibility with retransmission dispatching. Once

a transmission has so many errors that recovery is impossible, a retransmission request

is made in the form of withholding an acknowledgement. The transmit side expects an

acknowledgement for its transmission, and when one is not received, a retransmission is

made with two types; hardware retry and software reschedule, as seen in Figure 4.1 [3].

Initially, packets are placed into the software queue as it arrives to the MAC layer on the

transmit side. It is not placed into the hardware queue until all the priority messages have

been scheduled and transmitted. Once that is done, the packets are combined to form

an aggregate frame, then transmitted all at once. The hold times experienced by these

packets in the software queue contribute to the service time portion of our delay. A block

acknowledgement (Block-ACK) is sent from the receiver. If the ACK is received for only a

portion of the frame, then the packets received in error get placed into the software queue,

where they wait for higher priority packets to be sent first. However, if no ACK is received,

21

which means the entire frame was received in error, then hardware retry is implemented,

where the entire frame stays in the hardware queue for re-transmission. This means it gets

the maximum priority and immediate re-transmission.

As observed in LLRA [3], and restated previously, the retransmission is critical to the

tail latency. A secondary observation followed from that, in that under low loss conditions,

initial queuing delay is negligible, so that the fastest rate setting among those requiring

the minimum retransmissions is preferred. Additionally, frame aggregation aggravates the

impact of retransmission because by default in 802.11 standards, a software reschedule is

used. As shown in Figure 4.1, the software queue will incur a larger amount of delay than

the hardware queue, since the default priority setting is not customized to ensure these

packets leave as quickly as possible and reduce the latency. This is further exacerbated in

MIMO conditions, where channel congestion causes longer hardware queues as well. This is

where we can implement retransmission dispatching to mitigate these issues. For all packets

determined to be part of the long tail distribution of latency that we are looking to reduce,

any retransmitted packets within this group receive the highest priority, so that they may

leave the software queue as soon as possible. This method minimizes the latency while

making sure that the other packets do not incur additional wait times as a result.

Therefore, we can combine these 3 components for our rate adaptation algorithm, where

we use the rate control to search for the lowest latency rate among the options we have

available. Rate control then balances between these two quantities such that under low

queue situations, it selects the highest rate with low PER, rather than the highest goodput

rate which may incur higher PER, and under high traffic situations it selects the faster rate

with higher PER, as it drains the queue faster. The frame aggregation scheduling is then

used to reduce the queuing delays, while the retransmission dispatching handles the service

times by prioritizing retransmitted frames to avoid long hold times.

22

Figure 4.1: Hardware Retry and Software Reschedule flow

4.3 Low Latency Rate Adaptation Algorithm: Analysis

To implement the algorithm, we need to follow a few rules which describe the behavior of

the latency, as observed in LLRA [3].

• Rule 1: When queuing delay does not vary with rate settings, the service time thus

makes a difference. The fastest rate setting among those requiring the least number of

retransmissions is preferred. Otherwise, we should consider the initial queuing delay

and service time together for each rate setting.

• Rule 2: Aggressive aggregation is applied to the first group of packets, but not together

with the second group.

• Rule 3: To offset the tail delay of the first group, prioritized reschedule is applied to

the group’s packets that require software reschedule.

We can thus customize the rate control, frame aggregation, and retransmission dispatching

to adhere to these rules. In addition, these rules make obvious the need for a quick evaluation

algorithm. Given that we will compare different rates’ latency against each other, we need

to define, then measure, the parameters used to calculate the latency. This manifests as

a lightweight probing mechanism that measures a rate’s PER and calculates the latency

accordingly [3] [27]. These components will be detailed below.

23

4.3.1 Low Latency Rate Control

To implement the rate control, we need to search for the most suitable rate. The search will be

triggered by both time-driven and event-driven approaches. For the event-driven approach,

the search is triggered once the current rate gets worse. There will be an evaluation of PER

and retransmission rate, and if that degrades, the algorithm will begin searching for a new

rate. However, if the performance does not worsen, the time-driven approach will trigger

after a period of time, as it searches for a new rate and refreshes stale information. Iterating

through all available rates is impractical, as given the amount of MIMO modes and data

rates possible, the channel will have changed by the time a suitable rate is found. Therefore,

we apply a set of pruning rules to automatically rule out certain rates, derived from [3].

These are used to mathematically eliminate rate settings as compared to the current rate,

Rbest, and compare the actual latency between two candidate rate settings. The latency

is given as Dest = Tq[0] + Tsrv, where Tq[0] is the initial queuing delay, dependent on the

preceding frame, Npre, and Tsrv is the service time, dependent on retransmission time, Nrt,

and the transmission time, ttx.

Theorem 1: Given Rbest with Nrt = 0, any low rate R such that R < Rbest is pruned since

it cannot perform better than Rbest (i.e. Dest(R) ≥ Dest(Rbest))

Theorem 2: Given a rate R which R > Rbest and Dest(R) > Dest(Rbest), the higher rate

R
′

(i.e. R
′
> R) in the same MIMO mode is pruned since it cannot perform better than

Dest(Rbest)

Theorem 3: Given two adjacent rates Rlow and Rhigh; if they have identical Npre, the one

with the smaller Nrt is better. If Nrt is identical, then they need to be compared based on

a measured Dest.

This is put into practice as an example shown in Figure 4.2 [3]. SS, DS, and TS correspond

to single stream, double stream, and triple stream modes, respectively, and the number

before that refers to the data rate indexed by the MCS table. Starting at 162DS, a search

is triggered when the latency increases at that rate. Assuming Nrt changes from 0 to 1, and

24

Figure 4.2: Example Flow Diagram of the Search Algorithm

Npre = 0, we can then search within the same MIMO mode. It searches downward for a rate

with less delay (108DS), and since it has an Nrt of 0, switches to it. The higher rate settings

can be pruned, as can the lower ones, due to Theorem 2 and 1 respectively. The algorithm

then concludes that this is the best rate and begins probing the next higher rate in the single

stream mode (121.55SS). Since it is worse than 108DS due to Nrt ≥ 3, the higher rates are

eliminated. It stops at 108SS, which is worse than the current 108DS (All lower rates in the

single stream are eliminated). Finally, it looks at the next higher rate in the triple stream,

121.5TS. As both the higher and lower rates are worse, the search concludes at 108DS.

4.3.2 Frame Aggregation Scheduling and Retransmission Dispatching

Frame aggregation, meant to target the tail latency, can be approached as how much of

the tail we are trying to reduce. By dividing the packets based on retransmission count,

we can apply frame aggregation to those packets with delays higher than the expected

retransmission count at the αth percentile, and therefore reduce the latency of the packets

above that percentile. As previously discussed, retransmission count is a direct function

of the PER, so the PER threshold can be calculated according to the target percentile of

packets being split.

For a given PER at a specific rate setting, we can estimate the retransmission count

25

as a function of the ath percentile. Assuming that packet errors for these given conditions

are independent, the probability of a successful transmission after being preceded by i failed

packets is given by the geometric distribution as pi(1−p). This also represents the percentage

of successful frames after i + 1 transmissions. By setting our split to the αth percentile, we

can find Nrt as the smallest integer that satisfies
Nrt∑
i=0

(1− p)pi = α. We can then show PER

threshold vs. retransmission count, as shown in Table 4.1 [3].

Nrt 1 2 3
α = 90th 10.0% 31.6% 46.4%
α = 95th 5.0% 22.3% 36.8%

Table 4.1: PER Threshold vs retransmission count

We can then calculate Nrt at the targeted αth percentile and split the packets into above

and below that number. In other words, for a given PER and rate, we expect a percent of the

packets to be retransmitted less than Nrt times. The packets with a retransmission count at

or below that Nrt number are subject to aggressive frame aggregation scheduling; packing as

many packets into the frame as possible, with the highest priority to avoid long wait times at

the software queue. This is done so that the packets that need to be retransmitted more than

Nrt times are not stuck behind a long queue. These packets do not get assigned the highest

packets. The number of packets per frame is a function of the rate, which is determined by

our rate control algorithm. Once all the packets in first group have been serviced, aggressive

frame aggregation is applied to the second group. This way, we can reduce the tail delay of

the first group of long latency packets without increasing the initial delay, Tq[0], of the second

group. More specifically, Tq[0] can now be defined as Tq[0] = (Npre + 1) × Tsw int + THQ.

Tsw int represents how often a frame is moved from the software queue to the hardware

queue, THQ is the amount of time spent in the hardware queue, and Npre is the number of

preceding frames to a given packet, which can be estimated based on the average number of

simultaneous packets in the queue and the rate’s maximum aggregation size.

26

4.3.3 Light-weight probing

Similar to the search algorithm, we desire a method of quickly determining the PER of a

given rate. While there are two methods of determining packet error rate, probing based

and SNR based, most platforms do not support the latter, so we stick with the former.

Following pre-existing work done on lightweight probing [3] [27], we see that the probing

mechanism consists of 2 components for eliminating probing packets for invalid rates:

• Slow-Start Pruning: It detects an inapplicable rate with few packets. To probe a

rate, it starts from the frame with one packet size, and then exponentially increases

the frame size, stopping when either the collected results are sufficient or the packet

loss count has verified the inapplicability of the rate. A rate is inapplicable when its

PER exceeds certain threshold associated with the retransmission count, such that it

can perform no better than the current best rate, according to Table 4.1

• Association Rule-Based Pruning: uses correlations among rates to infer a rate’s in-

applicability from other rates under similar channel conditions. The underlying premise

is that each rate setting behaves similarly among time-varying samples under the same

channel condition, so rate settings can be correlated with each other in their perfor-

mance. An example of this is shown in Table 4.2 [3].

In addition, this mechanism uses success inheritance, which inherits successful probing data

from a higher rate.

History Probing 121.5 SS 162 DS 121.5 TS
1 1 1 1
2 1 1 0
3 0 0 0
4 1 0 1
5 1 1 1

Table 4.2: Probing Transaction Example

27

CHAPTER 5

Implementation and Evaluation

5.1 Introduction to Our Test Bed

We evaluate our algorithm with a preexisting SDR system, Tick. Tick is an SDR (software

defined radio) system that provides programmability and ensures low latency at both PHY

and MAC [28]. It has been programmed to support 802.11a/g/n/ac protocols. For our pur-

poses, it is a self-contained transceiver system that allows for point-to-point communication

with no additional equipment required besides a host PC. For our setup, we decide to use two

Tick modules to model our system as a two-point network, for simplicity. In practical larger

scale operations, we anticipate multiple modules communicating with a single access point.

With just the host PC, Tick allows us to test our low latency software without introducing

any additional latency impact in our targeted section. The FPGA provides a medium to

support all MAC layer operations required to implement our low latency algorithm as well

as the digital operations needed for the linearization portion. It then interfaces with the RF

front-end, which operates the transmit and receive hardware.

5.1.1 AD9371 Transceiver

The RF front-end is a radio card supporting the AD9371 transceiver chip. The AD9371 itself

is a dual channel transceiver IC with integrated synthesizers and digital signal processing [23].

Although not explicitly stated, it can support standard 802.11ac communications by virtue

of its operating frequency range and narrowband flatness in the 2.4GHz and 5GHz bands.

28

Internally, the output stage of the RF chain is an active mixer, with the assumption that it

would be connected to an external power amp lifer for range purposes. The overall lineup

consists of quadrature error correction and programmable digital filters, which eliminates the

need for them in the digital baseband, bypassing an element of concern when considering

digital predistortion. Externally, it has multiple transmit and receive channel, capable of

both FDD and TDD applications, and able to support SISO and MIMO modes as well.

It has four high speed serial interface links each for the transmit and receive chains,

JESD204B. These are multi-gigabit serial data links to connect with an FPGA for cus-

tomization purposes. Our linearization coefficients will be generated at the FPGA, then

added to the digital baseband signal before passing through the JESD204B lanes to the

AD9371, which has additional programmable FIR filters for interpolation and sampling ar-

tifact removal capabilities at the digital and analog domains.

The receiver side consists of 2 independent receiver channels, each of which is a direct

conversion system with a digitally adjustable attenuator. The incoming signal gets self-

mixed to the baseband, before passing to the ADC which has adjustable sample rates and

FIR filters with additional decimation capabilities.

5.1.2 KC705 FPGA

The FPGA we use is an KC705 evaluation board for the Xilinx Kintex 7 series FPGA. It

can natively interface with the host PC via JTAG and PCIe, but we have connected an

external USB3.0 module via one of the two FMC (FPGA Mezzanine Card) interfaces, the

other connecting to the AD9371 Transceiver evaluation board. The full configuration can be

seen in Figure 5.1. Both interactions are supported internally via the JTAG logic module,

which also allows for software configurations using the Xilinx software tool.

Tick uses this exact setup to experiment with several software and hardware techniques to

reduce latency, all implemented within the embedded processor of the FPGA. In summary,

29

it utilizes multi clock domain pipelining to speed up PHY layer data-flow processing like

message passing, and implements an accelerator-rich environment at the MAC to direct

control flow and reduce latency.

The embedded microprocessor used is MicroBlaze, a soft microprocessor core imple-

mented entirely within the general purpose memory of the KC705. Given that most of Tick

is out-of-scope, we will omit descriptions of the rest of the system level features and modules

critical for execution, like the clock generation and the memory modules.

Tick itself is programmed in Ubuntu, with most of the code implemented in Verilog, and

a small portion in C for the embedded processor logic. We aim to code the linearization

portion of our solution in the form of modifications to the digital baseband implemented in

Verilog, and the rate adaptation portion in C.

5.2 Implementation in Tick

Our intent was to test our algorithm over the preexisting 802.11ac protocol currently running.

The output port of the AD9371 radio card was intended for an output power amplifier. We

instead connected an omnidirectional antenna to each transmit and receive port, knowing

that the max range would be limited, but instead looking to see how much improvement we

can achieve over the stock protocol. Performance metrics here would be maximum distance

while still maintaining minimum coherent transmission, as well as max distance with respect

to MCS CQI (channel quality indicator).

In terms of latency, we look to plot the cumulative distribution functions comparatively

between a standard high goodput rate setting in 802.11ac and the corresponding low latency

adaptation rate that we are implementing.

30

Figure 5.1: Tick Setup

5.2.1 Transceiver Device Characterization

In order to properly implement the predistortion algorithm, we needed to thoroughly define

the mixer nonlinear coefficients and phase delays. This would require accurate characteriza-

tion of both the ACLR (adjacent channel leakage ratio) and the intermodulation products.

While ACLR can be measured through a modulated signal on a spectrum analyzer, the inter-

modulation products would require a separate element programmed in Verilog. Summarily,

instead of transmitting normally via the 802.11 protocol, we need to send unmodulated test

tones, preferably two, at a controllable power level. The element itself would have needed

to be able to cycle through many different power levels, frequencies, and tone spacing. We

are looking specifically for the difference in power of the intermodulation products, relative

to the desired tones, measured in dBc, or dB below carrier. This dBc measurement directly

correlates to the ratios of the magnitudes, or Ai/A1, ∀ i > 1, as described by equations 3.1

and 3.7. In addition, AM/PM tests can be performed to determine the phase delay. We can

then determine all our coefficients and create our lookup table. However, due to COVID-19

restrictions, lab access was forbidden, and implementation of this section was not possible.

31

5.2.2 Algorithm implementation

Our code in implemented in C. We split the algorithm into two parts, a probing algorithm

to improve upon the implicit probing that comes standard with the 802.11 protocol, and the

rate control that determines the best latency rate. The rate control algorithm will search

across all available rates for the candidate rate with the next lowest latency according to

rules defined in section 4.3.1, using channel information determined by a probing mechanism,

as described in section 4.3.3

5.2.2.1 Rate Control

While in lab testing and access to equipment was again unavailable due to COVID-19, we

were able to construct the logic that forms the basis of the search algorithm. The search

algorithm differentiates MIMO modes in that it will search through a single mode (SS, DS,

TS, etc.) before looking across modes. By Theorem 3, it compares adjacent rates, moving

upward in rate setting until the highest rate is reached or everything higher is eliminated by

Theorem 2. Then it moves downward until the lowest rate setting is reached, or alternatively,

the highest one with Nrt = 0. After that, Theorem 1 dictates that it can start searching

other modes with Nrt = 0, continuing the process until all rates have been evaluated or

mathematically eliminated.

Based on this, we would need to maintain several matrices indexing the PER of different

rates and MIMO modes, along with the critical parameters like Nrt and Npre needed to

evaluate latency, which has been defined previously as Dest = Tq[0]+Tsrv. These parameters

would be constantly refreshed with the probing function or an inquiry within the FPGA

measurements. With Tq[0] = (Npre + 1)× Tsw int + THQ and Tsrv = Ttx +Nrt × (THQ + Ttx),

we can solve for the latency. Ttx, which is the sum of transmission through air and the MAC

overhead, and THQ, which is the hardware queuing delay, and Tsw int can all be measured

and estimated at the FPGA level. Npre can be calculated in accordance with [3]. As detailed

32

in previous sections, Nrt can be calculated as a function of the ath percentile using the PER

for the channel. The PER of a given rate is further analyzed using the probing mechanism,

described below. During implementation, we will assume the mechanism has already given

us the proper Nrt values, and all missing variables have been measured and defined. A

snippet is detailed in Figure 5.2.

5.2.2.2 Probing

Our proposed probing algorithm is built on the same principle as the implicit probing imple-

mented in standard rate adaptation algorithms. To determine the PER and thus the channel

behavior, we actively measure the incoming packets and keep track of how many packets

need retransmission. In MiRA, this was done with a single A-MPDU (aggregate MAC Pro-

tocol Data Unit), as each aggregate frame contains enough packets to make an accurate

estimation [27]. For us, since the number of packets needed to determine PER and thus

Nrt is dependent on a, we remove the frame limit and probe until we have a determination

or until we collect enough errors to invalidate the rate. For example, if we were to set our

a = 95, then based on Table 4.1, our PER threshold for an Nrt of 1 is 5%. So, in Figure 4.2,

starting at 108DS with an Nrt of 0, the latency rate control decides to probe 162DS. 162DS

is then probed, until its PER of 85% proves it is not a better rate setting.

Here, the probing mechanism will actively measure the error percentage, or PER, denoted

as p in the expression
Nrt∑
i=0

(1− p)pi = α. it will then return Nrt to the rate control algorithm

for determination.

Additionally, it will need to dynamically calculateNpre andDest according to section 4.3.2.

To save both operating overhead and memory, we only probe as required per the rules we

set. With 10 different data rates each for different channel widths and configurations across

4 MIMO modes, continuously updating for Nrt and Npre for every element is inefficient.

33

Figure 5.2: Search Algorithm Snippet for Theorem 3

34

5.3 Evaluating the Algorithm

While lacking in live parameters, we were able to insert dummy variables in their place.

By creating a placeholder matrix with estimated values for Nrt, Npre, Tq[0], and such, we

were able to confirm our logic, as shown in Figure 5.2 with theorem 3. As an example, we

started in the middle, with a rate index of 5 and mode index of 2 corresponding to 351DS in

802.11ac. The algorithm then probed the 2 neighboring rates for their PER, and calculated

the Nrt, Npre, and other associated parameters accordingly, before making a determination.

35

CHAPTER 6

Conclusion

Our analysis has shown us that the nonlinear behavior of the amplifier does have a signif-

icant influence on the spectral performance. While our work was limited to narrowband

considerations, we recognize that in wideband or broadband systems a more complex model

needs to be considered, especially when it comes to accounting for memory effects. Nonethe-

less, we have seen that the linearizer has a large role in the signal chain, whether it be

intermodulation mitigation or efficiency-based applications like dynamic load modulation.

In terms of latency, we have shown that most systems prioritize goodput over latency

when it comes to rate adaptation, and that these algorithms are insufficient when it comes

to long tail latency. Furthermore, we note that the ambiguity in the standard 802.11 opens

the door for possibly cross-layer improvements. For example, we can see an approach of

improving the latency on both PHY and MAC simultaneously, as current methods are more

or less confined to independent single layer solutions.

In conclusion, our work has shown that there are some definitive areas of improvement for

existing 802.11 systems. While most home networks in urban environments are incentivized

to maintain a low range to avoid interference with neighboring networks, we can see that a

customizable software-based API that can control range is very useful. This especially rings

true in the latency domain, as latency sensitive operations do not consist of the bulk of a

user’s internet traffic. Therefore, a low latency mode that can be switched on would be very

useful.

36

REFERENCES

[1] Rabin K Patra, Sergiu Nedevschi, Sonesh Surana, Anmol Sheth, Lakshminarayanan
Subramanian, and Eric A Brewer, “Wildnet: Design and implementation of high perfor-
mance wifi based long distance networks,” USENIX Symposium on Networked Systems
Design & Implementation, vol. 4, pp. 87–100, 2007.

[2] David Newman, “802.11n gear 10 times faster than current Wi-Fi offerings,” Network
World, Oct 2008.

[3] C. Li, C. Peng, S. Lu, X. Wang, and R. Chandra, “Latency-aware rate adaptation
in 802.11n home networks,” in 2015 IEEE Conference on Computer Communications
(INFOCOM), 2015, pp. 1293–1301.

[4] Stephen B. Wicker, Error Control Systems for Digital Communication and Storage,
Prentice Hall, Upper Saddle River, NJ, USA, 1995.

[5] Matthew S Gast, 802.11 ac: a survival guide: Wi-Fi at gigabit and beyond, ” O’Reilly
Media, Inc.”, 2013.

[6] Reina Riemann and Keith Winstein, “Improving 802.11 range with forward error cor-
rection,” Technical Report, MIT-C, SAIL-TR-2005-011, 12 2005.

[7] S. Aust, R. V. Prasad, and I. G. M. M. Niemegeers, “Outdoor long-range wlans: A
lesson for ieee 802.11ah,” IEEE Communications Surveys Tutorials, vol. 17, no. 3, pp.
1761–1775, 2015.

[8] The Consultative Committee for Space Data Systems, “Bandwidth-efficient modula-
tions,” CCSDS Green Book, vol. 2, pp. Chapter 2, Oct 2009, [Online; accessed 21. Nov.
2020].

[9] R. Wei and X. Wang, “Differential 16-qam and 16-apsk for uplink massive mimo sys-
tems,” IEEE Wireless Communications Letters, vol. 7, no. 2, pp. 170–173, 2018.

[10] Inter range Instrumentation Group, “Transmitter and receiver systems,” IRIG Teleme-
try Standard, p. Chapter 2, Jul 2019, [Online; accessed 21. Nov. 2020].

[11] Marco Baldi, Franco Chiaraluce, Antonio de Angelis, Rossano Marchesani, and Sebas-
tiano Schillaci, “A comparison between APSK and QAM in wireless tactical scenarios
for land mobile systems,” J. Wireless Com. Network., vol. 2012, no. 1, pp. 1–14, Dec
2012.

[12] Ilya Grigorik, “Performance of Wireless Networks: WiFi - High Performance Browser
Networking (O’Reilly),” High Performance Browser Networking, Apr 2016.

37

[13] An Chan, Henrik Lundgren, and Theodoros Salonidis, “Video-aware rate adaptation
for mimo wlans,” in 2011 19th IEEE International Conference on Network Protocols.
IEEE, 2011, pp. 321–330.

[14] Starsky HY Wong, Hao Yang, Songwu Lu, and Vaduvur Bharghavan, “Robust rate
adaptation for 802.11 wireless networks,” in Proceedings of the 12th annual international
conference on Mobile computing and networking, 2006, pp. 146–157.

[15] Kaixin Sui, Mengyu Zhou, Dapeng Liu, Minghua Ma, Dan Pei, Youjian Zhao, Zimu
Li, and Thomas Moscibroda, “Characterizing and improving wifi latency in large-scale
operational networks,” in Proceedings of the 14th Annual International Conference on
Mobile Systems, Applications, and Services, 2016, pp. 347–360.

[16] Kuo-Chang Chan, “IP3 and Intermodulation Guide | Maxim Integrated,” March 2013,
[Online; accessed 3. Nov. 2020].

[17] A. Loke and F. Ali, “Direct conversion radio for digital mobile phones-design issues,
status, and trends,” IEEE Transactions on Microwave Theory and Techniques, vol. 50,
no. 11, pp. 2422–2435, 2002.

[18] A. Lozowski and B. Galwas, “Homodyne frequency demodulator for phase noise mea-
surement systems,” in 1995 25th European Microwave Conference, 1995, vol. 2, pp.
1251–1253.

[19] Frederick H Raab, “High-efficiency linear amplification by dynamic load modulation,”
in IEEE MTT-S International Microwave Symposium Digest, 2003. IEEE, 2003, vol. 3,
pp. 1717–1720.

[20] Wan-jong Kim, S. Stapleton, and H. Kim, “Linearizing Power Amplifiers Using Digital
Predistortion, EDA Tools and Test Hardware,” High Frequency Electronics, 2004.

[21] Maxim Integrated, “RF Predistortion vs. Digital Predistortion - Maxim Integrated,”
March 2013, [Online; accessed 3. Nov. 2020].

[22] Keysight, “Digital Pre-Distortion (DPD) Concept,” Sep 2020, [Online; accessed 3. Nov.
2020].

[23] “AD9371 Datasheet and Product Info | Analog Devices,” Mar 2017, [Online; accessed
20. Nov. 2020].

[24] Youngwook Kim, Youngsik Kim, and Soonghak Lee, “Linearized mixer using predis-
tortion technique,” IEEE Microwave and Wireless Components Letters, vol. 12, no. 6,
pp. 204–205, 2002.

[25] JS Kenney and A Leke, “Design considerations for multicarrier cdma base station power
amplifiers,” Microwave Journal, vol. 42, no. 2, pp. 76–83, 1999.

38

[26] Wouter Pasman and Frederik W Jansen, “Latency layered rendering for mobile aug-
mented reality,” in SYMPOSIUM ON INFORMATION THEORY IN THE BENELUX.
Werkgemeenschap voor Informatie-en Communicatietheorie; 1998, 2000, pp. 45–54.

[27] Ioannis Pefkianakis, Yun Hu, Starsky H.Y. Wong, Hao Yang, and Songwu Lu, “Mimo
rate adaptation in 802.11n wireless networks,” in Proceedings of the Sixteenth Annual
International Conference on Mobile Computing and Networking, New York, NY, USA,
2010, MobiCom ’10, p. 257–268, Association for Computing Machinery.

[28] Haoyang Wu, Tao Wang, Zengwen Yuan, Chunyi Peng, Zhiwei Li, Zhaowei Tan, Boyan
Ding, Xiaoguang Li, Yuanjie Li, Jun Liu, et al., “The tick programmable low-latency
sdr system,” in Proceedings of the 23rd Annual International Conference on Mobile
Computing and Networking, 2017, pp. 101–113.

39

