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ABSTRACT 

Due to its high versatility and scalability, manual grinding is an important and widely used 

technology in production for rework, repair, deburring, and finishing of large or unique parts. To 

make the process more interactive and reliable, manual grinding needs to incorporate ‘skill-based 

design’ which models a person-based system and can go significantly beyond the considerations 

of traditional human factors and ergonomics to encompass both processing parameters (e.g., feed 



rate, tool path, applied forces, material removal rate) and machined surface quality (e.g., surface 

roughness). This study quantitatively analyzes the characteristics of complex techniques 

involved in manual operations. A series of experiments have been conducted using subjects of 

different levels of skill, while analyzing their visual gaze, cutting force, tool path, and workpiece 

quality. Analysis of Variance (ANOVA) and multivariate regression analysis were performed 

and showed that the unique behavior of the operator affects the process performance measures of 

specific energy consumption and material removal rate. In the future, these findings can be used 

to predict product quality and instruct new practitioners.  

Keywords 

Human factors, grinding, surface roughness, processing parameters, forces, gaze behavior, 

operator’s experience  

1. Introduction 

In the age of Industry 4.0, manufacturing can be described as a 5M system, which consists of 

Materials (properties and functions), Machines (precision and capabilities), Methods (efficiency 

and productivity), Measurements (sensing and improvement), and Modeling (prediction, 

optimization, and prevention) [1]. With recent development and an ever-growing use of sensors, 

data acquisition systems, and real-time learning algorithms, cyber-manufacturing systems have 

been able to transform raw data into meaningful and actionable operations. Yet despite the 

adoption and proliferation of automation, human skill and flexibility remain an integral part of 

many operations. Manual abrasive finishing is widely used in industry. These processes include 

deburring, engraving, weld grinding and polishing in the aerospace, construction and welding 

industries [2]. Unfortunately, these manual procedures are heavily dependent on the skill of the 

operator in retrieving, organizing, and processing information. Therefore, humans are not merely 



the supervisors of production operations, but also performers of these manual tasks. A skilled 

operator is expected to be highly adaptable, flexible, and able to quickly learn from process 

changes. Studies have shown that skills involved in these manual tasks are largely procedural 

rather than declarative, meaning that they are self-regulatory and orchestrated by an individual 

operator [3, 4]. Surprisingly, even though manual abrasive operations have a growing market, 

they are under-researched, and limited work has been done on manual process parameters and 

their effect on surface integrity. Therefore, there exists an opportunity to improve human-

machine interaction and facilitate the growth of the cyber-manufacturing infrastructure into areas 

where automation is not likely. To increase support from such cyber systems, human behavior 

must be effectively quantified and predicted.   

Unlike automated processes in which cutting tools follow a guided path at a constant velocity 

(‘path-control’), manual machining operations are ‘force controlled.’ Rather than a ‘constant 

feed rate,' manual feed (Fig. 1) is provided by the individual operator and is critically dependent 

on posture, motion, gripping forces, and body forces. Manual feed causes cutting-force variations 

on the workpiece in all three directions (tangential, normal, and axial) as shown in Fig. 1. These 

3D force variations influence surface quality (e.g., surface roughness, shininess, etc.). 

Unfortunately, there is no quantitative data available in the literature regarding the impact of 

these  force variations on surface integrity based on operator profile. 

A detailed investigation of the interrelationship between skill level and process performance can 

quantify the intricate behavioral complexity involved in manual operations. It can be anticipated 

that for manual operations, machining process parameters are largely dependent on human-

machine interactions [4] and can greatly influence product outcome [5, 6]. To make this human-

machine interaction more effective, there is a need for a quantified, formal method of measuring, 



representing, transferring, and reasoning about human skills in order to (i) efficiently allocate 

resources and tasks among humans, between humans and machines, and cross-factories, (ii) 

expand and enhance human capabilities, and (iii) optimize system behavior to predict the product 

performance. A lack of understanding of these manual skills may prolong the transfer of 

knowledge among generations of workers and critically impact technological development, in 

the form of devices, interfaces, or procedures that can enhance human capabilities.  

The broader scope of this research is to develop a smart analytics system for manual grinding 

which can transform experience-based knowledge into evidence-based decision-making for 

sustainable operations and reliable product performance. This study focuses on understanding the 

visual-attention-motor behavior [3] of differently skilled workers to gain scientific knowledge 

for reasoning operation and product quality. This paper presents a study in which input-output 

streams of manual grinding operations are discussed, and a comparative study of product 

performance is evaluated in terms of user’s skill level and cutting forces coming from manual 

feed. To find the correlation between applied force variation and part performance, this study 

additionally investigates the sensorimotor behaviors of visual gaze, and tool paths during the 

performance of a manual grinding task.  

2. Factors Involved in Manual Operations  

To find the right balance between attaining reliable product performance and maximizing 

process efficiency is complex and depends on a number of processing factors. The 3D cutting 

forces shown in Fig. 1, are critically dependent on the motor behavior of the individual operator. 

Workpiece quality can vary highly based upon the worker’s skills, which include posture, 

motion, gripping forces, and applied tool path. A poor control of these processes negatively 

impacts the geometrical and physical properties of the surface, which ultimately affect part 



functionality [7].  In this study, part functionality was evaluated by measuring different types of 

surface roughness parameters [8].  

A comprehensive input-output diagram, shown in Fig. 2, helps to elucidate the resource streams 

of the process. The color code used in this diagram is similar to the general grinding resource 

streams reported in [9]. In addition to the resource streams, the process is affected by the worker, 

the machine and the environment. As depicted in Fig. 2, processing energy, surface texture, 

abrasive materials composition, and the social aspects of workers (e.g., health, education) can 

directly or indirectly impact the finished product and determine the nature of waste. These 

process-flow diagrams often help in choosing appropriate sustainability indicators [10].  For 

example, this diagram can direct web-based tools, on-board sensing technology, and wireless 

communication to map out the transformation processes occurring within the input-output 

stream. Recently the ASTM International E60.13 subcommittee on sustainable manufacturing 

initiated a standard structure to formally characterize manufacturing processes, which enables the 

seamless sharing and use of manufacturing information [11]. This repository model motivates 

the ubiquitous and extended use of a standardized representation of unit manufacturing processes 

(UMPs) across industries and can help to provide a tangible, data-driven perspective for modern 

manufacturing.  

The objective of this repository model is to identify which parameters influence process physics 

to potentially improve manufacturing practices, including energy consumption minimization, and 

material flow control throughout the production scenario. Fig. 3 shows the graphical 

representation of a UMP model, composed of five information flows:  

Inputs: This section provides information on material/energy flows into the manufacturing 
process. Apart from processing energy, workpiece material, and tool geometry, for manual 



operation the grinding forces are a function of operator’s technical skill-level and manual feed 
rate.  

Product and Process Information: This section provides all control parameters associated with 
cutting tool speed, equivalent chip thickness, specific removal rate, generated surface roughness, 
etc.  

Resources: This section provides information about tooling and equipment requirements. In this 
study, four subjects used a Dremel 4000 handheld tool. Detailed information is provided in Fig. 
3.  

Transformation: This is the important section containing rules, equations, and an association of 
uncertainty related to input and control parameters with the output.  

Outputs: This section illustrates the association of inputs, transformation on machined product, 
and generated waste, from the process interaction. For manual operation, the material removal 
rate and final surface roughness becomes a function of the grinding forces.  

3. Experimental Method 

3.1 Experimental Setup 

To study the impact of an operator’s skill on process outputs, we have chosen four subjects with 

various level of proficiency. Here we defined skill as the efficient techniques applied by 

operators to produce reliable part quality with the grinding tool. Four subjects were defined as 

Subject 1, 2, 3, and 4; where Subject 1 is very efficient to produce kitchen knives in small scale 

using manual grinding. Subject 2 and Subject 3 have been involved with grinding tasks in the 

last 2-3 years to produce reliable workpieces confirmed by confocal microscopy and Subject 4 

has limited grinding experience. Additional information was gathered from each subject via 

initial questionnaire (i.e., age, occupation, fitness level, the presence of any related health issues, 

etc).  

Subject 1  Has good amount of exposure with manual grinding to produce reliable product quality 

Subject 2  Spent 2-3 years with manual grinding tools to produce reliable products  

Subject 3  Spent 2-3 years with manual grinding tools to produce reliable products  

Subject 4  Has limited experience but received basic training to perform manual grinding operation  



Each test coupon contained light scratch marks in the vertical plane throughout the surface. The 

subjects were asked to remove the marks using a Dremel 4000 grinding power tool.  As shown in 

Fig. 4, four streams of data were collected. First, the direction of gaze was measured using an 

eye tracking system. Second, triaxial grinding forces (axial, tangential, normal) were measured 

using a Kistler piezoelectric force sensor (model 9251A) with a sampling rate of 1000 Hz. Third, 

an Optitrack motion tracking system was used to capture the kinematic motion of the tool path. 

Finally, the topographical features of the finished surface (3D surface roughness, surface 

isotropy) were analyzed using confocal scanning microscopy (model Zeiss Axio CSM 700). All 

topographical data were measured under 10x magnification with a cut-off length of 0.8 mm and 

an evaluation length of 4 mm (in accordance with ISO 4287:1997). A 7 x 7 stitching method was 

applied for maximum coverage of sample surfaces.  

The Optitrack motion tracking system consists of 12 wall-mounted cameras, each of which 

contain a ring of infrared light emitting diodes that project into the tracking area. The grinding 

tool was marked with reflective spheres to provide 6 degree of freedom pose estimation to <1mm 

accuracy (Fig. 4). This data was sampled at 120 Hz. The visual behavior of each subject was 

measured using a wearable eye-tracking system manufactured by SensoMotoric Instruments 

(Model SMI ETG 2w), which is integrated into a set of glasses and can extract binocular gaze 

while simultaneously recording a video of the visual point of view. Gaze data was sampled at 60 

Hz.    

3.2 Surface Preparation 

The material used in this study was 6061 aluminum in the form of test coupons with dimensions 

of 50 mm in length, by 25 mm in width, by 25 mm in height. Each grinding experiment was 

conducted with a Dremel 4000 hand-held power tool using 6.35 mm diameter alumina sanding 



bands of grit size 60 (mesh number) with a cutting speed of 3.32 m/s. The power tool was run at 

a constant speed of 5000 rpm. All grinding operations were performed under dry cutting 

conditions. Each subject repeated ten trials with a new abrasive sanding band for each trial. In 

the grinding experiment, no crossfeed was provided, neither any surface treatment conducted 

after grinding  

4. Results & Discussion 

4.1 Process Monitoring and Workpiece Properties based on Operator Profile 

The forces applied by the operator cause abrasive grains to penetrate the workpiece and it is the 

variation in this grain-surface interaction that influence surface quality [12]. The increase in 

grain penetration depth affect the three main stages of material removal: rubbing, plowing, and 

cutting.  Deep penetration causes material removal (cutting), penetration without material 

removal causes plowing, while small penetration (rubbing) results in mild tool wear [13]. 

However, all three stages can simultaneously occur [14, 15]. Many aspects of grinding behavior 

depend on this material removal process and can directly influence workpiece quality - thus 

becoming a function of applied forces [9, 16, 17].  

Fig. 5 illustrates the average tangential and normal forces for all trials. The figure shows that 

Subject 1 was highly consistent with the lowest inter-trial variance, whereas, Subject 4 has high 

variability. Among all four subjects, Subject 2 and Subject 4 applied higher tangential and 

normal forces. Overall, tangential forces were higher compare to normal forces, and axial forces 

were negligible and thus ignored from further analysis.  

Time-series profiles of the acquired force data reveal that the cutting forces have a direct impact 

on the surface generation and material removal rate (MRR). Fig. 6 shows that Subject 2 and 



Subject 4 exhibited higher cutting forces and higher average roughness compared to Subject 1 

and Subject 3. Overall, Fig. 6 highlights that with increasing cutting force, surface roughness 

increases while MRR decreases. Generally, higher forces cause vibration and chatter during the 

grinding process, which inevitably worsen the quality of finished surface. The data depicted in 

Fig. 6 have been “standardized” via dividing by their standard deviations to ensure 

comparability. 

Material removal rate (MRR) is a useful parameter to understand the cutting mechanisms. For 

high MMR, chip formation dominates whereas in lower MMR, rubbing and plowing prevail. 

Since energy is lost to heat conversion during all phases, higher proportions of chip formation 

lead to a more effective grinding process. Subject 1 and Subject 3 (Fig. 6.) showed higher MRR 

and lower cutting forces compared to Subject 2 and Subject 4, and presumably cut more 

effectively. In addition, higher grinding forces accelerate tool wear, and a sufficiently high force 

can lead to separation of the grit from the abrasive wheel. Furthermore, high forces reduce 

workpiece integrity and shorten tool life [9]. Therefore, lower grinding forces with higher 

material removal rates (as shown by Subject 1 and Subject 3 in Fig. 6) are desirable. Since tool 

life is an important factor in the overall operational cost, cutting forces have a direct influence on 

the overall grinding expenditures [18].  

4.2 Tool Path  

The motion tracking system allows the dynamic measurement of tool position. Fig. 7 compares 

the distinct tool paths for each subject. To improve visualization, only 75% of a single trail 

period is shown. This method helps to capture the detailed techniques utilized by operators of 

different levels of skill level.  



All four subjects show unique tool path behavior. Subject 1 and Subject 3 have moved the tool in 

the complex path, which is a combination of side-to-side and swirling motion. Subject 2 and 

Subject 4 have shown simple side-to-side motion. However, Subject 4 covers only a small 

portion of workpiece leaving many areas untouched.  

An analysis of performance shows that Subject 1 and Subject 3 produce a higher surface quality.  

This was accompanied by distinct differences in their gaze and motor behavior.  We have 

referred to these sets of behavioral patterns as the exhibition of a technique. For ease of syntax, 

Subject 1 and Subject 3 show a more complex tool path behavior and we have referred this as 

Technique A while Subject 2 and Subject 4 utilize Technique B. The behaviors associated with 

these techniques have been summarized in Table 1. Table 1 also shows that Subject 1 and 

Subject 3 were able to remove more mass in a shorter period while utilizing lower normal and 

tangential forces, with lower gaze frequency, and lower gaze shifts compared to Subject 2 and 

Subject 4. Furthermore, Subject 1 and Subject 3 have greater axial tool velocity and lower 

isotropy which results in higher average surface roughness. The detail of gaze frequency and 

gaze shifts have been discussed in [4], so Table 1 only summarizes the overall distinct behavioral 

differences. The quantitative information of these behavioral differences is shown in Table 2.  

The quantitative findings from Table 2 can be summarized as follows:  

1. The tangential RMS tool velocity is 24% lower for Technique A than for Technique B. 

2. The mean gaze frequency is 48% higher for Technique A than for Technique B. 

3. The axial RMS gaze shifts are 26% higher for Technique A than for Technique B. 

4. The mean tangential force is 27% lower for Technique A than for Technique B. 

5. Mean machined surface isotropy is 41% lower for Technique A than for Technique B.  



6. Mean processing time is 13% lower for Technique A thank for Technique B. 

Analysis of the tool path data was performed to compare the motion characteristics between the 

individual techniques. These behaviors can change abruptly or slowly as the task progresses, so 

we cannot assume that the time series is stationary over the course of a single grinding trial. It is 

reasonable however, to assume minimal changes in motor behaviors over relatively short 

timescales. Therefore, we have sectioned the time series data into a sequence of 1 second 

segments over which we do assume stationarity. Given the data show in Fig. 7, we would expect 

to see roughly 2-3 sweeps of the tool.  

Each subject has the ability to maneuver the tool in the axial and tangential directions 

independently. The separate degrees of freedom are only linked via purposeful movement, and 

any detectable coupling between the two would be an indication of their deliberate technique.  In 

order to capture this relationship, we use a first order, multivariable autoregressive model, 

AR(1). The general expression for an AR(1) system is given by: 

                                                       𝑥𝑥𝑖𝑖 = 𝐴𝐴𝑥𝑥𝑖𝑖−1 + 𝑤𝑤 + 𝜖𝜖𝑖𝑖                                                              (1) 

where 𝑥𝑥𝑖𝑖 ∈ ℝ𝑁𝑁 is a vector of measurements at the ith time step, 𝐴𝐴 ∈ ℝ𝑁𝑁×𝑁𝑁  is the coefficient 

matrix for the AR(1) model, 𝑤𝑤 ∈ ℝ𝑁𝑁 is the intercept vector or bias, and 𝜖𝜖𝑖𝑖 ∈ ℝ𝑁𝑁 are independent, 

identically distributed (iid), Gaussian white noise terms with zero mean and covariance Σ. If we 

center each of the segments about its mean, the bias term is effectively zero and, we can express 

our AR(1) model for our two degree of freedom system as  

                                              �
𝑋𝑋𝑖𝑖𝑇𝑇

𝑋𝑋𝑖𝑖𝐴𝐴
� = �

𝑎𝑎11 𝑎𝑎12
𝑎𝑎21 𝑎𝑎22� �

𝑋𝑋𝑖𝑖−1𝑇𝑇

𝑋𝑋𝑖𝑖−1𝐴𝐴 � + �
𝜖𝜖𝑖𝑖𝑇𝑇

𝜖𝜖𝑖𝑖𝐴𝐴
�.                                                 (2) 



Here 𝑋𝑋𝑖𝑖𝑇𝑇 is the tangential position and 𝑋𝑋𝑖𝑖𝐴𝐴  is the axial position. Given the iid noise terms, we can 

approximate the 𝐴𝐴 matrix using stepwise, least squares estimation and solve the system for the 

current axial position 𝑋𝑋𝑖𝑖𝐴𝐴 as a function of the past 𝑋𝑋𝑖𝑖−1𝐴𝐴   and 𝑋𝑋𝑖𝑖−1𝑇𝑇 .  

                                                    𝑋𝑋𝑖𝑖𝐴𝐴 = �𝑎𝑎21
𝑎𝑎11
�𝑋𝑋𝑖𝑖−1𝑇𝑇 + det(A)𝑋𝑋𝑖𝑖−1𝐴𝐴                                                  (3) 

If we let 𝛼𝛼 = �𝑎𝑎21
𝑎𝑎11
� and 𝛽𝛽 = det (𝐴𝐴), we obtain a parametric expression for the axial/tangential 

coupling.   

Fig. 8 displays the 𝛼𝛼 and 𝛽𝛽 values for each of the four subjects. We can see that the data is 

concentrated tightly about 𝛽𝛽=1. The AR model assumes that the system is causal and stable, 

comprised of an independent and a dependent variable. In this framework, we would expect that 

the current value of the axial position would depend little upon its past value and a 𝛽𝛽 value of 

unity enforces that notion. In contrast, the 𝛼𝛼 values describes how the current value of the axial 

position depends on the past value of the tangential position, or more specifically, the swirling 

motion of the tool. Large negative values of 𝛼𝛼 correspond to very tall (axial), counterclockwise, 

oval shaped tool paths where small values correspond to wide (tangentially) ones.         

Fig. 9 plots the normalized histograms of the 𝛼𝛼 parameter for all four subjects and illustrates how 

each of the subjects utilize the swirling technique. From Fig. 9 it is clear that Subject 2 performs 

the task primarily with sweeping tangential, and very slows vertical motions across the sample. 

By contrast, Subjects 2 and 4 both utilize more circular movements, each with different 

eccentricities; Subject 4 exhibiting taller (axial) orbits than the Subject 4. Finally, while Subject 

1 spends much of the time performing motions very similar to Subject 2, the tail of the 

distribution moves far to the left indicating the use of a very wide range of orbital eccentricities, 



both wide and tall.  In fact, Subject 1 displayed an exceptionally wide range of tool path 

behavior, from primarily axial, to primarily tangential, and everything in between.  

4.3 Specific Energy Consumption and Process Performance   

The specific grinding energy (ec) is the energy per unit volume of material removed. It can be 

expressed as following, where Ft is the tangential forces, vs is the rotational cutting tool velocity 

and Qw is the material removal rate.  

                                                                      ec = 
𝐹𝐹𝑡𝑡𝑣𝑣𝑠𝑠
𝑄𝑄𝑤𝑤

                                                                  (4) 

Fig. 10 represents the specific energy (ec) consumption versus the material removal rate (Qw) for 

four subjects. It is one of the most important parameters to assess grinding performance and is 

critically dependent on the workpiece material and grinding conditions. Specific energy is 

composed of the energy for rubbing and plowing material, forming grinding chips, as well as 

overcoming friction between the grinding grits, the tool bond, and the workpiece. Generally, for 

a highly effective grinding process, the friction energy is assumed to be negligible. Therefore, 

the overall specific energy can be expressed as follows: 

Specific Energy (ec) = Rubbing Energy + Plowing Energy + Cutting Energy (Chip Formation 
Energy) 

A low MMR implies that a significant amount of energy is consumed from rubbing and plowing 

rather than cutting, whereas a higher MMR indicates that energy is consumed for chip formation 

[19]. Fig 10 shows that under low MRR the process consumes a higher amount of energy. This 

energy consumption gradually decreases with increasing MRR. Under the same grinding 

conditions, Subject 4 exhibits the highest specific energy consumption whereas Subject 1 

displays the lowest. Large specific grinding energy is undesirable because it results in high-



energy consumption and a high cost of material removal [20]. The higher removal rate is 

beneficial to reducing cutting energy. Subject 1 shows efficient cutting behavior with a minimum 

of specific energy consumption and only a 48% variation in MMR.  

4.4 Signal to Noise Ratio based on Operator Profile 

Fig. 11 represents the results of the signal to noise ratio (S/N ratio) for four process parameters at 

three levels (minimum, maximum, mean). Here the term ‘signal’ represents a desirable value (in 

this case roughness) whereas, the ‘noise’ represents the standard deviation (undesirable value). 

Hence the S/N ratio represents the amount of variation present in the quality characteristics [21]. 

Depending on the purposes and applications, different types of S/N ratios exist [22]. Here the 

desirable objectives are to lower the cutting forces and the surface roughness. Therefore, the 

lower-the-better type S/N ratio was applied to transform the observed data as follows:  

                                                         η = −10𝑙𝑙𝑙𝑙𝑙𝑙10 ∑ 𝑦𝑦𝑛𝑛
𝑖𝑖−1 i                                                          (5) 

Here η is the S/N ratio for the lower-the-better case, yi is the measured quality characteristic for 

ith repetition, and n is the number of repetitions for a trial. The S/N ratios for four process 

parameters (tangential and normal forces, depth of cut, and processing time) at three levels for 

achieving lower surface average roughness is tabulated in Table. 3.  

Fig. 11 shows that, for Subject 1, lower surface roughness was obtained at a 4 N tangential force 

(level 1), a 0.25 N normal force (level 1), a 0.13 μm depth of cut (level 2), and a processing time 

of 64 sec (level 1). For Subject 1, the average surface roughness decreased with increasing 

tangential force. Subject 3 showed an increase of average surface roughness with decreasing 

normal force, tangential force, and processing time, and with increasing depth of cut. Subject 2 

showed an increase of average surface roughness with increasing processing time. In contrast, 



Subject 4 showed no particular pattern due to the inconsistent performance from trial to trial. 

From S/N ratio, it is possible to find the most effective parameters that influence process results. 

We can determine the optimal sets of process parameters from the main effects plot for S/N ratio 

shown in Fig 11. 

4.5 Statistical Analysis 

Analysis of Variance (ANOVA) is a computational technique to estimate the relative 

contribution of each controlled parameter to the overall response quantitatively and is expressed 

in percentage. In our study, ANOVA was used to understand a detailed visualization of the 

impact of independent processing parameters on average surface roughness based on two the 

distinct techniques discussed in this study (i.e., Technique A and Technique B) during manual 

grinding. This study helped quantify and analyze the contribution and comparative significance 

of each independent processing parameter to predict the outcome. Statistical analyses were 

performed using Stata 14 software (StataCorp LP). Linear regression and Analysis of Variance 

(ANOVA) were performed following log base-10 transformations of standardized surface 

average roughness. Tukey’s HSD (honest significant difference) and Wald’s test for linear 

hypothesis were used for post-hoc comparisons between treatment levels. Significance (α) for all 

analyses was set at ≤0.05. The analysis was carried out at the level of 95% confidence interval, 

and results were shown in Table. 4. The column of contribution from Table. 4 showed the 

percentage impact of each parameter on the total variation, signifying the degree of effect on the 

results. The larger the percentage contribution, the greater the influence of a parameter on  

surface roughness.  



The regression model consisted of a set of four predictors: tangential and normal force, depth of 

cut, and processing temperature. The degree of freedom is always same as the number of 

predictors, which are four for this model. The model was based on log base-10 transformation as 

per the requirement of a normally distributed outcome variable. Based on the analysis, our 

hypothesis is, the surface roughness of independent variable, Subject 1 & 3 and Subject 2 & 4 

are significantly different when using Technique A & B respectively.  

H0: μTechniqueA ≠ μTechniqueB  

H1: H0 is rejected 

Predictive model equations for Techniques A and B are shown below in equations (6) and (7). 

This estimated value or predictive model expresses how surface roughness changes for a unit 

change of the predictor values.  

Predictive Model for Technique A (Subject 1 & Subject 3) 

𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅𝑎𝑎)  = 1.78 + 0.02𝐹𝐹𝑇𝑇 − 0.77𝐹𝐹𝑁𝑁 + 0.22𝑎𝑎𝑒𝑒 − 0.01𝑡𝑡𝑝𝑝                                                    (6)  

 

Predictive Model for Technique B (Subject 2 & Subject 4) 

𝑙𝑙𝑙𝑙𝑙𝑙10(𝑅𝑅𝑎𝑎)  =  1.51 + 0.01𝐹𝐹𝑇𝑇 − 0.42𝐹𝐹𝑁𝑁 − 0.57𝑎𝑎𝑒𝑒 − 0.001𝑡𝑡𝑝𝑝        (7) 

 

Equation (6) and equation (7) agree with our findings from Fig 6. For a complex tool path, and a 

technique, which consists of greater axial tool velocity, higher gaze frequency, larger axial gaze 

shifts, and lower tangential force, surface isotropy, and processing time; tangential force and 

depth of cut show a positive association with the product outcome. From equation (6), it can be 

predicted that for a unit change of tangential forces, normal forces, depth of cut, and processing 

time; the average roughness might increase 1.05 μm, decrease 5.89 μm, increase 1.66 μm, and 



decrease 1.02 μm respectively. Whereas, for a simple tool path, and a technique consisting of 

lower axial tool velocity, lower gaze frequency, larger tangential gaze shifts, and higher surface 

isotropy, and processing time; normal force and depth of cut show a negative association with 

the product outcome. From the equation (7), it can be predicted that for a unit change of 

tangential forces, normal forces, depth of cut, and processing time; the average roughness might 

increase 1.02 μm, decrease 2.63 μm, decrease 3.72 μm, and increase 1 μm respectively. Both 

equations show that irrespective of the machining technique, surface roughness decreases with 

increasing the normal forces. This pilot study has shown that there are observable and 

distinguishable sensorimotor behaviors associated with two distinct techniques utilized by the 

individual subjects, and more importantly, that task performance is affected by these techniques. 

Certainly, an experiment with a larger cohort of subjects representing each experience level 

would be required in future work.  

Conclusion 

A new experimental setup was used in this study to monitor human skills during manual grinding 

operations. The experimental observation integrates operator’s information (i.e. techniques, 

applied forces, processing time, material removal rate, tool path) and characterizes process 

performance in the surface roughness based on operator profile. Our results show that operators’ 

inherent techniques control machining performance along with experience level. Statistical 

analyses were carried out to develop a predictive model based on unique the behavior associated 

with operator’s skill level. By comparing data obtained from subjects with different levels of 

skill, we are able to quantitatively associate characteristics of human manual skill and process 

performance (i.e., specific energy consumption, material removal rate, etc.).  



The limitations of these operator-based models are primarily the limited sample sizes and the 

subjective declaration of operator’s skill-level. Standardizing the range of operator’s skills, 

techniques, and increasing the sample sizes can significantly improve the model for these sort of 

data-driven analyses and will help to predict the outcome more accurately.  

This study, on the one hand, improves understanding of complex manual skills thus paving the 

road for the improved preservation and transfer of knowledge, and on the other provides the 

scientific and empirical underpinnings for the future development of robotic devices and 

computer interfaces for augmenting manual operations. 
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Table 1: Behavioral differences based on operators inherent techniques 

 Technique A  Technique B  
Tool Velocity  Greater axial and less tangential Less axial and more tangential 
Gaze Frequency  More often  Less often  
Gaze Shifts  More axial and less tangential More tangential and less axial 

Tangential Force  Lower  Higher  
Surface Isotropy Lower  Higher  
Processing Time  Lower  Higher  

 

Table 2: Quantitative analysis of behavioral differences of operators 

 Technique A Technique B 

Tool Velocity (m/sec) 
Axial (RMS) Tangential 

(RMS) Axial (RMS) Tangential 
(RMS) 

0.029 0.071 0.025 0.094 

Gaze Frequency (Hz) mean =1.26   SD =1.31 mean =0.86   SD =0.93 
 

Gaze Shifts (pixels) Axial (RMS) Tangential 
(RMS) Axial (RMS) Tangential 

(RMS) 
41.81 31.32 33.14 34.64 

Tangential Force (N) mean =5.17   SD =1.06 mean =7.07   SD =1.36 
Isotropy (%) mean= 23.10, SD= 16.84 mean=39.38, SD= 26.72 

Processing Time (sec) mean= 70.68, SD = 7.75 mean=81.50, SD = 20.68 

 

Table. 3: Optimal parameters for lower surface average roughness for all subjects 

 Tangential 

Force (N)  

Level  Normal 

Force (N)  

Level  Depth of 

Cut (μm)  

Level  Time (s)  Level  

Subject 1  4 1 0.25 1 0.13 2 64 1 

Subject 2  7 3 0.5 3 0.11 1 56.03 2 

Subject 3  6 3 0.275 3 0.164 2 75 3 

Subject 4  4.67 1 0.35 1 0.15 2 76.19 2 

 



Table. 4. ANOVA Analysis based on Operator Technique 

Subject 1 & 3 Technique A 

Machining  
Parameter 

Coefficient 
Degrees of  
Freedom 

Partial Sum  
of Squares 

Mean  
Square 

p Value F Ratio 
Contribution 

(%) 

Model 
 

4 0.03 0.01 
 

0.96 21.43 

Tangential Force (Ft) 0.02 1 0.01 0.01 0.41 0.72 7.14 

Normal Force (FN) -0.77 1 0.01 0.01 0.39 0.78 7.14 

Depth of Cut (ae) 0.22 1 0.001 0.001 0.75 0.1 0.71 

Processing Time (tp) -0.01 1 0.03 0.03 0.08 3.58 21.43 

Intercept 1.78 14 0.11 0.11 
  

78.57 

Total 
 

18 0.14 0.01 
   

 
Subject 2 & 4 Technique B 

Machining  
Parameter 

Coefficient 
Degrees of  
Freedom 

Partial Sum  
of Squares 

Mean  
Square 

p Value F Ratio 
Contribution 

(%) 

Model 
 

4 0.03 0.01 
 

0.91 20 

Tangential Force (FT) 0.01 1 0.001 0.001 0.73 0.12 0.67 

Normal Force (FN) -0.42 1 0.01 0.01 0.37 0.85 6.67 

Depth of Cut (ae) -0.57 1 0.01 0.01 0.24 1.47 6.67 

Processing Time (tp) 0.001 1 0.01 0.01 0.38 0.81 6.67 

Intercept 1.51 15 0.12 
   

80 

Total 
 

19 0.15 
    

 

 

 



 

Fig. 1. Schematic of cutting force generation during manual grinding operation 

 

Fig. 2. Input-Output Diagram of Manual Grinding Process, reprinted from [23] 
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Fig. 3. Graphical representation of unit manufacturing process (UMP) for manual grinding 

operation 

 

Fig. 4. Experimental Setup consists of eye tracking glasses, kinematic sensors, camera, and 

piezoelectric force sensor, reprinted from [4].  

Product & Process Information
Job Information 
Part Description: Surface Topographical Test
Geometry:  ½ Inch Square Coupon
Material: 304 Stainless Steel
Operations: Manual Grinding
Required Tool: Alumina sanding bands

Variable definitions for transformation equations

Vs = Cutting wheel rotational speed (mm/sec)
D = Wheel diameter (mm)
N = Wheel revolution per minute
bw = Width of wheel contact to workpiece
Ft = Tangential force
Q = Specific removal rate
ec = Specific grinding energy
heq = Equivalent chip thickness

= Density (kg/mm3)
Zi (x)=Zo (x) = Initial and final surface height variation at x distance

vw = Workpiece velocity
Fn = Normal force
MRR= Material removal rate

ae = Depth of cut
Ra= Average surface roughness
Rt =Maximum surface roughness
P = Grinding power

Inputs 
Processing energy, 
Workpiece Material i.e. steel
Tool geometry
Grinding force= f (Worker’s 
Experience, Tool Wear, Manual 
Feed)

Machine Product 
Outputs
Finished part
Roughness_final= f (Ft)
MRR= f (Ft, Fn)
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Resources
Operator: Four subjects
Machine: 4000 Handheld Dremel
Tool List: (1) ¼ in mandrel; (2 ) Alumina abrasive sanding bands ; ( 3) Piezoelectric force sensor 
Fixture Details: Tool orientation, Low cutting speed
Software: NI DAQ and Labview

Λ= Stock removal rate



 

 

Fig. 5. Tangential and normal force for each subject 

 

Fig. 6. Changes of average surface roughness and material removal rate with tangential and 

normalized normal force variation  
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Fig. 7. Example grinding tool paths for each subject  

 

Fig. 8. Autoregressive parameters α and β for each subject for all ten trials 



 

Fig. 9. Normalized histograms of the α parameter for all ten trials 

 

Fig.10. Specific energy consumption over material removal rate  
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Main Effects Plot for SN Ratios (Data Means) 

 

 

Fig. 11. Mean signal-to-noise (S/N) ratio graph for average surface roughness 
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