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ABSTRACT OF THE DISSERTATION

Learning from Sparse and Deficient Data and its Applications

by

Ruirui Li

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2019

Professor Wei Wang, Chair

Deep learning models have been attracting substantial attention in the last few years as they

successfully demonstrated remarkable performance on different tasks (e.g., classification and

ranking) in various fields. The success of most deep learning models significantly depends

on massive training data as these models inherently work by memorizing or distinguishing

massive training instances in the data. However, such a huge amount of training data may

not be available or accessible all the time due to privacy issues, user experience concerns, or

corporation constraints, etc. This leads to the data deficiency issue, which corresponds to

the scenarios where we have just a few training instances to accomplish a task. Even though

sufficient training data could be acquired, sometimes the data could be very sparse due to the

large base of elements (e.g. users and items) in the dataset. This results in the data sparsity

issue, which corresponds to the scenarios where we have very limited training instances to

pinpoint the characteristics of each element in the data. Both the data deficiency and data

sparsity issues limit the expressiveness of strong model capacities of the deep learning models

and generally lead to inferior performances on a variety of tasks.

In this dissertation, we propose several deep learning frameworks to compensate for the

data deficiency and data sparsity in the context of three concrete applications, i.e., cus-

tomer recommendation in location-based social networks, query recommendation in search

engines, and automatic speaker recognition. The methodologies presented in these frame-
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works span different research areas, including geographical influence modeling on location

data, automatic data augmentation via adversarial training, comprehensive instance utiliza-

tion through metric-learning-based few-shot learning, and knowledge transfer via gradient-

based meta-learning. As a result, these methodologies not only tackle specific challenges in

the applications mentioned above but also shed light on other relevant applications.
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CHAPTER 1

Introduction

The advances of deep learning technologies have a revolutionary impact on a variety of fields,

as these deep learning technologies, born with strong modeling capacity, have compelling

power in accomplishing various tasks. The expressiveness of their compelling modeling power

largely depends on the support of massive training data. However, such massive data may

not be available or accessible all the time due to data deficiency and data sparsity issues in

practice. The data deficiency issue corresponds to the scenarios when there is a shortage of

labeled training data. For example, this generally happens when we are serving new users

in recommendation or speaker recognition tasks, as a large portion of new users usually

has a very limited number of training instances. The data deficiency issue is also known

as few-shot learning. The data sparsity refers to the scenarios where the density of the

interactions between elements in the data is low, as the base of the elements could be very

large. Therefore, there are very few interactions available to mine the characteristics of each

element, which may degrade the performance of downstream applications. Dealing with the

deficient and sparse data is often considered a daunting task as there is a limited number of

related data records/interactions we can utilize to conduct modeling and analysis. In this

dissertation, we study three different research problems in mining deficient and sparse data.

The first two problems focus on leveraging auxiliary features, and adversarial training to solve

recommendation tasks. The third problem focuses on analyzing acoustic characteristics of

speakers and achieving effective speaker identification from limited data. For each problem,

we discuss the limitations of existing approaches and propose new methods to address these

challenges.

1



1.1 Scope of the Research

Recommendation has attracted substantial attention from researchers and has revolutionized

the e-commerce industry. Various recommender systems have been developed to facilitate

the matching between users with appropriate items (e.g., products, services or businesses).

Two recommendation problems, prospective new user recommendation in location-based

social networks and query suggestion on search engines, are summarized below. For the

third research problem, we discuss the challenges and potential of recognizing speakers from

limited training data.

• Prospective new user recommendation in location-based social networks.

The proliferation of GPS-enabled devices, such as smartphones, establishes the prosper-

ity of location-based social networks (LBSNs), which results in a tremendous amount of

user check-ins. These user check-ins bring in great opportunities to understand users’

preferences and facilitate matching between users and local businesses. However, the

user check-ins are extremely sparse due to the huge user and business bases, which

makes matching a daunting task. To make accurate recommendations in LBSNs, it is

critical to have effective methods that can embrace relevant auxiliary information as

extra guidance and adopt appropriate techniques to fully utilize the sparse check-in

data.

• Query suggestion on search engines. Search engine users always endeavor to for-

mulate proper search queries during online search. To help users accurately express

their information need during search, search engines are equipped with query sug-

gestions to refine users’ follow-up search queries. The success of a query suggestion

system significantly relies on whether we can understand and model user search intent

accurately [1, 2]. However, user search queries are generally very short, typically with

only one or two key keywords each [3]. Short queries lead to two issues. First, they

are often ambiguous. Ambiguity weakens the expressiveness of queries because the

search engine may not get the users’ hidden search intents. This causes poor retrieval

2



results. The second issue is that short queries are often not specific enough. Although

there is no ambiguity in the meaning of a search query, it is too general a query for

the search engine to pinpoint the specific information in which the user is interested.

In order to model the search intent accurately, existing query suggestion approaches

usually mine search sessions and extract search query sequences as context information

to aid recommendations [4–6]. However, very few take the user feedback, i.e., user click

information, into account. Therefore, a user feedback-aware query suggestion system

is needed. It is also essential to have an approach that can generalize well to all search

queries, as many queries are tail queries, which only occur a few times in the search

log.

• Automatic speaker recognition. Automatic speaker recognition (ASR) is a stepping-

stone technology towards semantic multimedia understanding, and benefits versa-

tile downstream applications. Most existing neural network-based ASR methods can

achieve excellent recognition performance with the support of sufficient training data [7–

11]. However, such sufficient training data may not be available or accessible for every

user, especially for new users. In practice, a large portion of users usually has a very

limited number of training instances and such data deficiency generally leads to infe-

rior recognition performance, especially when serving new users. As a consequence,

the lack of training data prevents ASR systems from accurately learning users’ acous-

tic biometrics, jeopardizes the downstream applications, and eventually impairs user

experience. Evidently, an efficient mechanism is needed to capture the complicated

acoustic characteristics of users and distinguish them as accurately as possible even

when facing the shortage of training data.

1.2 Contributions

In this dissertation, we emphasize the importance of the research problems mentioned above,

and identify the specific challenges falling within each research problem. We propose a series
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of deep learning methods to tackle these challenges.

The first research issue comes from recommending potential new users for local busi-

nesses in location-based social networks based on user check-ins. The user check-ins are

highly sparse due to the large bases of users and businesses, which poses the major chal-

lenge for learning users’ preferences and businesses’ characteristics. To alleviate the data

sparsity, we propose two approaches, i.e., CORALS and SEATLE. In CORALS, we strive

to incorporate auxiliary features, which can provide extra guidance in addition to the user

check-in records. More specifically, we propose a unified approach to learn the matching

between users and businesses, which not only considers users’ preferences but also incorpo-

rates geographical influence and reputation influence when making recommendations. The

geographical influence quantifies how easily a user can check in at a local business based

on the user’s historical check-in trajectory and the location of the target business, while the

reputation influence gauges the impact of the online reviews regarding the target business to-

wards the user. In SEATLE, we further decompose geographical influence into geographical

convenience and geographical dependency. Geographical convenience measures the relative

transportation effort of a check-in from a user to a business while geographical dependency

models the geographical influence among businesses, which makes the proposed approach

neighborhood-aware. Moreover, metric-learning-based few-shot learning is applied to fully

utilize the sparse check-in data. Results show that CORALS and SEATLE are able to rec-

ommend customers for local businesses more accurately, especially for tail businesses, that

have very few user check-ins.

The second research problem addresses the caveats of offering query suggestions on search

engines. User search queries are generally very short. Short queries are usually ambiguous

and too general. To gather more information and model users’ search intent more accurately,

we propose a novel framework, CFAN, modeling both a user’ search query sequence and click

sequence to learn to represent his/her search intent. Search query sequence modeling allows

us to capture a user’s previous search queries in addition to the last search query while click

sequence modeling endows our approach with the capability of being feedback-aware. In ad-
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dition, adversarial examples are dynamically constructed to help build a robust recommender

system, which is resistant to nuisance perturbations and achieves out-of-distribution gener-

alization. Experiments, conducted on the search log collected from a real-world commercial

search engine (i,e., Yahoo), show that CFAN can provide more favorable suggestions.

The third work focuses on modeling users’ acoustic prints to achieve automatic speaker

identification. We present two deep learning approaches, i.e., AFEASI and MDNML.

AFEASI utilizes metric-learning-based few-shot learning and adversarial training to con-

duct speaker identification with limited training data. MDNML applies mixture density

networks to construct users’ acoustic profiles and relies on gradient-based few-shot learning

to perform speaker identification with the focus of serving new users. Results demonstrate

that AFEASI and MDNML can achieve superior recognition performances when facing a

shortage of labeled training data.

1.3 Overview

The rest of the dissertation is organized as follows: Chapter 2 summarizes the relevant

works for each research problem. Chapters 3 and 4 describe our methods on customer

recommendation for local businesses in location-based social networks. Chapter 5 presents

our work on query recommendation on search engines. Chapters 6 and 7 discuss the two of

our works on automatic speaker recognition. Chapter 8 summarizes all the datasets used

in different projects. Chapter 9 shows the experimental results of different projects in this

dissertation. Chapter 10 concludes this dissertation with a summary of our work and the

plan of future extensions.
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CHAPTER 2

Related Work

2.1 Recommendation in LBSNs

To address the check-in sparsity issue, various ancillary information is incorporated when

building recommendation models, such as POI popularity, social influence, temporal pat-

terns, textual and visual contents [12–22]. In this part, we focus on geographical influence-

oriented works.

To leverage geographical influence to improve recommendation performances, [23] first

detect multiple centers for each customer based on their check-in histories. Recommendations

are made by referring to the distance between the location of the business and the nearest

customer center. In [13], geographical influence is modeled by a power-law distribution be-

tween the check-in probability and the pair-wise distance of two check-ins. [24,25] utilize the

kernel density estimation to study customers’ check-ins and avoid employing a specific dis-

tribution. [26] exploits geographical neighborhood information by assuming that customers

have similar preferences on neighboring POIs, and POIs in the same region may share sim-

ilar user preferences. PACE [27] explores the use of deep neural networks to learn location

embeddings and user preferences over POIs. In particular, a context graph is used to model

the heterogeneous and complex feature information to address the data sparsity issue. SAE-

NAD [28] applies stacked auto-encoders to provide POI recommendations. The employed

auto-encoder aims to capture the non-linear and non-trivial relationships between users and

POIs, and enables more complex data representations in the latent space. APOIR [29] learns

the underlying check-in distribution in an adversarial manner by simultaneously training two

synergistic components, i.e. a recommender and a discriminator. These two components are
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co-trained alternatively to make POI recommendations.

2.2 Query Recommendation

The greatest challenge in query suggestion is to accurately understand users’ underlying

search intent and formulate follow-up queries which can better articulate their information

needs. To tackle the challenge, various studies tap into the “wisdom of crowds” by mining

search sessions.

Follow-up queries in the same search sessions tend to be semantically relevant and more

expressive; therefore, they can be adopted as suggestions to help users pinpoint their infor-

mation needs. The rationale behind it is that web users usually won’t shift their information

needs dramatically within a short period of time. Based on this assumption, various ap-

proaches are proposed. [30] models the session information into a Query Flow Graph (QFG).

QFG connects queries based on their co-occurrences in search sessions. Query recommenda-

tions are generated by conducting a random walk with restarts on QFG. The Term Query

Graph enriches the QFG by incorporating query term nodes. The connections between query

term nodes and query nodes smooth the query flow and enhance query suggestion for tail

queries [31].

The semantic relatedness between queries can also be mined by comparing their follow-up

clicks. Follow-up clicks provide extra information to understand users’ actual information

needs in addition to the submitted queries. To utilize the click information, a Query-Click

bipartite graph is widely constructed [32]. Queries are represented as vertices in the Query-

Click bipartite graph and an edge connecting two queries is weighted by a transition proba-

bility, which is related to the similarity of the two queries. A hitting time algorithm, which

performs a random walk, is then executed on the graph. The hitting time is the expected

number of steps it takes to reach a query vertex from a starting query vertex. In [33], given

an input query, queries with the smallest hitting times are recommended.

To model user search intents accurately, context-aware query suggestion methods are
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proposed [34–37]. In context-aware query suggestion, the whole search query sequence is

utilized to generate suggested queries instead of the very last query. [34] constructs a suffix

tree on query concept levels to capture contexts and make query suggestions. The con-

text, represented by query transitions, is modeled by a mixture variable memory Markov

model in [35]. [36] models syntactic reformulations based on predefined reformulation strate-

gies. A well-established ontology can also be leveraged to learn semantic reformulations in

context [37]. Context-aware query suggestion considers more user searches in the session;

therefore, it models users’ information needs more accurately.

Deep neural networks have also been applied to query suggestion and demonstrated ex-

cellent performances [4–6,38]. HRED [5], as the first study, employs a hierarchical encoder-

decoder model to achieve context-aware query suggestion. The encoder first encodes query

terms into query-level embeddings and query-level embeddings are further utilized to con-

struct session-level embeddings. The decoder takes the session-level embeddings as inputs

and generates suggested queries. [6] introduces the copy mechanism in addition to employing

the encoder-decoder framework to generate suggested queries. The copy mechanism allows

copying terms from user input queries rather than completely relying on the decoder to

generate suggested queries. [38] employs a feedback memory network to model titles of user

clicked URLs. The suggestions are made based on the titles of clicked URLs together with

the search query. Reformulation inference network (RIN), proposed in [4], explicitly incor-

porates query reformulations during training. In addition, multi-task learning is applied to

learn both discriminative and generative query suggestions.

Unfortunately, most existing works do not consider user-clicked suggestions when mod-

eling user search intent. Especially for the state-of-the-art RNN-based methods [4–6,38], all

of them do not incorporate any types of clicks except [38]. The method, CFAN proposed in

the thesis, differs from these works in that previously-clicked suggestions are explicitly incor-

porated as feedback. In addition, adversarial examples are dynamically constructed during

the training of CFAN, which not only significantly improve the robustness of the model but

also dramatically enhance the generic ranking performance.
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2.3 Automatic Speaker Recognition

Most state-of-the-art solutions are based on the i-vector representation of speech segments [39],

which contributed to significant improvements over the Gaussian Mixture Model-Universal

Background Models (GMM-UBMs) [40]. Deep learning has shown remarkable success in

speaker identification tasks recently. Deep speaker [10] takes filter bank coefficients as in-

puts, utilizes residual networks to extract audio embeddings, and employs triplet loss as the

loss function to optimize the neural network. VGGVox [11] takes spectrograms as inputs.

CNN based residual network is designed to extract audio embeddings. Contrastive loss is

employed to optimize the training pairs in the network with pre-training using softmax clas-

sification. However, the number of training pairs can grow quadratically with the size of

the dataset and elaborate pair selection heuristics are needed to make the training on large

datasets feasible. Another Resnet-based model uses additive margin softmax [41] classifica-

tion loss to improve the recognition accuracy in [7] and [8]. TristouNet [42] applies triplet

loss [43] to learn speaker recognition. SincNet [9] utilizes convoluational neural networks to

learn speaker recognition from raw audios. [44] proposes a generalized end-to-end (GE2E)

loss and works on text-dependent speaker verification. The GE2E loss function updates the

network in a way that emphasizes training instances that are difficult to verify at each step

of the training process. [45] is the most relevant work, which leverages a prototypical network

to conduct speaker recognition from limited training data.

The proposed method in this thesis, AFEASI, differs from the above work by focusing on

speaker identification by learning from limited instances. AFEASI leverages metric-learning

few-shot learning to achieve competitive performance with limited training instances. In

addition, adversarial training is adopted to improve the generalization and robustness of the

identification model.
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2.4 Adversarial Examples and Learning

Training with adversarial examples has attracted significant attention in past few years be-

cause it not only improves the robustness but also the performance of the model. Adversarial

examples are examples that are created by making small perturbations to the model input,

designed to significantly increase the loss incurred by a machine learning model [46,47]. Most

existing machine learning models are highly vulnerable to such adversarial examples [48].

Generic regularization strategies such as dropout, pretraining, and model averaging do not

confer a significant reduction in such vulnerability [47]. In order to train robust models,

adversarial training is proposed to train models that can correctly classify both unmodified

examples and adversarial examples in classification tasks. Adversarial training not only im-

proves the robustness to adversarial examples, but also enhances generalization performance

for original examples.

Adversarial training is a novel technique for training models to improve robustness to

small, approximately worst case perturbations. The adversarial training process can be

viewed as minimizing the worst case error when the training instances are perturbed by

an adversary. It can be interpreted as learning to play an adversarial game, trying to

minimize an upper bound on the expected loss over noisy instances. Adversarial training

can also be viewed as a form of active learning, where the model actively requests labels

on new instances. In the case of adversarial training, the new instances are constructed by

introducing perturbations to existing instances. In addition, the human labelers are replaced

with a heuristic labeler that copies labels from nearby instances.

In this work, we focus on recent adversarial example works in natural language processing.

Adversarial examples are generated directly by manipulating the input text in [49–51]. [49]

investigates adversarial examples in the task of reading comprehension. To generate adver-

sarial examples, distracting sentences are added to the end of paragraphs. The distracting

sentences are either grammatical sentences, which are both similar to the questions and

consistent to the correct answer, or a sentence with arbitrary English words. It shows that

the subtle but critical difference in the paragraphs significantly confuse sixteen deep learning
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models. [50] aims to fool a deep learning-based model by removing a minimum subset of words

in the task of sentiment classification. [51] generates natural language adversarial examples

via word replacements based on nearby contexts. Works [50] and [51] are not applicable to

search queries, since queries are too short to remove terms from them or replace terms based

on nearby terms. Besides these works, [52–55] construct adversarial examples by directly

manipulating input embeddings. Random noise are added to input and hidden layers to in-

troduce perturbations during training in [54]. Local distributional smoothness is proposed

to promote model smoothness and help determine the adversarial direction in [52]. [52] also

shows that training with adversarial perturbations outperforms the methods with random

perturbations. [53] applies adversarial training in sequence models on text classification tasks

and demonstrates that adversarial training improves not only the classification performance,

but also the quality of word embeddings.

2.5 Few-shot Learning

Recent deep learning-based few-shot learning approaches fall into three main categories:

(1) metric-based approaches [56–59], which try to learn a generalized distance metric. (2)

model-based approaches [60], which use recurrent network with internal or external memory.

(3) optimization-based approaches [61], which optimize model parameters explicitly for fast

learning.

A siamese neural network is utilized to conduct one-shot image classification in [56].

The siamese neural network is composed of two twin networks and their outputs are jointly

trained on top of a similarity function to learn the relationship between pairs of data points.

The Matching Network [57] makes classification predictions by comparing the input samples

with a small labeled support set. The relation network [59] is similar to the Siamese network,

but differs by choosing a CNN to capture the relationship rather than a simple L1 distance.

The prototypical network [58] defines a prototype vector to represent each class. The proto-

type prototype vector is calculated as the mean vector of the support data samples in each

class, without any differential weighting mechanisms. A Gaussian prototypical network [62]
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extends the prototypical network. Its maps an instance into an embedding vector, and an

estimate of the instance quality. Together with the embedding vector, a confidence region

around it is predicted, characterized by a Gaussian co-variance matrix. [63] learns edge-

learnable graph neural networks to perform few-shot learning. The graph neural network

formulation of few-shot learning generalizes a number of recent few-shot learning models,

including siamese networks, Matching networks, and prototypical networks.

Previous few-shot learning research mainly focuses on vision learning [64], text classifica-

tion tasks [65], or entity predictions on knowledge graphs [66]. To the best of our knowledge,

this work proposed in this dissertation is the first research utilizing self-attentive few-shot

learning in a location-based recommendation system.
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CHAPTER 3

Customer Recommendation in Location-based Social

Networks

3.1 Background

Recommender system has attracted substantial attention from researchers since the last

decade and has revolutionized the e-commerce industry. Various recommender systems have

been developed to facilitate the matching between customers with appropriate products or

services, such as movies on Netflix, music on Last.fm, and merchandises on Amazon. For

customers, recommendations improve user experience by providing helpful suggestions to

explore and discover relevant products or services. For providers, these recommendations

increase the propensity of purchases from customers.

Over the past few years, the prevalence of GPS-enabled devices, such as smart phones,

establish the prosperity of location-based social networks (LBSN), such as Foursquare, Yelp,

and Facebook Local. LBSN attracts millions of users to share their social friendship and

their locations via check-ins. For example, an average of 142 million users check in at local

businesses via Yelp every month [67]. Foursquare has 55 million monthly active users and

8 million daily check-ins on the Swarm application [68]. Facebook Local, powered by 70

million businesses [69], facilitates the discovery of local events and places for over one billion

active daily users [70]. The check-ins, which contain abundant hints of user preferences on

locations, allow us to identify potential new customers for local businesses.

To identify potential new customers, the most crucial thing is to understand a customer’s

decision-making process. However, it is a complex process, and can be influenced by multi-
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ple factors. Most investigated factors are personal preferences and geographical convenience.

Personal preferences are learned from customers’ historical check-ins by applying collabo-

rative filtering or matrix factorization techniques. The learned preferences, in return, help

us find out new businesses which customers are interested in. In addition, check-in loca-

tions provide an ancillary resource to interpret customers’ decisions from the perspective

of geographical convenience. According to the Tobler’s first law of geography and the law

of demand, the propensity of a customer for a local business is inversely proportional to

the distance between the customer and the business, which is similar to the probability of

purchasing an item being inversely proportional to the cost.

There are also studies which show that customers prefer learning from local experts

who know the neighborhood well and have firsthand experience [71]. This is because online

reviews are becoming more and more influential in establishing and promoting the reputation

of local businesses than ever before. The emergence of numerous review sites has created an

unprecedented and ongoing online conversation about local businesses. Therefore, a business’

reputation is more public and more accessible. Customers are able to see over the “wall” of

corporate messaging at what lies behind. They can get a sense of a business’ true essence

through the shared experiences of other customers. These changes in marketing lead to a

change in customers’ habits. Customers are becoming more and more review-dependent.

This is consistent with the study conducted by BrightLocal [72]. Compared with the trend

in 2010, the number of people who search for local businesses before consumption doubled

in 2015 and 2016. Moreover, among all the participants in the study, 92% of the customers

regularly or occasionally read online reviews, which help them judge whether a local business

provides good services or not. Therefore, the impact of online reviews is non-negligible and

growing.

Although identifying potential new customers is crucial for local businesses, it is still a

very challenging task due to the following three reasons.

• Data Sparsity. To know and comment on a local business, a customer has to phys-

ically visit that business. Thus, the cost is higher than that of rating a movie or a
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Table 3.1: Statistics and densities of six datasets.

Dataset #(Users) #(Items/businesses) #(Ratings/check-ins) Density

Netflix 48,189 17,770 100,480,507 1.17 ×10−1

MovieLens 20M 138,000 27,000 20,000,000 5.37 ×10−3

last.fm 1,892 17,632 92,834 2.78 ×10−3

Yahoo! Music 1,000,990 624,961 262,810,175 4.20 ×10−4

Yelp 1,029,432 144,072 5,099,750 6.94 ×10−6

Foursquare 1,219,322 422,030 693,798 1.35 ×10−6

song online. Even if a customer makes the effort to visit the business, he/she often

does not check in due to privacy or safety concerns [73], let alone writing a review.

Therefore, customers’ check-in data is much sparser than other rating data for movies

and music. Table 3.1 shows the statistics and the densities of four well-known movie

and music rating datasets, together with two LBSN datasets, i.e., the Yelp challenge

dataset and the Foursquare dataset. Here the density of a dataset is calculated by

the number of ratings/check-ins divided by the product of the number of users and

the number of items/businesses. The densities of Yelp and Foursquare datasets are

much lower than the ones of Netflix, MovieLens, Last.fm, and Yahoo! music datasets.

The extremely sparse check-in data makes it challenging for us to accurately model

customers’ preferences.

• Geographical Influence. The first law of geography states that everything is related

to everything else, but near things are more related than distant things [74]. Many

studies show that people tend to visit nearby local businesses or explore businesses

near the ones that they have visited before [13]. Therefore, a challenge is how to

estimate customers’ activity trajectories or zones based on the sparse check-in data.

Beyond this estimation, a more challenging fact is that the geographical influence is

both customer-dependent and business-dependent. If a customer owns a car, he can

visit a faraway business with less effort than ones who cannot drive and rely on public
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transits. On the other hand, the geographical factor has different impacts on different

types of businesses. For example, customers tend to visit nearby fast-food businesses

for convenience. However, they may be willing to travel farther to visit other types of

businesses, such as museums, where they are more closely connected with cultures and

get inspirations, or salons where they can have their hair cut and styled by professionals.

• Reputation Influence. Nowadays, more and more customers rely on online reviews

to get a sense of the reputation of local businesses. These reviews implicitly influ-

ence customers’ decisions towards visiting a business. The influence of reviews is also

both customer-dependent and business-dependent. Different customers have different

opinions on the same review. Moreover, similar reviews may have different impacts on

different types of businesses. For example, a review such as “A bit of long wait” to a

fast-food business may give other customers a very negative impression. However, the

impact may be milder if the same comment is made on theme parks, such as Universal

Studios.

In addition to the three challenges above, given the heterogeneous information on check-in,

location, online reviews, current works also lack an integrated analysis of personal prefer-

ences, geographical influence, and business reputation when modeling customers’ decisions.

To the best of our knowledge, this work is the first one considering all these factors under

the scenario of recommending customers for local businesses. To be more specific, the main

contributions of this work are as follows:

• We propose a customer recommendation model, CORALS, which, based on historical

check-in information, integrates customers’ personal preferences, geographical influ-

ence, and business reputation. In addition, the model is also capable of incorporating

other factors such as expenses. Moreover, the model offers high interpretability by pro-

viding the quantitative importance of incorporated factors for different types of local

businesses.

• We present a comprehensive empirical evaluation of our approach against 12 recom-
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mendation methods on two real-world datasets. The results show that our approach,

CORALS, outperforms all baseline methods in suggesting potential new customers for

local businesses in different cities.

The key to addressing the recommendation problem in LBSNs is to accurately understand

customers’ decision-making processes. In this work, we decompose it into three main factors:

a customer i’s personal preference tb,i over a business b, the geographical convenience gb,i of

business b for customer i, and customer i’s reliance rb,i on business b’s reputation. In addition,

the contributions of gb,i and rb,i are given by wgb and wrb , respectively. Formally, the tendency

of a customer i’s visiting a business b is given by:

tb,i + wgbgb,i + wrbrb,i. (3.1)

Higher tendency indicates higher check-in likelihood.

Given an observed check-in from customer i on business b, denoted by (b, i), applying

the idea of pair-wise comparisons, we sample another customer j who has not checked in

at business b. Now, for a business b, we have an observed check-in (b, i) and a sampled

unobserved check-in (b, j). It is logical to hypothesize that compared with customer j,

customer i is more likely to visit business b. We construct the model by maximizing a

posteriori over all observed and sampled check-ins:

C =
∏

(b,i),j

p(i >b j|Θ)p(Θ), (3.2)

where Θ is a set of parameters, which define the model. p(i >b j|Θ) gives the probability

that a customer i prefers a business b more than another customer j does under the model.

Formally,

p(i >b j|Θ) = δ[(tb,i − tb,j) + wgb (gb,i − gb,j) + wrb(rb,i − rb,j)], (3.3)

where δ(x) is the sigmoid function:

δ(x) =
1

1 + e−x
. (3.4)
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In addition, the personal preference of customer i on business b is given by:

tb,i = pb · qi, (3.5)

where pb and qi are business and customer vector representations in the preference hidden

space, respectively. Similarly, the reputation reliance of a customer i on a business b is given

by:

rb,i = ub · di, (3.6)

where ub and di are business and customer vector representations in the reputation hidden

space, respectively. Using Gaussian priors Θ ∼ N(0, λθI) to model the parameters, we have

p(Θ) =
1√
2πσ

e(−‖Θ‖
2

2σ2
). (3.7)

Substituting Equations 3.3, 3.4, 3.5, 3.6, 3.7 into the objective Equation 3.2, we can derive

maximizing a posteriori as follows:

C ∝ ln
∏

(b,i),j

p(i >b j|Θ)p(Θ)

=
∑

(b,i),j

ln δ[(tb,i − tb,j) + wgb (gb,i − gb,j) + wrb(rb,i − rb,j)] + ln p(Θ)

=
∑

(b,i),j

ln δ[(tb,i − tb,j) + wgb (gb,i − gb,j) + wrb(rb,i − rb,j)]− λ‖Θ‖2

=
∑

(b,i),j

{ln δ[(pb · qi − pb · qj) + wgb (gb,i − gb,j) + wrb(ub · di−

ub · dj)]− λ‖Θ‖2},

where λ is a set of regularization parameters for Θ. Here, the businesses’ geographical

convenience, gb,i, and businesses’ reputations, ub, are inputs. These two factors will be

discussed in Sections 3.2 and 3.3, respectively.

To optimize top ranked customers in the recommendation list, we apply the weighted

approximate ranking strategy proposed in [75] to optimize precision@k. Algorithm 1 sum-

marizes the optimization process. First, the parameters Θ are initialized using Normal
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Algorithm 1: Parameter optimization with AdaGrad

Input: learning rate η, max iteration itermax, regularization weights λ, max number of

samples Smax;

Output: Θ

1 Initialization: initialize Θ with Normal distribution N(0,0.01), iter = 0, Θopt = Θ, erropt

= errvali;

2 repeat

3 foreach observed check-in (b, i) do

4 Counter cnt = Smax;

5 while cnt > 0 do

6 Randomly generate an unobserved customer j;

7 if (tb,i − tb,j) + wgb (gb,i − gb,j) + wrb(rb,i − rb,j) > 0 then

8 cnt- -;

9 else

10 foreach involved θ do

11 ∇θts = ∂J
∂θts ;

12 nts+1
θ = ntsθ + (∇θts)2;

13 θts+1 = θts − η√
ntsθ +ε

∇θts;

14 break;

15 if errvali < erropt then

16 erropt = errvali;

17 Θopt = Θ;

18 else

19 Θ = Θopt;

20 iter + +;

21 until iter > itermax;

22 Return Θopt;
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distributions. The optimization process is iterative. In each iteration, it goes through each

observed check-in in the training set. For each observed check-in (b, i), we sample a random

customer j who has not visited business b. If the preference order between i and j on business

b is correctly predicted using the current Θ, we randomly sample another customer to find a

violation. This process repeats at most Smax times until we find such a violation. Once we

find a violation, we update the corresponding parameter θ, θ ∈ Θ. After iterating through

each check-in in the training set, we evaluate the performance using the validation set. If the

performance increases, we accept the updates on Θ. Otherwise, we reject the updates. This

step helps us avoid adopting over-fitting parameters on the training data. The optimization

terminates when iter reaches the maximum number of iterations.

As we mentioned, since many businesses and customers have limited numbers of check-

ins, the check-in data is extremely sparse. However, the parameters of these businesses and

customers can be immensely useful and informative to the problem we want to optimize.

To effectively leverage the sparse data, AdaGrad [76] is proposed to give a higher learning

rate to the parameters that are more sparse in the data. We adopt this concept to adjust

the learning rate adaptively for each individual parameter θ, which is shown in lines 10-

13 of Algorithm 1. AdaGrad modifies the general learning rate η at each time step ts for

every parameter θ based on the past gradients that have been computed for θ. nts+1
θ records

the sum of the squares of the gradients with respect to θ up to the tsth time step1. ε is

a smoothing term that avoids division by zero. In this way, AdaGrad makes it such that

parameters that are more sparse in the data have a higher learning rate which translates

into a larger update for that parameter.

3.2 Geographical Convenience Inference

In this section, we discuss how to infer the geographical convenience of a business b for a

user i, i.e., gb,i, based on customer i’s historical check-ins.

1In one iteration, the same parameter may be optimized multiple times. Each optimization counts 1 time
step.
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We apply a Gaussian mixture model (GMM) [77] to make the inference. A Gaussian

mixture model is a weighted sum of M component Gaussian densities:

p(l|Φ) =
M∑
m=1

αmg(l|µm,Σm), (3.8)

where l is a 2-dimensional location vector (i.e. latitude and longitude), αm, m = 1, ...,M ,

are the mixture weights, and g(l|µm,Σm) are the component Gaussian densities. Each

component density is a 2-variate Gaussian function of the form,

g(l|µm,Σm) =
1

2π|Σm|1/2
e−

1
2

(l−µm)′Σ−1
m (l−µm),

with mean location vector µm and covariance matrix Σm. The complete Gaussian mix-

ture model is parameterized by the mean location vectors, covariance matrices and mixture

weights from all component densities. These parameters are further collectively notated by

Φ. For a particular customer, given a sequence of his N check-in locations, represented by

N location vectors L = {l1, .., lN}, the GMM likelihood, assuming conditional independence

between the location vectors, can be written as:

p(L|Φ) =
N∏
n=1

p(ln|Φ).

We use the Expectation-Maximization (EM) [78] algorithm to estimate the parameters. The

EM algorithm begins with an initial model Φ, to estimate a new model Φ̄, such that p(L|Φ̄) ≥

p(L|Φ). The new model then becomes the initial model for the next iteration and the process

is repeated until convergence. In each EM iteration, re-estimation Equations 3.9, 3.10,

and 3.11 are used to guarantee a monotonic increase in the model’s likelihood value in the

E-step.

Mixture weights: ᾱm =
1

N

N∑
n=1

p(m|ln,Φ), (3.9)

Location means: µ̄m =

∑N
n=1 p(m|ln,Φ) · ln∑N
n=1 p(m|ln,Φ)

, (3.10)

Variances: σ̄2
m =

∑N
n=1 p(m|ln,Φ) · l2n∑N
n=1 p(m|ln,Φ)

− µ̄2
m, (3.11)
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In the M-step, the posteriori probability for component m is given by

p(m|ln,Φ) =
αmg(ln|µm,Σm)∑M
m=1 αmg(ln|µm,Σm)

.

To determine the number of Gaussian components M , we apply affinity propagation [79]

to cluster each customer’s check-ins. The number of clusters yields the number of Gaussian

components.

After the GMM construction for a customer i, given the geographical location lb of a

business b, as shown in Equation 3.8, p(lb|Φ) gives the geographical convenience gb,i of the

business b for each customer i.

3.3 Business Reputation Inference

In this section, we discuss how to model the business reputation, ub, based on the reviews

commented on the local businesses.

There are two main challenges. First, reviews differ in their lengths. Some reviews are

informative and have more words while others are not. This challenge makes it difficult to

model the business’s reputation ub in a fixed-length vector. Second, for a particular business,

some reviews are older while others are more recent. They may have different influences on

the reputation of the business.

To solve the first challenge, we apply a distributed memory model proposed in [80].

Figure 3.1 shows the framework for the vector learning task, which is to predict a word given

other words in a context. Formally, given a sequence of training words o1, o2, o3, ..., oH , the

objective of the model is to maximize the average log probability

1

H

H−k∑
h=k

logp(oh|oh−k, ..., oh+k).

The prediction task is performed via a multiclass classifier, i.e., softmax. Then, we have:

p(oh|oh−k, ..., oh+k) =
eyoh∑
o e

yo
.
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Figure 3.1: The framework for learning review vector

Each yoh is the un-normalized log probability for each output word oh, calculated as:

yoh = V0 + V z(oh−k, ..., oh+k, U),

where V0 and V are the softmax parameters. z is constructed by a concatenation of a review

vector and word vectors from O. Both review and word vectors are trained using stochastic

gradient descent (SGD) and the gradient is obtained via back propagation. At each step of

SGD, we sample a fixed-length context from a random review, compute the error gradient

and update the parameters in the model. Once the parameters get converged, we obtain

the dense representation of each review. In order to address the impact of the chronological

order of the reviews, we use the vector of the most recent review as the reputation vector of

the business, ub.
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CHAPTER 4

Customer Recommendation with Few-shot Learning

4.1 Background

As an increasingly popular application of location-based services, location-based social net-

works (LBSNs), such as Yelp, Foursquare, and Instagram, attract millions of users to share

their locations, resulting in a huge amount of user check-ins [67,68]. The availability of such

unprecedented user check-ins brings in great opportunities to understand users’ preferences

and help businesses identify potential new customers. However, new customer predictions in

LBSNs suffer severely from data sparsity. To know a business, a customer has to physically

visit that business. Even if a customer makes the effort to visit the business, he/she often

does not check in due to privacy or safety concerns [73]. This results in extremely sparse

check-in data. Understanding customer preferences and making accurate predictions from

the severely sparse data remain a daunting task.

AU1 U2

5 miles 5 miles

Figure 4.1: Geographical convenience influence

To compensate for the check-in sparsity, various ancillary information, such as geograph-

ical influence, social correlations, temporal patterns, textual and visual contents, has been

leveraged to improve recommendation performances in different manners [16,17,22,27,28,81,

82]. For LBSNs, the geographical coordinates, i.e., the latitude and longitude, of businesses
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Figure 4.2: Geographical dependency influence

are the most accessible ancillary information and they are also the ones that make location-

based recommendations unique compared to other recommendation tasks. However, most

existing works only investigate the relationship between customers and businesses by mea-

suring the distance of a visit from users to businesses. This leads to two limitations. First,

distance may not be an accurate indicator to distinguish the transportation convenience for

different users for a check-in. Second, the inter-dependencies among nearby businesses are

not modeled when making recommendations.

In this work, we highlight that geographical convenience and dependency should be both

incorporated to comprehensively leverage the geographical influence. Figure 4.1 and Fig-

ure 4.2 show two motivating examples for geographical convenience and dependency, respec-

tively. In Figure 4.1, the two users are both 5 miles away from business A. Therefore, the

distance indicator does not offer too much disciminative power to tell who is more likely to

visit from the geographical perspective. But if we know user 1 tends to drive while user 2

relies on walking, we could gauge the actual transportation efforts more accurately based

on the convenience rather than the raw distance. In Figure 4.2, two businesses A and B

provide the same service and they are reachable for user u with equal transportation efforts.

Without considering the neighborhood information of the two businesses, the recommenda-

tion system can barely distinguish one from the other regarding u’s preference. In real-world

scenarios, the neighborhood services of two businesses are never the same. In this example,
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A is surrounded by a cafe, a candy shop, a market, and a restaurant, while B is near a

gym, a stadium, and a gas station. If such neighborhood information is modeled when mak-

ing recommendations, it can provide extra guidance to understand users’ decision-making

processes more comprehensively and thus make more accurate recommendations. To incor-

porate geographical convenience, we leverage Gaussian mixture models (GMM) [77], where

each user is maintained with a profile described by a mixture of geographical activity func-

tions. Given a business, the user profile could yield the relative transportation efforts. To

incorporate geographical dependency, we utilize graph convolutional networks [83], which

allow geographical features propagate among neighborhood. Therefore, the representation

of a business can not only capture its own service and quality, but also those of its neighbors.

Beyond embracing geographical influence to address the sparsity issue, we also strive to

seek more suitable techniques to improve the recommendations. Few-shot learning, as a

contemporary approach, decomposes the training into a set of similar tasks, where transfer-

able knowledge is learned and shared among tasks. It allows learning in sparse data much

faster than otherwise possible [84]. In this work, we propose a metric-learning-based few-shot

learning framework. In particular, we construct support instances and query instances, with

each instance composed of one customer and one business. Support instances are labeled

instances and serve as references. Query instances rely on the references to conduct rea-

soning. The model evolves by iterative comparisons between support and query instances.

In this way, the matching between a customer and a business is optimized with explicit

attention to multiple other related check-in behaviors. Therefore, the limited check-ins are

comprehensively utilized to address the sparsity issue.

In addition, different from previous works, which treat historical user check-ins at a busi-

ness equally, we adaptively differentiate each user check-in by modeling the check-in reason

as a mixture of hidden factors, which is achieved by leveraging attention mechanisms. In a

nutshell, few-shot learning allows us thoroughly utilize the sparse check-in data. Differen-

tiation of user check-ins with attention mechanisms helps us model and understand users’

decision-making processes more comprehensively.
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In this work, we study the problem of potential new customer recommendation with

few-shot learning. In essence, we solve three challenges: (1) how to incorporate geographical

convenience and dependencies when making recommendations; (2) how to utilize few-shot

learning to model a recommendation task; and (3) how to differentiate user check-in behaviors

on the same business. To be more specific, the main contributions of this work are as follows:

• We decompose the geographical influence into geographical convenience and geograph-

ical dependency. The geographical convenience models the relative transportation

efforts of a check-in, while the geographical dependency modeling makes our model

neighborhood-aware.

• We are the first to apply meta-learning to location-based recommendation tasks and

formulate the problem as few-shot learning.

• To distinguish user check-in behaviours on the same business, we introduce multiple

self-attention mechanisms to explain each check-in against a set of reference check-ins.

• We present a comprehensive empirical evaluation of our approach against 13 recom-

mendation methods on two real-world datasets. The results show that our approach,

SEATLE, outperforms all baseline methods in suggesting potential new customers for

businesses in different cities.

In this work, user check-ins are represented as a collection of tuples {(b, u)} ⊆ B ×

U , where B and U are the business set and user set, respectively. The task of new user

recommendation is to rank users given a business. The goal is to rank the true new users

higher than other candidates. The candidates here are all users who have not checked in

this business.

4.2 Few-Shot Learning Settings

This section describes the training of our method formulated as few-shot learning.
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Following the standard few-shot learning settings [57, 58, 85], we assume access to a

set of training tasks. In our problem, each training task T corresponds to the new user

predictions regarding a business b. During training, it learns to learn a generalized similarity

metric to compare a set of user-business tuples against some references for each task, with

each one designed to simulate the few-shot setting. Tasks are optimized one after another

multiple times. For each task, each time k observed check-in tuples are randomly sampled

as references, denoted as R. An observed check-in tuple refers to a business-user pair (b, u)

where the user u did check in business u in the dataset. In addition, two query sets, i.e., a

positive query set Q+ and a negative query set Q−, are constructed, with each set made up

of c tuples. Each query in Q+ is also an observed check-in tuple regarding b, but distinct

from the ones in R. Each query in Q− is a fake check-in tuple, where the user in the tuple

did not check in b. The model thus can be optimized by comparing two similarities, one

between a positive query and references, and the other one between a negative query and

reference for each business. Ranking loss is applied to conduct the model optimizations,

where the ranking loss measures how well the model distinguishes a positive query from a

negative query regarding a set of references. The optimizations run for multiple iterations

and each business is optimized more than one times. Note that for each optimization of

a business, we may select different observed check-ins as references and positive queries.

Similarly, we may construct different fake check-ins are negative queries. Once trained, the

embeddings of all observed check-ins regarding the same business are expected close to each

other in the hidden space, while the embedding of a fake check-in is expected faraway from

the embeddings of observed check-ins.

4.3 Overall Framework Utilizing Few-shot Learning

In this section, we explain how to model the recommendation task as few-shot learning, how

to incorporate geographical influence, and how to distinguish user check-ins in detail.

The proposed approach decomposes the recommendation problem into a set of tasks and

each task involves the user recommendations with respect to only one business. Figure 4.3
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Figure 4.3: Few-shot learning framework

shows the few-shot learning framework for each task. On the left side, a reference set R and

two query sets, a positive query set Q+ and a negative query set Q−, are constructed for a

business b. The reference set is composed of k random observed check-ins, where k = 4 in

this example. The positive query set is made up of another random selection of c observed

check-ins. But the check-ins in Q+ are mutually exclusive alternatives from the ones in R.

For illustration simplicity, c is set to 1 in the example. The negative query set is constructed

by building c user-business tuples, such that each user in the tuple does not check in business

b. The reference set functions as the supports in the setting of few-shot learning. The two

query sets, based on the reference set, jointly conduct reasoning and inference.

The framework has two modules, an embedding module and a relation module. The

embedding module learns the representations of references and queries, while the relation

module compares the learnt representations and optimize them in such a manner that rep-

resentations of positive queries are similar to the ones of references, while representations

of negative queries are dissimilar to the ones of references. In the embedding module, F (·)

is a layer which learns the initial embeddings of reference, positive query, and negative

query tuples. By going through F , each reference/positive/negative tuple is represented by

a fixed-length vector. Attention is a layer which utilizes the attention mechanism to learn

the representative of the references. Self Attention is another attention layer, which takes
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both initial query and reference embeddings as inputs to generate the relative embeddings

for queries. The relative embedding of a query learns to use references to explain the user

check-in behavior encoded in the query. In the relation module, based on the learnt embed-

dings, we match each query in the query set to the reference representative by calculating

the similarity between them, denoted as sim(R, q). Then, we compare the score sim(R, q+)

of a positive query q+ with the score sim(R, q−) of a negative query q−. Ranking loss is

generated if a negative query is more similar to the reference representative than a positive

query is. The model gets optimized by minimizing such ranking loss.

In the following paragraphs, we first talk about what features we use to encode a user-

business tuple. Then, we explain the embedding module and the relation module.

Given a tuple (b, u), F (·) encodes four types of features: (1) business features, which

represent its service, quality, and other business self-related factors; (2) user features, which

represent his/her preference; (3) features indicating the geographical convenience of b for

user u; and (4) features indicating the geographical dependencies of b, i.e., the neighborhood

information of b. These four types of features collectively express how likely the user u will

check in the business b.

user embedding

business embedding

geo convenience

geo dependency

GMM

user

GCN

Initial embedding

Concatenation

business

Figure 4.4: Feature constructions

Figure 4.4 illustrates the initial embedding construction for a user-business tuple. Given

30



a tuple, two vectors, a user embedding vector and a business embedding vector, are utilized

to encode user preferences and business self-related features, respectively. A geographical

convenience vector is constructed by considering the geographical location of the business and

the historical check-in locations of the user. A geographical dependency vector is constructed

to encode the neighborhood information of the business. These four types of information are

concatenated together and then fed into a fully-connected neural network to derive the initial

embedding of a user-business tuple. In Sections 4.4 and 4.5, we will present the geographical

convenience modeling and geographical dependency modeling in detail, respectively.

4.4 Geographical Convenience Modeling

In this section, we discuss how to model the geographical convenience of a business b for a

user u based on u’s historical check-ins.

We apply the Gaussian mixture model [77] to make the inference. A Gaussian mixture

model is a weighted sum of M component Gaussian densities:

p(l|Φ) =
M∑
m=1

αmg(l|µm,Σm), (4.1)

where l is a 2-dimensional location vector (i.e. latitude and longitude), αm, m = 1, ...,M ,

are the mixture weights, and g(l|µm,Σm) are the component Gaussian densities. Each

component density is a 2-variate Gaussian function of the form,

g(l|µm,Σm) =
1

2π|Σm|1/2
e−

1
2

(l−µm)′Σ−1
m (l−µm),

with mean location vector µm and covariance matrix Σm. The complete Gaussian mix-

ture model is parameterized by the mean location vectors, covariance matrices and mixture

weights from all component densities. These parameters are further collectively notated by

Φ. For a particular customer, given a sequence of his T check-in locations, represented by

T location vectors L = {l1, .., lT }, the GMM likelihood is written as:

p(L|Φ) =
T∏
τ=1

p(lτ |Φ).
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We use the Expectation-Maximization algorithm [78] to estimate the parameters. Due to

the space limit, we skip the detailed optimizations here.

To determine the number of Gaussian components M , we apply affinity propagation [79]

to cluster each customer’s check-ins. The number of clusters yields the number of Gaussian

components. After the GMM construction for a customer u, given the geographical location

lb of a business b, as shown in Equation 4.1, p(lb|Φ) gives the geographical convenience of

the business b for each user u.

We highlight that the geographical convenience, modeled by GMM, is superior to con-

ventional distance-based metrics, since it captures the relative geographical efforts of a visit,

which is capable of distinguishing customers with different traveling flexibility more accu-

rately.

4.5 Geographical Dependency Modeling

In this section, we show how to encode geographical neighborhood information using graphs

and how to model the dependence relationship among businesses using graph convolutional

networks [83].

The geographical correlations among businesses are modeled with a graph G = (V,E),

which encodes the geographical proximity. Each vertex v ∈ V represents a business and an

edge e ∈ E with weight e−λ(vi,vj) connects every two vertices vi and vj, where λ(vi, vj) gives

the geographical distance between vi and vj. Formally, an adjacency matrix A is used to

represent G with Ai,j = e−λ(vi,vj).

Graph convolutional network (GCN) is defined over the proximity graph, which allows

us to extract and aggregate neighborhood information for each vertex. A graph convolution

is defined as:

H(β+1) = Sigmoid(D−
1
2 ÂD−

1
2H(β)W (β)), (4.2)

with Â = A + I, where I is the Identify matrix, which is added to capture business’ own

features during feature propagations. D is the diagonal node degree matrix of Â. W (β) is
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the weight matrix for the β-th layer in GCN, and Hβ is the output for the β-th layer. In

particular, H(0) = X and H(β̃) = Z, where X is the initial vertex feature matrix, Z is the

final outputs of GCN, with β̃ indicating the number of layers in GCN.

For example, H0
i represents the initial features of business i. By going through GCN,

the information of i’s neighbors gets propagated to Hβ
i . Therefore, Hβ

i not only represents

the information of business i, but also that of its nearby neighbors. There are multiple

ways to construct the feature matrix X for businesses in the graph. In this work, we utilize

the business service types to achieve that. The service type of a business tells whether the

business is a museum, or a supermarket, etc. Xi is constructed by its corresponding service

embedding.

4.6 Embedding and Relation Module

Algorithm 2 summarizes the training process. For each training epoch, we go through

the tasks one by one. For each task, we aim to distinguish positive queries from negative

queries regarding references. For a business b, we first sample a set of k observed check-ins

as the reference set, R = {(b, ur1), ..., (b, urk)}. Then, we sample another set of c exclusive

observed check-ins as the positive query set, Q+ = {(b, u+
1 ), ..., (b, u+

c )}. We also construct a

third set of c fake check-ins as the negative query set, Q− = {(b, u−1 ), ..., (b, u−c )}. After the

constructions of references, positive and negative queries, we calculate the similarity between

each query in Q+ ∪ Q− and the references. We expect that positive queries are closer to

references, while negative queries are faraway from references in the hidden space. The

representations of queries and references are learnt through two attention mechanisms. The

closeness/similarity between a query and a set of references is calculated by comparing the

query embedding with the embedding of the reference representative. For each optimization

of a business, we randomly pair up positive queries with negative queries. Ranking loss

is adopted if a negative query is closer to the references than a positive query is. In the

following paragraphs, we discuss the representation learning of both queries and references,

the query-reference similarity calculation, and the ranking loss function in detail sequentially.
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Algorithm 2: Few-shot Training

Input: Meta-learning task set;

Output: A set of model parameters Θ;

1 Initialization: initialize Θ with Normal distributions;

2 foreach epoch = 1:N do

3 Shuffle the tasks in the task set;

4 foreach Tb in the task set do

5 Sample a set R of observed user check-ins as references;

6 Sample a set Q+ of observed user check-ins as positive queries;

7 Construct a set Q− of fake user check-ins as negative queries;

8 Learn reference and query representations;

9 Calculate the representative of the references with attention;

10 Calculate the similarities between references and the queries in Q+ and Q−;

11 Calculate ranking loss L =
∑

(q+,q−) `;

12 Update Θ based on gradients g ∝ ∇L;

13 Return Θ;
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Query embedding: the query embedding is constructed by incorporating two types of

information. One encodes the user business interaction behavior itself and the other one

encodes the representation with attention to the references. In other words, we attempt

to use references to explain the user business interaction behavior in the query. F (·) in

Figure 4.3 yields the first part, while the second part is achieved by introducing a self-

attention mechanism. The scaled dot-product attention [86] is defined as:

Attention(Q̃, K̃, Ṽ ) = softmax(
Q̃K̃T√
dQ

)Ṽ , (4.3)

where Q̃, K̃, and Ṽ represent the queries, keys, and values in the attention mechanism,

respectively. The attention operation calculates a weighted sum of all values, where the

weight between query i and value j relates to the interaction between query i and key j.

The scale factor
√
dQ is used to avoid overly large values of the inner product, where dQ is

the feature dimension of both Q̃ and K̃.

In our case, the self-attention operation takes the query embeddings Q ∈ Rc×d and the

reference embeddings R ∈ Rk×d as inputs, converts them to three matrices through linear

projections, and feeds them into an attention layer:

QR = Attention(QWQ,RWK ,RW V ), (4.4)

where the projection matrices WQ, WK , and W V ∈ Rd×d. The self-attention result QR

learns the embedding of a query by comparing the closeness between the query and all

references. QR is a weighted sum of reference embeddings, where each weight gauges the

behavior similarity between the query and a reference. In this way, QR encodes the user-

business behavior of the query explained by references.

We employ residual shortcut connection [87] to derive the final representations for queries

Q, denoted as Qcom, as follows:

Qcom = QR +Q. (4.5)

The representation Qcom is composed of two parts, i.e., QR and Q. QR reflects the relation

between the query and references, while Q represents the check-in behavior itself of the
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query. In particular, QR captures the scenario when the check-in behavior of a query can be

well explained by references. The self-attention mechanism allows QR focus on relevant ref-

erences. Most positive queries can benefit the representation learning from the self-attention

mechanism. However, it may not work all the time. For example, the sampled references

may not cover the reason of a check-in for a positive query. Or for negative queries, the

references are not designed to explain the fake interactions at all. When the references fail

to explain, QR encodes the information of Q. In such cases, we learn from the query itself,

encoded in Q. The residual shortcut connection as shown in Equation 4.5 well captures the

different scenarios without introducing extra parameters.

Reference embedding: for the references, we calculate the reference representative

R̄ as a weighted sum of each reference, where the weights can be derived from a second

attention mechanism.

αi = softmax(σ(WARi + bA)V T
C ). (4.6)

R̄ =
∑
i

αiRi. (4.7)

Equations 4.6 and 4.7 summarize the representative calculation. Each reference Ri is first

fed into a one-layer neural network, the outputs of which, together with the context vector

VC , are further used to generate the importance weight αi for each reference Ri through a

softmax function. The representative R̄ is calculated as a weighted sum of the references

based on the derived weights.

Similarity and loss function: Given a set of references R and a query q, the similarity

sim(R, q) between R and q is defined as the dot product between R̄ and qcom. Formally,

sim(R, q) = R̄ · qcom. (4.8)

We apply hinge loss to gauge the ranking error defined on references R, a positive query q+,

and a negative query q−:

` = max{0, sim(R, q−)− sim(R, q+) + γ}, (4.9)

where γ is the margin. Losses are generated only when the negative query is closer to the

references than the positive query regarding a margin γ.
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As shown in Figure 4.3, users in the reference set choose to check in a business due

to various factors, such as the cost, the cuisine type, the convenience to get there, and

the neighborhood services etc. Similarly, a user in the positive query set decides to check

in the same business due to only one or a mixture of the above factors. The attention

mechanism in the query embedding constructions learns to assign importance weights to the

seen references. This enhances the reasoning between queries and references, which is key

in few-shot learning. The attention mechanism in the reference representative constructions

are shared among all tasks and it adaptively analyzes and memorizes the key factors that

result in users’ check-ins. The memorized knowledge are generalized and transferable among

different tasks. Therefore, the knowledge gained from businesses with rich check-ins can

benefit the parameter learning for businesses which provide similar services, but have fewer

check-ins.
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CHAPTER 5

Click Feedback-Aware Query Recommendation Using

Adversarial Examples

5.1 Background

The effectiveness of keyword-based search engines, such as Google, Bing, and Yahoo, depends

largely on the ability of a user to formulate expressive search queries. Expressive search

queries clearly and unambiguously describe users’ search intents and bring users directly

to the desired information, which make search engines powerful tools for tapping into the

wealth of knowledge accessible through the world-wide-web. In practice, translating human

thoughts into concise sets of keywords to form queries is never straightforward [88]. This is

particularly true for search engine users, who are mostly untrained casual users. In many

cases, casual users have very limited background knowledge about the information they are

searching for. To assist users in formulating queries, modern search engines are equipped

with query suggestions [1, 5, 33, 34]. Given a user query, a query suggestion system deduces

the search intent of the user by recommending a set of queries that are more expressive

than the original user input. Our goal is to investigate the key concerns of existing query

suggestion systems and to propose a novel approach to improve the suggestion performance.

Web search queries are usually very short, typically with only one or two keywords

each [3,89]. Short queries lead to the ambiguity issue. For example, the query “apple price”

can refer to Apple stock price, the price of various Apple electronic products, or the price of

an apple as a kind of fruit. Up to 23.6% of web search queries are reported to be ambiguous

in [90]. The ambiguity weakens the expressiveness of queries because the search engine may
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not understand the users’ hidden search intents. This results in poor rankings of retrieval

results and jeopardizes user experiences consequently.

A successful query suggestion system depends on understanding and modeling user search

intents accurately. The user search intents lie in interactions, i.e., searches and clicks, between

users and search engines. These interactions are generally partitioned into groups to form

search sessions based on the time when they happened. Each search session is driven by

consecutive related search queries and clicks of search engine users. In a search session, a

user refines his/her original query and submits a sequence of follow-up queries to pinpoint

his/her information need. Between two issued queries, the user may also click suggested

queries to explore. The issued queries, together with the clicks, jointly allow us to accurately

understand users’ hidden search intents and come up with appropriate queries as suggestions.

Unfortunately, most existing works merely consider clicked suggestions as feedback when

modeling user search intents.

To conduct feedback-aware query suggestions, we mine search logs. A search log con-

tains historical records, each of which registers the details of a web search conducted by a

user. Table 5.1 shows some sample records extracted from the search log of a real search

engine. Each record includes a query string, an anonymous user ID by whom the query

was formulated, query submission time, the query suggestion subsequently clicked by the

user (if done), and the suggested queries shown on the search page with the clicked ones

highlighted in bold. The sample records show two search sessions. In the first session, user

A first submitted query “apple” to the search engine, and then clicked the second query

suggestion “apple stock” in the suggestion list. After that, the user issued the second query

“apple price”, and clicked the suggestion “apple price per share”. The second search session

involved a different user, B. S/he started searching with the query “disney”, and then clicked

“disney cartoons” in the suggestion list. He/she continued the search with the query “disney

shows” and clicked “disney channel cartoons” subsequently. From the first search session,

we can see that the clicked suggestion “apple stock”, as feedback of the user, compensates

for the ambiguity of the second issued query “apple price”. It provides us with extra infor-
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mation to infer the underlying search intent of the user, which is to know the stock price

of Apple instead of the price of Apple electronic products, such Apple iPhone. The clicked

suggestion “disney cartoons” in the second search session also implicitly indicates that the

user was interested in disney cartoons shows when the user search for “disney shows”. These

observations motivate us to include user feedback when modeling the search intents of search

engine users.

Various research works have been carried out to tackle the task of query suggestion.

Among them, neural network based models have made impressive progress over the past few

years [5, 6, 38]. Deep neural network models mimic the learning process of human brains.

Training these neural network models generally requires a large amount of training data to

achieve excellent performance. However, for search related tasks, search queries involved

are very sparse, and generally follow a long-tail distribution. Thus, those tail queries, with

low probabilities in the data distribution, lack abundant training supports. In addition, the

suggested queries are highly relevant to each other in most cases because they are all related

to the search query in semantics. Distinguishing suggestions to be clicked from the ones

that won’t be clicked and ranking them take extreme efforts. Therefore, there tends to be a

great performance gap between training and test. The trained model can be very sensitive to

unseen perturbed queries. This is because queries are very short and a subtle perturbation

on a query can lead to different or even the opposite search intent. For example, considering

two queries “Obama son” and “son Obama”, the first query is asking who is the son of

Obama, while the second one, with the two terms order exchanged, is more likely to inquire

who is the father of Obama. Other perturbations include adding/deleting characters/terms

from queries, typos in the query, and perturbations that are too small to be expressed

on text levels but significant enough to cause the suggestion system to rank improperly. In

general, human perception and cognition are robust to a vast range of nuisance perturbations.

However, neural networks are currently far from achieving the same level of tolerance of such

perturbations [46]. This motivates us to investigate the robustness property of modern query

suggestion systems and propose an appropriate method to achieve high tolerance.
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Before we proceed to describe the details of the proposed approach, we enumerate the

key properties that a good query suggestion system should observe:

• [Context-Awareness] The recommender should be aware of the sequential search

queries issued by the user. These sequential queries implicitly inform the search intent

of the user.

• [Feedback-Awareness] The recommender should also be aware of user clicks. User

clicks, as an additional information source, can potentially reduce query ambiguities

and allow us to understand user search intent comprehensively and more accurately.

• [Robustness] The recommender should increase the generalization of the original

training data and improve the resistance to nuisance perturbations to the extent as

extreme as possible. This reduces the performance gap between training and test, and

provides favorable rankings of suggestions robustly.

A search sequence S, represented as a sequence of search queries < QS
1 , QS

2 , ..., QS
M1

>,

is submitted successively by a single user within a time interval. Each query in the search

query is associated with corresponding click-through information (if happens), which is a set

of clicked suggestions for that query. A clicked suggestion sequence C, < QC
1 , QC

2 , ..., QC
M2

>,

is formed by ordering the clicked suggestions increasingly by the time the clicks happens.

The goal of this paper is: Given a set of candidate queries Qcan, we would like to generate a

ranking of candidates, with each candidate Qcan ∈ Qcan, so that the ones to be clicked rank

as high as possible.

Take the first search session in Table 5.1 as an illustrative example. Given the search

query sequence Q = <“apple”, “apple price”>, the clicked suggestion sequence C = <“apple

stock”>, and a set of suggestion candidates Qcan composed of “apple price targets”, “iphone

apple price”, “apple price per share”, “apple”, “apple fruit price”, “apple stock price”, “does

apple price match”, and “apple price today”, we would like to generate a ranking of the

queries in Qcan such that the clicked suggestion “apple price per share” ranks in the first

place.
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Table 5.1: Sample search log records

UserID Query String Time Clicked Suggestion Suggested Queries

A apple 2018-07-01 09:10:01 apple stock
apple store, apple stock, apple.com, apple iphone xs max

apple id, itunes, icloud, google maps

A apple price 2018-07-01 09:11:03 apple price per share
apple price targets, iphone apple price, apple price per share, apple

apple fruit price, apple stock price, does apple price match, apple price today

B disney 2018-07-03 12:12:02 disney cartoons
walt disney world, disney world tickets, disney world, disney experience

disney orlando, disney cartoons, disney store, disney junior

B disney shows 2018-07-03 12:22:20 disney channel cartoons
disney shows list, disney xd shows, disney tv shows, popular disney shows

disney channel cartoons, list of disney tv series, 2018 disney channel shows

apple stock price 
apple juice price 
iphone price 

... 

apple price per share 
apple price target 
apple price match 

... 

Candidate source 1: Candidate source k:

Qs
1: apple

Search query sequence

Candidate generation

1. apple stock price     
2. iphone price            

...                    
7. apple juice price     
8. apple price match   

Candidate ranking

...Qs
2: apple price

Current search query

Clicked suggestion
Qc

1: apple stock

Figure 5.1: Query suggestion pipeline

In the following sections, we discuss how to make query suggestions based on the search

and click interactions between users and search engines. To achieve effective and efficient

query suggestions, we decompose the task into two components. First, based on the search

query, we generate a set of relevant queries as suggestion candidates. These suggestion can-

didates are informative to cover different interpretations and aspects of the search query.

Second, we rank the suggestion candidates based user’s entire search query sequence and

clicked feedback. Only the top ones are selected and shown to the user as query sugges-

tions. Figure 5.1 shows the framework of CFAN using the search sequence <“apple”, “apple
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price”> as an example. After a user first searched “apple” and clicked a suggestion “apple

stock”, the user issued a second query “apple price” as the current search query. To make

suggestions for “apple price”, we first generate suggestion candidates from multiple sources.

These suggestion candidates are further ranked based on entire search sequence and the

clicked suggestion “apple stock”.

5.2 Candidate Generation

Given a search query Q, the candidate generation component is responsible for construct-

ing an informative set of expressive queries Qcan as suggestion candidates. An expressive

suggestion candidate clearly and unambiguously describes the search intent of the user. An

informative set of suggestion candidates are queries, that are diversified to cover different

interpretations and aspects of the search query.

To generate such diversified informative and expressive suggestion candidates, multiple

sources can be incorporated, such as search sessions and contextual information in search

logs, related keywords from trending news, etc. in this work, we incorporate two main sources

based on the search log. The first key source generates suggestion candidates based on query

dependencies in search sessions. Given a search query, the follow-up search queries in the

same search session tend to be more expressive and informative. Therefore they are adopted

as suggestion candidates. As shown in Table 5.1, “apple price” is searched after “apple” in

the first search session. Therefore “apple price” qualifies as a suggestion candidate for query

“apple”. Another key source for candidate generation is based on prefix matching between

the search query and historical search queries in the search log. For example, “apple stock”

qualifies as a suggestion candidate for query “apple” since the search query “apple” is a valid

prefix of “apple stock”.

After generating suggestion candidates, the candidates are further ranked based on a

combination of statistical features, i.e., the total number of submissions within last week,

last month, and last year. Only top suggestion candidates are kept for further ranking in the
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Table 5.2: Training instances constructed after user A searched “apple”, “apple price” and

clicked “apple stock”.

type issued queries Q clicked queries C suggestion candidate Qcan

Ins+ apple, apple price apple stock apple price per share

Ins− apple, apple price apple stock apple price targets

Ins− apple, apple price apple stock iphone apple price

Ins− apple, apple price apple stock does apple price match

Ins− apple, apple price apple stock apple fruit price

Ins− apple, apple price apple stock apple stock price

Ins− apple, apple price apple stock apple

Ins− apple, apple price apple stock apple price today

candidate ranking component (see Section 5.3), while others are filtered out. The purpose

of filtering out these less frequent suggestion candidates is to not only generate popular and

fresh candidates, but also guarantee that recommendation services respond in real time. In

a nutshell, given an input query Q, the candidate generation component will return a set of

relevant queries as suggestion candidates.

5.3 Candidate Ranking

In this section, we will discuss how we rank the suggestion candidates by mining the historical

interactions between users and search engines. To better explain the ranking process, we

first discuss the construction of training instances. Then, we go into details on how to utilize

these instances to train CFAN.

Training instances are constructed from the historical search logs. Each instance contains

a sequence of user issued queries S, a sequence of user clicked queries C, and a candidate

suggested query Qcan. Two types of instances are constructed, i.e., positive instances and

negative instances, denoted as Ins+ and Ins−, respectively. A positive instance is constructed

if S and C jointly lead to the click of Q subsequently, while a negative instance is constructed
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if a query Q̃ is not clicked after S and C. In particular, to generate strong negative instances,

only query Q̃, shown together with Q after searching the last query in S, is considered as

a candidate query in the construction of negative instances. Positive instances Ins+ and

negative instances Ins− jointly define the overall matching and ranking performance among a

search query sequence S, a clicked suggestion sequence C, and a set of suggestion candidates

Qcan. We further define such a set of Ins+ and Ins− as a training view, denoted as V .

Table 5.2 shows the training instances of a training view constructed after user A searched

queries “apple”, “apple price”, and clicked “apple stock” based on the search log shown

in Table 5.1. In this training view, eight instances are constructed. There is only one

positive instance, since the user clicked only one suggestion “apple price per share” from

the suggestion list, leaving the other seven suggestions unclicked. Each of the unclicked

suggestions forms a negative instance.

Note that given a sequence of search queries S and a sequence of clicked suggestions

C, only if at least one suggested queries are clicked after the submission of the last query

in S, a training view V will be constructed. Positive instance Ins+ and negative instance

Ins− in V are constructed based on whether the corresponding suggestion is clicked or not,

respectively.

The clicks in the constructed training views allow us to tap into the wisdom of the crowds

and provide a more favorable ranking of suggestions when running into the same or similar

search and click scenarios. Given such scenarios, we expect the previously clicked suggestions

rank ahead of those unclicked ones. To achieve this goal, Equation 5.1 shows the ranking

loss function in CFAN over one training view V .

Lossranking(Θ) = − log(1 +

∑
ins+∈V

gΘ(ins+)∑
ins+∈V

gΘ(ins+) +
∑

ins−∈V
gΘ(ins−)

), (5.1)

where Θ is a set of parameters defining the ranking model, and gΘ(ins) is a scoring function,

which gives the ranking score of an instance. We use ins/ins+/ins− to represent the embed-

ding of a general/positive/negative instance, respectively. By minimizing Equation 5.1 over

all training views, gΘ(ins+) is trained to have a high ranking score for clicked suggestions,
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while for unclicked suggestions, gΘ(ins−) is trained to have a low score.

In the following paragraphs, we will discuss how to represent an training instance Ins

using searched queries S, and clicked queries C, and a target suggestion Q. After that, we

will discuss how to model the ranking function gΘ(ins), and the training and optimization

of CFAN.

5.3.1 Search Intent Encoder

As we mentioned in the introduction, a user’s search queries and clicked queries jointly help

pinpoint his/her information need. A good search intent encoder is expected to incorporate

both of them when modeling search intents. Note that both user search queries and clicked

queries are inherently a sequence of queries; therefore, we first discuss how to model a single

query through a query encoder. Then, we move on to the discussion of sequential query

modeling through a query sequence encoder.

ti2ti1 tiMtim
ri2ri1 riMrim

Ti1 Ti2 Tim TiM

fi2fi1

fi1

fim fiM

fi2 fim fiM

hi2hi1 him hiM

qi

Terms in a query Qi

Query embedding

Attention mechanism

Perturbations

Bi­GRU

Addition

......

......

......

Figure 5.2: Query encoder with perturbed embeddings.

[Query Encoder.] Generally, queries contain different numbers of terms. In addition,

different terms in a query contribute unequally to the meaning of the query. For example,
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to search for the height of Barack Obama, users may formulate queries such as “how tall is

Barack Obama”, “height of Barack Obama”, or even “Obama height”. These three queries

contain five, four, and two terms, respectively. Consider term importance in the first query,

“tall”, “Barack”, and “Obama”, these three terms, contribute more to understand the search

intent of the query than the other terms, i.e., “how” and “is”, which are generally less

informative. In this work, we apply bidirectional GRU [91] and attention mechanism [86] to

derive embeddings for a query Q.

Figure 5.2 shows the architecture of the query encoder. Given a query Qi, composed of a

sequence of terms < Ti1, ..., Tim, ..., TiM >, where M is the number of terms in Qi, we first

embed each term Tim to an vector tim through an embedding matrix as shown in Equation 5.2.

To train robust models, adversarial examples are introduced by adding perturbed embeddings

r into t (See more details in Section 5.3.2). We then use a bidirectional GRU to get the

query embedding by summarizing information from both directions for terms in a query.

The bidirectional GRU contains a forward GRU
−→
f which reads query Qi from Ti1 to TiM

and a backward GRU
←−
f which reads from TiM to Ti1:

tim = Embt(Tim),m ∈ [1,M ]. (5.2)

−→
f im =

−−−→
GRU(tim),m ∈ [1,M ]. (5.3)

←−
f im =

←−−−
GRU(tim),m ∈ [M, 1]. (5.4)

We obtain a representation him for each term Tim in query Qi by concatenating the for-

ward hidden state
−→
h im and backward hidden state

←−
h im, i.e., him = [

−→
h im;
←−
h im], which

summarizes the information of the whole query but centered around term Tim.

Since not all terms in a query contribute equally to the search intent embedded in the

search query, attention mechanism is applied to extract such informative contributing terms

and aggregate the embeddings of these terms to construct a query vector.

uim = tanh(Wwhim + bw). (5.5)

αim =
exp (uTimuw)∑
m exp (uTimuw)

. (5.6)
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qi =
∑
m

αimhim. (5.7)

Equations 5.5, 5.6, and 5.7 show the attention process on the query term level. The term

embedding him is first fed into a one-layer MLP to get uim. Then, uim is further used to

derive the normalized importance weight αim through a softmax function. Finally, the query

vector qi is computed as a weighted sum of the term embeddings based on the weights.

[Query Sequence Encoder.] A query sequence is composed of a sequence of queries

< Q1, ...,Qi, ..., QN >, where N is the number of queries in the sequence. Both user

search queries and clicked queries are essentially query sequences. Given a query sequence

< Q1, ...,Qi, ..., QN >, the query sequence encoder is expected to encode the hidden search

intent in it. Similar to the structure of query encoder, the query sequence encoder contains a

bidirectional GRU layer and an attention layer. The differences are two-fold. First, the query

sequence encoder takes query embeddings as inputs. Second, there are no perturbations in

query sequence encoder. Formally, a bidirectional GRU is first applied to encode the query

sequence:
−→
f i =

−−−→
GRU(qi), i ∈ [1, N ], (5.8)

−→
f i =

←−−−
GRU(qi), i ∈ [N, 1], (5.9)

The representation of a query Qi in the sequence is constructed by concatenating
−→
f i and

−→
f i, i.e., hi = [

−→
h i;
←−
h i]. hi summarizes the neighbor queries around query Qi but still focus

on the meaning of query Qi.

To reward queries that pinpoint the search intent of the user, query level attention mech-

anism is applied.

ui = tanh(Wshi + bs). (5.10)

αi =
exp (uTi us)∑
i exp (uTi us)

. (5.11)

s =
∑
i

αihi. (5.12)

Equations 5.10, 5.11, and 5.12 summarizes the attention process on query level. Finally, s

gives the query sequence embedding that captures the search intent embedded in sequential
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queries < Q1, ...,Qi, ..., QN >. In a nutshell, given a query sequence, we first use query

encoder to derive the embedding for each query in the sequence. Then, we use query sequence

encoder to further construct the embedding of the query sequence.

Q1 in issued queries S

QM1 in issued queries S

Q1 in clicked queries C

QM2 in clicked queries C

Suggestion candidate Qcan

s

c

s + c

Sim(S, C, Qcan)

Query sequence encoder

Query sequence encoder

. 

. 

. 

. 

. 

. 

q

Wsim

ins

s

c

q

Figure 5.3: Training instance construction based on search sequence S, clicked sequence C,

and suggestion candidate Qcan.

Given a training instance Ins, which is composed of a search query sequence S, a clicked

query sequence C, and a suggestion candidate Qcan, we use the same query sequence encoder

to derive the embeddings for S and C, denoted as s and c, respectively, and we use a

query encoder to encode the candidate Qcan, with its embedding denoted as q. We use the

concatenation of s, c, and q, i.e., [s; c; q] to get the embedding ins to represent the instance

Ins. Figure 5.3 summarizes the process.

5.3.1.1 Matching query sequences and suggestion query

Given a sequence of issued queries S, a sequence of clicked queries C, and a suggestion

candidate Qcan, we aim to explicitly derive the matching among S, C, and Qcan. We follow
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approaches [92] and [93]. We define the matching score among s, c, and q as follows:

Sim(S,C,Qcan) = (s+ c)TWsimq, (5.13)

where Wsim ∈ R|s|×|q| is a similarity matrix. In this module, s + c explicitly combines the

search intent embedded in search queries S and clicked suggestions C. We seek a trans-

formation of the candidate query Qcan that is the closest to s + c. The similarity matrix

Wsim is a parameter of the network and is optimized during training. Sim(S,C,Qcan) is then

explicitly appended to ins as a feature.

5.3.2 Learning and Optimization

Adversarial training is a novel technique for training models to improve robustness to small,

approximately worst case perturbations. The adversarial training process can be viewed as

minimizing the worst case error when the training instances are perturbed by an adversary.

It can be interpreted as learning to play an adversarial game, trying to minimize an upper

bound on the expected loss over noisy instances. Adversarial training can also be viewed as

a form of active learning, where the model actively requests labels on new instances. In the

case of adversarial training, the new instances are constructed by introducing perturbations

to existing instances. In addition, the human labelers are replaced with a heuristic labeler

that copies labels from nearby instances. In the following paragraphs, we will discuss how

we construct adversarial instances and apply adversarial training on CFAN.

When learning CFAN without adversarial examples, CFAN is optimized by learning only

the ranker, formulated as finding a set of parameters Θ, that minimize an empirical ranking

loss as shown in Equation 5.1 for a given set of training views. In adversarial training, we

construct adversarial perturbations on training instances in order to cause a misbehavior of

CFAN on a training view V . The misbehavior refers to the event that CFAN ranks unclicked

suggestions ahead of clicked suggestions. To construct such adversarial perturbations, we

introduce a binary classifier, which learns the labels of training instances in V . For each

instance, the loss function Losscls(Θ) of the classifier focuses on reducing the binary cross-
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Figure 5.4: The training framework of CFAN.

entropy [94] between the predicted probabilistic score ŷΘ
ins and the gold standard yins as

follows:

Losscls(Θ) = −[yins log(ŷΘ
ins) + (1− yins) log(1− ŷΘ

ins)], (5.14)

where ŷΘ
ins = gΘ(ins).

To increase the classification difficulty, we aim to identify a bounded perturbation radv for

each ins such that the classification loss on ins+radv is as large as possible. The adversarial

loss of the classifier becomes:

Losscls adv(Θ) = −[yins log(ŷΘ
ins+radv

) + (1− yins) log(1− ŷΘ
ins+radv

)], (5.15)

where

radv = arg min
r,||r||≤ε

[yins log(ŷΘ̂
ins+r) + (1− yins) log(1− ŷΘ̂

ins+r)]. (5.16)

Θ̂ is the set of current parameters defining the classifier, r is a perturbation on the input

ins, ŷΘ̂
ins+r gives the predicted score of the perturbed instance based on the current set of

parameters, and ε is a parameter to bound the perturbations.

Calculating the exact value of radv is not feasible, because exact minimization of Equa-

tion 5.16 with respect to r is intractable. To derive dynamic perturbations efficiently, we
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apply fast gradient sign method [47] to approximate the perturbation radv. We linearize

the cost function 5.16 around the current value of Θ̂, and obtain an optimal max-norm

constrained perturbation of

radv = −εl/||l||2, (5.17)

where

l = ∇insLosscls(Θ̂). (5.18)

Based on Equations 5.17 and 5.18, the perturbation for each instance can be calculated

efficiently via back-propagation. Adversarial instances can be constructed by adding the

derived perturbations radv to the corresponding instance embeddings ins.

To train a robust suggestion system with good ranking performance, the objective of

CFAN combines the loss functions of both adversarial classification and ranking as follows:

loss(Θ) =
∑

ins∈V

losscls adv(Θ) + lossranking(Θ). (5.19)

The classification component and the ranking component share the same set of parameters.

The classification component dynamically generates adversarial instances, while the ranking

component generates favorable rankings of query suggestions, pushing clicked suggestions to

top positions and pulling unclicked suggestions to bottom positions in ranking lists. Fig-

ure 5.4 shows the training framework of CFAN. At each step of training, we first identify the

worst case perturbations radv for each training instance against the current model as shown

in Equation 5.16. Then, perturbed instances are constructed by adding the perturbations to

the corresponding instances. At last, we optimize the classifier and the ranker simultaneously

on the perturbed instances through minimizing Equation 5.19 with respect to Θ.

As shown in Equations 5.17 and 5.18, easy classified instances with small classification

losses tend to get large perturbations while difficult classified instances with large classifi-

cation losses tend to get small perturbations. When training the classifier and the ranker

simultaneously as a multi-task job in Equation 5.19, perturbed instances not only increase

the difficulty for the classifier to make accurate predictions, but also drive the ranker to

make improper behaviors, i.e., ranking unclicked suggestions ahead of clicked ones. These
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adversarial perturbed instances regularize CFAN to be insensitive to changes in the inputs

(i.e., ins) with perturbations smaller than the bound ε. More precisely, optimizing these ad-

versarial perturbed instances allows CFAN to be aware of ranking tough instances. This is

particularly important for modern suggestion systems since suggestion candidates are highly

semantically relevant to the search query in most cases. Training with adversarial examples

equip CFAN with the power to distinguish such tangled suggestion candidates, which, in

return, yields a robust model with good ranking performance.
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CHAPTER 6

Automatic Speaker Recognition with Metric

Learning-based Few-shot Learning

6.1 Background

Within the last couple of years, voice has become one of the most ever-growing media through

which people interact with their devices. For instance, over 47 million people in the United

States own a smart home device while 23% of the Britons have a voice-controllable digital

assistant at home in 2018 [95, 96]. To ignite the interactions between smart devices and

their owners, automatic speaker recognition (ASR) plays an important role to determine the

speaker identity based on a short piece of audio. Moreover, the capability of ASR comes

with a wide range of applications, such as biometric authentication [97], forensics [98], and

personalized services in electronics [99]. In particular, the text-independent ASR with only

acoustic information is the most general and non-trial task, which can be used in everyday

situations. In text-independent ASR, an arbitrary utterance from one of the known speakers

in training set will be given and the system needs to identify which speaker the utterance

belongs to.

Deep learning-based ASR methods are gaining popularity due to strong model capacities

and superior performance [7, 8, 10, 11]. Most incremental improvements in existing deep

learning methods rely on the use of deeper and more complex models with massive training

data. More specifically, there are two inherent limitations for existing approaches. First,

increasing model complexity is not always desirable in practice because of the greater costs

of computation and storage. It thus becomes expensive to get such methods deployed in
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smart devices to provide offline services. Second, acquiring sufficient labeled training data

for all speakers is impractical [100] while the lack of training supports can lead to worse

generalization and high vulnerability to tiny perturbations for existing deep learning-based

ASR methods [101,102]. Hence, developing effective techniques for ASR with limited training

data remains a daunting task.

To achieve remarkable performance with limited training data, meta-learning is one of

the most promising approaches to comprehensively utilize the limited training instances.

More specifically, meta-learning systematically observes how machine learning approaches

perform on a wide range of similar learning tasks, and then learns to learn new tasks more

efficiently [84]. In particular, few-shot learning is a contemporary meta-learning approach

that introduces an auxiliary meta-learning phase to generalize and share transferable knowl-

edge across tasks. To learn from extremely limited data, one type of few-shot learning,

based on metric learning, looks to light-parametric models, which learn a distance metric

among training instances rather than myriad model parameters [57]. More precisely, the

essential knowledge can be learned and memorized by reasoning the distance metric between

instances in a support module and a query module. Instances in the support module are

labeled instances, thereby serving as references. Based on the reference instances, the query

instances are then able to conduct reasoning. Finally, metric-learning-based few-shot learn-

ing models can be optimized by iterative comparisons between support and query instances

such that instances from the same speaker are embedded as close to each other as possible

in the hidden space and as far as possible from instances of the other speakers.

To comprehensively exploit the training instances, an alternative way is to generate aug-

mented data based on the training set. Different from conventional methods that separately

augment data apart from the training process, we construct augmented data automatically

by leveraging adversarial training. In particular, we construct dynamic perturbations at the

embedding level to form adversarial examples. These adversarial examples are formed by

applying small but intentional perturbations to inputs from the dataset. Specifically, these

adversarial examples can be treated as ultimate data augmentation as specific perturba-
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tions are created to best fool the model. Accordingly, the model trained in an adversarial

manner can not only learn from the original static training data but also improve based on

the dynamically constructed perturbed data. As a result, adversarial training significantly

improves the robustness of ASR models and achieves out-of-instance generalization while

the robustness is crucial for the security-sensitive ASR task. In a nutshell, data augmen-

tation through adversarial training provides another effective solution to thoroughly utilize

the training instances and train models resistant of nuisance perturbations to achieve high

generalizations in both training and test.

In this work, we study the problem of speaker identification with a shortage of training

data. In essence, we address the data deficiency issue by applying few-shot learning and

adversarial training. To be more specific, the main contributions of this work are as follows:

• Different from conventional neural network-based methods, which rely on the availabil-

ity of a sufficient amount of training data to achieve high identification performance,

we model it as a few-shot learning problem to conquer the data deficiency.

• To further improve the generalization of the model, we employ adversarial training.

Adversarial examples serve as dynamic augmented data, the optimization of which

results in a more generalized and robust speaker recognition system.

• We present a comprehensive empirical evaluation of our approach on a real-world

dataset. The experimental results show that our approach, AFEASI, significantly

outperforms 11 conventional baseline methods in speaker recognition.

Given a short piece of audio x and its mel frequency cepstral coefficients (MFCCs) mx

as features, the goal of this paper is to recognize the speaker identity y among a set of

known speakers. In particular, in this work we focus on text-independent automatic speaker

identification by leaning from limited pieces of training audios. To achieve this goal, we strive

to thoroughly utilize the limited instances during training by leveraging few-shot learning

and adversarial training.
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6.2 Framework Overview

In this paper, a metric-learning-based few-shot learning pipeline is applied to perform N -shot

learning for previously rare speakers. More precisely, the model is capable of recognizing a

previously rare speaker after having examined only N examples, where N is a small number.

MFCCs

Embedding Layer

Embeddings

Representative embedding

Attention Layer

Embedding Layer

Support module Query module

R1

R2

R3

q

Perturbations

q +
Adversarial examples

Figure 6.1: The overall framework of AFEASI.

Figure 6.1 shows the framework of AFEASI that performs speaker identification by con-

ducting N -shot, K-way classification tasks with a support set of K different speakers and

N training audio instances for each speaker in the support set. In addition, a set of query

audio instances is given for prediction. Note that although Figure 6.1 shows only one query

instance for illustration simplicity, AFEASI can cope with multiple query audio instances.

For each audio instance x, AFEASI first extracts the mel frequency cepstral coefficients

(MFCCs) [103] as acoustic features mx , thereby deriving a fixed-length vector as the audio

embedding Ex with an embedding layer. Based on the embeddings of audio instances, an

aggregated embedding is constructed as the representative for each speaker in the support

module. AFEASI then optimizes the distances between the embeddings of the query in-

stances and the representatives of the corresponding speakers so that the representatives

can be applied to recognize the speaker identity. The process of the optimization can be
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summarized as finding a distance metric into a space in which instances of the same speaker

are embedded as close to each other as possible and as far as possible from instances of the

other speakers. To further comprehensively utilize the training data, we introduce dynamic

adversarial perturbations on the query instances to enhance the generalization of AFEASI

through improving its robustness against unseen instances. To better visualize this part,

adversarial learning is highlighted in red in the framework.

6.3 Embedding Representation Learning

In this section, we discuss how to construct an embedding given a piece of audio xi.

We first convert the audio signal into frequency domains by constructing the mel fre-

quency cepstral coefficients (MFCCs) [103] as acoustic features, which is denoted as mxi . A

2D-convolutional layer is first utilized to extract informative features from the raw MFCC.

Then the resulting feature maps are fed into an activation layer to introduce non-linearity.

We further employ residual shortcut connection [87] to derive the representations for the

audio MFCC. Equation 6.1 summarizes the key operations as follows:

C1 = Relu(Relu(Conv1(mxi)) +mxi), (6.1)

where Relu(·) and Conv1(·) are the activation layer and the 2D-convolutional layer, respec-

tively. To comprehensively distill the local features, we repeat the above residual-based

covolutional operations for H times as:

Ch = Relu(Relu(Convh(Ch−1)) +Ch−1), h > 1, (6.2)

where Ch is the feature maps at the h-th convolutional layer. Finally, the embedding Exi can

be constructed by flattening the feature maps CH at the H-th convolutional layer, thereby

serving as the representation of the input audio xi.
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6.4 Representative Embedding Construction

As shown in the support module of the framework, for each speaker, we aim to derive a rep-

resentative embedding, which summarizes the acoustic biometric of the speaker. We develop

an aggregation attention layer to learn the importance weights across each audio embedding

of a particular speaker. Formally, the aggregation attention layer can be represented as

follows:

αi = softmax(c · tanh(W ·Exi + b)), (6.3)

ER =
∑
i

αiExi , (6.4)

where W and b are the parameters for computing the attention weights αi. Each audio

embedding Exi is first fed into a one-layer neural network. Its output, together with the

context vector c, are further utilized to generate the importance weight αi for each audio

embedding Exi through a softmax function. The aggregated embedding ER is calculated as

a weighted sum of the audio embeddings based on the learned importance weights.

6.5 Few-Shot Learning

In this section, we discuss how to model the speaker identification task as a few-shot learning

problem. A metric learning-based few-shot learning framework is employed in this work,

which is composed of two modules, i.e., a support module and a query module. As shown in

Figure 6.1, we first randomly sample a set of speakers from the training set as the start to

construct the support module. For each speaker in the support module, we further randomly

sample k pieces of his audio instances and derive the corresponding MFCCs. These MFCCs

are further fed into an embedding layer so we can use a fixed length vector to represent each

audio instance. To comprehensively represent the acoustic feature of a speaker, we utilize

the attention mechanism to aggregate his acoustic embeddings. In the query module, we

randomly select a piece of audio from a speaker, which is one of the speakers in the support
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module. We feed it into the embedding layer to derive the audio embedding. We then

compare the distances between the query embedding and all the representative embeddings

in the support module. The distances then are utilized to measure the relegation distribution

over all speakers int support module. Model is optimized by such iterative comparisons and

reasoning between the support and query modules.

In the comparisons and reasoning, we seek to separate audio embeddings in such a way

that embeddings from different speakers are far from each other and embeddings from the

same speaker are as close as possible in the hidden space. We achieve this by leveraging

metric learning. In particular, the predicted probability of query q belonging to speaker k is

given by:

p(yk|q) =
exp(−d(q, Rk))∑
k′ exp(−d(q, Rk′))

, (6.5)

where d(q, Rk) is the euclidean distance between the embedding Eq of query q and the

representative embedding ERk of speaker k.

The loss function is then defined as the cross entropy between the predictions and the

ground truth.

L(Θ) = −
∑
k

g(yk|q) log p(yk|q, S,Θ), (6.6)

where g(yk|q) is probability that q goes to speaker k, which can be derived from the ground

truth, and S denotes a set of audio representatives in the support module.

6.6 Adversarial Training

The goal of employing adversarial training is to allow the identification system not only get

optimized by the instances in the training data, but also be robust to unseen adversarial

perturbations. To enhance the robustness, we enforce the model to perform consistently

well even when the adversarial perturbations are presented. To achieve this goal, we fur-

ther optimize the model to minimize the objective function with the perturbed parameters.
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Formally, we define the objective function with adversarial examples incorporated as:

Ladv(S, q|Θ) = L(S, q|Θ) + λL(S, q + ∆adv|Θ),

where ∆adv = arg max
∆,‖∆‖≤ε

L(S, q + ∆|Θ),
(6.7)

where ∆ denotes the perturbations on the query instances, ε ≥ 0 controls the magnitude of

the perturbations, and Θ denotes the model parameters. In this formulation, the adversarial

term L(S, q+∆adv|Θ) can be treated as a model regularizer, which stabilizes the identification

performance. We use λ to control the strength of the adversarial regularizer, where the

intermediate variable ∆ maximizes the objective function to be minimized by Θ. The training

process can be expressed as playing a minimax game:

Θopt,∆opt = arg min
Θ

max
∆,‖∆‖≤ε

L(S, q|Θ) + λL(S, q + ∆|Θ), (6.8)

where the learning algorithm for model parameters Θ is the minimizing player, and the

procedure to derive perturbations ∆ acts as the maximizing player, which aims to identify

the worst-case perturbations against the current model. The two players alternately play

the game until convergence.

Constructing Adversarial Perturbations. Given a support set S and a query q, the

problem of constructing adversarial perturbations ∆adv is formulated as maximizing

`adv(S, q|∆) =
∑
i

g(yi|q) log p(yi|q + ∆, S, Θ̂), (6.9)

where Θ̂ denotes a set of current model parameters. As it is difficult to get the exact optimal

solutions of ∆adv, we employ the fast gradient method proposed in [47], a common choice in

adversarial training [104, 105], to estimate ∆adv. The idea is to approximate the objective

function around ∆ as a linear function. To maximize the approximated linear function, we

need to move towards the gradient direction of the objective function with respect to ∆.

With the max-norm constraint ‖∆‖ ≤ ε, we approximate ∆adv as:

∆adv = ε
τ

‖τ‖
, where τ =

∂`adv(S, q|∆)

∂∆
. (6.10)
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Learning Model Parameters. We now consider how to learn model parameters Θ. The

local objective function to minimize for a query q given a support set S is as follows:

`adv(S, q|Θ) =
∑
i

g(yi|q) log p(yi|q, S,Θ)

+λ
∑
i

g(yi|q) log p(yi|q + ∆adv, S,Θ),
(6.11)

where ∆adv is obtained from Equation 6.10. We can obtain the SGD update rule for Θ:

Θ = Θ− η∂`adv(S, q|Θ)

∂Θ
, (6.12)

where η denotes the learning rate.

Algorithm 3: Parameter optimizations

Input: Training instances D, max iteration itermax;

Output: Model parameters Θ

1 Initialization: initialize Θ with Normal distribution N(0,0.01), iter = 0, Θopt = Θ,

Lopt = Lvali;

2 repeat

3 foreach support and query S, q do

4 // Constructing adversarial perturbations;

5 ∆adv ← Equation 6.10;

6 // Updating model parameters;

7 Θ ← Equation 6.12;

8 if Lvali < Lopt then

9 Lopt = Lvali;

10 Θopt = Θ;

11 iter + +;

12 until iter > itermax;

13 Return Θopt;

Algorithm 3 summarizes the training process. In each training step, we randomly con-

struct support set S and a query q. We then construct adversarial perturbations and optimize
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model parameters in a sequential order. The training involves multiple training steps and

stops until reaching a certain number of training epochs. The parameters achieving the best

performance on the validation dataset are utilized for evaluations.
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CHAPTER 7

Automatic Speaker Recognition with Gradient-based

Few-shot Learning

7.1 Background

A recent report1 in 2018 shows that smart speakers have gained an installed user base of

nearly one in every four U.S. adults or 50+ million users. These smart speakers equipped

with voice recognition technology, also known as speaker identification, which answers the

fundamental question “Who is speaking?” The answer to the question enables various down-

stream applications to provide a personalized experience.

Our work presumes new users always have very limited labeled voice data, as Google As-

sistant and Amazon Alexa only require a new user to repeat two to four prompts for learning

his/her voice. Unlike the aforementioned research where existing users and new users are

treated equally, we develop a meta-learning approach targeting to expedite the learning pro-

cess for recognizing new users with limited training data. We foresee the need of expediting

the learning for new users as (1) smart speakers are gaining in popularity where the report

also shows that 30% of users are new in 2018 and (2) the previous research [106] displayed

that the length of voice history of a user is positively correlated to his/her identification

accuracy.

Our proposed solution expedites the learning by transferring the knowledge learned from

the existing user base with a gradient-based meta-learning tactic. We use Mixture Density

1https://voicebot.ai/wp-content/uploads/2018/11/voice-assistant-consumer-adoption-report-2018-
voicebot.pdf
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Networks (MDNs) [107] to construct acoustic user profiles in that MDNs are gradient-friendly

and can model voice utterances with arbitrary lengths so that we can then apply Model-

Agnostic Meta-Learning (MAML) [108] technique to achieve expeditious learning. Our ex-

periments demonstrate that our proposed solution, MDNML, when having only four seconds

of voice data from new users, its accuracy outperforms the best/worst baseline methods by

3.2%/5.8%.

7.2 Bridging Mixture Density Networks with Gradient-based Meta-

learning

We formulate the objective of our work as the following. Suppose the system has a set of

existing users with registered voice utterances as background training data. Given a set of

new users, with a short registered voice utterance for each user as enrollment, and another

short testing voice utterance of a user within the new user set, the goal of this study is to

recognize the speaker identity behind the testing voice utterance. For simplicity, we compare

model performance based on text-independent tasks and presume that new users have very

limited training data [45,106,109], for example, one to four seconds.

To better explain how to construct users’ acoustic profiles and how to transfer profiling

knowledge from existing users to new users, we illustrate the framework of MDNML in

Fig. 7.1.

7.2.1 Mixture Density Networks

Mixture density networks (MDNs) are based on a mixture density model that combines

neural networks [107]. MDNs are chosen in this work to construct acoustic profiles for users

as they are inherently flexible in sense that it can model voice utterances with arbitrary

lengths. Moreover, assuming the voice print of a user can be sufficiently expressed by a short

period of time, each tiny time frame can contribute to one training instance for the user,

leading to a relatively adequate amount of training data for new users. In addition, MDNs
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Figure 7.1: The framework of MDNML. During training, we learn a set of well-initialized

model parameters Ψ by training acoustic profiles of all existing users. To serve new users,

we construct their acoustic profiles by adapting from Ψ.

based on neural networks are gradient-friendly so that the gradient-based knowledge transfer

techniques are applicable.

In this work, we utilize mel-frequency cepstral coefficients (MFCCs) [103] to represent

the voice characteristics of users because MFCCs are capable of approximating the human

aural systems and widely applied in various voice recognition tasks, such as speaker recog-

nition [109–112] and speech synthesis [113–116]. More specifically, we utilize a Gaussian

mixture model (GMM)-based MDN. An MDN maps a set of input MFCC features x to the

parameters of a GMM (i.e., mixture weights πm, mean µm, and variance σ2
m), which in turn

give a full probability density function of a MFCC feature y, conditioned on the input x and

the learned model M, p(y | x,M), Formally,

p(y | x,M) =

M∑
m=1

πm(x) · Φ(y;µm(x), σ2
m(x)), (7.1)

where M is the number of mixture components and πm(x), µm(x), and σ2
m(x) correspond

to the mixture weight, mean, and variance of the m-th component conditioned on x.

To derive the parameters in a GMM-based MDN, MDN first converts the input x using
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a multi-layer perceptron (MLP) and obtains output z as:

z = fθ(x), (7.2)

where fθ(·) corresponds to a set of transformations in the MLP network. The total number of

network outputs, i.e., the dimension of z, is (2c+1)×M where c corresponds to the dimension

of the MFCC features. M corresponds to the number of mixture components in the MDN.

Then, z is partitioned into three subsets z
(π)
m , z

(µ)
m , and z

(σ)
m , which correspond to the outputs

used to calculate the GMM weights, means, and standard derivations, respectively.

z = [z
(π)
1 , ..., z

(π)
M , z

(µ)
1 , ..., z

(µ)
M , z

(σ)
1 , ..., z

(σ)
M ]. (7.3)

After the partition, each subset is passed through a set of specific transformations for

conversion to the GMM weights, means, and standard derivations as:

πm(x) =
exp(z

(π)
m )∑M

j=1 exp(z
(π)
j )

, (7.4)

µm(x) = tanh(z(µ)
m ), (7.5)

σm(x) = exp(z(σ)
m ). (7.6)

The use of the softmax function in Equation 7.4 constrains the mixture weights to be

positive and sum up to 1. Analogously, Equation 7.6 constrains the standard deviations to

be positive.

During training, these density parameters are passed to a log likelihood calculator to

compute the log likelihood of an MFCC feature y, which is further utilized to define the loss

function for the MDN as follows:

L = −
N∑
n=1

log{
M∑
m=1

πm(x) · Φ(y;µm(x), σ2
m(x))}, (7.7)

where N is the number of MFCC vectors for a user. The parameters of MDN only lie in the

MLP network and these parameters are optimized in such a way that the overall negative

log likelihood in Equation 7.7 is minimized.
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7.2.2 Knowledge Transfer via Gradient-based Meta-learning

The effective training of MDNs relies on sufficient training data, which are usually unavailable

for new users. To compensate for the data deficiency, we develop a gradient-based knowledge

transfer module to leverage identification knowledge grained from recognizing existing users.

More precisely, we learn a set of well-initialized model parameters over many similar tasks

so that it would be easier to reach the global optimal when training a new task.

Each task corresponds to the training process of creating an acoustic profile of a user,

where a profile is expressed by an MDN. We optimize a set of parameters Ψ such that when

a gradient step is taken with respect to particular task ti, the parameters θi, derived from

Ψ, are close to the optimal parameters for task ti, where θi = {π, µ, σ} denotes the model

parameters learned based on task ti. Let l(θi) denote the loss of task ti based on the test set

of ti. The entire loss over multiple tasks is given by:

L(Ψ) =
∑
i=1

l(θi). (7.8)

To update the initialization parameters Ψ, we have:

Ψ← Ψ− α∇ΨL(Ψ). (7.9)

To optimize each individual task ti, we have:

θi ← Ψ− β∇θil(Ψ), (7.10)

where α is the meta-learning rate, and β is the learning rate for each individual task, i.e., the

training of a mixture density model. Algorithm 4 shows the detailed training and adaption

processes of MDNML.

7.2.3 Speaker Identification in a Household

We now discuss how to utilize the constructed users’ acoustic profiles to conduct speaker

identification given a short voice utterance of a user in a household. Following GMM-

UBM [40], in addition to training an acoustic profile Mi for each user i in the household,
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Algorithm 4: Acoustic profile training and adaption

1 Input: learning rate α, meta-learning rate β, maximal number of iterations itrmax,

inner update size Ttrain in training, inner update size Tadapt in adaption

1: /* Training on the existing users */

2: for itr ≤ itrmax do

3: Sample a batch of existing users as U

4: for user i in U do

5: Sample a piece of audio of user i

6: θ
(0)
i = Ψ

7: for t ≤ Ttrain do

8: θ
(t)
i = θ

(t−1)
i − α∇

θ
(t−1)
i

L(θ
(t−1)
i )

9: Ψ = Ψ− β∇Ψ

∑
i∈U L(θ

(T )
i )

10:

11: /* Adaption on new users by fine-tuning*/

12: for new user j in Uadapt do

13: θ
(0)
j = Ψ

14: for t ≤ Tadpat do

15: θ
(t)
j = θ

(t−1)
j − α∇

θ
(t−1)
j

L(θ
(t−1)
j )

we also train a household-level background acoustic profile Mhbm using the mixtures of all

training utterances of the users in the household.

Given a user’s short voice utterance xj, we feed it into the universal background profile

and each individual acoustic profile, with each profile yielding a vector of fitness scores.

Each vector of scores indicates how well the voice utterance fit the corresponding acoustic

profile. More specifically, we use p(xj | Mhbm) and p(xj | Mi) to denote the scores for the

household-level profile and the profile of user i in the household, respectively. Formally, the

speaker identify is given by:

arg max
i

f(1>0(p(xj | Mi)− p(xj | Mhbm))), (7.11)
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where 1>0(·) is the vector-level indicator function and f(·) is a counter, which calculates

the number of 1’s in its input. By introducing the household-level background profile, it

allows us to achieve speaker identification based on background-proof voice frames, which

potentially offers stronger discriminative power.
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CHAPTER 8

Datasets

We provide a detailed descriptions of the datasets used in different experiments.

8.1 Location-based Recommendation Datasets

8.1.1 Yelp Challenge Dataset

The Yelp dataset, which is publicly available1, contains interactions between customers and

businesses, with 4.1M reviews and 947K tips by 1M users for 144K businesses. For the Yelp

dataset, we investigate the recommendation tasks in seven large cities.

8.1.2 Foursquare Dataset

The Foursquare dataset2 contains interactions between customers and businesses in Los

Angeles and New York.

Table 8.1 shows the statistics for the nine cities in the two datasets. For each business,

its check-ins are sorted in a chronological order based on the timestamps. The first 50% of

the check-ins are used as the training data. The following 20% are used for validation and

the remaining 30% are used as the test data for evaluation.

1https://www.yelp.com/dataset_challenge

2https://www.dropbox.com/s/4nwb7zpsj25ibyh/check-indata.zip
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Table 8.1: The statistics of business and customer in Yelp and Foursquare datasets.

Dataset Yelp Foursquare

City Charlotte Cleveland Las Vegas Madison Phoenix Pittsburgh Toronto Los Angeles New York

# of Customers 69,005 5,578 432,399 26,083 314,610 51,422 58,377 501,940 717,382

# of Businesses 10,652 9,960 282,204 3,895 43,482 8,037 20,849 215,614 206,416

8.2 Query Recommendation Dataset

8.2.1 Yahoo! Search Log Dataset

We use a search log collected from Yahoo!, which is one of the largest search engines in

the world. We pre-processed the data by eliminating non-alphanumeric characters, spelling

error correction, and lower-casing. Then we segmented the search log into sessions, using a

standard segmentation heuristic, where intervals of at least 30 minutes idle time denote a

session boundary [117]. The pre-processing process in this paper is consistent with previous

studies [36, 37, 118]. To partition search sessions into training and test sets, the first 90%

data are utilized for training while the remaining sessions are the test data. Among the

training data, 10% of sessions are randomly sampled as the validation set for parameter

tuning. Finally, there are 3,684,008 training queries within 493,864 sessions and 406,063

test queries within 55,141 sessions. Furthermore, to evaluate the performance using different

context lengths, the test set is partitioned into three subsets, including Short Context (1

query), Medium Context (2 to 3 queries), and Long Context (4 or more queries). Here the

context length refers to the number of search queries in a search session. Table 8.2 shows

the statistics of queries with different context lengths in the training and test datasets.
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Table 8.2: The statistics of queries with different context lengths in the Yahoo! dataset.

Dataset

Context Length

Short Medium Long

(1 query) (2-3 queries) (4+ queries)

Training 284,273 105,647 103,944

Test 31,577 11,998 11,566

Table 8.3: The statistics of the LibriSpeech dataset.

Datasets #(Female Speakers) #(Male Speakers) #(Total Speakers) Total Hours Per-speaker Minutes

LibriSpeech 125 126 251 ∼100 hours ∼25 minutes

8.3 Automatic Speaker Recognition Dataset

8.3.1 LibriSpeech Dataset

The ASR experiments are conducted on the LibriSpeech dataset, which is publicly available3.

The audio data is derived from reading audio books from the LibriVox project. Table 8.3

shows the statistics of the dataset.

We follow [45] to extract acoustic features from the raw audios. We convert all audio to

streams at a 22 kHz sampling rate for consistency. The spectrograms are then generated by

a sliding window protocol with a hamming window. The width of the hamming window is

25 ms with step size 10 ms. To remove the duplicated spectrograms coefficients, we further

conduct discrete cosine transform. As a convention, 20 coefficients are kept at each time step

as the acoustic features for the following speaker identification. The mel frequency cepstral

coefficients (MFCCs) are constructed from the raw audio input without any pre-processing

such as silence removal etc.

3LibriSpeech: http://www.openslr.org/12
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CHAPTER 9

Experiments and Results

9.1 Customer Recommendation in LBSNs

In this section, we conduct extensive experiments on two real-world datasets, the Yelp chal-

lenge dataset and Fothe ursquare dataset, to evaluate the performance of CORALS.

9.1.1 Baselines

To compare our approach with others, the following 12 methods are adopted as baselines.

• Weighted Regularized MF (WRMF). WRMF [119] minimizes the square error loss by

assigning both observed and unobserved check-ins with different weights based on matrix

factorization.

• Maximum Margin MF (MMMF). MMMF [120] minimizes the hinge loss based on

matrix factorization.

• Bayesian Personalized Ranking MF (BPRMF). BPRMF [121] optimizes Area Under

the Curve (AUC) based on pairs of observed check-ins and sampled unobserved check-ins.

• CofiRank. CofiRank [122] optimizes the estimation of a ranking loss based on Normalized

Discounted Cumulative Gain (NDCG).

• CLiMF. CLiMF [123] optimizes a different ranking-oriented loss, i.e., Mean Reciprocal

Rank (MRR) loss.
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• WARP. In [75], Weighted Approximate-Rank Pairwise loss is proposed to optimize precision@k.

WARP loss differs from AUC loss in updating parameters. WARP keeps drawing negative

samples until getting a disordered prediction or reaching a cutoff value.

• kOS. k−Order Statistic loss is proposed in [124] and provides a variant that optimizes

precision@k.

• USG. USG [13] is a collaborative filtering method. It utilizes social and geographical

information to improve recommendations.

• GeoMF. GeoMF [125] is a geographically weighted matrix factorization model.

• Rank-GeoFM. Rank-GeoFM [126] incorporates geographical and temporal information

to provide recommendations.

• ASMF. ASMF [16] utilizes geographical information, social information, and attributes

of businesses to enhance the accuracy of recommendations.

• ARMF. ARMF [16] extends ASMF by applying ranking losses.

Among these 12 baseline methods, WRMF is a point-wise matrix factorization method

while MMMF and BPRMF are pair-wise based. CofiRank, CLiMF, WARP, kOS focus on

optimizing top ranked positions. USG, GeoMF, Rank-GeoFM, ASMF, and ARMF utilize

additional information, such as check-in locations, social relationship, businesses’ attributes,

and temporal information to improve the accuracy of recommendations. All parameters in

baselines are tuned based on their guidelines.

In addition to the above baselines, we also implement CORALS 1 with two other gradient-

based parameter optimization strategies, i.e. SGD and RMSprop [127].

• CORALS-SGD. CORALS-SGD applies SGD to conduct optimizations. All parameters

share the same learning rate.

1To distinguish the parameter learning algorithms used in CORALS and its variants, we also call CORALS
CORALS-AdaGrad.
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• CORALS-RMSprop. RMSprop [127] is applied to optimize learning rates adaptively.

It addresses the issue of radically diminishing learning rates in AdaGrad.

9.1.2 Recommendation Performance

In this section, we evaluate the performances of CORALS and its variants against the 12

baseline methods. Mean Average Precision (MAP) is adopted as the evaluation metric.

Given a ranked list rl of potential new customers, the average precision for a business b is:

apb =
1

ω

|rl|∑
pos=1

precision(pos) ∗ rel(pos) (9.1)

where ω is the number of new customers who visit a business b in the test set, pos denotes the

position in the ranked list rl and |rl| gives the total number of potential new customers in rl.

Customers are ranked decreasingly based on how likely they will come in rl. precision(pos)

is the precision of a cut-off rank list from 1 to pos, and rel(pos) is an indicator function

that equals to 1 if the customer visits b in the test set, 0 otherwise. For example, three new

customers visit a business b (i.e., ω = 3) in the test set and they are ranked at position 2, 4,

and 7 in rl, respectively. Therefore, apb = 1
3
(1

2
+ 2

4
+ 3

7
). The mean average precision is the

average of the average precision of all businesses.

MAP =

|B|∑
b=1

apb/|B| (9.2)

MAP ranges from 0 to 1, and a higher value indicates a better performance in recommen-

dation.

Table 9.1 shows the recommendation performances of different methods on the nine cities

from the two datasets. The top seven rows show the performances based on the cities in the

Yelp dataset, while the bottom two rows show the performances based on the cities in the

Foursquare dataset. In addition, we further show the average recommendation performances

for the top (10%) and tail (10%) businesses2 in each city to demonstrate how each method

2Businesses are sorted based on their check-in numbers. Top businesses are the ones that have more
check-ins, while tail businesses are the ones that have fewer check-ins.
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Table 9.1: Recommendation performance (MAP). The upper table shows the performances of

methods using only check-in information, and the lower table demonstrates the performances

of methods using both check-in and heterogeneous information. Mean represents the average

performance on all businesses in a city. Top represents the average performance on the top

10% businesses that have more check-ins, and Tail represents the average performance on

the tail 10% businesses with fewer check-ins.

Method WRMF MMMF BPRMF CofiRank CLiMF WARP kOS

City Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail

Charlotte 0.026 0.058 0.014 0.028 0.049 0.028 0.029 0.049 0.029 0.031 0.052 0.024 0.034 0.058 0.024 0.044 0.060 0.036 0.038 0.057 0.024

Cleveland 0.041 0.086 0.029 0.039 0.072 0.025 0.040 0.073 0.030 0.043 0.078 0.042 0.050 0.081 0.043 0.055 0.077 0.046 0.053 0.085 0.041

Las Vegas 0.004 0.012 0.001 0.009 0.016 0.004 0.009 0.016 0.005 0.013 0.024 0.009 0.013 0.022 0.008 0.017 0.025 0.015 0.014 0.023 0.010

Madison 0.067 0.136 0.043 0.066 0.134 0.042 0.058 0.122 0.034 0.063 0.129 0.037 0.054 0.107 0.031 0.061 0.115 0.039 0.058 0.115 0.038

Phoenix 0.004 0.010 0.002 0.008 0.015 0.006 0.008 0.015 0.006 0.011 0.020 0.008 0.011 0.020 0.009 0.020 0.026 0.015 0.015 0.022 0.013

Pittsburgh 0.028 0.067 0.015 0.027 0.053 0.014 0.027 0.054 0.013 0.031 0.065 0.017 0.037 0.073 0.020 0.044 0.071 0.033 0.040 0.069 0.027

Toronto 0.009 0.019 0.005 0.011 0.018 0.009 0.011 0.017 0.009 0.014 0.025 0.011 0.014 0.022 0.011 0.021 0.031 0.019 0.019 0.029 0.015

Los Angeles 0.005 0.007 0.003 0.005 0.006 0.004 0.009 0.009 0.011 0.010 0.008 0.006 0.008 0.013 0.004 0.011 0.019 0.006 0.009 0.012 0.004

New York 0.002 0.003 0.001 0.003 0.004 0.001 0.005 0.005 0.007 0.004 0.004 0.006 0.005 0.005 0.006 0.005 0.007 0.005 0.004 0.005 0.003

Method USG GeoMF Rank-GeoFM ASMF ARMF CORALS-AdaGrad CORALS-RMSprop CORALS-SGD

City Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail Mean Top Tail

Charlotte 0.029 0.039 0.021 0.035 0.058 0.024 0.035 0.041 0.027 0.027 0.049 0.021 0.037 0.084 0.021 0.056 0.087 0.050 0.055 0.087 0.046 0.056 0.087 0.048

Cleveland 0.048 0.075 0.031 0.044 0.089 0.029 0.043 0.068 0.038 0.047 0.081 0.034 0.056 0.110 0.051 0.091 0.169 0.059 0.090 0.171 0.053 0.085 0.164 0.044

Las Vegas 0.008 0.019 0.004 0.017 0.024 0.012 0.011 0.018 0.010 0.018 0.029 0.011 0.010 0.016 0.005 0.014 0.026 0.010 0.014 0.026 0.010 0.014 0.026 0.010

Madison 0.063 0.104 0.047 0.077 0.148 0.038 0.063 0.112 0.044 0.072 0.151 0.048 0.089 0.184 0.043 0.116 0.192 0.091 0.121 0.210 0.095 0.118 0.212 0.105

Phoenix 0.010 0.017 0.006 0.020 0.023 0.017 0.014 0.016 0.011 0.017 0.023 0.012 0.016 0.019 0.011 0.021 0.029 0.018 0.020 0.030 0.016 0.020 0.029 0.018

Pittsburgh 0.030 0.055 0.023 0.038 0.069 0.032 0.042 0.047 0.030 0.047 0.071 0.030 0.041 0.090 0.033 0.057 0.115 0.035 0.057 0.116 0.034 0.055 0.115 0.033

Toronto 0.014 0.026 0.010 0.022 0.030 0.021 0.016 0.020 0.013 0.018 0.025 0.014 0.012 0.037 0.004 0.027 0.038 0.025 0.026 0.040 0.022 0.026 0.038 0.024

Los Angeles 0.020 0.025 0.017 0.021 0.021 0.017 0.008 0.011 0.006 0.009 0.010 0.007 0.008 0.011 0.004 0.021 0.028 0.023 0.022 0.025 0.023 0.019 0.024 0.019

New York 0.005 0.003 0.006 0.010 0.008 0.008 0.003 0.004 0.002 0.006 0.009 0.005 0.003 0.003 0.003 0.012 0.008 0.012 0.011 0.008 0.010 0.012 0.009 0.011

performs when there is a relatively rich or poor amount of check-ins, respectively. For

example, WRMF achieves 0.026 on average for all businesses in Charlotte. It achieves 0.058

and 0.014 on average for the top and tail businesses in Charlotte, respectively. We observe

that the more check-ins we have for businesses, the more accurate recommendations we can

achieve. This observation applies to businesses in almost all nine cities under the 15 methods.

This is because the more check-ins we have for businesses, the more accurately we can infer

the style, the geographical influence, and the reputation of the businesses.

MMMF, BPRMF, CofiRank, CLiMF, WARP, and kOS achieve better recommendation

performances than WRMF in general. This verifies that methods achieving low predic-

tion errors do not necessarily have high recommendation accuracies. In other words, di-
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rectly optimizing the predicted check-ins may not always provide the best recommendation

lists to businesses. CofiRank, CLiMF, WARP, and kOS further outperform MMMF and

BPRMF due to their optimizing strategies. They optimize NDCG, MRR, precision@k, and

precision@k, respectively, which all focus on better optimizing the top-ranked customers on

the list. BPRMF, which optimizes AUC, focuses on optimizing the entire list of customers.

CofiRank, CLiMF, WARP, and kOS outperform USG, which shows the advantage of the

learning-to-rank recommendation methods. Even without utilizing location and social infor-

mation, they can accurately infer customer preferences and achieve good recommendation

performances. In general, WARP achieves the best recommendation performance among the

7 methods in the upper table, where only check-in information is utilized to infer customer

preference.

GeoMF, Rank-GeoFM, ASMF, and ARMF outperform WRMF, MMF, BPRMF, Cofi-

Rank, CLiMF, and kOS in general. It shows that incorporating ancillary information com-

pensate for the sparsity issue in location-based recommendation tasks. The performance of

Rank-GeoFM is not as good as the one of GeoMF. This is because Rank-GeoFM, which

incorporates temporal information, intends to predict the next point of interest (POI) to

visit, while the task in this work is to predict new customers for POIs. GeoMF achieves

better MAP than ASMF and ARMF. This might be because ASMF and ARMF focus on

utilizing social information, while learning geographical influence might be a better way to

improve recommendation performances in location-based tasks.

CORALS-AdaGrad or its variants outperform all 12 baseline methods with few excep-

tions, which demonstrates the effectiveness of CORALS-AdaGrad. In particular, CORALS-

AdaGrad increases the mean MAP by 51% and 33% against WARP and GeoMF, respectively.

Bold numbers in Table 9.1 indicate the winners for the same city and the same group of the

business. In summary, CORALS-AdaGrad or its variants win in all scenarios except in Las

Vegas where WARP and ASMF score slightly better.
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(a) Phoenix Art Museum (b) One branch of McDonald’s (c) Alo Cafe

Figure 9.1: Customer heat maps for three local businesses in Phoenix

9.1.3 Geographical Preference Inference

In this section, we will use examples to verify that the geographical influence is both business-

dependent and customer-dependent.

We first use three case examples to show the geographical influence on different types of

local businesses. We select three local businesses in Phoenix, i.e. the Phoenix Art Museum,

a branch of McDonald’s, and Alo Cafe. Figures 9.1a, 9.1b, 9.1c show the locations of the

three businesses, represented by a blue mark each, together with the heat maps of their

visitors. The location of a visitor is estimated by the average of all locations he/she has

visited. There are two interesting observations. First, Phoenix Art Museum has more check-

ins than McDonald’s and Alo Cafe do. Second, the majority of the check-ins of McDonald’s

and Alo Cafe come from their nearby regions while the visitors of Phoenix Art Museum are

scattered all over Phoenix. In addition, the number of museums in Phoenix is much fewer

than the numbers of fast-food businesses and cafes. The rationale behind the observations is

that people tend to get services from nearby businesses if the services are available since it

takes less effort. However, for some businesses that are only available in a remote location,

the customers may be more tolerant of traveling a long distance. Therefore, businesses such

as fast-food and cafes get influenced more by the geographical convenience than businesses

like museums. In CORALS, parameter wgb is used to model the geographical influence on a
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Figure 9.2: Exploration Center Distribution

business b. Higher values of wgb indicate greater influences on the geographical convenience.

In Section 9.1.5, we show a detailed analysis of wgb on various types of businesses.

Then, we study the geographical influence on individual customers. We randomly sample

two customers from Las Vegas and plot their check-ins in Figures 9.3a and 9.3b, respectively.

We observe that the two customers have their own exploration preferences. User 1 tends to

explore the main street in Las Vegas, while user 2 not only explores the main street but also

checks in at the northwestern region of Las Vegas. Given a local business b, represented by the

black marker, GMM tells gb,u1 < gb,u2 , which indicates that business b is more geographically

convenient for user 2. The geographical convenience information, embedded in the GMM,

helps CORALS better understand customers’ decision-making processes from the perspective

of the convenience of the local businesses.

Note that for each customer, we group his/her check-ins by affinity propagation to derive

the number of components in the GMM. Figure 9.2 shows the customer percentage distri-
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(a) User 1’s explorations (b) User 2’s explorations

Figure 9.3: Explorations of two customers in Las Vegas

butions over the number of exploration centers in different cities. We observe that most

customers have only one or two exploration centers. The rationale behind it is that most

customers explore around their workplaces or/and residences, which is consistent with the

findings in the previous study [128].

9.1.4 Reputation Influence Analysis

In this section, we investigate how the MAP performance of CORALS changes with the

number of reviews considered when constructing businesses’ reputation vectors. First, we do

not incorporate any reviews, notated as 0 reviews. Then, we use 1, 3, 5, 7, 9, and 11 most

recent reviews to construct the reputation vectors of businesses, respectively. Figure 9.4

shows the performance of CORALS (measured by MAP) on the nine cities. In particular,

the performance on the Yelp dataset is plotted in solid lines, while the performance on the

Foursquare dataset is plotted in dashed lines. When we ignore review information in the

model, the performance is relatively poor. As long as we incorporate the information of

the most recent review, the performance improves. For example, the performance increases

from 0.081 to 0.097 for Madison. However, when we incorporate more reviews to construct

reputation vectors, the performance gain is marginal. This is mainly due to the fact that

customers only read a few latest reviews to perceive the reputation of the local business.
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Figure 9.4: MAP performance over number of recent reviews

9.1.5 Analysis on Geographical Convenience and Reputation Reliance

In this section, we analyze to what extent the geographical convenience and online reviews

affect customers’ decisions in visiting various types of local businesses.

We look into five types of local businesses, i.e. fast-food, bar, cafe, salon, and museum in

the two largest cities, i.e., Phoenix and Las Vegas, in terms of the number of customers and

businesses. The type of the business is inferred from the name of the business. For each type

of businesses, we look into their geographical influence weights wg and reputation influence

weights wr, and calculate the type-wise median of the influence weights. Table 9.2 shows the

analysis based on the businesses in Phoenix. There are 144 fast-food restaurants, 302 bars,

394 cafes, 144 salons, and 8 museums. The geographical influences of fast-food restaurants,

bars, and cafes are all around 0.316. For salons, the low geographical influence weight, 0.306,

indicates that customers are willing to travel a little bit farther for better haircare services.

For museums, which are fewer in quantity, customers have to travel farther compared with

other types of businesses. The geographical influence decreases to 0.248. Moreover, the
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Table 9.2: Influential factors study for businesses in Phoenix

Phoenix Fast-food Bar Cafe Salon Museum

Number of businesses 144 302 394 28 8

Geographical influence 0.316 0.313 0.321 0.306 0.248

Review influence 0.101 0.127 0.133 0.241 0.234

Table 9.3: Influential factors study for businesses in Las Vegas

Las Vegas Fast-food Bar Cafe Salon Museum

Number of businesses 112 280 350 27 9

Geographical influence 0.302 0.29 0.298 0.297 0.232

Review influence 0.070 0.073 0.088 0.203 0.149

reputation also has distinct influences on different types of businesses. The reviews on fast-

food restaurants, bars, and cafes have a relatively small influence on customers’ decisions

since customers care more about the convenience of these types of local businesses. For

museums and salons, where customers care more about the experiences, reviews have a

stronger influence. Table 9.3 shows the same analysis based on the businesses in Las Vegas,

which is consistent with most discoveries in Phoenix. There is one interesting discovery

about the geographical influence on bars in Las Vegas, which indicates that customers in

Las Vegas are willing to take more effort in visiting faraway bars compared with fast-food

restaurants, cafes, and even salons. A possible rationale behind it is that there are many

attractive shows and events in Las Vegas bars.

9.2 Customer Recommendation in LBSNs with Few-shot Learn-

ing

In this section, we conduct extensive experiments on two real-world datasets to evaluate the

performance of SEATLE.
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9.2.1 Baselines

To compare our approach with others, the following 13 methods are adopted as baselines.

Recommendation methods without considering geographical influence:

• WRMF, weighted regularized matrix factorization [119] minimizes the square error loss

by assigning both observed and fake check-ins with different weights.

• MMMF, maximum margin matrix factorization [120] minimizes the hinge loss based on

matrix factorization.

• BPRMF, bayesian personalized ranking matrix factorization [121] optimizes pairwise bpr

losses of observed check-ins and sampled fake check-ins.

• CofiRank, [122] optimizes the estimation of a ranking loss based on normalized dis-

counted cumulative gain.

• CLiMF, [123] optimizes a different ranking-oriented mean reciprocal rank loss.

Conventional methods with geographical influence involved:

• USG, [13] is a collaborative filtering method. It utilizes distances between users and

businesses as extra guidance to make recommendations.

• GeoMF, [125] explicitly learns user activity areas (distance-based) and business influ-

ences areas via matrix factorization.

• Rank-GeoFM, ranking-based geographical factorization [126] incorporates business neigh-

borhood information via matrix factorization.

• ASMF, [16] mainly leverages social network information to improve recommendations.

• ARMF, [16] extends ASMF by further optimizing ranking losses.

• CORALS, [129] models geographical convenience and business reputation to improve

recommendations.
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Deep learning-based methods with geographical influence involved:

• SAE-NAD, self-attentive encoder and neighbor-aware decoder [28] applies auto-encoders

to make recommendations.

• PACE, preference and context embedding [27], a deep neural architecture that jointly

learns the embeddings of users and businesses by building a context graph.

Among these 13 baseline methods, WRMF is a point-wise matrix factorization method, while

MMMF and BPRMF are pair-wise based. CofiRank, CLiMF focus on optimizing top ranked

positions. These 5 methods do not utilize any ancillary information. USG, GeoMF, Rank-

GeoFM, ASMF, ARMF, and CORALS utilize additional information, such as geographical

distances, social networks, and online reviews to improve recommendation performance in

LBSNs. SAE-NAD utilizes auto-encoders, with business neighborhood information consid-

ered, to make recommendations. PACE models geographical influence by a user-user and

business-business context graph. All parameters in baselines are best tuned based on their

guidelines.

To achieve best performances on different cities, the optimal parameters vary on differ-

ent cities. Table 9.4 shows the main parameters and their default values to tune in the

experiments.

Table 9.4: Main Parameters

Parameters Value Parameters Value

Learning rate 0.001 Number of epochs N 30

Number of references k 4 Number of queries c 8

Margin γ 0.1 Tuple feature dimension 10

User feature dimension 10 Business feature dimension 10

9.2.2 Recommendation Performance

In this section, we evaluate the performances of SEATLE against the 13 baseline methods.

Mean Average Precision (MAP) is adopted as the evaluation metric, which is also used
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in [16, 129]. Given a ranked list rl of potential new customers, the average precision for a

business b is:

apb =
1

ω

|rl|∑
pos=1

precision(pos) ∗ rel(pos) (9.3)

where ω is the number of new customers who visit a business b in the test set, pos denotes the

position in the ranked list rl and |rl| gives the total number of potential new customers in rl.

Customers are ranked decreasingly based on how likely they will come in rl. precision(pos)

is the precision of a cut-off rank list from 1 to pos, and rel(pos) is an indicator function that

equals to 1 if the customer visits b in the test set, 0 otherwise. The mean average precision

is the average of the average precision of all businesses.

MAP =

|B|∑
b=1

apb/|B| (9.4)

Figure 9.5 shows the recommendation performances of different methods on the nine cities

from the two datasets. Figures from 9.5a to 9.5g show the performances based on the seven

cities in the Yelp dataset, while the last two Figures 9.5h and 9.5i show the performances

based on the two cities in the Foursquare dataset.

Among methods which do not consider geographical influence, MMMF, BPRMF, Cofi-

Rank, and CLiMF achieve better recommendation performances than WRMF in general.

This demonstrates that point-wise methods, such as WRMF, which achieve low prediction

errors, do not necessarily have high recommendation accuracy. In other words, directly opti-

mizing the predicted check-ins may not provide the best recommendation lists to businesses.

After leveraging geographical influence, Rank-GeoMF, ASMF, ARMF, GeoMF, CORALS,

SAE-NAD, and PACE outperform the five above methods, which do not incorporate any

ancillary features. It verifies that modeling ancillary information can offer extra guidance

and compensate for the sparsity issue in location-based recommendation tasks. USG, with

geographical influence modeled, does not perform as well as expected in some cities, such

as Charlotte, Las Vegas, etc. This is due to its oversimplified model design, which is a

straightforward linear combination of user preference and geographical distance scores with-

out proper optimizations. The performances of ASMF and ARMF on the foursquare dataset
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(c) Las Vegas
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(h) Los Angeles
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(i) New York

Figure 9.5: MAP performances of different methods over nine cities

are not as good as it usually achieves on the Yelp dataset. ASMF and ARMF mainly focus

on leveraging social network information. This demonstrates that social network information

may not always be reliable, while comprehensively utilizing geographical influence might be

a better choice to improve performances in location-based recommendation tasks. In general,

CORALS outperforms Rank-GeoMF, GeoMF, SAE-NAD, and PACE. This mainly results

from the geographical convenience incorporated in CORALS rather than distance-based

metrics employed in other models.

Among the deep learning-based methods, SEATLE achieves the best performance. The
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reasons could be explained as follows. PACE models the geographical influence by a context

graph, which does not explicitly model the user reachability to businesses. SAE-NAD cap-

tures the geographical dependency through a neighbor-aware auto-encoder, but it fails to

incorporate geographical convenience. In general, SEATLE outperforms all baseline methods

in the nine cities over the two datasets. SEATLE models both geographical convenience and

dependency, which jointly and comprehensively express the power of geographical influence.

Moreover, SEATLE adopts few-shot learning, designed for learning with limited data, as the

framework to cope with data sparsity. These appropriate designs make SEATLE a good fit

for new user recommendations in LBSNs.

9.2.3 Geographical Influence Analysis

In this section, we investigate the effectiveness of geographical convenience and dependency

modelings. We develop SEATLEcon− and SEATLEdep− by removing the convenience and de-

pendency feature from SEATLE, respectively. To compare convenience-based and distance-

based influence, we further develop SEATLEdist by replacing the convenience feature by a

distance-based kernel metric, adopted from SAE-NAD. More precisely, the metric is given

by exp(γ|li − lj|), where li and lj are the location coordinates of two locations, and γ is a

hyper-parameter to control the correlation level of the two locations.

Figure 9.6 shows the MAP performances of SEATLEcon−, SEATLEdep−, SEATLEdist,

and SEATLE. We observe that when the geographical convenience and dependency fea-

ture is removed from SEATLE, MAP performance drops correspondingly. The performance

decrease more when eliminating geographical convenience as compared to eliminating geo-

graphical dependency. This observation applies to all nine cities. Therefore, we can safely

conclude that incorporating geographical convenience and dependency helps improve the

recommendation performance and the geographical convenience contributes more. We fur-

ther compare SEATLEdist and SEATLE. SEATLEdist models distance-based geographical

features, while SEATLE incorporates convenience-based geographical features. We notice

that SEATLE outperforms SEATLEdist on all nine cities. This demonstrates the advan-

88



SEATLEcon SEATLEdep SEATLEdist SEATLE
0.00

0.02

0.04

0.06

M
A

P

(a) Charlotte

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.000

0.025

0.050

0.075
M

A
P

(b) Cleveland

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.00

0.01

0.02

M
A

P

(c) Las Vegas

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.00

0.04

0.08

M
A

P

(d) Madison

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.000

0.005

0.010

0.015

0.020

0.025

M
A

P

(e) Phoenix

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.00

0.02

0.04

M
A

P

(f) Pittsburgh

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.00

0.01

0.02

0.03

M
A

P

(g) Toronto

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.00

0.01

0.02

0.03

M
A

P

(h) Los Angeles

SEATLEcon SEATLEdep SEATLEdist SEATLE
0.000

0.005

0.010

0.015

M
A

P

(i) New York

Figure 9.6: Geographical influence analysis over nine cities
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tage of convenience-based geographical modeling since it gauge users’ actual transportation

efforts more accurately.

9.2.4 Few-shot Analysis

The goal of metric-learning-based few-shot learning is to distinguish positive queries from

negative queries regarding some references with limited training instances. In this part,

we investigate the effectiveness of few-shot learning in SEATLE by visualizing its learnt

embeddings.
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Figure 9.7: Embedding visualizations for references, positive and negative queries regarding

two businesses

After training SEATLE, we randomly select two businesses. We project the reference,

positive, and negative query embeddings into two dimensional space via t-SNE for visual-

izations. Figure 9.7 shows the embeddings regarding the two businesses. The references,

positive, and negative queries are colored in purple, blue, and red, respectively. Figure 9.7a

shows that four references lie on the left bottom area. Most positive queries are located in

the same area near the references. A few hard-to-distinguish negative queries are located

in the middle, while most negative queries are located in the right upper area, which are
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relatively faraway from the references. We have similar embedding proximity observations

for the second business in Figure 9.7b. These two figures demonstrate how SEATLE dis-

tinguishes observed (i.e. reference and positive) check-ins from fake check-ins by leveraging

few-shot learning, which in this case makes a distinction based on only 4 reference check-ins.

9.3 Click Feedback-aware Query Recommendation

9.3.1 Evaluation Metrics

We employ Mean Reciprocal Rank (MRR) score [130] as the evaluation metric. Given a

search query Q, let Y (Q) be a ranked list of recommended queries determined by a suggestion

method. We use rank1(Y (Q)) to denote the rank of the first clicked query in Y (Q). Formally,

MRR =
1

rank1(Y (Q))
. (9.5)

Essentially, the MRR score summarizes the ranks of the first clicked queries in the recom-

mendation list Y (Q) - A larger score indicates that the first clicked queries are ranked higher

in the list.

9.3.2 Baselines

In our evaluations, we evaluate the MRR performance of CFAN against the following state-

of-the-art methods.

• [Query-based Variable Markov Model (QVMM)] [35] makes query suggestions

by learning the probability of query transitions over search sessions with the variable

memory Markov model implemented by a suffix tree.

• [Feature Based Suggestion (FBS)] [131] counts on statistical features to make

suggestions. Suggestion candidates are generated based on 1) term matching between

search queries and candidates and 2) query co-occurrences in search sessions. Query
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suggestions are made by ranking candidates based on a combination of statistical fea-

tures.

• [Reformulation-based Completion (RC)] [36] is a non-deep learning based method

exploiting query suggestions. 43 reformulation based features are proposed to capture

user reformulation behaviors over search sessions with LambdaMART [132].

• [Most Popular Suggestion (MPS)] [5, 6] is a maximum likelihood method, which

relies on “wisdom of the crowd”. It ranks queries by the co-occurrence to the last

query in the search sequence.

• [Hybrid Suggestion (Hybrid)] [133] considers both the context information and

the popularity by ranking candidate queries based on a linear combination between

the popularity and the similarity to recent search queries.

• [Hierarchical Recurrent Encoder-Decoder (HRED)] [5] is a deep learning based

query suggestion method. HRED constructs a hierarchical encoder-decoder structure

to model the sequential and hierarchical dependencies across terms and queries to make

query suggestions.

• [Reformulation inference network (RIN)] [4] is the most state-of-the-art query

suggestion method. Query reformulations between consecutive queries in search ses-

sions are explicitly modeled in RIN to make suggestions.

9.3.3 Parameter Settings

We summarize the parameter settings of CFAN in our experiments in Table 9.5. We imple-

mented CFAN based on TensorFlow [134] and chose Adam [135] as our optimizer to learn

the model parameters. The hyperparameter settings were optimized with the grid search

strategy [136]. In addition, we also optimized the parameter settings of all baselines using

grid search strategy and report their best performance.
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Table 9.5: Parameter Settings

Parameter Value Parameter Value

Learning Rate 0.001 Embedding Size 50

Dropout Keep Ratio 0.8 Number of Epochs 10

Perturbation Bound ε 10

9.3.4 Experimental Results

Table 9.6: The MRR performance of different methods in the test sets with different context

lengths for the task of query suggestion.

Dataset QVMM [35] FBS [131] RC [36] MPS [5,6] Hybrid [133] HRED [5] RIN [4] CFAN

Overall Context 0.441 0.458 0.466 0.478 0.473 0.556 0.573 0.650

Short Context (1 query) 0.446 0.473 0.460 0.476 0.473 0.548 0.563 0.639

Medium Context (2 to 3 queries) 0.430 0.438 0.477 0.483 0.473 0.564 0.591 0.661

Long Context (4 and more queries) 0.431 0.440 0.469 0.474 0.475 0.574 0.593 0.682

Table 9.6 shows the MRR performance of different methods over various context lengths.

Note that MRR ranges from zero to one and a higher MRR score indicates better ranking

performance on query suggestions.

QVMM, a variable-memory Markov model, achieves the worst MRR performance among

all the query suggestion methods. QVMM counts on query dependencies in search sessions

to make query suggestions. The sparsity of search sessions leads to the poor ranking per-

formance of QVMM. Feature based method (FBS) first selects candidate queries based on

prefix matching and query dependencies. Then, candidate queries are ranked based on sta-

tistical popularity features. Compared with QVMM, FBS improves the overall MRR from

0.441 to 0.458. The reformulation-based completion method (RC) outperforms both QVMM

and FBS. Its overall MRR score reaches 0.466. RC relies on generalized query dependency

rules to make query suggestions. The improvements against QVMM and FBS demonstrate

that generalized reformulation rules are more informative and powerful than simple query

dependencies in search sessions. The popularity-based baseline method (MPS) slightly out-

performs RC. The overall MRR score further increases from 0.466 to 0.478. It indicates that
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the query popularity plays an important role in driving users to click the suggestions. This is

mainly because when query suggestions are highly related to the search query, users tend to

click popular and trending ones as follow-up search queries to explore. The hybrid suggestion

method (Hybrid) performs slightly worse than MPS. The overall MRR score decreases from

0.478 to 0.473. This can be explained by the fact that the term-level similarities between

suggestion candidates and search queries in Hybrid are not capable of capturing the their

relationship in semantics, and thus fail to rank suggestion candidates properly when most

suggestion candidates are similar to search queries in term levels.

Neural network based methods HRED, RIN, and CFAN outperform non-deep learning

based methods by a large margin in general. HRED achieves MRR scores of 0.556, 0.548,

0.564, and 0.574 on overall, short, medium, and long contexts, respectively. RIN achieves

MRR score of 0.573 on average. Among all the methods, CFAN achieves the best MRR per-

formance. The MRR scores reach 0.650, 0.639, 0.661, and 0.682 on overall, short, medium,

and long search contexts, respectively. In particular, CFAN achieves excellent ranking per-

formance when the context information is rich. Rich context contains more user search

queries and click feedback, which help reduce the query ambiguity and thus contribute to

the ranking performance.

To discuss the performance of CFAN with different context lengths, we investigate the

improvements of all neutral network based methods over QVMM. Figure 9.8 shows the

improvements of HRED, RIN, and CFAN over QVMM with different context lengths. All

these three methods apply hierarchical recurrent neural networks to encode search query

sequences. The overall MRR improvement of HRED is about 26%. RIN adds an extra

query reformulation layer to the encoder and further improves the MRR by 30% on average.

Among all three neutral network based methods, CFAN achieves the most significant MRR

improvements against QVMM. In general, CFAN improves MRR by 50% on overall scenarios.

In particular, when the context information is rich, i.e. medium and long contexts, the

improvements reach over 55%.

In the following paragraphs, we analyze the effectiveness of CFAN with and without
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Figure 9.8: The MRR improvement of three methods over the QVMM baseline method with

different context lengths.

incorporating user clicks and applying adversarial training sequentially.

Effectiveness of incorporating click feedback. We first investigated the effectiveness

of incorporating user click feedback in CFAN. As a leave-one-out analysis, we train CFAN

without user click information, denoted as CFANNF . To remove the click information from

CFAN, training instances are constructed by concatenating only the embedding s of the

search sequence S, the embedding q of the candidate query Qcan, and the similarity Sim(S,Q)

between them, where Sim(S,Q) = sTWsimq. Figure 9.9 shows the MRR performance of

CFANNF and CFAN. When the context is short, there is only one query in the search

sequence and there are no clicked suggestions as feedback. The MRR scores of CFANNF and

CFAN are roughly the same. When rich contexts are given, i.e., medium and long contexts,

clicked suggestions become available. The MRR scores of CFAN improves significantly

against CFANNF . The improvements on medium and long contexts also enhance the overall

ranking performance of CFAN by increasing the MRR score from 0.63 to 0.65 compared

with CFANNF . These improvements validate the necessity to incorporate user clicks when
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Figure 9.9: The MRR performance of CFAN with and without click feedback information.

modeling user search intent.

Adversarial training vs. normal training. In addition to investigating the effec-

tiveness of incorporating user clicks, we also want to show the advantage of CFAN with

adversarial training. We denote CFAN without adversarial training as CFANNA. CFANNA

only optimizes the ranking performance of the original training data with loss function de-

fined by Equation 5.1. Figure 9.10 shows the MRR performance of CFANNA and CFAN. We

can see CFAN consistently outperforms CFANNA in all suggestion scenarios, even when the

context is short. It clearly owes to the adoption of adversarial training. Adversarial training

generates unseen tough classification and ranking training instances and successfully shrink

the performance gap between training and test by optimizing the constructed adversarial

examples.
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Figure 9.10: The MRR performance of CFAN with and without adversarial examples.

9.3.5 Parameter Sensitivity Studies

CFAN, as a neural network based method, involves the tuning of several general training

parameters (i.e., learning rate, dropout ratio, embedding size, and number of training epochs

etc.). The perturbation bound ε, special in the proposed model, comes as an extra tuning

parameter. To investigate the sensitivity of CFAN, we examine how different choices of the

parameters affect the performance of CFAN. Except for the parameter being tested, we set

other parameters to the default values (see Table 9.5).

Due to space limit, we selectively show the results of parameters that are more relevant

to our proposed model in Figure 9.11. Figures 9.11a and 9.11b show the MRR performance

of CFAN as we change the perturbation bound ε and dropout keep ratio, respectively. By

tracing out different values of ε, we can see that the MRR performances are consistently stable

over a large range of ε. This eases our selection of the perturbation bound. Theoretically,

the ranking performance decreases significantly as we increase ε large enough. As shown in

Equation 5.18, choosing extreme large ε pollutes training instances and move into the regime
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Figure 9.11: The MRR performance of CFAN over different settings of parameters.
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of rubbish inputs. We test it by setting ε to 1×104, the losses on both training and validation

data fluctuate with no signs to increase. Dropout [137] is a common regularization method to

avoid overfitting. CFAN is insensitive to the changes of it as the overall MMR performance

stays around 0.64 with different settings of dropout keep ratio. It can be explained by the

adoption of adversarial training. Adversarial training also functions as a regularizer. It

manages the inevitable gap between the training error and the test error by optimizing the

constructed adversarial examples. This makes CFAN insensitive to the change of dropout

keep ratio. In addition, we also investigate the influences of different settings of embedding

size and training epoch number. The MRR scores increase and peak at certain values of

these two parameters as we increase them from small numbers. The MRR scores decrease

as we further increase them because of the overfitting issue. Due to space limit, we do not

show the corresponding figures.

9.4 Automatic Speaker Identification with Metric learning-based

Few-shot Learning

In this section, we conduct extensive experiments on a real-world dataset to evaluate the

performance of AFEASI.

9.4.1 Baselines

To evaluate the performance of AFEASI, the following eleven methods are adopted as base-

lines, including seven conventional neural network-based methods, one few-shot learning-

based method, one waveform-based method, and two variants of AFEASI.

Conventional neural network-based methods:

• 1D-CNN. Multiple layers of 1D-CNN are utilized to construct audio embeddings from

MFCCs, where the convolution is conducted along the time dimension. Global aver-

age pooling [138] is employed for aggregation before feeding into an output layer, where
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neutrons are equal to the total speakers for identification.

• 2D-CNN. Different from 1D-CNN, 2D-CNN [139] is utilized to extract acoustic features

from MFCCs.

• LSTM applies recurrent neural networks to investigate the acoustic frequency dependen-

cies along all time steps. In the experiments, a bidirectional LSTM [91] is utilized to

model such frequency dynamics along the time dimension and build audio embeddings.

• Attentive-LSTM (A-LSTM) differs from the LSTM method by introducing an atten-

tion layer [140] on top of the bidirectional LSTM to extract important acoustic signals at

different time steps.

• Attentive-CRNN (A-CRNN) first utilizes a layer of 1D-CNN to extract local features

at each time step and further builds an attentive LSTM model on top of such features to

construct audio embeddings.

• Self-attention (SA) also seeks to extract audio embeddings by studying the frequency

dynamics along the time dimension. More precisely, the self-attention technique [86] is

utilized, where the same MFCC is considered as the input, query, and value matrices.

Finally, the average of the fused vectors via self-attention operations serves as the audio

embedding.

• Attentive self-attention (A-SA) first utilizes the self-attention technique [86] to fuse

the acoustic vectors at different time steps. A weighted sum of the fused vectors over all

time steps serves as the audio embedding.

Few-shot learning-based method:

• Prototypical network (PN) [45] adopts 2D-CNN as the building block to construct

audio embeddings and applies prototypical loss [122] to learn from limited training data.

Raw waveform-based method:
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• Sincnet (SC) [9] identifies speakers by directly training on the raw waveform of audios.

AFEASI variants:

• AFEASI s differs from AFEASI in the choice of perturbation injections and only injects

noises into audio instances in the support module.

• AFEASI b injects noises into audio instances in both support and query modules.

Among the eleven baseline methods, the 1D-CNN, 2D-CNN, LSTM, A-LSTM, A-CRNN,

SA, and A-SA differ in how to construct the audio embedding representation from the

MFCCs. The CNN based methods employ convolutional operations to extract the local

informative and discriminative features from MFCCs. The LSTM, A-LSTM, SA, and A-

SA methods depend on investigating the dependencies of MFCC intensities at different

time steps to construct audio embedding representations. The A-RCNN method utilizes

both CNN and RNN to extract acoustic features and form audio embeddings. For these

seven methods mentioned above, the constructed audio embeddings are further fed into the

prediction blocks to yield speaker recognition. We include these seven methods as baselines

to investigate which one of them is the most effective in extracting discriminative acoustic

features from MFCCs in the context of ASR. PN utilizes 2D-CNN as the building block

to construct audio embedding representations. It differs from the first seven baselines in

how to conduct predictions. It utilizes metric learning to boost ASR performance. Sincnet

differs from all baselines in the sense that it learns from the raw waveform of audios rather

than from MFCCs. AFEASI s and AFEASI s are variants of AFEASI. They differ in where

adversarial noises are injected. All parameters in these baselines are best tuned utilizing grid

search.

9.4.2 Identification Performance

In this section, we evaluate the performances of AFEASI against different baseline methods.

We adopt accuracy as the evaluation metric. Given a set of test audio instances, the accuracy
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Table 9.7: Accuracy on test set over different audio embedding construction methods

Method 1s 3s 5s 7s 9s

1D-CNN 0.9021 0.9702 0.9853 0.9927 0.9931

2D-CNN 0.9038 0.9686 0.9780 0.9823 0.9879

LSTM 0.8650 0.9551 0.9607 0.9823 0.9888

A-LSTM 0.8848 0.9698 0.9819 0.9905 0.9922

A-CRNN 0.9198 0.9594 0.9720 0.9767 0.9810

SA 0.7537 0.8736 0.9107 0.9383 0.9405

A-SA 0.7886 0.9159 0.9435 0.9594 0.9642

SC 0.8147 0.8773 0.8806 0.8913 0.8991

acc is:

acc =
correctly identified test instances

total test instances
. (9.6)

In this section, we investigate which technique is more effective on extracting informative

acoustic biometric features from MFCCs. In particular, we compare 3 types of different

methods, i.e., CNN, LSTM, and self-attention-based methods. Moreover, we also investi-

gate the effectiveness of attention mechanisms on acoustic feature constructions. To further

investigate how effective to directly identify speakers based on raw waveform of audios, we

further include SC into the comparisons. To comprehensively compare these techniques on

speaker identification, we vary the length of the audio instances from 1 second to 9 seconds

with 2 seconds as the step size. Table 9.7 shows the corresponding performances on Lib-

riSpeech. While the top seven rows show the performances of methods based on MFCCs,

last row shows the performance of SC, which is waveform-oriented.

For MFCC-oriented methods, we have five observations. First, the longer the instance,

the higher accuracy each method can achieve. It applies to all seven methods with different

embedding construction strategies. It makes sense because the longer each audio instance,

the richer acoustic information we have collected from each instance. Training, supported

by rich acoustic information, contributes to high accuracy. The second observation is that
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the SA method achieves the worst accuracy performance on all different duration settings.

The SA method depends on feature fusions to learn inter-dependent feature representations.

However, a piece of audio, especially a short one, could contain a notable portion of silence

which do not contain any distinguishing information. Feature fusions with such uninforma-

tive and misleading features lead to defective accuracy performance. The third observation

is that all methods, except SA, work well when instances are 3 seconds long or longer than

that. It demonstrates that audios with at least 3 seconds might be informative enough to

construct a speaker’s acoustic biometric. Moreover, by comparing LSTM with A-LSTM and

A-CRNN, we also notice that it benefits the accuracy performance by adding an attention

layer, especially when the audio instance is relatively short. When each instance is only 1

second long, the accuracy of the LSTM method is only 0.8650. By distinguishing important

information at different time steps, A-LSTM and A-CRNN improve the accuracy to 0.8848

and 0.9198, respectively. Analogously, we find similar performance improvement when com-

paring SA with A-SA. The last observation is that the accuracy performance of LSTM,

A-LSTM, SA, and A-SA are more sensitive to short audios than CNN-based methods. For

example, when each instance is only 1 second long, the accuracy of these methods are only

0.8650, 0.8848, 0.7537, and 0.7886, respectively. It can be explained by the silence in the

audio instances. When the audio instance is very short, each instance contains limited in-

formative acoustic features. Therefore, short audio instances are more vulnerable to noises

such as silence. In such scenarios, the frequency dynamics over time captured by LSTM

and self-attention-based methods are less reliable and robust than the local features cap-

tured by CNN-based methods. The raw waveform-based method, SC, does not work very

well generally compared with MFCC-based methods. SC skips the construction of MFCC,

which involves fast Fourier transform and other hard-to-learn procedures, to learn speaker

identification. It is still a daunting task since raw waveform-based methods are deemed to

require a huge amount of training data in order to achieve success.
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Figure 9.12: The accuracy of each method with different total training data per speaker on

LibriSpeech.

9.4.3 Performance with Limited Training Data

In this section, we investigate the performance of all methods when facing a shortage of data

for training. In order to make instant identification response, we fix the length of each audio

instance to 3 seconds. We vary the total number of training instances per speaker from 20

to 60. If the total training instances per speaker is only 20 and each instance is 3 seconds

long, there are only 60 seconds audios used for training for each speaker. When we relax the

number of training instances per speaker to 40 and 60, 120 seconds and 180 seconds long

cumulative audios will be used for training per speaker, respectively. Figure 9.12 shows the

accuracy performance for all methods on different settings.

We observe that the fewer training instances we have for a speaker, the lower accuracy

we achieve for all methods. For example, when we have 180 seconds long training instances

for a speaker, the accuracy of 1D-CNN can reach as high as about 0.9493. However, when

the training instances are reduced to 120 and 60 seconds per speaker, the accuracy is only

0.9398 and 0.8645, respectively. We observe a similar performance drop for 2D-CNN, LSTM,

A-LSTM, SA, A-SA, and SC. These observations demonstrate that the strong discriminative

power of deep learning models significantly depends on the availability of a sufficient amount

of training data. When only limited instances are provided for training, the performance

might be far from expectations. Without applying few-shot learning mechanisms, 1D-CNN
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achieves the best accuracy performance on the three settings. This results from its simple

network structure design, which is light-parameter dependent. The prototypical network, a

metric-learning-based few-shot leaning method, achieves slightly higher accuracy. Its accu-

racy reaches about 0.93 as 60 seconds training instances are present for training per speaker.

The high accuracy performance demonstrates the advantage of adopting few-shot learning,

which fully utilizes the limited instances during training. Among all methods, AFEASI and

its variants achieve the highest accuracy on all three settings, especially when the training

instances are limited. Its accuracy is as high as about 0.95 for the setting of 60 seconds

per speaker. This demonstrates the effectiveness of adopting attentive few-shot learning and

adversarial learning when training from limited data.

9.4.4 Perturbation Injection Choice

In this section, we investigate and compare the effectiveness of different choices for inject-

ing adversarial perturbations. AFEASI only injects perturbations into query instances.

AFEASI s only injects perturbations into support instances, while AFEASI b injects dynamic

perturbations into both query and support instances.

The last three groups of Figure 9.12 show the accuracy performance of AFEASI and its

two variants on different settings. We observe that injecting adversarial perturbations into

query instances only is effective enough to enhance identifications. For example, as training

instances are as limited as 60 seconds per speaker. The accuracy of AFEASI, AFEASI b, and

AFEASI s are all as high as and close to 0.955. While injecting perturbations into only query

instances allows us to quickly generate adversarial examples during training, as compared

to generating noises in support instances or both query and support instances. Therefore,

in this work we choose to inject perturbations into only query instances in consideration of

computational efficiency.
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Table 9.8: Accuracy on test set by injecting Gaussian noise

Methods AFEASIgaussian AFEASI AFEASI−

τ 1e-6 1e-5 1e-4 1e-3 1e-2 N/A N/A

60s 0.9432 0.9498 0.9481 0.9376 0.9317 0.9555 0.9411

120s 0.9522 0.9556 0.9532 0.9491 0.9487 0.9644 0.9512

180s 0.9587 0.9630 0.9620 0.9553 0.9531 0.9663 0.9563

9.4.5 Effectiveness of Adversarial Training

In this section, we compare the effectiveness of data augmentation between conducting ad-

versarial training and applying conventional audio augmentation methods.

To conduct conventional data augmentation, we inject random Gaussian noises to raw

audios with different parameters τ that controls the intensity of injected noises. Formally,

the augmented audio piece xau can be represented as xau = x+ τNg, where x and Ng are the

original audio and the Gaussian noise, respectively. Finally, AFEASIgaussian denotes the con-

ventional approach by replace the adversarial training with the participation of augmented

data injected by Gaussian noises. In addition, we use AFEASI− to indicate the method

simply removing adversarial training from AFEASI and evaluate the impact of adversarial

training.

Table 9.8 shows the performance comparisons among AFEASI−, AFEASIgaussian, and

AFEASI. We observe that data augmentations by injecting Gaussian noises help address the

data shortage issue. For example, the accuracy of AFEASI− is 0.9411 for the 60-seconds

setting. When setting τ to 1e − 5 and 1e − 4, the accuracy of AFEASIgaussian improves

to 0.9498 and 0.9841, respectively. However, the effectiveness of such data synthesis is

sensitive to the setting of the weighting factor τ . For example, when τ is set to 1e− 3 and

1− e2, heavier noises are injected into the raw audios. The injected noises obscure the raw

informative signals and lead to worse accuracy performance. This could make it challenging

to select a good τ in practice since it only helps with a narrow range of effective settings.

In addition, we notice that AFEASI still achieves the highest accuracy performance over
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all three settings. This demonstrates that intentional adversarial noises are more helpful in

improving identification performance.

9.4.6 Sensitivity Study

Table 9.9: Main parameters of AFEASI in the experiments after fine-tuning.

Parameters Value Parameters Value

Learning rate η 0.01 Number of epochs 20

Regularizer weight λ 1 Perturbation bound ε 0.01

Way number K 150 Shot Number N 10

In this section, we examine how different choices of parameters influence the performance

of AFEASI. Except for the parameter being tested, we set other parameters at the default

values (see in Table 9.9). Figure 9.13 shows the evaluation results as a function of one

selected parameter when fixing others. Overall, we observe that AFEASI is not strictly

sensitive to most parameters, which demonstrates the robustness of AFEASI.

Figure 9.13a shows the accuracy performances of AFEASI when we change the learning

rate. It may get stuck to local optimal and lead to sub-optimal performance when the

learning rate is either too small or too large. In this work, we set it as 0.01 with the

consideration of the performance. Figure 9.13b shows the effect of varying ε, which controls

the magnitude of the perturbations. AFEASI in general is not sensitive to the setting of

ε and it achieves high accuracy performance with a wide range of ε from 0.0001 to 0.1.

Figure 9.13c shows the performance of AFEASI when choosing different number of speakers

in a training episode. We observe that AFEASI is not strictly sensitive to this parameter

and it always achieves accuracy performance as high as around 0.95 for all settings with

the parameter is larger than 25. Figure 9.13d shows the performance change via choosing

different number of instances per speaker as references in the support module. We observe

that the more instances we select to generate the speaker’s acoustic biometric embedding as

references, the higher accuracy we can achieve during the test in general. We also notice that
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Figure 9.13: Parameter sensitivity studies on LibriSpeech

the increase of accuracy performance saturates as the number of shots increases more than

6. This is because: at the beginning, a larger value of the shot number N brings a stronger

representation power to express speaker’s acoustic characteristic, but the further increase of

shot number might only provide limited and repeated information.

9.4.7 Household Deployment

One notable application of ASR is to enable personalized services at different households. In

such scenarios, audio-enabled devices, such as Echo Dot and Google Home, only need to serve

several peoples in a household. Therefore, we may not have to include all the speakers as
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identification candidates. This could not only reduce the computation cost during inference

and respond more quickly, but also significantly improve the identification accuracy. All

these benefits depend on the flexibility of the identification model to accommodate only a

portion of users as speaker candidates. All conventional deep learning methods mentioned

in the baseline section fail to achieve this, since the output layer of these models is fixed with

the number of neurons equal to the number of total speakers. AFEASI solves the issue by

learning distance metric among different speaker candidates. The speaker with the smallest

distance to the query instance in the hidden space among all candidates yields the prediction.

In this way, AFEASI can enable fast and efficient speaker identification by considering only

a small set of candidate speakers.

9.5 Automatic Speaker Identification with Gradient-based Few-

shot Learning

We conduct experiments on LibriSpeech data set to evaluate the performance of MDNML

against four popular algorithms.

9.5.1 Experimental Settings

The experiments are conducted on the LibriSpeech dataset, which is publicly available3. For

the dataset, 75% of speakers are treated as existing users and the remaining 25% of speakers

are treated as new users for the purpose of evaluation. We follow the previous work [45]

to extract acoustic features from the raw audios. The first 20 MFCCs are extracted from

speech after an energy-based voice activity detection. A 44 kHz sampling rate and a 25 ms

hamming window with a 10 ms frame shift are used during the MFCC construction.

3LibriSpeech: http://www.openslr.org/12
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9.5.2 Baselines

To evaluate the performance of MDNML, the following four methods are adopted as baselines.

• MDN [107] trains acoustic profiles for each new user from scratch without any knowledge

gained from existing users.

• PN [45] utilizes the CNN-based prototypical network, a metric-learning-based few-shot

technique, to conduct speaker identification.

• PNL [109] relies on Bi-LSTM-based prototypical network to perform speaker identification.

• AFEASI [106] applies adversarial training on prototypical network to achieve speaker iden-

tification.

9.5.3 Identification Performance

In this section, we evaluate the performances of MDNML against different baseline methods

on the LibriSpeech dataset. We adopt household-level accuracy as the evaluation metric.

The household-level accuracy first calculates the identification accuracy in each household

and then averages the identification accuracy in each household by treating the importance

of them equally.

Table 9.10: Accuracy with 2 seconds voice enrollment.

Utterance duration in test 1s 2s 3s 4s

MDN 80.0% 83.4% 86.2% 87.8%

PN 85.8% 86.0% 88.0% 89.4%

PNL 82.8% 86.4% 85.8% 85.0%

AFEASI 86.6% 86.6% 89.4% 90.2%

MDNML 88.6% 88.6% 90.2% 91.4%

To imitate the scenarios of serving new users, we set the duration of each enrollment

utterance, which is used for profile adaptions for the new users, to small values, varying
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Table 9.11: Accuracy with 4 seconds voice enrollment.

Utterance duration in test 1s 2s 3s 4s

MDN 85.8% 86.4% 88.2% 89.0%

PN 88.0% 87.6% 88.8% 89.2%

PNL 84.8% 86.0% 86.8% 87.2%

AFEASI 88.6% 89.0% 89.2% 89.8%

MDNML 89.6% 90.4% 92.2% 93.0%

from 2 to 4 seconds. Moreover, in order to offer instant identification response, we vary the

duration of each test voice utterance from 1 second to 4 seconds. Tables 9.10 and 9.11 show

the performance of different methods on the LibriSpeech dataset.

We have four observations from the results on the LibriSpeech dataset. First, the longer

the duration of a voice utterance for identification in test, the higher accuracy each method

can achieve. For example, when we have 2 seconds long voice utterance as the enrollment for

profile adaption and 1 second long voice utterance to identify the speakers with testing data,

MDN can reach only 80% accuracy; however, the accuracy increases to 83.4%, 86.2%, and

87.8% when the test voice utterance becomes to 2, 3, and 4 seconds, respectively. Note that

this observation generally applies to all methods. The performance gain stems from the fact

that the acoustic signals embedded in long voice utterances are more consistent and reliable.

These consistent and reliable acoustic signals further yield confident speaker identifications,

which are more accurate. Second, the longer the voice enrollment we have for a new user

during the adaption process, the higher accuracy each method can achieve. It makes sense

because the longer the voice enrollment for a user, the richer signals we can use to construct

his/her acoustic profile by analyzing the enrolled utterance. Profile constructions, supported

by rich acoustic information, contribute to the high accuracy. Third, we observe that PN,

PNL, AFEASI, and MDNML generally outperform MDN. This shows the advantages of

utilizing few-shot learning, which allows effective learning even with limited data. Fourth,

MDNML consistently achieves the highest accuracy comparing with the four baselines in
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all settings. It demonstrates the effectiveness of MDNML, which leverages knowledge learnt

from existing users.
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CHAPTER 10

Conclusion

In this thesis, we investigate how to mine patterns and knowledge from sparse and deficient

data. More specifically, we dive into three concrete applications, i.e., location-based customer

recommendation in social networks, query recommendation on search engines, and automatic

speaker recognition.

For customer recommendation in location-based social networks, we propose two meth-

ods, i.e., CORALS and SEATLE. CORALS utilizes auxiliary information (i.e., geographical

coordinates of businesses and online reviews) as extra guidance to make recommendations,

while SEATLE focuses on incorporating not only geographical convenience (between cus-

tomers and businesses) but also geographical dependency (among businesses) to make recom-

mendations. Moreover, metric-learning-based few-shot learning is further adopted to improve

recommendation performance from the limited training data. For query recommendation on

search engines, we propose a context-aware method CFAN, which is capable of modeling

both users’ search query sequence and click sequence, to make query suggestions. Both

users’ formulated search queries and their clicks are incorporated to model their information

need and collectively modeling these two factors allows us to understand users’ search intent

more accurately. In addition, adversarial training is introduced to improve the robustness

and generalization of the recommendation model in the query suggestion model. For au-

tomatic speaker recognition, we investigate two types of few-shot learning strategies, i.e.,

metric-learning-based and gradient-based ones, and propose AFEASI and MDNML, respec-

tively. AFEASI applies metric-learning-based few-shot learning to fully utilize the limited

voice utterances and further relies on adversarial training, as a data augmentation technique,

to achieve robust and well-generalized speaker identification. MDNML is proposed to achieve

113



automatic speaker identification with the goal of serving new users. It depends on mixture

density networks, which are gradient-friendly and can model voice utterances with arbitrary

lengths, to construct users’ acoustic profiles. To leverage the identification knowledge learnt

from existing users, model-agnostic meta-learning, a gradient-based meta-learning technique,

is adopted, which can help us learn a set of well-initialized model parameters. Therefore, the

acoustic profiles of new users could be constructed much faster based on the learnt model

parameters.
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[71] J. Antin, M. de Sá, and E. F. Churchill, “Local experts and online review sites,” in
CSCW ’12, Seattle, WA, USA, February 11-15, 2012 - Companion Volume, 2012.

[72] BrightLocal, “Local Consumer Review Survey.” https://www.brightlocal.
com/learn/local-consumer-review-survey/, 2016.

[73] M. Xie, H. Yin, H. Wang, F. Xu, W. Chen, and S. Wang, “Learning graph-based POI
embedding for location-based recommendation,” in CIKM ’16, Indianapolis, IN, USA,
October 24-28, 2016, 2016.

[74] W. R. Tobler, “A computer movie simulating urban growth in the detroit region,”
Economic geography, vol. 46, no. sup1, 1970.

[75] J. Weston, S. Bengio, and N. Usunier, “WSABIE: scaling up to large vocabulary image
annotation,” in IJCAI ’11, Barcelona, Catalonia, Spain, July 16-22, 2011, 2011.

[76] J. C. Duchi, E. Hazan, and Y. Singer, “Adaptive subgradient methods for online
learning and stochastic optimization,” Journal of Machine Learning Research, vol. 12,
pp. 2121–2159, 2011.

[77] D. A. Reynolds, “Gaussian mixture models,” in Encyclopedia of Biometrics, 2009.

[78] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incom-
plete data via the em algorithm,” Journal of the royal statistical society. Series B
(methodological), 1977.

[79] B. J. Frey and D. Dueck, “Clustering by passing messages between data points,”
science, vol. 315, no. 5814, 2007.

[80] Q. V. Le and T. Mikolov, “Distributed representations of sentences and documents,”
in ICML ’14, Beijing, China, 21-26 June 2014, 2014.

[81] Z. Yao, Y. Fu, B. Liu, Y. Liu, and H. Xiong, “POI recommendation: A temporal
matching between POI popularity and user regularity,” in ICDM ’16, December 12-
15, 2016, Barcelona, Spain, 2016.

[82] Y. Liu, C. Liu, B. Liu, M. Qu, and H. Xiong, “Unified point-of-interest recommendation
with temporal interval assessment,” in SIGKDD ’16, San Francisco, CA, USA, August
13-17, 2016, 2016.

[83] T. N. Kipf and M. Welling, “Semi-supervised classification with graph convolutional
networks,” CoRR, vol. abs/1609.02907, 2016.

[84] J. Vanschoren, Meta-learning, pp. 39–68. Germany: Springer, 2019.

[85] W. Xiong, M. Yu, S. Chang, X. Guo, and W. Y. Wang, “One-shot relational learning
for knowledge graphs,” CoRR, vol. abs/1808.09040, 2018.

121



[86] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser,
and I. Polosukhin, “Attention is all you need,” in Advances in Neural Information
Processing Systems 30: Annual Conference on Neural Information Processing Systems
2017, 4-9 December 2017, Long Beach, CA, USA, pp. 6000–6010, 2017.

[87] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,”
in 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016,
Las Vegas, NV, USA, June 27-30, 2016, pp. 770–778, 2016.

[88] R. Baraglia, C. Castillo, D. Donato, F. M. Nardini, R. Perego, and F. Silvestri, “Aging
effects on query flow graphs for query suggestion,” in Proceedings of the 18th ACM
Conference on Information and Knowledge Management, CIKM 2009, Hong Kong,
China, November 2-6, 2009, pp. 1947–1950, 2009.

[89] B. J. Jansen, A. Spink, and T. Saracevic, “Real life, real users, and real needs: a
study and analysis of user queries on the web,” Inf. Process. Manage., vol. 36, no. 2,
pp. 207–227, 2000.

[90] M. Sanderson, “Ambiguous queries: test collections need more sense,” in Proceedings of
the 31st Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2008, Singapore, July 20-24, 2008, pp. 499–506, 2008.

[91] M. Schuster and K. K. Paliwal, “Bidirectional recurrent neural networks,” IEEE Trans.
Signal Processing, vol. 45, no. 11, pp. 2673–2681, 1997.

[92] A. Bordes, J. Weston, and N. Usunier, “Open question answering with weakly super-
vised embedding models,” in Machine Learning and Knowledge Discovery in Databases
- European Conference, ECML PKDD 2014, Nancy, France, September 15-19, 2014.
Proceedings, Part I, pp. 165–180, 2014.

[93] A. Severyn and A. Moschitti, “Learning to rank short text pairs with convolutional
deep neural networks,” in Proceedings of the 38th International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, Santiago, Chile, August
9-13, 2015, pp. 373–382, 2015.

[94] G. E. Hinton and R. R. Salakhutdinov, “Reducing the dimensionality of data with
neural networks,” science, vol. 313, no. 5786, pp. 504–507, 2006.

[95] B. Kinsella, “Smart Speaker Owners Use Voice Assistants Nearly
3 Times Per Day.” https://voicebot.ai/2018/04/02/
smart-speaker-owners-use-voice-assistants-nearly-3-times-per-day/,
2018.

[96] R. Feldman, “Almost a quarter of Britons now own one or more smart home devices.”
https://yougov.co.uk/topics/technology/articles-reports/2018/
08/10/almost-quarter-britons-now-own-one-or-more-smart-h,
2018.

122



[97] V. M. Patel, R. Chellappa, D. Chandra, and B. Barbello, “Continuous user authen-
tication on mobile devices: Recent progress and remaining challenges,” IEEE Signal
Process. Mag., vol. 33, no. 4, pp. 49–61, 2016.

[98] J. H. L. Hansen and T. Hasan, “Speaker recognition by machines and humans: A
tutorial review,” IEEE Signal Process. Mag., vol. 32, no. 6, pp. 74–99, 2015.

[99] J. Kim and J. Park, “Multistage data selection-based unsupervised speaker adaptation
for personalized speech emotion recognition,” Eng. Appl. of AI, vol. 52, pp. 126–134,
2016.

[100] Z. Liu, Z. Wu, T. Li, J. Li, and C. Shen, “GMM and CNN hybrid method for short
utterance speaker recognition,” IEEE Trans. Industrial Informatics, vol. 14, no. 7,
pp. 3244–3252, 2018.

[101] H. Yakura and J. Sakuma, “Robust audio adversarial example for a physical attack,”
CoRR, vol. abs/1810.11793, 2018.

[102] N. Carlini and D. A. Wagner, “Audio adversarial examples: Targeted attacks on
speech-to-text,” in 2018 IEEE Security and Privacy Workshops, SP Workshops 2018,
San Francisco, CA, USA, May 24, 2018, pp. 1–7, 2018.

[103] M. Xu, L. Duan, J. Cai, L. Chia, C. Xu, and Q. Tian, “Hmm-based audio keyword
generation,” in Advances in Multimedia Information Processing - PCM 2004, 5th Pa-
cific Rim Conference on Multimedia, Tokyo, Japan, November 30 - December 3, 2004,
Proceedings, Part III, pp. 566–574, 2004.

[104] S. Park, J. Park, S. Shin, and I. Moon, “Adversarial dropout for supervised and semi-
supervised learning,” in Proceedings of the Thirty-Second AAAI Conference on Ar-
tificial Intelligence, (AAAI-18), New Orleans, Louisiana, USA, February 2-7, 2018,
pp. 3917–3924, 2018.

[105] X. He, Z. He, X. Du, and T. Chua, “Adversarial personalized ranking for recommen-
dation,” in The 41st International ACM SIGIR Conference on Research & Develop-
ment in Information Retrieval, SIGIR 2018, Ann Arbor, MI, USA, July 08-12, 2018,
pp. 355–364, 2018.

[106] R. Li, J. Jiang, J. Liu, C. Hsieh, and W. Wang, “Automatic Speaker Recognition with
Limited Data,” in Proceedings of WSDM, Houston, Texas, USA, February 3-7, 2020.

[107] C. M. Bishop, “Mixture Density Networks,” 1994.

[108] C. Finn, P. Abbeel, and S. Levine, “Model-Agnostic Meta-Learning for Fast Adap-
tation of Deep Networks,” in Proceedings of ICML, Sydney, NSW, Australia, 6-11
August, pp. 1126–1135, 2017.

[109] J. Wang, K. Wang, M. Law, F. Rudzicz, and M. Brudno, “Centroid-based Deep Met-
ric Learning For Speaker Recognition,” in Proceedings of ICASSP, Brighton, United
Kingdom, May 12-17, pp. 3652–3656, 2019.

123



[110] Z. Liu, Z. Wu, T. Li, J. Li, and C. Shen, “GMM and CNN hybrid method for short
utterance speaker recognition,” IEEE Transactions on Industrial informatics, vol. 14,
no. 7, pp. 3244–3252, 2018.

[111] A. Maurya, D. Kumar, and R. Agarwal, “Speaker recognition for Hindi speech signal
using MFCC-GMM approach,” Procedia Computer Science, vol. 125, pp. 880–887,
2018.

[112] O. Novotnỳ, O. Plchot, O. Glembek, L. Burget, and P. Matějka, “Discriminatively
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