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ABSTRACT

Almonds are consumed by individuals around the world. Because almonds are rich in protein, unsaturated fatty acids, and fiber, a significant
amount of research has been conducted on their role in affecting various cardiometabolic endpoints (body weight, blood pressure, blood
cholesterol levels, and glycemic response). The most current meta-analyses on almond consumption and various health-related endpoints
suggest that almond consumption does not result in weight gain and results in small reductions in LDL cholesterol and diastolic blood
pressure, as well as improved glycemic responses in certain populations (i.e. Asian Indians). A number of research gaps on almond con-
sumption and cardiometabolic health were identified that should be addressed to further understand their role in the various car-
diometabolic endpoints, including the mechanisms of action interactions with the microbiome with regular consumption and their role as
part of a healthy dietary pattern for both individuals and the general population.
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Introduction

The almond is a tree nut and its whole form (e.g. natural,
roasted) is commonly consumed as a snack or integrated into
meals. In addition, there are various other forms of almonds that
are consumed as a routine part of a daily diet. Almond flour is finely
ground almonds that—is sold in its natural or defatted form and is
used as an alternative or complement to other flours. Almond
“milk” is the liquid from almonds that have been ground in water

and drained and is a popular dairy-free beverage. Almond butter is
usually composed of almonds that have been blended without any
non-almond-derived oil and is typically used as a spread, dip, or
component of baked goods. Almond butter has a similar consis-
tency to peanut butter and may serve as an alternative for those
with a peanut allergy. Whole blanched almonds, along with other
ingredients, are used to make almond paste for baking.

It has been estimated that the average annual consumption of
whole almonds in the United States is 2.3 1b (1.04 kg) per person,
with roasted whole almonds being most commonly consumed.

Abbreviations: NRF, nutrient rich food index; FFQ, food frequency questionnaire; ME, metabolizable energy; HbA1C, hemoglobin A1C; FBG, fasting blood glucose;

GLP1, glucagon-like peptide-1; GIP, gastric inhibitory polypeptide.
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Similarly, European countries, including France, Italy, and Ger-
many, consume an estimated 1.6 1b (0.73 kg) to 2.3 1b (1.04 kg)
annually per person, the most common form being natural. In
Asian countries such as India, South Korea, China, and Japan, the
estimated annual almond consumption is lower at 0.2 1b (0.09
kg) to 1.3 1Ib (0.59 kg) per person.

A 28 g (1/4 cup) serving size of raw, whole almonds provides
~165 calories, 6 g of protein, 14 g of fat (67% MUFA, 11% PUFA,
and 8% saturated), and 3 g of dietary fiber [1]. Almonds are part
of the nuts, seeds and soy products subgroup to the protein food
group of the USDA US Style eating patterns. The 2020-2025
Dietary Guidelines for Americans identified nuts as protein food
that makes up a healthy eating pattern [2].

Whereas most metrics that attempt to capture the nutrient
density of foods are based on the presence of nutrients of concern
(sodium, saturated fats, and cholesterol), some nutrient profiling
methods also include positive nutrients of public health signifi-
cance such as protein, dietary fiber, calcium, and potassium [3].
Specifically, the Nutrients Rich Food Index (NRF 9.3) calculated
per 100 g gives especially high scores to almonds and tree nuts
compared with other foods in the USDA protein foods group.
Almonds score high because of the high content of dietary fiber,
protein, vitamins, and minerals and low content of saturated
fatty acids, added sugars, and sodium. Calculated per 100 g, al-
monds had the highest mean NRF score compared with all other
foods in the protein food group [3].

Much research has been conducted to understand how al-
monds influence human health and disease, including cardio-
vascular disease (CVD), diabetes risk, and body weight/obesity.
There has been much interest in investigating the effect of
almond consumption on these endpoints because of some of the
components found in almonds. The Food and Drug Administra-
tion (FDA) issued a qualified health claim on nuts, including
almond consumption and risk of coronary artery disease [4].
Almonds contain f-sitosterol, a phytosterol for which there is
well-established evidence that it can lower LDL cholesterol levels
[5]. As such, the FDA issued a health claim regulation for phy-
tosterols and risk of CVD based on LDL cholesterol data.
Furthermore, almonds contain by weight 67% monounsaturated
fats, 11% polyunsaturated fats, and 11% dietary fiber. There is
strong evidence that polyunsaturated fats reduce the risk of heart
disease when replacing saturated fats [6], as well as some evi-
dence that monounsaturated fats from various sources replace
saturated fats in the diet [7]. Possibly due to the high fat (54%)
and protein (20%) content of almonds, their consumption has
been shown to enhance the feeling of fullness and satiety and,
therefore, may lead to energy compensation and decrease overall
daily calorie intake from other foods [8].

The nutritional composition of almonds has led to their in-
clusion in numerous randomized clinical trials to evaluate their
role in various health and disease markers. Almonds have also
been studied extensively in observational studies. However,
unlike other nuts or nuts as a whole, almonds are not listed
individually in most validated food frequency questionnaires
(FFQ). That omission limits the utility of large-scale observa-
tional studies that use FFQ data to evaluate the association be-
tween almond consumption and health outcomes.

Using primarily published meta-analyses that specifically
evaluated clinical trials on almonds, this article presents the
perspectives of an Expert Panel of scientists convened by the
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Almond Board to evaluate the current state of the science
regarding almond consumption and its effects on CVD, diabetes
risk, and weight gain/obesity. In addition, the Expert Panel was
charged with identifying priorities for future research in this
area.

Anthropometric Endpoints

Two meta-analyses considered studies of the impact of
almond consumption on body weight and body composition [9,
10] and found similar results. Studies included in these
meta-analyses used almond doses of 10-100 g/d for periods
ranging from 3 wk to 18 mo. Studies included those where al-
monds replaced other calories in the diet, as well as those where
almonds were added to the diet. Study participants included a
wide range of body mass indices. There was an impressive con-
sistency in the lack of weight gain seen across all studies. In fact,
there was some evidence that almond consumption of >50 g/d
may have led to small reductions in body weight in some study
participants.

Energy density has been historically measured using the
Atwater factors [11]; however, for some foods, such as almonds,
this method may overestimate the energy density because it does
not account for the lower digestibility of nuts. Unlike other
foods, the macronutrients in nuts, especially fats, are less avail-
able for digestion because of intact cell walls that encapsulate
nutrients, making them less accessible to digestive enzymes. A
rigorous study designed to test this overestimation [12] has
shown that a significant portion of the fats in whole nuts is
excreted rather than absorbed, resulting in a lower actual
metabolizable energy (ME) than the values predicted by the
Atwater factors. Consequently, the empirically available energy
density of almonds (4.6 kcal/g) is substantially lower than the
energy density calculated using the Atwater factors (6.1 kcal/g).
That overestimation has consequences for nutrient profiling
systems that are often based on the nutrients to calorie ratio.
Nutrient density of almonds will be higher when calculated using
revised energy content values.

The lack of weight gain that might be expected in studies
where almonds were added to the diet suggests that, besides the
lower ME, almond consumption must stimulate compensation
for additional calories. This could potentially be a result of
reduced energy intake from other sources, incomplete absorp-
tion of fat, microbiome effects, and/or increases in energy
expenditure. Understanding how this compensation occurs is a
high priority for future research.

Risk of Cardiovascular Disease

Numerous studies and meta-analyses have addressed the ef-
fect of almond consumption on LDL cholesterol. The original
trials have generally been relatively small, using both substitu-
tion and addition of almonds to the diets and involving study
participants with a wide range of body mass indices. As with the
studies focused on body weight, these studies used almond doses
of 20 to 113 g/d, and the duration of the almond consumption
period ranged from 4 weeks to 18 months. In some cases, effects
of almonds on LDL cholesterol were significant, and in others
not. While there was great variability in the findings among the
studies, the studies trended toward a significant pooled
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reduction in LDL cholesterol (—0.124; 95% CI: —0.196, —0.051),
reflecting a 5.1 mg/dL reduction. Based on the review of the
published data, including 3 meta-analyses [13-15], almond
consumption results in a reduction of LDL cholesterol by ~5
mg/dL for the general population, including those at risk of
chronic diseases.

Another meta-analysis of 5 studies conducted in individuals
with type 2 diabetes did not show a significant pooled effect on
LDL cholesterol [16]. This may have been the result of the
limited number of studies, which ranged in sample size from 20
to 33 subjects. When subgroup analysis was conducted, however,
there was a significant reduction in LDL cholesterol (—12.07;
95% confidence interval [CI]: —21.78, —2.35) for those who
consumed >50 g/d almonds.

Blood Pressure

Similar to LDL cholesterol, numerous intervention studies
have been conducted on the effect of almond consumption on
blood pressure. These studies are generally small, with varying
doses of almonds consumed for varying amounts of time. Some
studies used almond substitution, and others added almonds to
the diet. Despite the variability in studies, 3 meta-analyses [15,
17,18] of almonds and blood pressure have been conducted. Two
of these [15,17] found very small (1.3 mm, 0.17 mm), but sig-
nificant decreases in diastolic blood pressure. All 3
meta-analyses found no effect of almond consumption on systolic
blood pressure.

There was some indication of greater effects with a longer
feeding period (10+ wks) and a higher dose of almonds (50+ g)
among these studies. Thus, there is a great need for studies with
sufficient sample size to evaluate the impact of almonds on blood
pressure in different subpopulations, including older adults, those
with higher baseline blood pressure, and those with obesity.

Risk of Diabetes

Three meta-analyses were identified that included trials that
analyzed the effect of almond consumption on risk biomarkers of
type 2 diabetes [i.e. fasting blood glucose (FBG), Hemoglobin
Alc (HbAlc], and insulin resistance using the HOMA method)
[15,19,20]. None of these meta-analyses showed a significant
effect of almond consumption on FBG. The number of studies
included in each of these meta-analyses ranged from 6 to 23 and
included healthy individuals and individuals with type 2 dia-
betes. Furthermore, a significant reduction in FBG was not
observed for any of the subgroups analyzed [15,20].

The findings of the meta-analyses were mixed for HbAlc,
with one observing a significant reduction with almond con-
sumption (mean difference; —0.52; 95% CI: —0.58, —0.46) (Oja)
and 2 observing no effect [15,20]. Although Ojo et al. [19]
included only 6 studies, these studies were conducted exclu-
sively on individuals with type 2 diabetes, whereas the other 2
meta-analyses were conducted on a mix of healthy individuals
and individuals with type 2 diabetes. The results of Ojo et al.
[19] also must be viewed with caution, as there appears to have
been an extraction error with SEs extracted as SDs from 2 of the
included trials [21,22], resulting in an overweighting of these 2
trials, which together contribute >90% of the weight to the
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pooled estimate. Morvaridzadeh et al. [15] did not observe a
significant reduction in HbAlc among a subgroup of studies on
type 2 diabetes; however, this analysis included only 2 studies.

None of the meta-analyses observed a significant change in
insulin resistance-HOMA among the study intervention groups.
Subgroup analysis showed evidence of effect modification by
age, weight status, health status, duration of follow-up, and risk
of bias with no clear pattern on risk factors for type 2 diabetes
among participants [20].

Risk of Diabetes in Asian Indians

The above discussed meta-analyses represented many coun-
tries, including the United States, Canada, Australia, Iran, and
Asian countries such as Taiwan and Korea. It is recognized that
South Asians have an increased susceptibility to type 2 diabetes
and metabolic dysfunction [23]. Insulin resistant Asian Indians
have significantly higher plasma insulin levels and associated
IR-HOMA compared to insulin resistant Caucasians [24].
Furthermore, postprandial blood glucose levels are significantly
higher in Asian Indians compared with other geographic loca-
tions [25]. Although meta-analyses have not been conducted
specifically on almond consumption and Asian Indians, several
feeding studies have been conducted on this population [26-30].
Three studies evaluated the effect of almond consumption (20 to
60 g/da) on FBG and HcA1C in Asian Indians with prediabetes
[27-29]. These 3 studies reported that, compared with a control,
there was a significant reduction in FBG (5.5, 6.3, and 6.1
mg/dL) and HbA1lc (—0.09, —0.4, —0.4). Such findings were not
observed in healthy, overweight individuals [30]. In individuals
with type 2 diabetes, the findings were mixed in that there was a
significant reduction in HbAlc, but not for FBG [26].

The Effect of Almond Consumption on the
Composition and Metabolome of the
Microbiome

The relative proportions of the bacterial species that compose
the gut microbiome can be significantly influenced by diet. The
food consumed 2 d prior to sampling and analysis of a fecal
sample tends to have the biggest impact on microbiome com-
munity structure, and the same food can have different effects on
the microbiome of different people, suggesting individualized
responses [31]. The microbiome has also been shown to influ-
ence metabolic health; for example, microbiome-derived
short-chain fatty acids (SCFAs), which are produced as a
byproduct of microbial fiber fermentation, can regulate the ac-
tivity and secretion of the incretin hormone glucagon-like pep-
tide-1 (GLP1), which plays an important role in regulating
insulin secretion, glucagon release, and gastric mobility, thereby
impacting glycemic control and appetite regulation [32]. In
addition, certain gut bacteria such as Bacteroides Akkermansia
muciniphila, Lactobacillus, and Bifidobacterium are known to pro-
duce metabolites, such as SCFAs, indoles, and secondary bile
acids that mimic the action of the incretin hormone gastric
inhibitory polypeptide (GIP), or enhance its secretion, thereby
improving postprandial insulin response and glycemic control
[33]. GIP also plays a role in lipid metabolism by promoting lipid
storage and adipogenesis, and therefore, microbial-induced
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changes in GIP activity can influence adiposity, potentially aid-
ing in the reduction of body fat and the prevention of being
overweight and even obesity.

Although the number of studies and the size of the human
populations investigated are very limited, most studies point to
the fact that almond consumption appears to modulate the
structure of the gut microbiome, promoting growth of beneficial
bacteria and increasing the production of SCFAs such as butyrate
[34]. A randomized controlled trial comparing an almond-based
low carbohydrate diet with a low-fat diet in 45 participants with
type-2 diabetes for 3 mo, found that the almond-based diet
increased GLP1 levels and reduced symptoms of depression,
which was associated with an increase in the proportion of
SCFA-producing bacteria (Roseburia, Ruminococcus, and Eubac-
terium) [35]. Another trial with 18 adults reported that chopped
or whole almonds increased the proportion of other predomi-
nantly beneficial bacterial genera such as Roseburia, Lachnospira,
Oscillospira, and Dialister [36]. A randomized, controlled,
parallel-arm, 8-wk intervention in 73 young adults found that
almond snacking increased microbial diversity by 3%, as well as
influenced the abundance of certain (e.g. lipid and carbohydrate)
microbially derived metabolites in circulation [37]. Another
clinical trial showed that whole almonds and ground almond
(almond flour) consumption resulted in greater butyrate levels
compared with a control, which suggests stimulation of micro-
bial fermentation of almond fiber. However, there was no effect
of either almond source on microbial biodiversity, suggesting
that the stimulated microbial activity may not have been in the
colon where the fecal material was being formed but possibly
occurred in the small intestine [38]. A randomized controlled
trial providing either 56 g of almonds, 10 g of almond skins, or a
control (fructooligosaccharide) for 6 wk showed that both
almond interventions increased both the proportion of Bifido-
bacterium and Lactobacillus and the activity of the microbial
bile-acid hydrolases in stool, as well as decreased the proportion
of the pathogen Clostridium perfringens [39].

The overall conclusions from these above studies are that
almond consumption is important in stimulating specific bacte-
rial growth and the production of SCFAs, indoles, and secondary
bile acids, which may have an impact on adiposity and metabolic
health.

Advancing the Knowledge and Understanding
of the Role of Almonds in Cardiometabolic
Health

The Almond Board Cardiometabolic Roundtable identified
various findings and knowledge gaps (Table 1) [40,41] related to
the role of almond consumption in supporting healthy body weight
and influencing CVD and diabetes risk. The beneficial findings are
provided in Table 2. Although these findings were agreed upon by
the roundtable experts, several areas were identified that require
further research. In general, it was recognized that many of the
studies reviewed were underpowered, and there was a large het-
erogeneity among studies. It was agreed among the Expert Panel
that the basis for this variability between individuals and across
studies should be evaluated to understand the reasons (e.g.
mechanism-driven). Understanding the mechanisms would be
useful for re-evaluating the existing publications.
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TABLE 1
The beneficial effects of almond consumption.

Consuming almonds daily does not result in weight gain; tendency for
higher almond intake to be associated with slight weight loss.

Consuming almonds daily results in a consistent, small, significant average
reduction (5.1 mg/dL or ~5%) based on mean population levels of LDL
cholesterol concentrations in the United States.

Consuming almonds daily results in a small, significant average reduction
(0,17-1.3 mm Hg) in diastolic blood pressure.

While almonds as a single food produce average reductions in LDL
cholesterol and diastolic blood pressure that are clinically small for
individuals, these reductions have significant public health benefits and
can be meaningful for individuals when combined with the LDL
cholesterol and blood pressure lowering effects of other foods as part of
guidelines-based dietary patterns that target lower LDL cholesterol (e.g.
Portfolio diet) [40] and blood pressure (e.g. DASH diet) [41].

Consuming almonds daily by Asian Indians with prediabetes can result in a
significant reduction in fasting blood glucose and HbA1C.

Almond consumption results in an increase in the proportion of potentially
beneficial bacteria in stool, as well as an increase in the abundance of
microbial metabolites that are known to influence metabolic health.

Table 2
Research and Knowledge Gaps for Almond Consumption and car-
diometabolic effects.

Basis for the large heterogeneity in findings for cardiometabolic endpoints

The amount of almonds that can be consumed without weight gain

Basis for the lack of weight gain with almond consumption

Effective dose for reduction in LDL cholesterol levels

Basis for differences in glycemic response to almonds in Asian Indians
compared to other populations.

Development of food frequency questionnaire that specifically measures
almond consumption and the conduct of prospective cohort studies that
evaluate the association between almond consumption and clinical
endpoints such as cardiovascular disease and type 2 diabetes.

Determination of the different types of dietary fibers in almonds and their
role in cardiometabolic endpoints

Using the up-to-date methods to evaluate the independent effect of
almonds on the microbiome

The role of almonds as part of recommended healthful diets and precision
nutrition.

With respect to body weight, more research using large ran-
domized controlled trials is needed to understand the dose of
almonds that can be consumed without resulting in weight gain.
Furthermore, information is needed to understand whether the
lack of weight gain is a result of a change in satiety/appetite,
whether compensation is such that total energy intake does not
change, or whether there is an effect on metabolic expenditure.
Large randomized controlled trials are needed to understand the
doses at which almonds can reduce LDL cholesterol concentra-
tions and diastolic blood pressure. These studies should be of
sufficient duration to understand the long-term effects of almond
consumption and population specifics (e.g. age, healthy, at risk,
diseased) to determine those who are most likely to benefit from
almond consumption.

In general, most studies have failed to find a beneficial effect
of almond consumption on glycemic endpoints (i.e. FBS, HbAlc,
HOMA-IR). However, studies on Asian Indians with prediabetes
consistently showed that almond consumption reduced FBS and
HbAlc [25-27]. The sample size of these studies was 60, 66, and
275 individuals, and the doses were 20 g or 56 g of almonds per
day. Comparative studies are needed to understand the
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difference in glycemic response to almonds in Asian Indians
compared with other populations.

Because validated FFQ estimate the intake of nuts, rather than
specifically almonds, prospective observational studies are
lacking for measuring the association between almond intake
and clinical endpoints, such as CVD and type 2 diabetes. For this
reason, validated FFQ that estimate intake of specific kinds of
nuts would be valuable, as not all nuts are the same in terms of
nutrient composition.

Different dietary fibers have different physiological effects,
and therefore, it will be important to identify the different types of
fibers present in almonds, t understand the potential effects on
LDL cholesterol, as well as glycemic effects from almond con-
sumption. Although studies do provide evidence suggesting that
almond fiber stimulates microbial fermentation and the produc-
tion of metabolites with known effects on host metabolism, the
studies so far are in small population sizes and are primarily ob-
tained using parallel randomized controlled trials. Cross-over
studies on the effect of almond intake are needed to rule out
differences in an individual’s microbiome profile, which may
influence the power to observe changes in parallel studies. Cross-
over studies would allow there to be an independent evaluation of
the effects of almond consumption on the microbiome and its
effects, such as short chain fatty acid production. Importantly, all
microbiome studies have been limited to proportional in-
vestigations and limited observation density over time, which
mean that the absolute abundance of specific bacterial species
cannot be ascertained, and no understanding of the temporal
dynamics of bacterial communities can be observed. New tech-
niques have been developed that allow for the quantification of
the cellular abundance of all bacterial features in metagenomic
data [42], as well as the analysis of these features in every stool
sample produced during a trial. Future studies adopting these
strategies will allow for a more robust interpretation of the impact
of almond consumption on microbial abundance dynamics,
which will enable us to determine how the microbiome influences
the variability in host response to almond consumption.

As mentioned before, among all nuts in that category, al-
monds are not specifically identified as a food to be encouraged
for consumption as part of a dietary pattern [2]. Randomized
clinical trials that provide diets that have significant evidence for
health and wellness, such as the USDA dietary patterns [2] or the
Dietary Approaches to Stop Hypertension eating plan [43], can
be conducted to examine the influence of almonds on such diets
for the general population. Furthermore, as precision nutrition
[45] advances in tailoring dietary recommendations for specific
health endpoints of individuals, almonds can be part of that
investigation for endpoints such as body weight, blood LDL
cholesterol, glycemic control, blood pressure, and the micro-
biome. It will be important to understand the nutritional differ-
ences between the different forms of almonds (e.g. raw almonds,
almond milk, almond flour) and how they each affect the various
health endpoints.
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