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ABSTRACT OF THE THESIS

RollStore: Hybrid Onchain-Offchain Data Indexing for Decentralized Blockchain
Applications

By

Qi Lin

Master of Science in Computer Science

University of California, Irvine, 2023

Assistant Professor Faisal Nawab, Chair

The interest in building blockchain Decentralized Applications (DApps) has been growing

over the past few years. DApps are implemented as smart contracts which are programs that

are maintained by a blockchain network. Building DApps, however, faces many challenges—

most notably the performance and monetary overhead of writing to blockchain smart con-

tracts. To overcome this challenge, many DApp developers have explored utilizing off-chain

resources—nodes outside of the blockchain network—to offload part of the processing and

storage.

In this paper, we propose RollStore, a data indexing solution for hybrid onchain-offchain

DApps. RollStore provides efficiency in terms of reduced cost and latency, as well as se-

curity in terms of tolerating byzantine (i.e., malicious) offchain nodes. RollStore achieves

this by: (1) a three-stage commitment strategy where each stage represents a point in a

performance-security trade-off—i.e., first stage is fast but less secure while the last stage

is slower but is more secure. (2) utilizing zero-knowledge (zk) proofs to enable the onchain

smart contract to verify offchain operations with a small cost. (3) Combining Log-Structured

Merge (LSM) trees and Merkle Mountain Range (MMR) trees to efficiently enable both ac-

cess and verification of indexed data. We experimentally evaluate the cost and performance

vii



benefits of RollStore while comparing with BlockchainDB and BigChainDB.
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Chapter 1

Introduction

1.1 Motivation

Decentralized Applications (DApps) are applications that are implemented as smart con-

tracts. A smart contract is a program where its state and logic is maintained by a blockchain

network1. This makes DApps inherit blockchain features such as decentralization, trans-

parency, and tamper-freedom [12]. Recently, there has been a lot of interest in DApps.

Various DApps have amassed hundreds of thousands of users and hundreds of millions of

dollars in assets [1, 53, 65]. DApps span many areas such as decentralized finance [16, 55],

gaming and metaverses [2, 4, 46], and supply-chain [10, 63].

DApp developers face many challenges including the performance overhead and monetary

cost of writing to blockchain smart contracts. Writing to a blockchain smart contracts can

take tens of minutes or more to finalize [19]. The cost of a smart contract operation depends

on the complexity of the operation and amount of storage, but it is estimated that the

average cost of a single smart contract operation is around $3 [3].

1In this paper, we consider permissionless blockchain technologies such as Ethereum as they are the ones
used predominately by DApps [1].
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To overcome these overheads, many DApps are developed using the hybrid onchain-offchain

model [8, 26, 43, 74], that we call the hybrid model for short. In this model, part of the

DApp logic is maintained in the on-chain contract—where by on-chain we mean that it is

implemented in the blockchain smart contract. The rest of the processing and storage of

the DApp is maintained by off-chain nodes—where off-chain nodes are compute nodes that

are outside of the blockchain network. By handing off part of the processing and storage to

off-chain nodes, the monetary cost and performance overhead is reduced significantly.

The introduction of off-chain nodes, however, raises another challenge—these off-chain nodes

might be untrusted. Hybrid DApps explore various methods to enable utilizing off-chain

nodes while maintaining the integrity of the application. These methods include using

trusted off-chain nodes [41], trusted execution environments [20] such as Intel SGX [18],

and authenticated and verifiable data structures [51, 71]. These methods, however, remain

limited by strong assumptions (i.e., trusted offchain nodes and execution environments) or

high computation complexity (i.e., time needed to verify and prove data correctness).

In this work, we aim to build a data indexing solution for DApps in the hybrid onchain-

offchain model. Data indexing is a fundamental problem in data management and a building

block for more complex data management functionality. Therefore, the development of an

efficient and secure data indexing solution for DApps can have an impact on a wide-range

of decentralized systems.

Currently, existing blockchain-based databases (BBDBs) fall under one or more of the fol-

lowing categories [9, 22, 41, 47, 52, 56, 20, 62, 26, 51]:

• BBDBs that do not utilize off-chain nodes efficiently (i.e., by writing all data and/or

operations on-chain) [9, 22], making them inefficient in terms of monetary cost and

performance overhead.

• BBDBs that utilize off-chain nodes that are assumed to be trusted/permissioned (i.e.,
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with closed membership) [41] or utilize trusted execution environments [20]. These

are strong assumptions for decentralized environments and limit their practicality for

DApps which are widely implemented on permissionless environments.

• BBDBs that utilize authenticated data structures and verification methods to verify

query results using on-chain digests or verifiers [51, 71]. However, these BBDBs only

consider querying immutable data and suffer from the two limitations above if changes

need to be applied to data.

Our solution aims to extend and support the space of blockchain-based data management

systems.

1.2 Approach

We propose RollStore, a data indexing solution for hybrid blockchain DApps that overcomes

the challenges of prior BBDBs. RollStore has the following properties:

• RollStore utilizes off-chain nodes efficiently by not needing to send raw data or opera-

tions to the smart contract. Smart contracts are only used for performing low-overhead

operations (i.e., lightweight verification of data digests). This makes RollStore efficient

in terms of reducing monetary cost of writing to blockchain.

• RollStore does not assume that any off-chain node is trusted. This makes RollStore

practical for DApps that rely on permissionless blockchain.

• RollStore has a key-value interface where users can both read and write data. RollStore

is the first data indexing solution for hybrid DApps that can achieve all these three

properties. We envision that RollStore can be augmented with existing BBDBs as their
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indexing component to help transform them to enjoy the aforementioned RollStore

properties.

RollStore can achieve the three properties above by bringing together and innovating in the

areas of zero-knowledge (zk) proofs [67], optimistic and zk rollups [57, 61], Log-Structured

Merge (LSM) trees [39], and Merkle Mountain Range (MMR) trees [58].

We utilize Zero-Knowledge Succinct Non-interactive Argument of Knowledge (zk-SNARK) [13,

25]. Zk-SNARK allows an untrusted node to perform a computation that changes the state

of the data and produce the new state with a proof of the new state’s correctness (i.e., that

the new state is the result of applying a correct mutating operation on the previous state).

The proof can be verified with low overhead, thus allowing cheap verification on-chain.

We also utilize the concept of optimistic rollups (o-rollups) [57]. O-rollups were proposed as

a layer-2 scaling solution for blockchain, where off-chain nodes perform compute functions on

behalf of the layer-1 blockchain. Then, clients can interact with the blockchain in a challenge

period to challenge the correctness of the off-chain outcomes.

Finally, we integrate LSM and MMR tree structures in the design. LSM’s append-only

nature makes it a good candidate to manage the movement of data from one stage to another

(e.g., data in each LSM layer corresponds to a different processing/validation stage). MMR

trees allow deconstructing a single MMR tree into smaller merkle trees. This allows better

modularity and integration with LSM trees.

RollStore combines the aforementioned technologies in a new design for hybrid DApp data

indexing. RollStore consists of three types of nodes: (1) an updater node that manages

clients requests, (2) a prover node that is responsible for generating proofs for operations,

and (3) a backup node that maintains the verified data and associated proofs. In addition,

RollStore includes a smart contract that performs lightweight verification of digests and
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proofs.

RollStore also proposes a three-stage commitment process to manage the performance-

security trade-off of verification methods. In particular, we support three kinds of verification

methods for updates to off-chain data:

• Off-chain response proof: this is the weakest guarantee which is for the client to receive

a signed response from the off-chain node before any digest or proof is written on-chain.

The signed response represents a promise to include and process the request in a specific

LSM page. The client can use the signed response to punish the off-chain node in the

case it lies or acts maliciously—by not honoring its promise to process the request.

(We discuss the punishment smart contract in the paper which withdraws a penalty

amount from an escrow fund of the off-chain node if proven to have acted maliciously).

• Optimistic rollups (o-rollups): this method relies on a simple data digest that is written

on-chain. Users agree on the digest and the data represented by that digest; however,

it is not guaranteed that the corresponding operations and new state are processed

correctly.

• Zk-SNARK proofs: this is the most trusted verification as it verifies the correctness of

the data operation and new off-chain data state. However, it has high computational

complexity requiring a long time to generate proofs.

RollStore three-stage commitment takes an operation through three stages starting from the

faster verification method to the slower ones:

• The transaction is stage 0 committed, meaning that it has a signed response from the

off-chain node. This signed response can be used later to punish the off-chain node

if it has lied. Depending on the operation and punishment, this is designed to be a

deterrent of malicious off-chain nodes.
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• Once the initial digest of the updated data is written on-chain, it is considered stage

1 committed. Users agree on this digest and the data it represents at this stage

because the digest is immutable on-chain. The state corresponding to the digest might

still be incorrect—since no verification of how the digest was generated. Punishment

strategies can be applied in this case as well if the off-chain node is proved to have

acted maliciously.

• After the zk-SNARKS proof is produced and written on-chain, users have complete

trust on the correctness of off-chain data. This is because the zk proof proves that the

corresponding data is computed correctly.

The contribution of the paper is summarized as the following:

• RollStore is the first dynamic indexing solution for hybrid DApps and BBDBs that

enables efficient utilization of untrusted off-chain nodes (i.e., without requiring on-

chain operations other than simple verification of digests and zk proofs).

• RollStore is the first blockchain-based data management solution that utilizes zk proofs

and o-rollups in a three-stage design that manages the performance-security trade-off

of these methods.

• RollStore is the first solution to incorporate zk proofs and o-rollups verification in the

problem of indexing by a novel design that builds on LSM and MMR trees.

1.3 Outline of the Thesis

In the rest of the thesis, we present the background in Chapter 2. Then, we present the

design of RollStore in Chapter 3. An experimental evaluation is presented in Chapter 4. We

discuss related work in Chapter 5 and conclude in Chapter 6.
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Chapter 2

Background

2.1 LSM Trees

Log-Structured Merge (LSM) Trees are widely used for data indexing [39]. LSM trees are

designed to support fast data ingestion by appending entries for write operations instead of

updating the corresponding old entry in-place. Periodically, appended data is merged with

the rest of the LSM tree. This append-only nature of ingestion makes LSM trees a suitable

candidate for write-intensive workloads.

There are many LSM tree variants [39]. Here, we provide a description of the common and

typical design aspects of LSM trees. Generally, LSM trees contain several levels, L0, L1,

· · · , Lk. Level L0 is maintained in main memory while other levels are persisted on disk.

Incoming write operations are appended to an in-memory mutable table. When the mutable

table is full, the data in it—represented as key-value pairs—is ordered and inserted to L0

as a new page. L0—as well as other levels—has a threshold on the number of pages. Once

this threshold is met, the data in L0 pages is merged with the pages in the next level. This

continues until data reaches the final level Lk. When two levels are merged, one of two widely
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used techniques is used: tiering and leveling [15]. The tiering strategy merges all pages of

the two levels and inserts the new (merged) pages in the higher level. Leveling, on the other

hand, only merges a subset of the pages in the lower level with the pages in the higher level.

2.2 MMR Trees

The Merkle Mountain Range (MMR) tree [58] is a variant of the merkle tree [42] which is

structured as a group of underlying merkle trees (Figure 2.1). A MMR tree is an append-only

tree where elements are added as leaf nodes from left to right (Figure 2.1 shows the case of

adding items 1 to 7 from left to right.) Once there are two children nodes at a level with

no parent node, a parent node for the two children nodes is generated at the higher level.

For example, consider the MMR tree in Figure 2.1 where internal node numbers represent

the generation order (e.g., Hashi is the ith generated hash node). Hash6, for example, is

generated after Hash4 and Hash5 are added (for items 3 and 4). Adding Hash6 in turn

leads to creating Hash7. In the figure, there are three underlying merkle trees with roots

Hash7, Hash10 and Hash11. These roots are also called peak nodes, and each underlying

merkle tree is called a mountain. The MMR root is calculated as the hash of the peak nodes.

An MMR tree can provide an inclusion proof of a data item in a similar way to merkle trees.

The inclusion proof includes the sibling node of every node in the path from the data item

to the MMR root. For example, in Figure 2.1, the inclusion proof of item Item3 contains

Hash5, Hash3, Hash10, and Hash11. A client receiving the proof calculates the MMR root

using the provided hashes. If the calculated MMR root matches the original MMR root,

then the client knows that the received item is correct. A malicious server cannot generate

a false inclusion proof of an item that is not in the MMR tree. This is because any change

in leaf nodes leads to changing the MMR root.
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Figure 2.1: An example of the Merkle Mountain Range tree.

2.3 Blockchain Rollups

Rollups is a layer 2 solution to enhance blockchain scalability, which aims to reduce the per-

formance overhead and monetary cost of operations on-chain [57]. In rollups, transactions

are aggregated and executed in off-chain nodes, then the on-chain smart contract maintains

the root value (e.g., merkle root hash value) which corresponds to the current state (Fig-

ure 2.2). The off-chain node publishes a digest for batched transactions, which contains the

previous merkle root MMRPre (0x123456 in the figure) and the computed new merkle root

MMRNew (0x456789 in the figure). When such digest is written on-chain, the smart contract

checks whether the previous merkle root MMRPre in this digest matches the current merkle

root stored in the smart contract; if it does, the smart contract updates its state root to the

new MMR root, MMRNew. Such a mechanism avoids writing all transaction information

on-chain, thus reducing the overhead and transaction fee.

The main challenge with rollups solutions is that the off-chain node might act maliciously

and provide a new digest, MMRNew, that corresponds to an incorrect new state, i.e., the

transactions that leads to the new state with digest MMRNew are incorrect or malicious
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Figure 2.2: An example of blockchain rollups.

transactions. To overcome this challenge, two types of rollups variants are used: optimistic

rollups (o-rollups) and zero-knowledge (zk) rollups.

2.3.1 Optimistic Rollups

O-rollups ensures that the new hash that is written on-chain, MMRNew, is based on correct

computation by using an interactive fraud-proof mechanism [5]. In this approach, the new

digest is written on-chain before verification (optimistically). Then, off-chain nodes and

clients have an opportunity to challenge the correctness of the state that is represented by the

new digest, MMRNew. This opportunity remains for a pre-defined challenge period. After

this period expires, if no successful challenges are raised, then the new digest is assumed to be

correct. Otherwise, if a client challenges the correctness of MMRNew, then a special smart

contract verifies the correctness of the challenge. If the new state turns out to be incorrect,

the challenge succeeds, and the smart contract reverts the state to a previous correct state.

A problem with o-rollups is that the challenge period needs to be long—several days to a
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Figure 2.3: Components and flow of zk-SNARK.

week [57]—to provide an opportunity for challengers.

2.3.2 Zero-knowledge Rollups

Zk-rollups is a non-interactive solution based on a zero-knowledge proof mechanism [28, 67].

In zk-rollups, a digest includes a validity proof. The validity proof proves that the generated

new digest MMRNew corresponds to a state of the data that is correct, i.e., the new state

with digest MMRNew is the outcome of processing transactions on the previous state with

digest MMRPre. The zk-SNARK protocol is one of the methods used to implement zk-

rollups [13, 23, 25, 27, 64].

The zk-SNARK protocol is used in the following way by utilizing three components: a setup

node, a prover node, and a verifier node (Figure 2.3):
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• The setup node generates a proving key Pks and a verification key V ks that will

be used to generate and verify proofs. Although these two keys can be published, the

computation work to generate these two keys should remain a secret. Therefore, for zk-

SNARK, the setup—which is a one-time process before operation—must be performed

by a trusted node. After setup, there is no need for trusted nodes. The generation of

the two keys is influenced by the type of computation that needs to be proven. The user

provides the program to be proven/verified as well as the inputs to such computation.

In RollStore, for example, the program to prove/verify is the one that updates the

LSM tree and produces a new state represented by MMRNew; and the inputs to the

program are the previous state and its digest MMRPre as well as the operations that

are applied to the previous state to generate the new state.

• The prover node is responsible for generating the correctness proof of the computation.

It needs three parameters, the proving key Pks, the public information, Infpub, and

the secret information, Infsecret. After collecting these parameters, the prover node

generates a proof πs of the computation outcome.

• The verifier node needs three parameters: the verification key V ks, the public infor-

mation Infpub, and the proof πs. After collecting these parameters, the verifier node

generates a decision (True or False). In hybrid blockchains, the verifier can be a smart

contract. Typical zk-SNARK protocols are designed so that verification is fast at

the expense of a more lengthy proof generation process. This is suitable for hybrid

blockchains, since generating proofs is performed by off-chain nodes that do not have

the constraints of smart contracts, while verification is performed on-chain.
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Chapter 3

System Design

In this section, we present the design of RollStore.

3.1 System Model and Interface

System components. RollStore consists of the following components (Figure 3.1):

• Updater node: the updater receives the write and read requests from clients. It

maintains a mutable table Tmut, Level L0 of the LSM tree, and a MMR tree for data

in L0, called MMR0. Data in L0 represents stage 0 committed data.

• Backup node: the backup maintains LSM levels (L1 and L2), and two MMR trees

MMR1 and MMR2, each corresponding to an LSM level. L1 contains data that is

stage 1 committed (o-rollups) and L2 contains data that is stage 2 committed (zk-

SNARK).

• Prover node: the prover performs zk-SNARK computation to generate proofs of L2

pages.

13



• Smart contracts: on-chain smart contracts handle the verification and maintenance

of digests related to stage 1 and 2 committed data. Also, the smart contract handles the

punishment strategy by verifying whether an off-chain node is malicious if a challenge

is raised during stage 0 or 1 commitment. If the challenge indicates malicious activity,

then the smart contract punishes the off-chain node by withdrawing funds from its

escrow account.

Mutable Table

Updater Node

ClientClient ClientClient

Level L0

Page 0-0 Page 0-1

Backup Node

Level L1

Page 1-0 Page 1-1

Level L2

Page 2-0 Page 2-1

o-rollup (stage 1)

zk-rollup

(stage 2)

�ush

(stage 0)

Prover

Node

Blockchain Smart Contract
Stage 1 proofs

digests of page 1-0 &

(pages 0-0 to 0-(m-1))

MMR Tree 0

MMR Tree 1

MMR Tree 2

digests of page 1-1 &

(pages 0-m to 0-(2m-1))

Stage 2 proofs

digest of L2 MMR root

after merging pages 2-0 to

2-(k-1) and their digests

digest of L2 MMR root

after merging pages 2-k to

2-(2k-1) and their digests

Figure 3.1: Data architecture of RollStore.

The three types of off-chain nodes can be co-located or placed across different machines.
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Also, the three types of nodes can be elastically scaled, where more nodes of a node type

are added to scale its computation, e.g., prover nodes can be added to speed up zk proof

generation. We discuss scaling node types in Section 3.3.

Security model. Off-chain nodes (updaters, backups, and provers) are not trusted. They

can deviate from the protocol in arbitrary ways, similar to byzantine failures [37]. Off-chain

nodes can collude together and with clients. The smart contract logic executes correctly—

without deviating from the protocol—due to running on blockchain. Write requests are

assumed to be authenticated by a client, which prevents off-chain nodes from fabricating

clients requests.

System Interface. RollStore provides a read, and write operation interface for users to

read and write data.

1. Write: (In: key-value pair, Out: inclusion proof, sequence number): this call takes a

key-value pair as the input, the output of this call is the inclusion proof for the key-

value pair and the sequence number where it is added. Clients use the write interface

to submit write requests to the updater node.

2. Read: (In: key, Out: value, inclusion proof): this function takes a key as the input,

the output of the read operation is the corresponding value, and the inclusion proof

for that value. The inclusion proof might be (1) local (stage 0), (2) global without

fully verified (stage 1), or (3) global with fully verified (stage 2). Clients use the read

interface to submit the read requests to the updater node.

Data model. The following are the main data structures maintained in RollStore (Fig-

ure 3.1):

1. Distributed LSM tree: The LSM Tree maintains the key-value pairs appended to

RollStore. It has a mutable table and three levels. The mutable table Tmut is at the

15



updater node. Tmut holds the most recently appended entries that are being staged

to be pushed to level L0 of the LSM tree. Level L0 maintains batches of appended

data objects and is stored in the updater node. A page is added to L0 only after a

signed response is sent back to the clients with operations corresponding to the page’s

data objects. Pages are assigned a monotonically increasing sequence number Seq. We

denote the ith appended page to L0 as page P0i.

Level L1 represents pages that are consolidated from level L0. Before a page is written

to L1, its digest must be written on-chain as part of stage 1 o-rollups. Pages in L1

are also assigned monotonically increasing sequence numbers, where the ith page to be

added to L1 is denoted P1i. Each page in L1 represents a consolidation of pages in L0.

Therefore, page P1i represents the consolidation of pages P0i∗m to P0(i∗m)+m−1 from

L0, where m is the threshold of the number of pages in L0 to trigger a consolidation

of pages in L0 and creating a new page in L1. Note that a new page in L1 is added to

the set of pages in L1 and not merged with existing pages. Therefore, pages in L1 may

have overlapping key ranges.

Level L2 represents pages that are merged from level L1 after a successful zk proof is

generated for them. Pages from L1 are merged into L2 in the order of their sequence

numbers. Specifically, when the next k pages at L1 are zk proven, then they are merged

with the pages that already exist in L2. Therefore, after i merge steps to L2 (where

i = 0 corresponds to the first step), the pages in L2 contain the merged key-value

pairs that represent pages P1(i∗k) to P1(i∗k)+k−1), which correspond to pages P0i∗k∗m

to P0(i∗k∗m)+(m∗k)−1. Pages are merged from L1 into L2 which means that key-value

pairs in L2 are ordered across pages and each page has a unique range of key-value

pairs that do not overlap with other pages in L2.

2. MMR trees: The MMR trees are used to create compact digests of the data in

the LSM tree. There are three MMR trees, each one corresponding to an LSM level;
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MMR0 for L0 in the updater, and MMR1 and MMR2 for L1 and L2 in the backup.

The digests of this MMR tree are used for the verification process of stage 1 and stage

2 committed data.

3. On-chain digests: the smart contract maintains a map of digests and proofs that

are related to stage 1 and 2 committed data. Users query these digests to verify the

authenticity of responses from off-chain nodes. There are two sets of digests/proofs.

The first set is for stage 1 digests. In this set, each smart contract digest SCDigest1i

corresponds to page P1i, which is a consolidation of pages P0i∗m to P0(i∗m)+m−1,

where m is the threshold for the number of pages in L0 before consolidation. The

second set is for stage 2 digests/proofs. In this set, each smart contract digest/proof

SCDigest2i corresponds to the ith merge operation on L2. The ith merge operation in

L2 corresponds to merging the key-value pairs that are consolidated in pages P1i∗k to

P1(i∗k)+k−1, where k is the threshold of the number of L1 pages to merge into L2.

Commitment model. A write operation W of client c goes through three stages of com-

mitment:

1. Stage 0: when the updater sends a signed response back to c, W is considered stage 0

committed. This signed response includes acknowledging the operation is received and

promising to add it to page P0i. This stage of commitment is the fastest as blockchain

smart contracts are not involved. Client c can use the signed response later to prove

maliciousness if an updater has lied (e.g., operation W is not included in P0i and

later not included in P1⌊i/m⌋, where m is the page threshold at L0). A penalty smart

contract receives punishment requests from clients that wish to prove maliciousness

and punish malicious off-chain nodes.

2. Stage 1: consider the page P0i that includes W and the page P1⌊i/m⌋ that is the

consolidated L1 page that includes P0i. When the digest of P0i and P1⌊i/m⌋ are
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written as SCDigest1i to the smart contract, the operation W is considered stage 1

committed. This takes longer than stage 0 commitment since the digests need to be

written on-chain. However, it provides a stronger consistency guarantee—if two clients

observe the state of a page P0i that is stage 1 committed, then they agree on the state

of the page. However, this stage of commitment does not guarantee that the page itself

is the result of correct computations. This is because the off-chain node can create a

digest of arbitrary data. The client has to wait for the next stage of commitment to

ensure that the derivation of the page is correct. However, if the off-chain nodes lie

about stage 1 committed pages, they won’t be able to perform stage 2 commitment.

This consequently leads to clients sending a challenge request to the penalty smart

contract that punishes the off-chain nodes.

3. Stage 2: Operation W is considered stage 2 committed when the following is true:

the zk proof of a merge that includes page P1⌊i/m⌋ is verified by the smart contract

and written as SCDigest2⌊i/(m∗k)⌋, where k is the page threshold at L1. This is the

strongest correctness guarantee as a page that is stage 2 committed is guaranteed

to have been computed correctly by zk-SNARK. However, generating such proof is a

complex process that may take the prover a long time to generate.

3.2 RollStore Core Design and Protocol

We now provide a description of RollStore’s core design and protocols. This includes the

protocols for read and write operations with a deployment of one updater, one backup, and

one prover. We will describe the protocol as we follow the end-to-end life-cycle of write and

read requests (Figure 3.2 shows the flow of operations that we refer to as steps in the rest

of this section).
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Figure 3.2: Lifecycle of RollStore requests. Red arrows represent stage 0 and 1 steps of
write operations; blue arrows represent stage 2 steps of write operations; and green arrows
represent steps of read operations.

Stage 0 commitment. A client c creates a signed write request Wi that has a key-value

pair, [Ki, Vi], and signature, Sc, as payload; Wi = (Sc, [Ki, Vi]). The signed write request is

sent to the updater node (step 0 in the figure). The updater node, after receiving the signed

request for Wi, adds Wi to the mutable table Tmut of the LSM tree. Once Tmut is full, the

key-value pairs in Tmut are reordered by their key and written as a new page P0i in L0 of

the LSM tree located in the updater node. Each page in L0 is assigned a monotonically

increasing sequence number. This sequence number will be used by clients to track their

operations and ensure that they are eventually stage 1 and 2 committed. Page P0i’s sequence

number is denoted Seqi (if not mentioned otherwise, assume that Seqi = i).

The MMR tree in the updater node is updated to include data in P0i. At this point, a

signed response, Acki, is sent back to client c for stage 0 commitment of Wi (step 1). This
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response includes: a stage-0 proof of inclusion of Wi in P0i (using the MMR tree) denoted

Prf 0
Wi
; also, Acki includes P0i’s sequence number Seqi and the updater’s signature Su;

Acki = (Su, Seqi, P rf 0
Wi
). At this point, client c considers the operation stage 0 committed

and has a signed response that the updater node promised to include Wi as part of page

P0i with sequence number Seqi in the LSM tree. If the updater node does not honor this

promise, then client c can use this signed response to trigger a punishment smart contract.

Stage 1 commitment. The updater node continues adding pages to L0 until the threshold

of the number of pages, m, is exceeded. At this point, Stage 1 commitment of pages in

L0 starts. The pages in L0—including P0i—are now mapped by the updater’s MMR tree,

MMR0. A consolidated page P1⌊i/m⌋ that conslidates the key-value pairs in pages in L0

is created. The hashes and sequence numbers of the pages in L0 and the hash of P1⌊i/m⌋

are sent to the smart contract (step 2). The smart contract records this root hash as the

stage 1 commitment o-rollups hash for the pages with the corresponding sequence numbers.

This hash is recorded as SCDigest1⌊i/m⌋. Then, the smart contract emits an event to the

updater node and clients about the new written hash and the corresponding page sequence

numbers1 (step 3 and 3’). The updater node sends a signed response to the client for stage 1

commitment (step 4). This response includes the digest of page P1⌊i/m⌋ and the operation’s

inclusion proof.

After stage 1 commitment is performed for pages in L0, all pages in L0 and the consolidated

page P1⌊i/m⌋ are sent to the backup node to be inserted to L1 (step 5). The original pages

in L0 are sent with P1⌊i/m⌋ to the backup node as they will be used to provide inclusion

proofs for read request as well as used to generate the zk proofs in stage 2 commitment.

After sending P1⌊i/m⌋ and the L0 pages to the backup node, the pages in L0 are cleared in

the updater node. The page P1⌊i/m⌋ will not be merged with pages in L1, rather it will be

1A smart contract in permissionless blockchain cannot communicate directly to off-chain nodes. Here, we
use the Ethereum emit operation that allows off-chain nodes to filter and pull emitted data of interest from
the smart contract. Emit events in Figure 3.2 are shown as dotted arrows.
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inserted as a new page. This means that the key-value pairs range of one page in L1 may

overlap with the ranges of other pages in L1.

Stage 2 commitment. After page P1⌊i/m⌋ is added to L1, the backup node checks if the

page threshold for L1, denoted k, is met. If it did, the backup node starts the stage 2

commitment process using zk-SNARK for pages in L1. This process merges the pages in L1

with the pages in L2. In the jth merge operation, the pages to be merged from L1 are from

P1j∗k to P1(j∗k)+k−1.

The merge is performed in the backup node. Then, the merge information is sent to the

prover to generate a proof of the correctness of the merge. The information to prove the

jth merge includes: (1) pages P1j∗k to P1(j∗k)+k−1, (2) pages P0j∗k∗m to P0(j∗k∗m)+(k∗m)−1,

(3) pages in L2, (4) the MMR root of L2, MMR2−pre, before the merge, and (5) the MMR

root of L2, MMR2−new, after the merge (step 6). The prover node takes all this information

to generate a proof that: (1) each page in pages P1j∗k to P1(j∗k)+k−1 is generated correctly

from the corresponding L0 pages, (2) the merge of pages in P1j∗k to P1(j∗k)+k−1 with pages

in L2 (with MMR root MMR2−pre) yields a new state with MMR root MMR2−new.

After the zk-SNARK proof is generated, it is sent to the smart contract to be validated

(step 7). The smart contract performs the following: (1) it validates the proof, (2) verifies

that the hashes used for L0 and L1 pages match the ones in stage 1 commit for the pages

with the same sequence numbers, (3) verifies that MMR2−pre corresponds to the previous

verification, (4) record the new proof digest on-chain as SCDigest2j for future access by

clients, and (5) an event is emitted to the backup node and clients with operations in pages

P1j∗k to P1(j∗k)+k−1 (step 8 and 8’). The writes in P1j∗k to P1(j∗k)+k−1 are now considered

stage 2 committed. The backup node—once the proof is verified by the smart contract—

writes the merged pages to L2 and clear pages P1j∗k to P1(j∗k)+k−1 from L1.

Read operations. A client wishing to read a key x can request the level of the read request:
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stage 0, stage 1, or stage 2 committed. We now show the process for a stage 0 committed

read. (Stage 1 and stage 2 committed read follow the same process but starting from the

backup node at level L1 for stage 1, and L2 for stage 2). First, the read request r is sent to

the updater node (step A). When the updater node receives a read request, it responds with

a signed response with the corresponding key-value pair and MMR inclusion proof (step B).

The implications of this commitment is similar to stage 0 commitment for write operations

where a read client can use the signed response as a proof of a lie by the updater node in

the future.

If the requested key was not in L0, then the read request moves to L1 (this is also the start

point of a stage 1 committed read). The client reads the most recent written stage 1 and

2 digests from the smart contract to match them with the response once received. The

updater node forwards the request to the backup node (step C). When the backup node

receives the read request, it responds with the corresponding key-value pair from a page in

level L1 with the MMR inclusion proof. The guarantee of this read request is similar to

a stage 1 committed write where any two read requests would agree on the result but the

result is still not verified by a zk proof.

If the requested key was not in L1, then the read request moves to L2 (this is also the start

point of a stage 2 committed read). The backup node returns the requested key-value pair

from L2 if it exists (step D). The client can check the inclusion proof against the smart

contract and verify that the read data object has been verified with a zk proof.

In both the stage 1 and stage 2 reads, the client reads the proof/digest from the smart

contract prior to the beginning of the operation (note that unlike writing to blockchain

smart contracts, reading data from a smart contract is a fast operation). Consider a read

request that goes to a level Li; if the data object does not exist in that level and the read is

forwarded to Li+1, then a proof of non-existence is also returned from Li. This can be done

by returning the pages with the ranges that overlap the requested key so that the client can
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verify that the key does not exist.

Example: Suppose the threshold of the mutable table Tmut, level L0 of LSM in the updater

node, and level L1 of LSM in the backup node are 2, 3 and 1, respectively. The initial root

hash value is Root0. When the updater node received 2 write requests Wi (i = 1, 2) from

clients ci (i = 1, 2), it will store it as one page P01 and append the page P01 to its MMR

tree. Then it will return the acknowledgement response Acki and sequence number Seq1 to

clients ci (i = 1, 2).

The acknowledgement response Acki contains inclusion proofs Prf 0
Wi
; also, Acki includes

P0i’s sequence number Seqi and the updater’s signature Su; Acki = (Su, Seqi, P rf 0
Wi
). When

clients ci received the acknowledgement response Acki from updater node, they will mark

their write requests Wi as stage 0 commitment. Now the new root hash value is Root1. After

collecting 3 pages in level L0, the updater node uploads the new root hash value Root3 and

the range of sequence number [1, 3] to the blockchain. The smart contract will store this

new root hash value, change the optimistic root index Indexopt to 1, and emit the optimistic

root update event Eventopt. The clients notice the optimistic root update event Eventopt,

and then mark their write requests Wi as stage 1 commitment.

The updater node also notice the optimistic root update event Eventopt. Now, the optimistic

root index Indexopt is 1, and the range of sequence number is from 1 to 3. At this time, the

zero-knowledge root index Indexzk is still 0, not 1, since we haven’t proved Root3 is correct

or not. the updater node sends all pages in L0 and the consolidated page P1⌊i/m⌋ to the

backup node.

After page P1⌊i/m⌋ is added to level L1, the backup node checks whether the threshold for

level L1 is met. Here we already set the threshold of level L1 is 1, thus the backup node starts

the stage 2 commitment process (also called merge operation). The backup node sends the

prove task Task1 to the prover node, this task tries to generate the proof that proves each
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page in level L1 is generated correctly from the corresponding L0 pages, and the merge of

pages in level L1 with pages in L2 correctly yields the new state. The prover node finishes

the proof task, generates the proof parameters π1, and then sends it to the blockchain. The

smart contract checks the new root hash value Root3 is correct or not. If it is, the smart

contract changes the zero-knowledge root index Indexzk to 1 and emits the zero-knowledge

root update event Eventzk.

The backup node will notice the zero-knowledge root update event Eventzk, and then append

the page P1⌊i/m⌋ in its level L2 MMR tree, and merge the page from level L1 to level L2.

At this time, the zero-knowledge root index Indexzk is also changed to 1. The clients also

notice the zero-knowledge root update event Eventzk, and then mark their write requests

Wi as stage 2 commitment.

This design leverage the property of the blockchain, which reduces the cooperation works

between multiple nodes and achieved the global consensus on the order of pages. The smart

contract determined the global order and plays the leader role in this process, such as the

leader node in the traditional consensus process.

3.3 Scaling Off-Chain Nodes

In this section, we discuss the scaling strategies for the three node types, updaters, backups,

and provers. This allows each node type to utilize multiple nodes—instead of one node—to

service requests and improve performance and/or resilience.

Scaling updater and backup nodes. The updater and backup nodes maintain LSM and

MMR data. We discuss scaling these two types of nodes—which is increasing the number of

updater and backup nodes to achieve higher throughput through distributing the workload.

The scaling strategy is based on sharding the data into n shards. Each shard is maintained
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by a separate set of two nodes, one for the updater and the other for the backup. The smart

contract is also deployed as n independent instances, one for each shard.

Although multiple overlapping updater and backup nodes are so attractive since they can

scale the collection process more efficiently, thus improving the performance of our system,

they also introduce more coordination work. Therefore, we only consider the case that each

shard is maintained by a separate set of two nodes, the sets of two nodes handle a mutually

exclusive range of the data in our system.

In this configuration, different updater nodes handle a different range of data, thus the order

across the updater nodes has not broken the consistency of data, we only need to maintain

the order of data in a single shard.

Scaling prover nodes. The prover node is tasked with generating the zk proofs of

stage 2 commitment. Scaling the prove operation is important as it is a lengthy pro-

cess. To scale proving tasks, we maintain n provers and distribute the zk proving workload

across the n provers. Specifically, each zk proving task Taski is divided into n subtasks,

Tasksub1 . . . Tasksubn . Each subtask is responsible for proving N/n data items, where N is

the total number of data items in the prove task.

Because we divided the proving task, the input for each subtask is going to be different from

the original task. The original prove task Taski needs two root hash values (the old and new

MMR root hashes), a set of peak points (information of the MMR tree), and the pages that

contain the data. Each subtask, on the other hand, needs its own parameter. The process of

proving subtasks can be considered as a sequence of proving tasks (that can be computed in

parallel), each one handling a subset of the data. The proving task takes as input: (1) two

root hash values that correspond to the MMR root before and after applying the subset of

data items assigned to the subtask. (To provide this information, the backup node records

the MMR root value after appending/merging each subset of data items). (2) the peak
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points that correspond to the state when the data objects where added in the backup node.

(3) pages that contain the subset of the data that is assigned to the subtask.

Because the proof is now divided into n proofs for each original task, we need to adapt the

verification process. When a subtask is done, the prover sends the partial proof πi to the

verification smart contract. The smart contract caches the partial proof and wait for the

rest of the partial proofs to arrive. When all the partial proofs are received, the verification

smart contract verifies the proofs and verifies that the partial proofs correspond to a complete

original proof. This is performed by checking that there is a hash chain from the initial root

of the first subtask (which is equal to MMRPre) to the root of the final subtask (which is

equal to MMRNew). Because each partial proof contains the previous and next MMR roots,

it is possible to verify that there is a hash chain from the hash of the first partial proof to

the hash of the final one. If the chain is verified, the smart contract adopts the zk proof and

continue stage 2 commitment.

This modification can distribute the huge prove task into smaller prove tasks, thus can

leverage more computation resources to accelerate the proving process. However, it will

introduce more transactions to the blockchain for proving one task, which would occupy

the limited blockchain throughput, since the block size is limited, the bit of transaction is

also limited, if we use too many bits to finish one task, it will definitely reduce the whole

throughput. That is a trade-off.

Example: The total task is to verify the process of appending 128 key-value pairs, we can

split this task into 4 subtasks, each subtask verifies 32 key-value pairs. The original total task

only needs two root hash values (before and after), one set of peak points and 128 key-value

pairs; however, each subtask needs its own parameters now, the intermediate parameters.

We denote the initial root hash value as R0, the final root hash value is R4, 128 key-value

pairs as KV1−128, and initial peak points are P0. The first subtask requires the initial root

hash value R0, first 32 key-value pairs KV1−32, initial peak points P0, and new root hash
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value R1. This root hash value R1 is calculated when the first 32 key-value pairs KV1−32 have

been added to the MMR tree. We denote is as Tasksub1 = {R0, KV1−32, P0, R1}. Following

the same logic, the second subtask is Tasksub2 = {R1, KV32−64, P1, R2}, the third subtask

is Tasksub3 = {R2, KV64−96, P2, R3}, the last subtask is Tasksub4 = {R3, KV96−128, P3, R4}.

All of these parameters are provided by the backup node during the stage 2 commitment

processing, each prover can verify their own subtask parallelly.

Resilience and availability. Increasing the numbers of nodes can also serve the purpose

of increasing the crash resilience and availability of RollStore. Specifically, for stateful node

types—updaters and backups—the state of each node can be maintained by a replication

cluster [14]. Therefore, the failure of one node can be tolerated by the rest of the nodes in

the cluster. For stateless nodes—provers—adding and replacing provers is straight-forward,

since the proving task is stateless. Therefore, in the case of a prover failure, it can be replaced

by another node that takes over processing the requests from the backup node.

3.4 DApp-Indexing-as-a-Service Model

In this section, we discuss the payment model to enable a DApp-indexing-as-a-service model.

In this model, each off-chain node deposits an amount of cryptocurrency to an escrow fund

in the penalty smart contract in the setup stage. the addresses (Ethereum addresses and

IP addresses) of off-chain nodes that successfully deposited the fund in the smart contract

would be stored in the penalty smart contract, smart contract marked these off-chain nodes

as valid server nodes.

The penalty smart contract is initialized with the following variables: off − chainaddressE ,

off − chainaddressIP , off − chaindeposit, and off − chainsignature. The first two variables

store the Ethereum address and IP address of the off-chain node that signs up as a server
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node. The off − chaindeposit variable set an amount on how much cryptocurrency (Ether)

should be deposited to successfully signup. Variable off − chainsignature stores the digital

signature of the off-chain node that provides service.

Users can send their requests (writes or reads) to valid server nodes that successfully stored

their addresses in the penalty smart contract. Here we assume users subscribe to the service

(more details about the price policy are beyond the scope of this paper). The valid server

nodes process these requests and interact with other nodes and the blockchain network.

As mentioned in section 3.2, the guarantees in stage 0 and stage 1 commitment are not

final. This may lead to an off-chain node breaking the promise it provided during these two

stages. To prevent this from happening, we incorporate a punishment strategy that is based

on the monetary penalty that is managed by a penalty smart contract. If a malicious act

is performed by the off-chain node, then the penalty contract is triggered—withdrawing the

penalty from the escrow fund, and excluding this malicious node from valid server nodes.

Victimized users can be compensated by the escrow fund.

3.5 Failure Examples

In this section, we discuss various malicious failure scenarios and explain how RollStore

overcomes these failures. RollStore allows a server to act maliciously behaviors but it can

detect and execute punishment on dishonest servers, thus preventing malicious behaviors.

Scenario 1: Incorrect Stage 0 commitment.

A malicious updater node can respond with incorrect responses for the stage 0 commitment.

For example, given a writes request Wi, the malicious updater returns a wrong sequence

number Seqw, or wrong inclusion proofs Prfw
Wi
.
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In stage 0 commitment, the updater provides a signed response back to the client that its

write request Wi is part of a page P0i in L0 with sequence number Seqi. Prf 0
W i is the signed

inclusion proof of the write in page P0i. An updater must use this page P0i during the

o-rollups operation of stage 1 commitment. The client can verify that this is the case by

observing the hashes that were written on-chain for stage 1 commitment. If the hash that

corresponds to sequence number Seqi is the same as the one received in the stage 0 response,

then the promise is honored. Otherwise, the client starts the penalty process. The client

sends a request to the penalty smart contract with the following input: the received stage 0

response received from the updater node, i.e., Acki = (Su, Seqi, P rf 0
Wi
). The penalty smart

contract verifies whether the penalty should be applied by verifying the authenticity of Acki

(that it is indeed signed by the updater signature Su), and checking whether the MMR root

hash in Prf 0
W i equals the o-rollups hash in the smart contract for the page with sequence

number Seqi. If the hash is different, then the penalty is applied.

Scenario 2: Incorrect Stage 1 commitment.

A malicious off-chain node can upload the wrong digest of stage 1 commitment or send the

wrong pages used in the proof generation. For example, the client’s write operation Wi is in

page P0i with Seqi. The stage 1 commitment hashes Hasho in the smart contract include

the hash for P0i as well as P1i which is the merge result of page P0i and other L0 pages.

The malicious off-chain node can upload a wrong digest Hashw rather than Hasho or send

wrong pages P1w used in zk proof generation

In stage 1 commitment, the client observes the o-rollups hash that is written to the smart

contract for stage 1 commitment. The client’s write operation Wi is in page P0i with Seqi.

The stage 1 commitment hashes in the smart contract includes the hash for P0i as well as

P1i which is the merge result of page P0i and other L0 pages. RollStore protocols ensure

that these hashes are the same ones that will be used in stage 2 commitment. This is done

because the smart contract—when verifying the proof in stage 2 commitment—verifies that
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the hashes used to generate the zk proof are identical to the ones used in stage 1 commitment

by o-rollups. This is performed by checking which hashes were written to the smart contract

during stage 1 for the corresponding pages used in the proof generation. In the case of Wi,

this includes the hashes for pages P0i and P1i. Since this is guaranteed by the verification

process in stage 2 commitment, the off-chain nodes must keep their promise in using the stage

1 pages in stage 2 commitment. If they stage 1 commit a false digest then they would have

to indefinitely delay the stage 2 commitment. Next, we show how to handle such impact.

Scenario 3: Delaying.

In both stage 0 and stage 1 commitment, another type of malicious act that the off-chain

nodes may do is to delay the next stages of commitment indefinitely. In this case, the client

performs a two-step process to prove and punish the off-chain nodes. Consider the case of

a client—with operation Wi in P0i—that received a stage 0 or stage 1 response r at time

t. If the user suspects that the off-chain nodes are not continuing the processing of the

request and future stages of P0i. The first step is to send a delay-notification request to the

penalty smart contract. The input to this notification is a proof that a signed response is

received from the off-chain node for page P0i. The smart contract records this notification

with the blockchain block number that it was written in, b1i . Now, the off-chain node have

an opportunity to finalize the commitment of P0i before the second step.

The second step can only be triggered at a future block b2i , where b2i − b1i > bt, where bt is a

threshold on how many blockchain blocks should have passed before the second step can be

triggered. This is a predefined number that is agreed on by the off-chain nodes and should

be sufficiently large to allow for processing requests. If bt blocks passed and the client still

observes that P0i is not committed, it starts the second step by sending a delay-followup

request. This request references the first step. The penalty smart contract checks that bt

blocks have been committed since the previous notification and if P0i is still not committed.

If both conditions are true, then the penalty logic is applied and funds are withdrawn from

30



the off-chain node escrow fund.

This strategy can be applied separately for stage 0 and 1 commitment delays where there

is a threshold bt for each type of commitment. We use a block number threshold as it is

a standard practice in smart contract development. The reason for using block numbers

between requests is that it is predictable since the commitment of a block typically takes

a predefined amount of time. Also, the block numbers cannot be manipulated by miners,

whereas block timestamps might not be accurate.

3.6 Safety

In this section, we discuss the safety of read and write operations in RollStore. In particular,

we prove that the guarantees of each level of commitment are met. Then, we discuss the

data consistency properties of RollStore.

3.6.1 Stage 0 Safety

The following is stage 0’s safety guarantee:

Theorem 3.1. (Stage 0 safety guarantee) For a write w that is stage 0 committed in

page P0i with sequence number i, either (1) the write w is going to be part of page P0i that

is committed in stage 1 as part of the o-rollups in the consolidated page P1⌊i/m⌋, where m

is the threshold of the number of pages in L0; or (2) the client can prove that the updater

provided a false promise to include w in page P0i.

Proof. We prove this statement by contradiction. Assume to the contrary to the defined

guarantee that there is a write w that is stage 0 committed as part of page P0i, however,

(1) the off-chain node used another page P0′i (with the same sequence number as P0i) during
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stage 1 commitment for page P1⌊i/m⌋, and (2) the client cannot prove the fake promise about

w.

If page P0′i was used in stage 1 o-rollups of P1⌊i/m⌋ instead of P0i, this means that the stage

1 digest written on-chain, SCDigest1⌊i/m⌋ foe page P0i is different from the one returned

to the client during the response (step 1 in Figure 3.2). This is because any change to the

contents of the page would lead to a different digest. Therefore, the client knows that the

off-chain node lied by detecting the different digests. The client can then prove that the

off-chain node promised to include w as part of P0i by showing the signed response received

in step 1. This is a contradiction, which proves the guarantee.

3.6.2 Stage 1 Safety

The following is stage 1’s safety guarantee:

Theorem 3.2. (Stage 1 safety guarantee) For a write w that is stage 1 committed in

page P1j with sequence number j, the following is guaranteed: the write w in P1j is going

to be part of the j
k

th
merge to L2, where k is the threshold of the number of pages in L1.

Proof. We prove this statement by contradiction. Assume to the contrary to the defined

guarantee that another page P1′j with sequence number j—that does not include w—was

included in the merge to L2. This means that the digest SCDigest1j (which corresponds to

P1j) in the smart contract is different than the digest of the page P1′j. However, during the

smart contract verification of the merge proof, part of the verification is that the digest of L1

pages used in the merge are equivalent to the ones that were written to the smart contract

during stage 1 commitment; this includes SCDigest1j . This means that the proof verification

in the smart contract will fail, which is a contradiction, which proves the guarantee.
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3.6.3 Stage 2 Safety

The following is stage 2’s safety guarantee:

Theorem 3.3. (Stage 2 safety guarantee) For a write w that is stage 2 committed (i.e.,

the corresponding L1 page P1i is stage 2 committed as part of merge number j), the following

is true: any stage 2 read operation will receive the key-value pair of w if it reads from any

merge starting from merge j to merge j′ − 1 where the first write w′ that overwrites w is in

merge j′.

Proof. We prove this by contradiction. Assume to the contrary that a stage 2 read operation

that reads from merge j∗, where j < j∗ < j′, observes a value written by w∗ that is different

from the value written by w.2 As part of the assumption, w is part of the state of L2 as

of merge j. Therefore, returning another write value w∗ after merge j∗, but before merge

j′ can happen in one of two ways: (1) a write w∗ is introduced in a merge J between j

and j∗. This means that w∗ is part of the L0 pages that correspond to merge J . This is a

contradiction since we assume that the first write to overwrite w, w′, is performed as part

of merge j′ that is after j∗. (2) the updater returns the value of w∗ that is not part of any

merges between j and j∗. However, to be returned and verified by the reader, the write w∗

must be part of L2. Being incorporated in L2 necessitates that a zk proof was obtained for

it in some merge J between j and j∗. This is a contradiction since we assume that the first

write to overwrite w, w′, is performed as part of merge j′ that is after j∗.

3.6.4 Isolation Guarantee

RollStore guarantees linearizability [32] of operations that are stage 2 committed. We focus

our isolation guarantee discussion on stage 2 commitment since it represents the point of

2We ignore the trivial case when there are multiple writes to the same key of w in the merge j. In such
a case, the most recent write—the one in the highest sequence numbered L0 page—overwrites the others.
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final commitment and verification of read and write operations.

Theorem 3.4. (Consistency of stage 2 operations) Any history H of stage 2 operations

is linearizable.

Proof. A history H of read and write operations is linearizable [32] if (1) H is equivalent to

some sequential history S, and (2) the partial time order <H is a subset of the equivalent

sequential history order <S.

First, we prove the first property—H is equivalent to some sequential history S. RollStore

performs stage 2 merge operations one-by-one in the order of the pages in L1 which in turn

are consolidations of ordered L0 pages. In particular, the jth stage 2 merge operation commits

the operations consolidated in pages P1j∗k to P1(j∗k)+k−1, where k is the threshold of the

number of pages in L1. Now, we construct the equivalent sequential history S. Consider the

commit point for write operations in P1j∗k to P1(j∗k)+k−1 to be the time when the verification

is performed and the proof is written on-chain. A read operation that reads a value written

by w that is committed as part of the jth merge is ordered in the sequential history to

be between the jth and (j + 1)th merge. The history H is equivalent to this constructed

sequential history S.

Second, we show that <H is a subset of <S. This is trivial for write operations as the commit

points are ordered by the smart contract so that the values committed in the jth merge

precedes the values committed in the (j + 1)th merge. For read operations, consider a read

r that reads a value committed in the jth merge. Consider the following partial time order

in H. The read r starts at time tstartr and terminates at time tendr . The read algorithm checks

the smart contract first to inquire about the most recent successful stage 2 merge in L2. It

receives the proof and digest for the jth merge. Then, the read operation is serviced from the

backup node. From this timeline, we deduce the following about the partial time ordering in

H: (1) tcommit
j < tendr , where tcommit

j is the commit time of the jth merge in the smart contract.
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This is true because the read observes the commit digest/proof. (2) tcommit
j+1 > tstartr . This is

true because the read observed the jth merge in the smart contract, which is a point after

tstartr , therefore, the next merge must have happened after the start of the read operation.

Therefore, r can be assigned a commit time in the history in any point between tstartr and

minimum(tendr , tcommit
j+1 ). This partial time ordering is part of the constructed sequential

ordering in S.
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Chapter 4

Evaluation

In this section, we experimentally evaluate the performance of RollStore in comparison to

two bockchain-based databases (BBDBs): BlockchainDB [22] and BigchainDB [41]. We

perform our experiments by deploying off-chain nodes on Chameleon cloud machines [35].

Each machine has two 64-bit Skylake CPUs with 192 GB of RAM and 300 GB of storage.

We used the Zokrates [21] framework to implement the zk-SNARK proof mechanism. If not

specifically stated, the underlying blockchain network we evaluate is the Ropsten network,

a widely used Ethereum test network.

Default configuration. For each experiment, we use the following default configuration.

The threshold of the mutable table Tmut, level L0, and level L1 are set to 64 writes, 7 pages,

and 3 pages, respectively. The default batch size is 512. The main variables we vary are the

batch size and the number of server nodes.

Benchmark. We use the Yahoo! Cloud Serving Benchmark (YCSB) to generate the work-

load for experiments [17]. YCSB is a key-value store benchmark that offers various workloads.

In our experiments, we choose two types of workload: (1) Workload A, which consists of

50% write operations and 50% read operations, and (2) Workload C, which consists of all
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read operations. We use a uniform distribution to choose keys for operations.

Evaluation objectives. Our evaluation answers the questions:

• What are the performance characteristics of RollStore in terms of throughput, trans-

action cost, and latency?

• How does varying the batch size and the number of server nodes influence RollStore’s

performance?

• How does the performance of our system compare to other hybrid blockchain-based

database systems?

Metrics. The metrics we measure are:

• Throughput: this metric represents the throughput in terms of operations per second.

We measure and report the throughput for each stage of commitment.

• Transaction cost: the transaction fee cost incurred by optimistic rollups (stage 1 com-

mit) and zk proving (stage 2 commit) in terms of dollars per thousand operations (here

we assume that the Ether price is $1500). Although the base gas fee may fluctuate, it

is relatively stable when we performed our experiments. The cost in Ether indicates

the resource consumption on blockchain for methods accurately.

• Latency: the average latency to perform the three stages of commitments for writes

and the average time to serve read requests.

Comparisons. We compare with two blockchain-based databases, BlockchainDB (Ethereum-

based, permissionless) and BigChainDB (Tendermint-based, permissioned) with different

characteristics as we describe next:
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• BlockchainDB [22]: BlockchainDB is a hybrid BBDB that utilizes a blockchain layer as

a storage layer and builds a database layer on top of it. We focus on the performance

of read and write operations in BlockchainDB when a permissionless blockchain is

used1. BlockchainDB stores data on-chain. This all on-chain solution would lead to

high monetary costs and latency overhead for write operations. For both reads and

writes, the operation is first performed off-chain nodes (BlockchainDB-1), which is done

fast, and then performed on-chain (BlockchainDB-2), which is fully on-chain execution.

Here we used the Ethereum testnet, Ropsten network.

• BigChainDB [41]: BigChainDB is a BBDB that is implemented as a permissioned

blockchain. A byzntine agreement protocol, Tendermint, is used to implement a

blockchain ledger and a database layer runs on top of this blockchain. This makes

BigChainDB not suitable for DApps that require decentralization and open member-

ship (permissionless) blockchains. However, we include it in our evaluation to under-

stand the differences in performance characteristics compared to RollStore. Being on

a permissioned blockchain, BigChainDB does not incur monetary costs. Also, because

the database layer is integrated with the permissioned blockchain layer, the perfor-

mance of operations is dependent on the performance of the underlying consensus

mechanism.

We utilize and adapt available implementations of both BlockchainDB [22] and

BigChainDB [41] that are made as a part of a study of hybrid BBDBs performance [26].

1BlockchainDB is designed for permissioned settings. We make it with permissionless settings here as it is
the closest BBDB that can be adapted to utilize permissionless settings. We also compare with BigChainDB
while maintaining its permissioned settings.

38



64 128 256 512 1024 2048
batch size 

10−1

100

101

102

103

Th
 o

ug
hp

ut
 (o

p/
s)

64 128 256 512 1024 2048
batch size 

10−2

10−1

100

101

102

103

104

La
te

nc
y 

(s
ec

on
d)

RollSto e-0
RollStore-1

RollStore-2
BlockchainDB-1

BlockchainDB-2
BigchainDB

Figure 4.1: Throughput and latency in different batch sizes.

4.1 Baseline performance

In baseline experiments, we configure RollStore to have one updater node, one prover node

and one backup node. The three nodes are located on three different machines and we use

YCSB’s workload A. The following experiments are performed while varying the batch size

from 64 to 2048 operations/batch.

Throughput: The left side of Figure 4.1 show the throughput results. RollStore stage 0

commitment (RollStore-0) achieves the highest throughput (4931 TPS). This is because all

processes in stage 0 are performed locally and do not need to coordinate with the smart

contract. Both stage 0 and stage 1 (RollStore-1) throughputs increase with the increase

in the batch size. Batching amortizes the cost of committing operations. In the case of

RollStore-1, when batches are bigger, this means that the number of writes to blockchain

is lower, which increases performance. Stage 2 (RollStore-2) throughput is the lowest as
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it requires performing a compute-intensive proof generation process. Unlike RollStore-0

and RollStore-1, RollStore-2’s performance does not change significantly while increasing

the batch size; this is because the performance is dominated by the time to perform proof

generation. Also, as the batch size increases, the difficulty of the proof generation increases

as well.

The local (off-chain) throughput of BlockchainDB (BlockchainDB-1) achieves a higher perfor-

mance compared to RollStore-1 because it does not require interacting with the blockchain.

However, for operations to be committed on-chain (BlockchainDB-2), it performs worse than

RollStore-1 and is close to RollStore-2. This is because BlockchainDB-2 writes raw data on-

chain which increases the overhead of interacting with blockchain. BigChainDB performance

is between RollStore-0 and RollStore-1. This is because it does not utilize permissionless

blockchain, which means that it does not suffer from the high overhead associated with it.

However, BigChainDB still needs to incur the latency overhead of the underlying permis-

sioned blockchain and the consensus mechanism, which leads to it performing worse than

RollStore-0.

Latency: The right part of Figure 4.1 shows the latency results. The latency of off-chain

operations—RollStore-0, BlockchainDB-1, and BigChainDB—are the lowest as they do not

need to write to a permissionless blockchain smart contract. The latency of RollStore-1

and BlockchainDB-1—both requiring a write to the smart contract—is similar at around 20

seconds, which is proportional to the time to write to the smart contract. RollStore-2 is the

slowest, even worst than the fully on-chain solution (BlockchainDB-2) as it requires going

through the zk proof-generation process. However, this latency can be reduced by adding

more prover nodes (see Sections 3.3).

Transaction cost: Figure 4.2 shows the monetary cost results. In RollStore-1, each batch

requires sending one transaction only—that writes a simple set of digests—to blockchain.

Therefore, the transaction cost in stage 1 will decrease when the batch size becomes larger.
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Figure 4.2: Cost in different batch sizes.

This is not the case in stage 2. Since we need to send the proof parameters to blockchain,

the size of these parameters also increases with the increase in the batch size; this increases

the cost. For this reason, the transaction cost per thousand operations in stage 2 does not

change significantly when the batch size becomes larger. For BlockchainDB, the monetary

cost is the largest (around $122 per 1000 operations). This is because raw operations are

written on-chain, unlike RollStore that only writes digests and verifies proofs. (RollStore-0,

BlockchainDB-1, and BigChainDB are not shown in this figure since they do not interact

with a permissionless blockchain that requires monetary fees).

Read latency: Figure 4.3 shows the read latency while varying the batch sizes. The average

read latency of RollStore becomes larger when increasing the batch size of reading requests.

This is because when the batch size becomes larger, the backup node needs to spend more

time searching and generating the related proofs. The read latency in BlockchainDB is

higher than RollStore when the batch size is larger than 512; we attribute this to the Verify
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Figure 4.3: Read latency in different batch sizes.

operation in BlockchainDB. This operation spends more time to verify the read result when

the batch size becomes larger. The read latency in BigchainDB is the longest and becomes

longer when the batch size increases; this is because—although it does not need to perform a

consensus round for reads—BigchainDB needs to build the block to record the read request;

this process increases the read latency.

4.2 Scalability performance

In this section, we present a set of experiments to test the scalability performance of our

system. In this configuration, multiple updater nodes, multiple prover nodes, and multiple

backup nodes are located on three different machines. Each machine contains multiple

instances of a type of node. We evaluate scalability by changing the number of server nodes

and fixing the batch size of requests at 2048. We vary the number of server nodes from 4 to
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13.

Throughput: In this set of experiments, we measure the throughput (left side of Figure 4.4).

When the number of server nodes becomes larger, RollStore-0 and RollStore-1’s throughput

becomes larger. This is because more updater and backup nodes are working in-parallel.

This observation also shows that we can achieve higher throughput with smaller batch sizes

by adding more server nodes, which would also lead to reducing the latency in stage 2.

The throughput of stage 2 commitment (RollStore-2) increases by a factor of 18.3X when

increasing the number of server nodes from 1 to 13. This is because we can leverage the

computation resources of multiple prover nodes to accelerate the proof generation process

(see Section 3.3). Although this throughput is not very high compared with stage 0 and

stage 1, it still significantly reduces the waiting time (challenge period) for verifying the

results of stage 1 commitment (see Section 2.3.1).

Another observation is that the throughput of BlockchainDB and BigchainDB decreases

when adding more server nodes compared to one server node. We attribute this as the cost

of the underlying consensus mechanism—where a larger number of nodes causes the overhead

of coordination it increases.

Latency: As shown in the right side of Figure 4.4, the reduction of latency in RollStore-0

and RollStore-1 is not significant. This is because the latency is mainly determined by the

updater node processing for RollStore-0 and the blockchain confirmation time for RollStore-

1. The latency of RollStore-2, on the other hand, is reduced significantly because multiple

prover nodes work in parallel to generate the proof of one task.

BlockchainDB and BigchainDB do not benefit significantly from adding more server nodes.

This is due to the increase of coordination overhead in the underlying consensus mechanism.

RollStore leverages uploading the digest of a batch of transactions to speed up the consensus

process and splitting the whole proof task into several smaller subtasks thus can benefit from
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Figure 4.4: Throughput and latency in multiple server nodes.

adding more server nodes.

Transaction cost: Since the content of transactions and smart contracts do not change

when we add multiple server nodes, the change of transaction fee (Ether cost) is negligible

and is only due to the fluctuation of gas fees. The Ether cost in our system is determined

by the structure of Ethereum and the complexity of the transaction content, adding more

serevr nodes would not change anything in these two things.

Read throughput: Figure 4.5 shows the read throughput while varying the number of

server nodes. RollStore and BlockchainDB are not impacted by the increase in the number

of server nodes. This is because the throughput is determined by the overhead of assembling

the read responses and verifying reads. BlockchainDB achieves lower performance than

RollStore due to its verification step that takes more latency than RollStore for large batch

sizes. BigchainDB achieves the lowest throughput due to the added overhead to synchronize

the response to the read operations. As the number of nodes increases, this overhead increases
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Figure 4.5: Read throughput in multiple server nodes.

and lowers the throughput of BigChainDB.

An example of result is shown in Table 4.1. It shows that in multiple server nodes config-

uration, RollStore achieves better performance than the baseline design, with improvement

in stage 0 throughput by up to 12.4-times (from 4931.26 operations per second to 61574.76

operations per second), stage 1 throughput by up to 13.6-times (from 129.31 operations per

second to 1762.36 operations per second), stage 2 throughput by up to 18.3-times (from 0.03

operations per second to 0.55 operations per second). As for latency, multiple server nodes

configuration also achieves better performance than single server node, reducing stage 2 la-

tency by up to 14.9-times compared to the baseline case (from 44473.41 seconds to 2986.21

seconds).

Combining these results, RollStore can achieve higher throughput, lower stage 2 latency by

adding more server nodes, it shows the scalability of RollStore.
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Table 4.1: Experimental Results of RollStore for Batch Size 2048

Metrics Baseline 13 nodes
Stage 0 Throughput (op/s) 4931.26 61574.76
Stage 1 Throughput (op/s) 129.31 1762.36
Stage 2 Throughput (op/s) 0.03 0.55
Stage 1 Average Cost (USD) 0.0586 0.0584
Stage 2 Average Cost (USD) 38.5276 38.5321
Stage 0 Latency (s) 0.49 0.54
Stage 1 Latency (s) 22.49 21.68
Stage 2 Latency (s) 44473.41 2986.21
Read Throughput (op/s, with proof) 1494.99 1498.29
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Chapter 5

Related Works

RollStore is related to prior work primarily in the areas of blockchain-based databases (BB-

DBs) and blockchain rollups; it also draws inspiration from the areas of secure and authen-

ticated processing, distributed indexing, and monitoring to detect byzantine behaviour.

Blockchain-based databases (BBDBs). BBDBs are databases that utilize blockchains

in various ways to utilize blockchain’s features such as transparency and immutability [9,

20, 22, 41, 47, 52, 56]. Most of this work targets permissioned blockchain settings, where

the blockchain network has a closed-membership assumption, i.e., all the participants in

the blockchain network are authenticated and known. This permissioned setting allows

faster and cheaper processing which makes it suitable for enterprise and consortium (multi-

organization) applications. However, the closed-membership assumption of permissioned

blockchain prevents their use in DApps that require open-membership and not relying on a

single or group of fixed members. We target supporting these DApps which is now a large

market with hundreds of thousands of users and hundreds of millions of dollars in assets [1,

53, 65]. For this reason, we tackle the unique challenges that are faced when building a

BBDB over permissionless blockchains. Due to their focus on permissioned blockchains, prior
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BBDBs do not factor in the monetary cost and latency challenges of using permissionless

blockchain. This led to them being unsuitable for DApps due to high costs and latency from

writing raw data directly to blockchain [9, 20, 22, 41].

Related to this category are databases that are built as a permissioned blockchain [11, 30, 49].

These are distributed ledger technologies that aim to mimic the immutability and trust

features of blockchain and typically use byzantine agreement protocols. Similar to BBDBs,

these solutions cannot be used in DApps due to their permissioned settings which does not

factor the monetary and performance cost of utilizing a permissionless blockchain.

Blockchain rollups. Blockchain rollups was proposed as a layer-2 scaling solution for

blockchains [57] (see Section 2.3 for an overview). RollStore builds on the advances of

optimistic and zk rollups. RollStore advances the state of the art in rollups by extending

them to be used within a hybrid data indexing solution. Also, RollStore proposes a multi-

stage processing solution that combines optimistic and zk rollups. Prior work utilizes either

one of the two rollups strategies—suffering from the disadvantages of the chosen method.

RollStore combines the two in a manner that allows benefiting from their advantages while

masking their disadvantages. In particular, o-rollups digests can be written faster on-chain

but their challenge period takes a long time up to days [57]. On the other hand, zk rollups’

time to generate the digest/proof to be written on-chain is longer than o-rollups time to

write the digest; but, that proof is sufficient to finalize the commitment of the operation

without having to wait for days in a challenge period. RollStore’s design allows enjoying the

benefits of fast o-rollups digest writing (stage 1) as well as the finality of zk rollups (stage

2). Finally, RollStore introduces a new kind of rollups that we utilize in stage 0 that is much

faster than other kinds of rollups as it does not require writing on-chain. This is possible via

a penalty strategy using a penalty smart contract.

Secure and authenticated off-chain processing. There have been a lot of recent work on

utilizing off-chain nodes to perform compute and storage tasks for blockchain applications [7,
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29, 36, 43, 45]. This is because utilizing off-chain nodes can reduce the monetary cost and

performance overhead of blockchain applications. The challenge that is faced by many works

in this category is how to utilize off-chain nodes that might be untrusted. For this reason,

trusted and authenticated data structures were used to provide trust on the outcome of

off-chain nodes’ processing [59, 66, 69, 70]. These solutions focus on querying and storing

data securely off-chain, but do not support operations that mutate the state of data, unlike

RollStore and blockchain rollups.

Related to this category is the plethora of work in authenticated data and query process-

ing [34, 38, 50, 68, 72, 73, 75]. These methods can be inherited and utilized in the context

of querying and processing data in hybrid onchain-offchain applications [9, 59, 60].

Distributed indexing. RollStore can be viewed as a distributed index across an updater

and backup node to store information, and smart contracts to manage data verification meta-

information. Further, each node type can be distributed to scale for more workloads and/or

more resilience. The distributed index of RollStore has unique properties when compared to

existing distributed indexing solutions [6, 24, 33, 44] due to its focus on authentication in

hybrid DApps. RollStore also proposes an integration of a regular indexing structure (LSM)

and an authenticated indexing structure (MMR) to enable combining the performance and

authentication properties of both types of solutions. This is related to some recent work that

combines LSM with authenticated data structure for the same purpose [48, 54].

Byzantine monitoring. In stage 0, RollStore utilizes the concept of allowing malicious

acts to be performed, but to guarantee detecting and punishing the malicious actor. This

is related to the area of monitoring distributed systems for byzantine behavior [31, 40,

48]. These systems also allow nodes to act maliciously—to improve performance—while

employing a lazy detection mechanism to ensure that malicious acts are detected, their

impacts are retracted, and the culprit to be punished. These systems, however, consider

traditional byzantine replication and logging applications and are not directly applicable to
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the case of hybrid indexing for DApps.
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Chapter 6

Conclusion

In this paper, we propose RollStore, a data indexing solution for hybrid onchain-offchain

DApps. RollStore builds on advances in blockchain scaling solutions such as rollups, as well

as indexing and authenticated data structures. The outcome is a three-stage commit protocol

that allows balancing the trade-off between security and performance for hybrid blockchain

methods. RollStore utilizes zero-knowledge proofs for blockchain-based databases. This

enables complete verification of data operations without the need to write or process raw

data on-chain. Instead, the on-chain smart contract is only tasked with simple verification

of proofs and maintenance of commit digests. These properties allow RollStore to reduce the

monetary cost and performance overhead compared to existing blockchain-based databases.

Our evaluations demonstrate the advantages of RollStore in terms of cost and performance

while comparing with two blockchain-based databases, BlockchainDB and BigChainDB.
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