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Genetic Discovery and Risk Prediction for Type 1 Diabetes in
Individuals Without High-Risk HLA-DR3/DR4 Haplotypes

Carolyn McGrail, Joshua Chiou, Ruth Elgamal, Amber M. Luckett, Richard A. Oram, Paola Benaglio, and
Kyle J. Gaulton

Diabetes Care 2025;48(2):202–211 | https://doi.org/10.2337/dc24-1251

T1D GWAS of 12,316 individuals without DR3/DR4

APC, antigen-presenting cell; GWAS, genome-wide association-study; NK, natural killer; T1D, type 1 diabetes.

NK cells, and β-cells

ARTICLE HIGHLIGHTS

� Why did we undertake this study?
More than 10% of individuals with type 1 diabetes (T1D) do not carry high-risk HLA-DR3 or -DR4 alleles, and the reasons why they develop T1D are
not well understood.

� What is the specific question we wanted to answer?
We aimed to characterize genetic risk of T1D and improve risk prediction in individuals without HLA-DR3 or -DR4 alleles.

� What did we find?
We identified 18 T1D risk variants and distinct biological pathways in individuals without HLA-DR3 or -DR4 alleles and developed a risk score that
significantly improved prediction of T1D in these individuals.

� What are the implications of our findings?
This study reveals different T1D genetic risk and biological mechanisms in the absence of a high-risk HLA background and will help inform
treatment and therapeutic discovery in these individuals.
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Prediction for Type 1 Diabetes in
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Kyle J. Gaulton4

OBJECTIVE

More than 10% of patients with type 1 diabetes (T1D) do not have high-risk HLA-DR3
or -DR4 haplotypes with distinct clinical features, such as later onset and reduced
insulin dependence. We aimed to identify genetic drivers of T1D in the absence of
DR3/DR4 and improve prediction of T1D risk in these individuals.

RESEARCH DESIGN AND METHODS

We performed T1D association and fine-mapping analyses in 12,316 non-DR3/DR4
samples. Next, we performed heterogeneity tests to examine differences in T1D risk
variants in individuals without versus those with DR3/DR4 haplotypes. We further
assessed genome-wide differences in gene regulatory element and biological path-
way enrichments between the non-DR3/DR4 and DR3/DR4 cohorts. Finally, we de-
veloped a genetic risk score (GRS) to predict T1D in individuals without DR3/DR4
and compared with an existing T1D GRS.

RESULTS

A total of 18 T1D risk variants in non-DR3/DR4 samples were identified. Risk var-
iants at the MHC and multiple other loci genome wide had heterogeneity in ef-
fects on T1D dependent on DR3/DR4 status, and non-DR3/DR4 T1D had evidence
for a greater polygenic burden. T1D-associated variants in non-DR3/DR4 were
more enriched for regulatory elements and pathways involved in antigen presen-
tation, innate immunity, and b-cells and depleted in T cells compared with
DR3/DR4. A non-DR3/DR4 GRS outperformed an existing risk score GRS2 in dis-
criminating non-DR3/DR4 T1D from no diabetes (area under the curve 0.867;
P = 7.48 × 10232) and type 2 diabetes (0.907; P = 4.94 × 10244).

CONCLUSIONS

In total, we identified heterogeneity in T1D genetic risk dependent on high-risk
HLA-DR3/DR4 haplotype, which uncovers disease mechanisms and enables more
accurate prediction of T1D across the HLA background.

Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of
insulin-producing b-cells and which has complex etiology (1). T1D is highly polygenic with
>90 known risk loci (2), and the largest genetic risk factors map to the MHC locus (3),
which encodes cell surface receptors that present antigenic peptides to T cells (1). Haplo-
types of the class II HLA-DR and -DQ genes DRB1*0301-DQA1*0501-DQB1*0201
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(DR3) and DRB1*04:01/02/04/05/08-
DQA1*03:01-DQB1*03:02/04 (DR4) (3)
confer substantial risk of T1D and are
detected in 90% of individuals of Euro-
pean ancestry (1). The DR3/DR4 haplo-
types are thought to increase T1D risk
by altering peptide binding and pre-
sentation to T cells (1).
The remaining 10% of individuals

of European ancestry who develop T1D
without DR3 or DR4 haplotypes have
lower rates of T1D autoantibodies (4)
and later onset of disease with lower in-
sulin dependence, which can be mis-
diagnosed as type 2 diabetes (T2D) or
latent autoimmune diabetes in adults
(5–7), leading to mismanagement and
complications (5). The preventive therapy
teplizumab is most effective in at-risk in-
dividuals positive for DR4 and negative
for DR3, and it is less established if it ef-
fectively delays onset in individuals with-
out DR3/DR4 (8). Furthermore, existing
genetic risk scores (GRSs) for T1D heavily
weigh DR3/DR4 haplotypes due to their
large effect, and T1D in individuals with-
out DR3/DR4 may be poorly predicted by
these scores. The PTPN22 locus has been
shown to interact with DR3/DR4 status
(9–11), suggesting that genetic hetero-
geneity outside the MHC locus exists in
individuals without DR3/DR4. There is
increasing evidence that adult-onset T1D,
which has a lower rate of DR3/DR4 (12),
is more prevalent than previously esti-
mated (13), further underscoring the
need to understand T1D in the absence
of DR3/DR4.
In this study, we performed genome-

wide association analyses of T1D in indi-
viduals without DR3/DR4 to understand
genetic drivers of T1D in the absence of
DR3 or DR4 haplotypes. We then used
association data to evaluate genetic risk,
biological pathways and cell types, and
risk prediction in non-DR3/DR4 T1D.

RESEARCH DESIGN AND METHODS

Subjects and Genotype Imputation
We compiled genotype data from 10,100
individuals with T1D and 19,623 control
individuals of European ancestry from
publicly available cohorts (Supplementary
Table 1). T1D case cohorts were matched
to control cohorts based on country of or-
igin and genotype array where possible,
as previously described (2). We applied
the Haplotype Research Consortium im-
putation preparation program (version

4.2.9; https://www.well.ox.ac.uk/�wrayner/
tools/) and used PLINK version 1.90 (14) to
perform quality control prior to imputation
to remove variants with a minor allele
frequency <1%, with missing genotypes
>5%, in violation of Hardy-Weinberg
equilibrium (HWE) (P < 1 × 10�5 in the
control cohort and P < 1 × 10�10 in the
case cohort), and with a difference in al-
lele frequency >0.2 compared with the
Haplotype Research Consortium version
r1.1 reference panel (15), as well as var-
iants with allele ambiguity (2,14). Related
individuals were removed based on iden-
tity by descent >0.2. We imputed geno-
types for all samples into the Trans-Omics
for Precision Medicine (TOPMed) version
2 and Michigan Multiethnic HLA reference
panels (16,17). For the HLA reference
panel, we note that classical HLA alleles
and amino acids have binary encodings
as A for absent or T for present (18). In
genome-wide imputation, we removed var-
iants with imputation accuracy r2 <0.3. In
HLA imputation, we removed variants with
imputation accuracy r2 <0.5 and SD in
control allele frequency >0.055 across co-
horts. Variants that passed quality control
in all cohorts were tested for association.

Association Testing and
Meta-Analysis
We categorized individuals based on
DR3/DR4 status using two-field HLA al-
leles imputed from the Type 1 Diabetes
Genetics Consortium (T1DGC) reference
panel with SNP2HLA, which includes
HLA-DQB1*02:02 not present in the Michi-
gan HLA panel (19). DR3 was defined by
HLA-DRB1*03:01-DQB1*02:01 and DR4 by
HLA-DRB1*04:01/02/04/05/08-DQB1*03:02/
04/02:02 (6). We excluded 23 individuals
identified as without DR3/DR4 via SNP2HLA
alleles but who had DR3 or DR4 tag
single nucleotide polymorphisms (SNPs)
(20,21). The non-DR3/DR4 group con-
sisted of individuals without a DR3 or
DR4 haplotype (DRX/DRX), and the
DR3/DR4 group consisted of individu-
als with at least one DR3 or DR4 hap-
lotype (DR3/DR4, DR3/DR3, DR4/DR4,
DR3/DRX, DR4/DRX). In the non-DR3/
DR4 group, 100 case and 300 control
samples were removed prior to asso-
ciation analyses, and these samples
were randomly selected from cohorts
proportionate to the total cohort size.
In both non-DR3/DR4 and DR3/DR4
groups, we tested variants for T1D
association using Firth bias-corrected

logistic regression in EPACTS (https://
github.com/statgen/EPACTS). We tested
variants with minor allele frequency >1%
for the association, including covariates
for sex and the first four genotype princi-
pal components (PCs). The PCs were in-
cluded to account for population structure
and were derived using PLINK with pa-
rameters –indep 50 52. Summary statis-
tics were combined across cohorts in a
fixed-effects inverse variance–weighted
meta-analysis using METAL (22). The ge-
nomic inflation l was 1.069 for non-DR3/
DR4 and 1.098 for DR3/DR4. We used
linkage disequilibrium (LD) score regres-
sion (LDSC) (23) to test for heritability
excluding the MHC, using population
prevalence of 1% and sample preva-
lence of 51% for DR3/DR4 and 10% for
non-DR3/DR4.

Fine-Mapping Independent Signals
We identified 1-Mb regions around the
lead variants of genome-wide significant
loci. We performed conditional analysis
at each locus using stepwise analysis it-
eratively including the most significant
variant in the regression model and re-
performing the meta-analysis until no
significant variants remained. In condi-
tional analyses, we used a locus-wide
significance threshold of P < 1 × 10�5.
We then performed Bayesian fine-mapping
to create credible sets of likely causal var-
iants for each signal (24). From the sum-
mary statistics, effect size, and SE were
used to calculate the approximate Bayes
factor (BF) for each variant in r2 >0.1 with
the lead variant. We calculated the proba-
bility of association for each variant by
dividing the BF by the total sum of BFs.
We then created 99% credible sets by
including variants in descending order
of probability of association until the
cumulative posterior probability was at
least 99% (Supplementary Table 12).

Assay for Transposase-Accessible
Chromatin With Sequencing Peak
Calling
Assay for transposase-accessible chroma-
tin with sequencing data for 20 immune
cell types in resting and stimulated condi-
tions were obtained from the Gene Ex-
pression Omnibus database (accession
no. GSE118189) (25) and processed to
generate peak coordinates. Reads were
aligned using STAR (26) to hg19, and du-
plicate reads, reads mapping to black-
listed regions from ENCODE, and reads
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with mapping quality <30 were filtered.
Peak calling was performed using MACS2
(27) on binary alignment map files fur-
ther filtered for read pairs with insert
size no larger than 140 bp (macs2 call-
peak –nomodel –nolambda –keep-dup all
–call-summits -f BAMPE -g hs –q 0.01),
combining individual samples for each
cell type and treatment, for a total of
40 distinct peak sets. We then used bed-
tools multiinter to obtain a consensus set
of peaks and featureCounts (28) to ob-
tain the peak counts in each cell type.

Genome-Wide Association Study
Enrichment Analysis
For each group, we performed partitioned
heritability LDSC to estimate genome-wide
enrichment in immune cell–accessible
chromatin (23,25). We used the summary
statistics for each group excluding the
MHC locus and formatted it for LDSC us-
ing the munge_sumstats.py script. We
generated binary annotations from each
accessible chromatin bed file and com-
puted cell-specific LD enrichment scores
for each risk cohort using the version 2.2
1000G baseline model. Additionally, we
performed gene set enrichment analysis
in the Gene Ontology, Kyoto Encyclopedia
of Genes and Genomes, and Reactome
pathways with the summary statistics for
each group using MAGMA (29) with de-
fault parameters. We corrected for multi-
ple tests in each group using the false
discovery rate (FDR) and considered FDR
<0.10 as significant and uncorrected P <
0.05 as nominally significant.

Heterogeneity Tests
We tested for differences in T1D effect
between non-DR3/DR4 and DR3/DR4
using merged PLINK files of Michigan
HLA and TOPMed imputed variants for
all 29,723 samples. We tested for hetero-
geneity in marginal effects on T1D using
Breslow-Day (BD) tests with the -bd flag
in PLINK (14). We performed BD tests for
lead variants at the six non-MHC loci
identified in non-DR3/DR4 samples, as
well as lead variants at 83 additional
known T1D risk loci (2). At MHC and
other loci with multiple signals, we tested
for heterogeneity in effects on T1D con-
ditional or other known variants. We
generated regression models with PLINK
using the -glm interaction firth flag, in-
cluding sex, the first four genotype PCs,
DR3/DR4 status, and additional variants
as covariates, and evaluated the interaction

with DR3/DR4 status. For the 12 MHC
signals identified in non-DR3/DR4 sam-
ples, we conditioned on preceding lead
variants from stepwise regression. For
the IFIH1 and PTPN2 loci, we condi-
tioned on lead variants for all other
known signals at the locus (14). For the
HLA locus, we conditioned on HLA-DRB1*
03:01, HLA-DQB1*02:01, HLA-DRB1*04:01,
HLA-DRB1*04:02, HLA-DRB1*04:04, HLA-
DRB1*04:05, HLA-DRB1*04:08, HLA-DQB1*
03:02, and HLA-DQB1*03:04 to examine
heterogeneity in 40 known two-field HLA
risk alleles independent of these DR3 and
DR4 alleles. To obtain the conditional ef-
fect of each variant within non-DR3/DR4
or DR3/DR4, we performed logistic re-
gression separately for each group using
EPACTS, including sex, the first four ge-
notype PCs, and the same variants from
the interaction tests above. We per-
formed additional association analyses
of non-DR3/DR4, including T1D with age
of onset >17 or <17 years, T1D age of
onset directly, and T1D interaction with
sex with the glm function in PLINK, includ-
ing the first four genotype PCs and (for
age of onset analyses) sex as covariates.
We corrected for multiple tests, consider-
ing FDR <0.10 as significant and uncor-
rected P < 0.05 as nominally significant.

Generation and Statistical Analysis of
the GRSs
We calculated GRS1 using SNP2HLA-im-
puted genotypes to define DR3 and DR4
tag SNPs and TOPMed variants for the
remaining 28 signals (20). We calculated
GRS2 by using TOPMed variants where
possible (60 variants), Michigan HLA for
rs116522341 and rs1281934, and the
Michigan HLA proxies DQB1*06:02,
B*18:01, DPB1*03:01, rs1611547,
and rs114170382, for rs17843689,
rs371250843, rs559242105, rs144530872,
and rs149663102, respectively. For GRS2,
we excluded individuals with ambiguous
(>2) HLA-DR/DQ calls, in line with the pub-
lished methods (30). For each of the signals
identified in the non-DR3/DR4 group, we
generated an 18-varaint GRS as the sum of
all signals weighted by the b (B) for each
effect allele (X) as follows (Supplementary
Table 12):

GRS ¼ S
N

i¼0
BiXi

We additionally leveraged 82 non-MHC
T1D risk loci from a T1D genome-wide

association study (GWAS) (2) weighted by
effects in the non-DR3/DR4 GWAS to
generate a 100-variant combined GRS.
We determined the ability of GRS2, the
18-variant GRS, and the 100-variant GRS
to distinguish non-DR3/DR4 T1D from ei-
ther all control samples (DR3/DR4 1 non-
DR3/DR4) or non-DR3/DR4 control sam-
ples. We tested the ability of each GRS to
discriminate T1D and nondiabetes using
the area under the curve (AUC) of the re-
ceiver operating characteristic (ROC) statis-
tics in pROC. We calculated the difference
between GRS AUCs using the DeLong test
and calculated the diagnostic criteria using
the Youden index.We then generated per-
centiles for how many individuals in the
non-DR3/DR4 T1D or control groups fall
at various GRS thresholds. We calculated
sensitivity at each GRS as true positive di-
vided by (true positive plus false negative)
and specificity as true negative divided by
(true negative plus false positive). We fur-
ther tested the ability to differentiate T1D
from nondisease in the 100-variant non-
DR3/DR4 T1D GRS using the independent
test group of 100 case and 300 control
samples removed prior to association
analyses. We also compared the ability of
each GRS to differentiate T1D from T2D
using 1,999 individuals with T2D from the
Wellcome Trust Case Control Consortium
(WTCCC) study (31). After imputing the
T2D genotypes into the TOPMed and
Michigan HLA reference panels, we calcu-
lated the scores for each GRS as described
above and derived ROC statistics compar-
ing T1D with T2D. We additionally vali-
dated the performance of the 100-variant
non-DR3/DR4 GRS to distinguish T1D from
T2D using the 100-T1D case test group and
all 1,999 T2D samples.

RESULTS

We performed T1D association analyses
in individuals without high-risk DR3 or
DR4 haplotypes (Fig. 1). We obtained ge-
notype data for 29,723 individuals with
T1D and control individuals from five
European ancestry cohorts (Supplemen-
tary Table 1) and imputed genotypes
into 308 million variants in the TOPMed
version 2 and 56,310 variants in Michigan
HLA reference panels (32,33). We parti-
tioned individuals into 1,292 with T1D
and 11,424 control subjects without a
DR3 or DR4 haplotype (non-DR3/DR4
group) and 8,808 individuals with T1D
and 8,199 control subjects with at
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least one DR3 or DR4 haplotype (DR3/
DR4 group) (Supplementary Table 1).
We then tested for T1D association in the
non-DR3/DR4 group, as well as in the
DR3/DR4 group for comparison. Seven loci,
including PTPN22, INS, IFIH1, PTPN2, IKZF4,
OSTN, and MHC, had a genome-wide sig-
nificant (P < 5 × 10�8) T1D association in
non-DR3/DR4 (Fig. 1B and Supplementary
Table 2).We identified 12 additional signals
at locus-wide significance (P < 1 × 10�5)
at the MHC locus through conditional as-
sociation analysis (Research Design and

Methods, Fig. 1D, and Supplementary
Table 3). At each signal, we then generated
a set of variants (termed credible set) most
likely causal for T1D (Fig. 1C and E and
Supplementary Table 4).

We compared the T1D effects of risk
variants at these seven loci between
the non-DR3/DR4 and DR3/DR4 groups
using a BD test and considered tests sig-
nificant at FDR <0.10 (Research Design
and Methods). Of the six non-MHC loci,
five are known to affect T1D risk, while
OSTN was previously unreported (Fig. 2A).

At the novel OSTN locus, the lead variant
had significant (FDR <0.10) heterogeneity
in effect on T1D between the non-DR3/
DR4 and DR3/DR4 groups (b = 0.4871 vs.
0.0281; FDR = 3.86×10�4) (Fig. 2B). We
also observed significantly stronger effects
in the non-DR3/DR4 group for lead var-
iants at the IFIHI (b = �0.35 vs. �0.091;
FDR = 2.33×10�4) and PTPN2 (b = �0.37
vs. �0.21, FDR = 0.0356) loci (Fig. 2C),
both of which are implicated in b-cell
function (34) (Supplementary Table 5).
We further examined heterogeneity at

E

C

D

B

A

12,716

Figure 1—Genetic discovery in non-DR3/DR4 T1D. A: Overview of genetic discovery and risk prediction for T1D in individuals without DR3/DR4.
B: Genome-wide T1D association (log10 P values from meta-analysis of n = 12,316 samples) in individuals without DR3/DR4 haplotypes. Known
T1D loci are blue, and novel loci are purple. All loci are labeled with the nearest gene. C: Number of candidate causal variants in fine-mapped non-
MHC T1D signals. D: T1D association at the MHC locus (log10 P values from marginal association in meta-analysis of n = 12,316 samples). Known
signals are blue, and novel signals are purple. The location of class I and II HLA genes are shown on the bottom. E: Number of candidate causal var-
iants in fine-mapped MHC signals. CS, credible set; DCCT, Diabetes Control and Complications Trial; GENIE, Genetics of Nephropathy, an Interna-
tional Effort; GoKinD, Genetics of Kidneys in Diabetes.
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83 additional T1D loci (2), and although
no further loci had significant heteroge-
neity, we observed more nominal evi-
dence (P < 0.05) at nine loci. Among
these, five, including PRR15L, RAD51B,
PRF1, PRKD2, and 6q27, had larger ef-
fects in the non-DR3/DR4 group, includ-
ing several implicated in immune cells
and b-cells. By comparison, the four loci,
including 14q32, IL2RA, IL2, and CD69,
with smaller effects in the non-DR3/DR4
group largely affected T-cell function
(Supplementary Fig. 1 and Supplementary
Table 6).

We next determined whether individu-
als with T1D in the absence of HLA-DR3/
DR4 may carry a greater burden of poly-
genic risk.We determined whether known
T1D risk variants broadly had stronger ef-
fects in the non-DR3/DR4 group. A higher
proportion (60.2%) of variants at 88
known T1D loci had a stronger effect in
non-DR3/DR4, although this was not
significant (binomial P = 0.069). We also
identified a small increase in heritability
for T1D in non-DR3/DR4 compared with

DR3/DR4 (h2 [SE] 0.2846 [0.0795] vs.
0.2693 [0.0428]). Finally, there was a sig-
nificant increase in the ability to distin-
guish T1D from control in non-DR3/DR4
compared with DR3/DR4 (AUC 0.752 vs.
0.733; P = 0.0238) using a risk score de-
rived from only non-MHC variants (2).
The ability to distinguish T1D from con-
trol in non-DR3/DR4 was further im-
proved when using effects derived
from the non-DR3/DR4 T1D GWAS
(AUC 0.768; P = 1.66 × 10�5). Overall,
these results support a modest increase
in polygenic contribution to T1D risk
in the absence of high-risk DR3/DR4
haplotypes.

We next investigated whether variants
within the MHC locus contribute to het-
erogeneity between non-DR3/DR4 and
DR3/DR4 (Research Design and Meth-
ods). Of the 12 MHC signals identified in
non-DR3/DR4 T1D, 8 exhibited significant
heterogeneity (FDR <0.10) (Fig. 2A and
Supplementary Table 7). Most signals
were linked to known T1D alleles, ex-
cept for two apparent novel signals at

HLA-DRB1*09:01-DQA1*03:01-DQB1*
03:03 and B*44:02 (Fig. 2A and Supple-
mentary Table 8). Among a larger set of
40 known T1D MHC alleles, 22 two-field
class I and class II alleles had significant
heterogeneity (FDR <0.10) (Research
Design and Methods, Fig. 2D and E,
and Supplementary Table 9). In class I,
HLA-B*39:06 had increased risk in non-
DR3/DR4 (FDR = 0.027), HLA-A*01:01
was more protective in non-DR3/DR4
(FDR = 0.015), and HLA-B*18:01 had op-
posed effects in non-DR3/DR4 and DR3/
DR4 (FDR = 6.31 × 10�6) (Fig. 2D and E).
In class II, DRB1*15:01-DQB1*06:02 was
more protective in DR3/DR4 (DRB1*15:
01 FDR = 1.91 × 10�7, DQB1*6:02 FDR =
1.51 × 10�6) (Fig. 2D and E), DRB1*13:
01-DQB1*06:03 was more protective in
non-DR3/DR4 (FDR = 0.027) (Fig. 2A, D,
and E), and DPB1*03:01 had increased
risk in DR3/DR4 (FDR = 0.085) (Fig. 2D
and E). Together this reveals numer-
ous MHC alleles with heterogeneous
effects on T1D in a non-DR3/DR4
background.

E H

GFD

CBA

Figure 2—Heterogeneity of genetic and biological mechanisms in non-DR3/DR4 and DR3/DR4 T1D. A: Number of known and novel signals with het-
erogeneity in effect on T1D depending on DR3/DR4 background. B: Locus plots of T1D association at the novel OSTN locus in DR3/DR4 (left) and
non-DR3/DR4 (right). C: Non-MHC loci with genome-wide significant T1D association in non-DR3/DR4 association analyses with effect sizes and in-
teraction analysis significance for difference in effect. D: Enrichment scores for DR3/DR4 and non-DR3/DR4 in stimulated and unstimulated immune
cell regulatory elements. Dark green points are significant at FDR <0.10 in non-DR3/DR4 and DR3/DR4, while light blue points are significant by
FDR in only DR3/DR4. E: Biological pathway enrichment in non-DR3/DR4 T1D. F: Biological pathway enrichment in DR3/DR4 T1D. G: T1D effect sizes of class
I and II HLA alleles in each risk group after conditioning on nine DR3 and DR4 risk alleles. H: T1D case and control group frequencies of known HLA alleles
in non-DR3/DR4 and DR3/DR4. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of Genes and Genomes; Mem, memory; PDC, plasmacytoid dendritic cell;
S, stimulated; TF, transcription factor; Tfh, T follicular helper cell; Th1, T helper 1 cell; Treg, regulatory T cell; U, unstimulated.
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Individuals without DR3/DR4 haplo-
types have typically later onset of T1D;
thus, we examined whether heteroge-
neity in T1D risk between non-DR3/DR4
and DR3/DR4 was consistent across age
of onset. As all T1D ages of onset were
<40 years, we were unable to examine
non-DR3/DR4 heterogeneity in older-
onset T1D. We compared the effects of
non-DR3/DR4 signals in each cohort, in-
cluding WTCCC and T1DGC where all
case individuals had an age of onset
of <17 years (Supplementary Table 1).
Among loci significant in non-DR3/DR4
that also exhibited heterogeneity, we ob-
served no difference in T1D effects in
WTCCC and T1DGC compared with the
other cohorts with an age of onset up to
40 years (Cochran Q>0.05) (Supplementary
Table 2 and Supplementary Fig. 2).
Similarly, none of these loci showed
an association with T1D stratified by
age of onset of 17 years or T1D age of
onset directly (all P > 0.05). Signals
with heterogeneity in non-DR3/DR4
were largely distinct from those with
an age-dependent association from a
previous study (6), and HLA-B*39:06
had a larger effect in non-DR3/DR4
yet was associated with younger on-
set (Supplementary Fig. 1). As sex also
impacts T1D, we determined whether
the T1D association in non-DR3/DR4 inter-
acted with sex and found no significant evi-
dence (all P > 0.05). This supports that
heterogeneity in non-DR3/DR4 is distinct
from T1D age-of-onset– and sex-dependent
effects.
We next determined whether there

were broader differences in T1D associ-
ation patterns between non-DR3/DR4
and DR3/DR4. We first tested whether
T1D risk variants showed different en-
richment for gene regulatory elements
in specific immune cell types (23,25).
In non-DR3/DR4, there was significant
enrichment (FDR <0.10) of T1D variants
in regulatory elements for B cells, ma-
ture natural killer (NK) cells, and unsti-
mulated regulatory T cells (Fig. 2F and
Supplementary Table 10). By comparison,
in DR3/DR4, T1D variants were most en-
riched (FDR <0.10) in regulatory elements
for T-cell populations (Supplementary
Table 10). We next determined whether
T1D risk variants were enriched for genes
involved in different biological pathways
(Fig. 2G and H and Supplementary Table
11). T1D in DR3/DR4 had significant en-
richment (FDR <0.10) for T-cell–related

pathways, including IL-2 signaling, and
T-cell differentiation, activation, and pro-
liferation (Fig. 2H). In non-DR3/DR4, the
strongest enrichments, although not sig-
nificant after FDR correction, were for
regulation of lipid storage, macrophage-
stimulating factor, stress-induced apopto-
tic signaling, and complement pathways
(Fig. 2G). Collectively, this suggests a
greater antigen-presenting, innate im-
mune, and b-cell contribution and
lower T-cell contribution to T1D in non-
DR3/DR4.

Finally, we evaluated the ability of
GRSs to predict T1D in individuals with-
out DR3/DR4. More than 35% of individ-
uals without DR3/DR4 T1D were below
the 5th percentile for T1D in the pub-
lished GRS2 (30), and only 7.5% were
above the 50th percentile used to classify
T1D with high specificity. In line with this,
GRS2 had less ability to distinguish indi-
viduals without DR3/DR4 T1D from all
control subjects (AUC 0.764) (Fig. 3A and
E) compared with all individuals with T1D
(AUC 0.927) (30). We generated a non-
DR3/DR4–specific T1D GRS using the
18 risk signals in our non-DR3/DR4 GWAS
(Research Design and Methods and
Supplementary Table 12). This GRS
improved discrimination of individuals
without DR3/DR4 T1D from all control
subjects compared with GRS2 (AUC
0.835; P = 6.30 × 10�15) (Fig. 3A, E, and
F). We next generated a larger 100-
variant non-DR3/DR4 T1D GRS that in-
cluded 82 additional T1D risk loci (Research
Design and Methods and Supplementary
Table 12), which further discriminated T1D
from control (AUC 0.867; P = 7.48×10�32)
(Fig. 3B, E, and G).When subsets of individ-
uals with T1D and control subjects were
compared with individuals without DR3/
DR4, the 100-variant non-DR3/DR4 GRS
improved discrimination of T1D over both
the 18-variant GRS (AUC 0.894; P =
5.70×10�26) (Fig. 3C, F, and G) and
GRS2 (AUC 0.878; P = 0.026) (Fig. 3D, E,
and G). We further confirmed the ability
of the 100-variant non-DR3/DR4 GRS to
predict T1D using a test set of 100 T1D
and 300 control non-DR3/DR4 samples
excluded from association tests (AUC
0.887) (Supplementary Fig. 3A and B).

Since individuals with T1D and no
DR3/DR4 tend to have a later onset and
a lower dependence on insulin therapy,
leading to a potential misdiagnosis of
T2D (5,6,12), we next evaluated the
ability of GRS to differentiate T1D from

T2D (Supplementary Fig. 4). In GRS2
there was limited ability to distinguish
non-DR3/DR4 T1D from all T2D (AUC
0.759) (Supplementary Fig. 4A and E). In
contrast, our non-DR3/DR4 GRS strongly
discriminated non-DR3/DR4 T1D from
T2D compared with GRS2 (18-variant AUC
0.890 [P = 1.51×10�32]; 100-variant AUC
0.907 [P = 4.94×10�44]) (Supplementary
Fig. 4A, B, and E–G). When subsets of indi-
viduals with T1D and T2D were compared
with individuals without DR3/DR4, the
100-variant non-DR3/DR4 GRS again im-
proved on both the 18-variant GRS (AUC
0.920 and 0.905, respectively; P = 0.0775)
(Supplementary Fig. 4C, F, and G) and
GRS2 (AUC 0.876; P = 1.89 × 10�6)
(Supplementary Fig. 4D, E, and G). The
predictions were consistent when using
a test set of 100 T1D samples (AUC
0.906) (Supplementary Fig. 3C and D).
The ability to distinguish non-DR3/DR4
T1D from T2D appeared largely driven
by the improved estimation of effects
at the MHC locus (T1D vs. T2D HLA
AUC 0.885), as the extensive HLA com-
binations in GRS2 still do not enable dif-
ferentiation of non-DR3/DR4 T1D from
T2D (T1D vs. T2D GRS2 HLA AUC 0.698).

We finally determined the diagnostic
value of a GRS for T1D in a non-DR3/
DR4 background. Individuals with T1D
and no DR3/DR4 on the published GRS2
scale do not meet minimum require-
ments for diagnostic feasibility (maxi-
mum Youden index <0.5). When GRS2
is compared with only non-DR3/DR4
and rescaled (Table 1), the 50th percen-
tile of T1D had a specificity of 95.4%,
and the score had improved diagnostic
ability (maximum Youden index = 0.609).
The 18-variant non-DR3/DR4 GRS at the
50th percentile for T1D had a specificity
of 95.2% and a maximum Youden index
of 0.607. Furthermore, the 100-variant
non-DR3/DR4 GRS had improved specific-
ity (96.9%) at the 50th percentile for T1D
and a higher maximum Youden index of
0.644. In addition, while GRS2 had a lim-
ited ability to distinguish T1D from T2D
(maximum Youden index = 0.414), the
100-variant non-DR3/DR4 GRS had di-
agnostic value (maximum Youden index
>0.5) in differentiating individuals with
T1D and no DR3/DR4 T1D from individ-
uals with T2D as well as all control sub-
jects. Overall, our results provide a GRS
that can likely be adopted in a clinical
setting to distinguish non-DR3/DR4 T1D
from both nondiabetes and T2D.
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CONCLUSIONS

In the absence of high-risk DR3/DR4 hap-
lotypes, we observed heterogeneity in
T1D risk for class I and class II MHC al-
leles as well as other loci genome wide.
Genes at loci with larger effects in non-
DR3/DR4, such as PTPN2, IFIH1, PRR15L,
and RAD51B, are implicated in inflamma-
tory signaling (34,35) and survival (36) in
immune cells and b-cells. We also identi-
fied a novel T1D locus in non-DR3/DR4
near OSTN, which has been linked to dia-
betic cardiomyopathy (37). Conversely,
loci such as IL2RA, IL2, and CD69 with a
reduced effect in non-DR3/DR4 impact
T-cell function and activation (38). Geno-
mic annotations and molecular pathways
related to B cells, NK cells, and b-cells
were also more enriched in non-DR3/
DR4 T1D, and T cells less enriched, com-
pared with DR3/DR4. These results suggest
that mechanisms of T1D in a non-DR3/DR4
background may depend more on inflam-
mation and b-cell dysfunction than T-cell
activation (5–7). Given modest evidence

for a higher polygenic burden in non-DR3/
DR4 T1D, these individuals may require ad-
ditional polygenic risk to develop T1D.

Based on previous GRSs, many individu-
als with T1D and no DR3/DR4 would not
have been predicted to develop T1D. The
GRS reported here enables accurate dis-
crimination of T1D from nondiabetes and
T2D in individuals without DR3/DR4. To
improve accessibility, variants in the non-
DR3/DR4 GRS are all derived from publicly
available imputation panels. While the
subset of individuals that develop T1D
without DR3/DR4 exhibit later onset
and lower insulin dependence, they have
highly similar genetic risk profiles to DR3/
DR4 T1D and not T2D. Accurate prediction
of T1D in non-DR3/DR4 will help avoid
misdiagnosis of T2D and prevent ketoaci-
dosis and future complications. While the
non-DR3/DR4 T1D background has gener-
ally later onset, it can occur at any age,
and our results suggest that the effects of
variants on T1D risk in a non-DR3/DR4
background are consistent across age of
onset. Furthermore, our GRS may have

value in discriminating T1D in populations
in which DR3/DR4 is uncommon.

The ability to distinguish at-risk indi-
viduals is also critical for determining eli-
gibility for clinical trials and therapies.
The preventive therapy teplizumab mod-
ulates T-cell activity and is most effica-
cious in individuals with HLA-DR4 (8),
and several clinical trials aiming to pre-
serve b-cell function at onset preferen-
tially recruit individuals with DR3/DR4
(39,40). Given evidence for differences in
disease mechanisms, particularly a less
prominent contribution from T cells, al-
ternate therapies may be needed to pre-
vent T1D in individuals without DR3/DR4.
In addition, as autoantibodies are seen at
lower rates in non-DR3/DR4 T1D, addi-
tional biomarkers are needed for this
group (4).

There are several notable limitations of
our study. First, as the non-DR3/DR4 GRS
was tested in samples from the same co-
horts, which are not fully independent, the
accuracy of the GRS requires validation in
other cohorts. Second, all individuals with

GFE

DCBA

n=19,291 n=1,192
n=11,124n=19,639

n=1,192
n=11,124n=19,639

n=1,180n=11,057

Figure 3—Genetic risk prediction in individuals with T1D and no DR3/DR4. ROC curves showing the ability of GRSs to differentiate T1D from non-
diabetes in non-DR3/DR4 cohort and corresponding violin plots. The AUCs are shown for each GRS, and the P values comparing predictive ability
of the GRSs are calculated using the DeLong test. A: GRS2 compared with the 18-variant non-DR3/DR4 GRS in the non-DR3/DR4 T1D group vs. all
(non-DR3/DR4 and DR3/DR4) control subjects. B: GRS2 compared with the 100-variant non-DR3/DR4 T1D GRS in non-DR3/DR4 T1D group vs. all
control subjects. C: The 18-variant non-DR3/DR4 T1D GRS compared with the 100-variant non-DR3/DR4 T1D GRS in non-DR3/DR4 T1D and control
groups. D: GRS2 subset of the non-DR3/DR4 T1D and control groups compared with the 100-variant non-DR3/DR4 T1D GRS in the non-DR3/DR4
T1D and control groups. E–G: Violin plots for scores in all control subjects, control subjects without DR3/DR4, and individuals with T1D are de-
picted for GRS2 (E), 18-variant non-DR3/DR4 T1D GRS (F), and 100-variant non-DR3/DR4 T1D GRS (G). The number of samples differs between
GRSs due to ambiguous HLA-DR/DQ alleles leading to several sample exclusions in GRS2. var, variant.
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T1D in this study were younger than 40
years, and as many T1D diagnoses occur
after age 40, similar studies are needed to
establish genetic heterogeneity in older-
onset T1D. In addition, several cohorts
consisted of individuals with T1D selected
for diabetes complications, which may re-
sult in biases in the case population. Fi-
nally, larger and more ancestrally diverse
sample sizes in association analyses will
help establish the full extent of hetero-
geneity in T1D genetic risk due to HLA
background, including within previously
defined endotypes.
Our findings are in line with a growing

body of literature (6,41) supporting T1D
as a heterogeneous disease consisting of
subtypes with distinct pathophysiological
features. More broadly, stratifying by high-
risk genetic background may be an ef-
fective strategy to discover genetic and
mechanistic heterogeneity in other com-
plex diseases.
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