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Abstract

Properties of Jets Measured with Charged Particles
with the ATLAS Detector at the Large Hadron Collider

by
Seth Conrad Zenz

Doctor of Philosophy in Physics
University of California, Berkeley

Dr. Ian Hinchliffe, Co-Chair
Professor James Siegrist, Co-Chair

Jets are identified and their properties studied, in proton-proton collisions at the
Large Hadron Collider at center-of-mass energy

√
s = 7 TeV, using charged particles

measured by the ATLAS Inner Detector. Events are selected using a minimum bias
trigger, allowing jets at very low transverse momentum to be observed and the tran-
sition to high-momentum fully perturbative jets to be studied. Jets are reconstructed
using the anti-kt algorithm applied to charged particles with two radius parameter
choices, 0.4 and 0.6. An inclusive charged jet transverse momentum cross section
measurement from 4 GeV to 100 GeV is shown, for four ranges in rapidity extending
to 1.9, and corrected to charged particle-level truth jets. The transverse momenta
and longitudinal momentum fractions of charged particles within jets are measured,
along with the charged particle multiplicity and the particle density as a function of
radial distance from the jet axis. Comparison of the data with the theoretical models
implemented in existing tunings of Monte Carlo event generators indicates reasonable
overall agreement between data and Monte Carlo. These comparisons are sensitive
to Monte Carlo parton showering, hadronization, and soft physics models.
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Chapter 1

Introduction

The Large Hadron Collider (LHC) [1] was built to produce new particles and study
rare interactions at a high rate, but its first and foremost byproduct is sprays of
low-energy hadrons. At its full design capacity, the LHC will cross proton bunches
31.6 million times per second at each interaction point, with an average of about 20
proton-proton collisions per beam crossing. Most of these collisions will be “soft”
interactions, with relatively little energy exchanged between the protons and the
outgoing particles having relatively little momentum perpendicular to the beam axis.
These interactions are described in principle by Quantum Chromodynamics (QCD) [2;
3], the quantum field theory of the strong interactions. In practice, however, they are
the most difficult to calculate, because the theory becomes non-perturbative at low
energies. Predictions can only be made using approximations and phenomenological
models. This difficulty with low-energy strong interactions appears even in processes
whose core behavior is well-described by perturbation theory: outgoing high-energy
quarks and gluons quickly “clothe” their strong color charge by evolving into jets of
lower-energy hadrons, a process that again requires approximation and modelling.

The LHC’s general-purpose experiments, ATLAS [4] and CMS [5], are equipped
with multi-stage trigger systems that select against these “average” processes, for ex-
ample by identifying leptons and missing energy produced in electroweak interactions.
However, low-energy QCD still has a significant impact on the physics program in sev-
eral areas. Because there are so many collisions in each crossing, the most interesting
collisions will have many low-energy collisions whose signals in the detector overlap
with the objects of interest. In order for their effects to be subtracted, these features
of these pileup collisions must be known quantitatively. The evolution of high-energy
hadronic jets, which ultimately relies on low-energy QCD radiation, must also be
well-understood. This is partially to account for their contribution as pileup events,
but their energy must also be calibrated so they can be studied in their own right.
For example, although even very high-energy jets are relatively common at the LHC,
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Chapter 1. Introduction

they can also serve as signatures of the decay of new particles [6].
The quantitative investigation of low-energy QCD is thus a foundational element

of the LHC program, which will inform the studies and discoveries of the coming
years. Initial low-energy QCD measurements have divided the problem between low-
energy events and the study of higher-energy jet properties. In the former case,
inclusive charged particle distributions are produced from events identified using a
“minimum bias” trigger [7; 8], along with studies of particle properties away from
the most active part of such events (“underlying event” distributions) [9; 10]. In the
latter case, higher-energy jets are triggered and studied using the calorimeter system
built for the purpose [11; 12; 13].

This work focuses on the additional information to be gained in the case that the
two issues are not so easily factorized, by studying the emergence of low-energy jets
from soft interactions. Particles are identified using the methods of the lowest-energy
measurements, but grouped together into jets according to the algorithms used to
study jets at higher energies. Low transverse momentum jets and their properties
are measured using the ATLAS Inner Detector, the component of the ATLAS exper-
iment that tracks charged particles, in events identified using the ATLAS Minimum
Bias Trigger Scintilators. The transition from soft to high-energy jets can thus be
studied. Furthermore, there is known to be tension in giving a single theoretical
description that works simltaneously for “minimum bias” and “underlying event”
distributions [14]; the addition of the jet-related observables measured in this work
may shed light on this situation.

The objects studied in this work are referred to as charged particle jets. They
are defined based on the acceptance of the ATLAS Inner Detector, including charged
particles with momentum transverse to the beam axis (pT) above 300 MeV/c. Al-
though information is lost – specifically, the momentum carried by neutral particles
and those with lower momentum – the corresponding gain is that charged particle
jets can be measured very precisely. Every constituent particle in a charged particle
jet is separately measured, allowing corrections with uncertainties that are dominated
by well-understood detector precision rather than theoretical extrapolation.

Charged particles have previously been used to measure jets in proton-proton
collisions at the CERN Intersecting Storage Rings [15], and in proton-antiproton
collisions at the CERN Super Proton Synchrotron [16] and Fermilab Tevatron [17].
Fragmentation of charged particles with respect to calorimeter jets has also been
measured [18; 19].

This work presents a measurement of several charged particle jet properties: (1)
the cross section as a function of transverse momentum and rapidity; (2) the distri-
bution of particles per jet; (3) the distribution of charged particle longitudinal mo-
mentum fractions with respect to the containing jet; (4) the distribution of charged
particle transverse momenta with respect to the containing jet; and (5) the number
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Chapter 1. Introduction

density of charged particles as a function of angle from the containing jet axis. These
measurements will complement existing studies of jet properties and inclusive col-
lisions, enabling a better understanding of strong interactions at the Large Hadron
Collider. They can be used quantitatively to improve the modelling of low-energy
interactions, so that the programs used for background studies as part of other LHC
analyses give more accurate results.

Chapter 2 of this work describes the theory of QCD and the approximations used
to understand low-energy collisions and the evolution of jets. Chapter 3 discusses the
Large Hadron Collider complex and the ATLAS detector, with a particular focus on
the subsystems used for this analysis. Chapter 4 presents the quantities measured
and corrections used to obtain them in detail. Chapter 5 describes the systematic
uncertanties in the measurement, based on uncertainties in tracking efficiency and
momentum measurement, on the propogation of modelling variations through to the
momentum distributions being measured, and on various assumptions made in the
analysis. Finally, Chapter 6 presents and discusses the measured distributions, and
Chapter 7 concludes and explores their potential impact on future measurements at
the LHC.
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Chapter 2

Quantum Chromodynamics in
Proton-Proton Collisions

Quantum Chromodynamics (QCD) [2; 3] is the quantum field theory of strongly
interacting particles. At the level of its fundamental particles, it is mathematically
almost equivalent to the theory of Quantum Electrodynamics (QED) [20; 21]; both
have families of fermions (quarks and leptons, respectively) and spin-1 gauge bosons
(gluons and photons, respectively). The crucial difference is that the symmetry of
QCD is the non-abelian SU(3) group, rather than the abelian U(1) of QED∗, so that
the gluons of QCD are self-interacting. This results in fundamentally different low-
energy behavior, giving rise to many of the complexities of physics at the LHC, not
to mention many of the complexities in the structure of bulk matter.

The coupling constant αS of QCD increases with decreasing energy, becoming
order unity at a scale of ΛQCD ∼ 200 MeV [29]. Around this energy and below,
interaction rates and other quantities cannot be calculated using perturbation theory,
which expands quantities in powers of αS. Qualitatively, this corresponds to the
exchange of a very large number of very low energy gluons, or simply a breakdown of
the treatment of the gluon field as a collection of quanta with well-defined momentum.
Therefore, in order to model the low-energy behavior of strongly interacting particles,
phenomenological models and approximations must be used. As a result, parameters
beyond those fundamentally present in QCD are introduced; different approximations
apply over the course of a single proton-proton interaction, and there is additional
freedom in determining the scales at which one model transitions into another.

∗In fact, QED is now known to be the low-energy form of the non-abelian Electroweak theory [22;
23; 24], whose symmetry group is SU(2)×U(1). QED emerges from this theory when the symmetry
is broken via the Higgs Mechanism [25; 26; 27]. This model, combined with QCD, is known as the
Standard Model of particle interations [28]. It should be noted that only QCD interactions have a
significant impact on the quantities measured in this analysis.
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Chapter 2. Quantum Chromodynamics in Proton-Proton Collisions

This chapter reviews the models of low-energy strong interactions that impact
the behavior of low-energy collisions and jets at the LHC, with a particular focus on
parameters that affect the modelling of the quantities measured in this work. After a
discussion of the basic properties of QCD, the components of the total proton-proton
cross section are described. The “soft” part of the total cross section – that is, the
component involving relatively little momentum exchange between the protons – may
be modelled through exchanges of hadrons and other composite states that appear
in Regge Theory. Larger momentum exchange is modelled using QCD more directly
via the parton model, which allows a perturbative interaction between quarks and/or
gluons to be factorized from the behavior of the “remnants” of the collided protons
and the soft interactions between them. Before and after the perturbative interaction,
parton evolution is the process by which an outgoing quark or gluon radiates others.
The phenomenological models that convert the resulting collection of partons into
stable hadrons is known as hadronization. The discussion then returns to the proton
remnants, which along with additional parton interactions between the protons, form
the underlying event. The chapter then concludes with details of how these models
are combined into Monte Carlo Event Generators, programs which produce simulated
events whose properties are intended to match the actual distributions of particles
observed at the LHC.

The simplest picture of the origin of jets is that they are a group of collimated
particles formed after the radiation and hadronization of a single high-momentum
quark or gluon. Realistic models, however, produce jets that contain contributions
from all of the elements described in this chapter.

2.1 Quantum Chromodynamics

The Lagrangian of QCD is given by [30]

L =
∑
q

q̄a(iγ
µDab µ −mqδab)qb −

1

4
FA
µνF

Aµν , (2.1)

where q represents the quark fields, Greek letters are 4-vector indices, lower-case
Roman letters are quark color indices (1-3), and upper-case Roman letters are gluon
color indices (1-8). Repeated indices are summed over. The covariant derivative Dab µ

is given by

Dab µ = δab∂µ − igtCabACµ , (2.2)
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Chapter 2. Quantum Chromodynamics in Proton-Proton Collisions

where the gluon field tensor FA
µν is given by

FA
µν = ∂µA

A
ν − ∂νAAµ − gfABCABµACν . (2.3)

The tAab and fABC are matrices and structure constants associated with the SU(3)
symmetry group. AAµ is the gluon field, and g =

√
4παS. The structural similarity to

QED is manifest in the Lagrangian, which in the QED case is identical except that
no color indices are needed, and the fABC term is absent so that the gauge field does
not couple to itself.

Quarks transform under the fundamental representation of SU(3), while gluons
transform under the the adjoint representation. The six quark flavor eigenstates under
QCD, which are also mass eigenstates, are listed in Table 2.1.

Table 2.1: Basic quark and gluon properties in QCD. Masses from [31].

Particle Symbol Spin Electric Charge Mass

(Anti-) up quark u (ū)

1
2

+2
3
(−2

3
) 1.7− 3.3 MeV

(Anti-) down quark d (d̄) −1
3

(+1
3
) 4.1− 5.8 MeV

(Anti-) charm quark c (c̄) +2
3

(−2
3
) 1.27+0.07

−0.09 GeV

(Anti-) strange quark s (s̄) −1
3

(+1
3
) 101+29

−21 MeV

(Anti-) top quark t (t̄) +2
3

(−2
3
) 4.19+0.18

−0.06 GeV

(Anti-) bottom quark b (b̄) −1
3

(+1
3
) 173.1± 0.6± 1.1 GeV

Gluon g 1 0 0

From this Lagrangian, a set of Feynman rules can be derived, which allow the
calculation of matrix elements M for specific perturbative processes. For example,
the scattering of two gluons can be calculated at leading order in perturbation theory
from the four diagrams shown in Figure 2.1. These diagrams represent a numerical
value for the matrix element, as a function of incoming and outgoing colors, helicities,
and momenta. Diagrams have a complex phase and hence multiple diagrams may
interfere either constructively or destructively. In general, the matrix element predicts
the cross section via

dσ

dΩ
=

1

64π2E2
cm

|M|2, (2.4)

where dΩ is the solid angle and Ecm is the center-of-mass energy of the incoming
particles.
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Chapter 2. Quantum Chromodynamics in Proton-Proton Collisions

(a) s-channel (b) t-channel (c) u-channel (d) 4-gluon
vertex

Figure 2.1: The four diagrams contributing to gg → gg at leading order.

When QCD calculations are made at higher order, corresponding to quantum cor-
rections to the simplest (“tree-level”) diagrams for a process, additional complexities
arise. Loop diagrams, for example the lowest-order corrections to the gluon propaga-
tor shown in Figure 2.2, give matrix element values that diverge at high energies.

(a) (b) (c)

Figure 2.2: Corrections to the gluon propagator at next-to-leading order in perturbation
theory. These are some of the diagrams that impact the energy scale-dependence of the
coupling constant αS.

A procedure known renormalization removes the divergences but introduces an
arbitrary scale µR, at which the subtractions are performed, that does not vanish from
calculations. Of course, physical observables must be independent of this parameter,
which is assured by absorbing the µR-dependence into the physical coupling constant
and quark mass. The physical coupling constant now depends on the scale Q2 of the
momentum exchanged in the process being calculated. This is given by the differential
equation [29]

Q2 ∂αs
∂Q2

= −33− 2nf
12π

α2
S + ..., (2.5)

7



Chapter 2. Quantum Chromodynamics in Proton-Proton Collisions

which can be solved to give

αS(Q2) =
αS(µ2

R)

1 + [(33− 2nf )/12π]αS(µ2
R) log(Q2/µ2

R)
. (2.6)

This equation can be solved to eliminate µR, giving

αS(Q2) =
12π

(33− 2nf ) log(Q2/Λ2
QCD)

, (2.7)

where nf is the number of kinematically accessible quark flavors. This Equation
defines the ΛQCD. It should be noted that the definition of ΛQCD therefore depends
on the number of flavors and on the order of perturbation theory at which calculations
are being made, as does αS(Q2); this is acceptable because these quantities themselves
are not physical observables, but it does mean that the appropriate definitions must
be taken when calculating observables in order to ensure consistency.

Because there are only six known quark flavors, the factor 33 − 2nf is always
positive; thus, as illustrated by Equation 2.5, αS(Q2) decreases with increasing Q2.
This is the origin of asymptotic freedom, but also dictates that low-energy processes
become impossible to calculate in straightforward perturbation theory. By contrast,
in QED the equivalent factor is always negative, so perturbative electrodynamic cal-
culations can be made at very low energies (although in principle they become strong
at very high scales). In both cases, corrections due to fermion loops tend to make the
coupling constant decrease with decreasing energy, but in QCD the impact of gluon
loops is the opposite and much larger.

2.2 Total Proton-Proton Cross Section

The total proton-proton interaction cross section can be divided into different types
of interactions, defined based on the particles exchanged in the interaction and the
ultimate fate of the interacting protons themselves. It should be noted that the
precise division betweens the components depends in some cases on the particular
implementation of the model, rather than on model-independent physical observables.

The first division is between elastic and inelastic interactions. Elastic scattering
is the straightforward scattering of two incoming protons into two outgoing protons.
The remaining inelastic component may be referred to collectively as minimum bias
events, such as might be collected using a minimum bias trigger (cf. Section 3.2.2.1).
These may be further subdivided into diffractive and non-diffractive events.

Qualitatively, diffractive events are those in which no color charge is exchanged
between the two protons; a colorless state called a pomeron is exchanged and one or
both protons “break up.” In the context of QCD, the pomeron may be interpreted as

8



Chapter 2. Quantum Chromodynamics in Proton-Proton Collisions

colorless combinations of gluons. Single-diffractive collisions are those in which one
proton remains intact, as illustrated in Figure 2.3(a), and double-diffractive collisions
are those in which neither proton survives, as shown in Figure 2.3(b). Both types of
events are characterized by a rapidity (y)† gap corresponding to the gap between the
remnants of one proton and the other.

(a) Single-diffractive (b) Double-diffractive (c) Non-diffractive

Figure 2.3: A schematic of single-, double-, and non-diffractive proton-proton collisions.
Double lines indicate the exchanged pomeron.

In non-diffractive collisions, depicted in general in Figure 2.3(c), objects with color
charge are exchanged between the components of the proton. At higher momentum
exchange between protons, non-diffractive collisions are well-modeled by factoring out
a perturbative QCD interaction via the parton model, as described in the next section.
At lower momentum exchange, events may be “built up” by overlapping multiple
parton interactions even in the regime where QCD is non-perturbative. Although this
is not theoretically well-motivated, models such as those implemented in the Pythia
and Herwig++ Monte Carlo programs described in Section 2.7 are able to describe
a range of experimental data through the use of tunable parameters governing the
quantity and momenta of multiple interactions.

Models of soft interactions with a better theoretical justification are based on
Regge Theory [32], or a combination of Regge Theory with QCD. Regge Theory is a
pre-QCD model of the strong interaction that relies on model-independent symme-
tries of scattering processes and the analytic continuation of momenta into unphysical

† In this work, proton-proton collisions are analyzed in a right-handed coordinate system with
the origin as the collision point. The Z-axis points along the beam direction. In the context of the
LHC, it is chosen to point in the counter-clockwise direction. The X-axis points to the center of the
LHC ring and the Y-axis points upwards. The azimuthal angle φ is measured around the beam axis
and the polar angle θ is measured from the Z-axis. The rapidity y for a track or jet is defined by
y = 1

2 ln E+pZ
E−pZ , where E is the object’s energy and pZ is the component of its momentum along the

Z-axis. It is equivalent to the pseudorapidity η = − ln(tan θ
2 ) in the massless limit. In this work, the

“distance” between two objects ∆R =
√

(∆φ)2 + (∆y)2 is defined using rapidity.

9



Chapter 2. Quantum Chromodynamics in Proton-Proton Collisions

regions to relate hadron properties to strong scattering cross sections. For example,
the multiperipheral model [33] deals with the exchange of many strongly interacting
pomerons and reggeons, which correspond to superpositions of hadron states with a
particular spin. The dual parton model [34] adapts the techniques of the multipe-
ripheral model to the exchange of many non-perturbative quarks and gluons, and is
implemented for soft interactions in the Phojet Monte Carlo program described in
Section 2.7.

2.3 The Parton Model

In the parton model [35], high-momentum interactions between two protons can
be factorized into their high-momentum (short-distance) and low-momentum (long-
distance) components. Because of asymptotic freedom, the high-momentum compo-
nent can be computed as the interaction of one parton from each proton. The partons
have momentum fraction x1 and x2 of the parent proton’s momentum, which at the
LHC is a constant P for both proton beams (3.5 TeV in the present run). The largest
contribution to the cross section at the LHC is through gluon-gluon interactions, in
which case the factorization can be described by the equation

σ(pp→ X + Y ) =

∫
dx1dx2fg(x1)fg(x2)σ(gg → X). (2.8)

This equation is illustrated schematically in Figure 2.4. Here X is some particular
output of the gluon-gluon scattering. Y is the beam remnant, a collection of particles
arising from the remainder of the proton; this, along with additional soft interactions
(not shown) between the protons, is described in Section 2.6. The total cross section
for the interaction of two gluons of momentum x1P and x2P , σ(gg → X), is illustrated
by the cross-hatched blob in the diagram, The parton distribution functions (PDFs)
fg(x) represent the probability distribution for gluons with momentum fraction x
when the proton interacts. Although the equation specifies gluons as written, in
its more general form it includes a sum over all possible partons, i.e., quarks and
antiquarks of various flavors.

Some sample parton distribution functions are shown in Figure 2.5. The basic
makeup of the proton, two up quarks and a down quark (the valance quarks), is
reflected in the following rules for the PDFs:∫

[fu(x)− fū(x)] dx = 2, (2.9)∫
[fd(x)− fd̄(x)] dx = 1. (2.10)
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Figure 2.4: A schematic illustrating the parton model as described in Equation 2.8 and
the surrounding text. Diagonally shaded blobs represent the extraction of a gluon from
the proton via the PDFs, while the hatched blob represents the hard gluon-gluon scatter
into some particular product Y. Beam remnants are also shown. Other aspects of high-
momentum proton-proton collision modelling that are not shown include multiple parton
interactions and the soft underlying event.

The sea quarks, including low-x up and down quarks as well as the strange quarks
shown as an example, are found because of quark-antiquark pair production. Roughly
half of the proton momentum is found in gluons, which dominate at low x.

The usefulness of the parton model is based on the universality of the PDFs, in
the sense that they give the probability of finding partons at a given x for many
processes. Thus they can be derived from one type of experiment and applied to
another, in this case LHC collisions. One major source for deriving PDFs is electron-
proton scattering experiments ([31], 201-214); in these experiments, there is only
one unknown PDF rather than two so that results can be determined in a more
straightforward manner. It can be proven that PDFs are not changed by long-range
proton-proton interactions, i.e., that it is valid to use electron-proton scattering PDFs
for proton-proton interactions, up to corrections of that fall with the center-of-mass
energy [29].

In the “naive” formulation of the Parton Model, the cross section σ(gg → X) is
simply the cross section calculated in parton-level QCD as described above. When
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Figure 2.5: Selected parton distribution functions, illustrating some basic properties of
PDFs. Gluons are dominant at low momentum fraction x, while at high x the valance
quarks dominate. The up quark PDF is approximately twice that of the down quark in
the latter range, because the core constituents that define a proton are two up quarks and
one down quark. Generated with [36].

higher-order QCD corrections are included, they must be factorized ; the low-energy
component of the corrections includes interactions with a long timescale that should
be included in adjustments to the PDFs rather than the hard scatter. Thus PDFs
are dependent on the factorization scale µF as well as the renormalization scale µR,
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both of which are typically taken to be equal to the scale of the interaction Q2. As
long as the PDFs and hard-scattering calculations use consistent values, the results
should not depend greatly on the choices of µF and µR; in practice, the differences
that arise from “reasonable” variations in these parameters is taken as part of the
systematic uncertainty on theoretical calculations. The details of factorization, and
hence the PDFs, also depend on the order of perturbation theory in which the hard
scattering is calculated.

2.4 Parton Evolution

The overall picture of a single parton from each proton interacting as in Figure 2.4,
and interacting at leading order as in Figure 2.1, does not provide an adequate pic-
ture of collisions with many outgoing low-energy hadrons; these final-state particles
arise because both incoming and outgoing partons may radiate additional partons
before hadronization. Although the production of an additional quark or gluon may
be included with a complete next-to-leading-order calculation of the hard scattering
process, the difficulty persists in any reasonable fixed-order calculation because the
radiation of many soft and collinear partons enhances the cross section. This prob-
lem may be addressed by treating the evolution of a set of partons as a sequence of
separate splittings; this is a semi-classical approximation because it neglects quantum
interference between radiation from different partons and between different shower or-
derings. However, the approximation is most accurate in the case of soft and collinear
radiation under consideration; it allows each splitting to be considered separately, as
depicted in Figure 2.6. The matrix element squared for these individual splittings,
generally, is of the form

|M|2 ∼
∫
dk2

T

k2
T

αS
2π
P (z), (2.11)

where kT is the momentum of the emitted parton transverse to the incoming parton’s
momentum vector, z is the momentum fraction of the emitted parton, and P (z) is a
splitting function that depends only on z and the particular splitting (e.g., g → gg,
g → qq̄, q → qg, etc.). The integral goes from the momentum scale µ at which the
interactions become non-perturbative up to the scale of the interaction Q2, so we have

|M|2 ∼ αS log(
Q2

µ2
). (2.12)

Because n splittings are treated sequentially in this approximation, they result

in a factor of
[
αS log(Q

2

µ2
)
]n

. This factor, unlike powers of αS occurring without a

logarithm, can often be summed to all orders in αS, either analytically or through
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a random Markoff process; separating out this part of the diagram and summing it
while calculating the rest at fixed order is the leading logarithm approximation. In
the case of soft radiation from the incoming partons, these leading logarithms are
incorporated into the dependence of the PDFs on Q2 via the DGLAP equations [37;
38; 39]. These are a set of coupled differential equations for the PDFs as a function
of Q in terms of the splitting functions P .

(a) q → qg (b) g → gg (c) g → qq̄

Figure 2.6: Diagrams illustrating the allowed types of “splitting” of quarks and gluons
into each other, which are accounted for in the DGLAP equations and in the sequential
modelling of parton radiation.

For the practical calculation of many-hadron final states, a Monte Carlo procedure
may be implemented to produce random shower configurations on an event-by-event
basis. The probability for a parton with an initial virtual mass-squared ti

‡ to evolve
to mass-squared t without radiating is given by the Sudokov form factor :

∆(t) = exp

[
−
∫ t

ti

dt′

t′

∫
dz
αS
2π
P (z)

]
. (2.13)

The shower may then be produced as follows. For each parton that may shower,
a random number generator is used to determine the value of t at which the radiation
occurs, in a manner such that many such calculations would produce the appropriate
probability distribution. The procedure is then repeated for both resulting partons.
Branchings are added successively to all partons produced until the scale t is low
enough that perturbative physics is no longer applicable and the shower is terminated.
(This scale t0 is matched with the scale of hadronization and is described in the next
section.) The process is applied to both incoming partons (initial state radiation)
and outgoing partons (final state radiation),

It should be noted that Equation 2.13 assumes that the shower is ordered in the
virtuality t. Because there is no intrinsic order in the true quantum mechanical pro-
cess, the order in which radiation occurs in this approximation is arbitrary. However,
different orderings produce results with different advantages. For example, ordering

‡ The virtual mass-squared t for a particle is given by t = m2 = E2 − ~p2; this is not constrained
to equal the true particle mass during short-lived quantum-mechanical processes.
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in the transverse momentum kT or the angle of the radiation produces a treatment
of the angular distribution of outgoing particles that better matches the expected
results from a full calculation of the radiation including interference.

2.5 Hadronization

Ultimately all partons must be bound together in hadrons, a process that is entirely
non-perturbative. Therefore parton showering must be cut off at some scale t0, which
is arbitrary but typically well above ΛQCD. To complete the event-by-event descrip-
tion from this point, phenomenological models of hadronization then convert the
final particles in the shower into colorless hadrons. In order to minimize the model-
dependence of the showering-cutoff parameter, the hadronization model should also
depend on this variable; thus, if t0 is set high so that fewer partons are present to
hadronize, the model should in some manner produce more hadrons per parton than
it would with a lower t0 [29].

Two genres of hadronization models are typically used: the string model [40] and
the cluster model [41]. Both models rely on the color-connectedness of adjacent quarks
and gluons, known as a planar configuration because lines of color do not “cross”;
this is true to a good approximation because closed loops of color can assume any
of NC = 3 colors, and so are enhanced by a factor of N2

C over related non-planar
diagrams [42].

2.5.1 String Fragmentation Model

In this model, strings of color connect the quarks from the shower to antiquarks. The
strings are connected via gluons from the shower, with the gluons becoming “kinks”
with localized energy. Insofar as these strings are physically realized, they corre-
spond to flux tubes of the strong color field. The strings are decayed into hadrons
by producing quark-antiquark pairs which “break” the string; these are assigned mo-
mentum fractions according to the splitting function P (z) introduced in Section 2.4.
Because hadrons are produced along the length of the string, this model gives an
enhanced probability for hadrons in certain regions between jets in multijet events.
The simplest example is three-jet events in electron-positron collisions, where strings
are expected to extend from a jet associated with an outgoing quark, through a jet
associated with a radiated gluon, and on to a jet associated with an outgoing anti-
quark. As a result, hadrons are predicted to be more plentiful in (anti)quark-gluon
jet gaps and less so in the quark-antiquark jet gap, as has indeed been observed [43;
44].

The most straightforward model for producing string connections between out-
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going quarks and gluons can produce an excessive energy density of strings in the
central region (transverse to the beams), as color-connected partons may end up on
opposite sides of the event. Models of color reconnection have therefore been intro-
duced, which recompute the color reconnections after the completion of the parton
shower in order to minimize the total string potential energy [45]. Conceptually, this
is justified by the idea that in dense events, strings may cross and change to more
energetically favorable configurations.

2.5.2 Cluster Model

The cluster model produces color-neutral clusters from quark-antiquark pairs in the
parton shower, after first splitting the remaining gluons. These clusters are then
interpreted as excited hadron pair resonances [46] and decayed into hadron pairs
according to the available phase space. Such models must deal effectively with rare
high-mass clusters, for which decay into a single hadron pair is unlikely. More complex
decay schemes may be used, or the clusters may be split into appropriate masses before
decay.

2.6 Beam Remnant and Underlying Event

In addition to particles produced in hard scattering and radiation from incoming
and outgoing partons, there are several contributions to the particle production in a
proton-proton collision. This problem is factored into the issue of beam remnants,
i.e., the simulation of the remaining energy-momentum and charge of the proton after
a parton is extracted, and the underlying event, a catch-all term for soft interactions
between the two protons beyond the hard partons.

The beam remnant may be simulated starting with a few partons that carry the
appropriate color charge. For example, if a quark has been extracted from the proton,
then an additional quark pair balances its charge; this pair is given the momentum
leftover from the original proton. Parton shower evolution applied to these partons, in
the same manner as for initial and final state radiation. Because the system has very
large momentum along the original beam direction, most of the resulting particles
will be outside the acceptance of standard collider detectors.

A widely used model of the underlying event is via multiple parton interactions, in
which it is assumed that multiple independent “semi-hard” perturbative scatterings
between separate partons account for the additional activity. This model can account
for the fact that the predicted jet production cross section in high-energy proton-
proton collisions appears to exceed the total proton-proton interaction cross section
if the cross section is extrapolated down to a jet momentum of 2 GeV. Multiple jet
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production interactions occur in one proton-proton collision. In the eikonal model [47;
48], the number of collisions is a Poisson distribution with mean based on a proton-
proton impact parameter and an overlap function reflecting the distribution of matter
within the proton. Different versions of the multiple parton interaction model have
a number of tunable parameters, related to the momentum cutoff for the additional
scatters and the matter distribution within the proton. With appropriate parameters,
this model correctly produces the increase in underlying event density based on the
momentum of the hard scatter; because hard scatters simply represent the high-
momentum, low-probability tail of the semi-hard scatters, they are most likely to
occur in collisions with many interactions.

The Soft Underlying Event model [49] is a parameterization of underlying events
based originally on simulations created by the UA5 experiment. It is based on a
number of independent cluster decays, with free parameters corresponding to the
distribution of the number of particles, cluster masses, and momentum distribution
of outgoing particles.

2.7 Monte Carlo Event Generators

A Monte Carlo Event Generator is a computer program that combines choices of the
models described above to form a complete description of the particles produced in
a collision on an event-by-event basis. Probability distributions for event properties
can thus be computed by simulating large numbers of events without an impossibly
detailed non-perturbative quantum mechanical calculation of possible distributions
of outgoing hadrons. A number of programs exist; some focus on particular applica-
tions, for example low-energy collisions or next-to-leading-order calculations of certain
processes, while others are designed to be as general as possible.

The PYTHIA Monte Carlo [50] program computes a very large number of pro-
cesses at leading order, produces minimum bias collisions and underlying events using
multiple parton interactions, and uses the string hadronization model. It has a large
number of tunable parameters associated with its component models, and significant
work has been done to determine best values of these parameters based on a range
of collider data. After tuning, PYTHIA is very succesful in describing a wide range
of observables. In this work, a number of different PYTHIA 6.421 tunes, i.e., sets of
values for model parameters, are used. Although all are designed to produce distri-
butions consistent with existing data, they are based on different tuning strategies
and on reasonable variations in how that consistency is achieved.

The Perugia family of tunes [51] uses the CTEQ5L [52] parton distributions;
there is a central value (“Perugia-0”) and several variants that attempt to bracket
the possible changes in tune parameters (and hence event structure) that are per-
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mitted while still fitting existing data. The central value (“Perugia-0”) is tuned to
correctly produce the Drell-Yan [53; 54] (i.e., scattering through a virtual photon or Z
boson) transverse momentum spectrum, the minimum bias average momentum as a
function of charged particle multiplicity, and the total particle multiplicity, based on
hadron collider data at several energies. Two variants, “Perugia HARD” and “Perugia
SOFT,” are created changing the Initial State Radiation cutoff scale so that the per-
turbative contribution is different, with other parameters adjusted to bring the tuned
distributions back into agreement. Perugia HARD (SOFT) has more (fewer) jets
with higher (lower) momentum, and a higher (lower) charged multiplicity. Another
variant, Perugia 2010, is an adjustment of Perugia-0 that improves the description
of jet shapes and adjusts hadronization parameters for better consistency with data
collected at the Large Electron-Positron collider (LEP), given that the original val-
ues for these parameters were based on Q2 shower ordering. Finally, Perugia NOCR
(“no color reconnection”) represents an effort to reproduce the same data with no
color reconnection model used; it is used in computing systematic uncertainties, but
because it could not be made to fit all the original tuning data it is not included on
comparison plots. All Pythia tunes described thus far use pT-ordered showering; the
DW tune [55] is also used in order to include the impact of Q2 ordering.

Two Pythia 6.421 tunes produced by the ATLAS collaboration are also used,
MC09 [56] and AMBT1 [57]. These use the MRST LO* PDFs [58] and are tuned
based on Tevatron jet distributions, charged particle multiplicities, and momentum
and charged particle densities as a function of leading jet pT. The AMBT1 tune is
further updated based on single track distributions in ATLAS minimum bias data [7].

This analysis also uses PYTHIA version 8.145 [59] with the 4C tune [60]; this
version of the program is actually a complete rewrite of the older version, albeit with
very similar models. One improvement is that, whereas in PYTHIA 6 the single- and
double-diffractive events never produce central jets, this occasionally does happen in
the PYTHIA 8 models; thus the jet content in inclusive minimum bias events is more
realistic.

The Herwig++ Monte Carlo [46] is another general-purpose program for leading-
order calculations. It uses cluster instead of string hadronization. Although earlier
versions of the program used the soft underlying event model, the program now
uses multiple parton interactions. A Herwig++ 2.4.2 sample is used with its default
settings, along with an additional sample tuned on 7 TeV underlying event data with
Herwig++ 2.5.1 (UE7) [61; 62].

Finally, the PHOJET 1.12.1.3 Monte Carlo [63; 64] is used with its default tune.
This Monte Carlo specializes in minimum bias events and uses the dual parton model,
allowing multiple soft and hard collisions. It relies on Pythia 6.115 [65] for the frag-
mentation of partons.
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Chapter 3

The Large Hadron Collider and
ATLAS Detector

At the CERN laboratory near Geneva, Switzerland, protons are accelerated by a chain
of accelerators to progressively higher energies, finally arriving in the Large Hadron
Collider. Here they are accelerated, stored, and brought in collision at up to eight
points around the LHC ring, of which five are currently used by experiments. The
ATLAS detector, located at Point 1 near the main CERN site, is a general purpose
detector designed to conduct measurements of any new particles produced at the
LHC.

The LHC and ATLAS, along with the CMS experiment, were designed and built
together with the overall goal of exploring very high-energy, low-rate interactions
in particle physics. The LHC is designed to produce sufficient collisions with Higgs
bosons for the hypothetical particle to be discovered, if it exists, at any mass consistent
with known limits. Supersymmetry [66] and other extensions of the Standard Model
of particle physics can be investigated to a significant degree. This set of physics goals
makes it necessary to accurately measure directly a range of high-momentum objects
that emerge from collisions: electrons, muons, photons, hadronic jets (including those
with displaced vertices), and missing energy from undetected particles. From these,
the creation and decay of a very wide range of short-lifetime particles, both known
and unknown, may be inferred. (Two other experiments at the LHC, ALICE [67] and
LHCb [68], have different physics programs, focusing on the collision of heavy ions
and the physics of B-hadrons respectively.)

In order to achieve these goals, the LHC must accelerate protons to very high
energy – 7 TeV at design energy, currently 3.5 TeV – and collide them at a very high
rate. Proton-proton collisions are chosen because protons are stable, have a higher
mass than electrons (and hence can be accelerated to higher energy without excessive
synchrotron radiation), and are easy to obtain and accelerate in large quantities.
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Their composite structure (cf. Section 2.3) results in a range of energies being made
available for high-energy processes, an advantage in the search for new particles of
unknown mass. The ATLAS detector has a variety of subsystems dedicated to the
identification and measurement of high-momentum objects: calorimeters to measure
photons, electrons, and jets, to differentiate between them, and to capture energy
over the broadest range of solid angle possible; charged particle tracking to separate
photons from electrons and identify displaced vertices; and a dedicated system to
identify high-energy muons.

3.1 The Large Hadron Collider Complex

The LHC is the world’s largest proton-proton collider, accelerating two beams of
protons to a design energy of 7 TeV per proton. Up to 2808 bunches of protons, each
with 1011 protons, are accelerated and stored for many hours so that a large number
of collisions may be produced from the same bunches. In early running, the energy
per proton is limited to 3.5 TeV per beam.

The LHC was built to take advantage of existing accelerator infrastructure at
CERN. It was built in the tunnel that previously housed the Large Electron-Positron
collider (LEP) [69]. The LHC uses the accelerator chain previously used for the Super
Proton Synchrotron (SPS), including the SPS itself; many aspects of the accelerator
chain have been upgraded in order to achieve the necessary beam properties for LHC
injection. The LHC accelerator chain is described in detail in [70].

A schematic of the initial stages of the LHC accelerator complex is shown in
Figure 3.1. Hydrogen ions are produced and accelerated to 100 keV in a duoplasma-
tron source, then accelerated to 50 MeV in Linac-2, a linear accelerator. The linac
produces protons in bunches, which are combined to increase intensity in the Proton
Synchrotron Booster (PSB). The PSB is the first of four storage rings which use radio
frequency acceleration systems, keeping bunches together at the local minimum of the
electromagnetic wave; the bunches can thus be gradually accelerated by increasing
the frequency. Thus the PSB accelerates protons to 1.4 GeV, the Proton Synchrotron
(PS) to 25 GeV, and so on. The bunch structure for the LHC is also established in
the PSB and PS. After bunches are stored in the four parallel rings of the PSB, they
are injected into the PS in two separate batches, initially filling six of seven allowed
positions (i.e., the 7th harmonic). The bunches are split over several steps as they
are moved to the 84th harmonic, so that there are 72 bunches with 25 ns spacing
followed by 12 empty bunches; this gap is necessary so that kicker magnets can be
turned on to eject the beam. Before ejection and transmission further, the bunches
are rotated in order to decrease their length.

After acceleration to 25 GeV, the bunches in the PS are transferred to the Super
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Figure 3.1: The initial stages of the Large Hadron Collider accelerator chain. Image
from [71], used within terms.

Proton Synchrotron (SPS), which is shown along with the LHC in Figure 3.2. The
SPS was formerly used as a proton-antiproton collider for the discovery of the W [72]

and Z [73] bosons, and is still used in fixed target experiments and to produce test
beams. Three or four PS batches are injected into the SPS before acceleration to 450
GeV, after which the bunches are compressed by an RF voltage increase and the tails
of the bunch distribution are cleaned by copper scrapers. The full SPS batch is then
injected into the LHC, giving a complex bunch structure that contains gaps reflecting
the SPS injection kicker time (8 bunches after each 72-bunch PS batch) and the LHC
injection kicker time (38 or 39 bunches every 3 or 4 PS batches); there is also one
119-bunch abort gap left for the kicker magnets that dump the LHC beam. This
yields 2808 filled bunches in the LHC, out of 3564 possible bunch locations. It should
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be noted that the above description covers the nominal LHC configuration, which has
not yet been achieved. Other configurations involve fewer PS bunch splittings (e.g.,
for 75 ns timing), fewer SPS or PS batches, and other possibilities. The data for the
present analysis was taken in runs where only a few bunches were present in the LHC
machine.

Figure 3.2: The layout of the LHC, including SPS accelerator and locations of experiments.
Image from [74], used within terms.

The PS elementary cycle is 1.2 s, the PS can inject to the SPS every 3.6 s, and
the SPS has a cycle of 21.6 s. This means that it takes at least 10 minutes to fill both
LHC beams, after which the LHC energy is ramped to the full 7 TeV (or current 3.5
TeV) per beam.

Beyond the beam energy the other critical quantity that determines the measure-
ments that can be made at the LHC is the luminosity, a variable that measures the
density of proton bunches brought into collision and the rate of crossings per time. It
thus determines the number of collisions per unit time N for a process with a given
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cross section σ via

N = Lσ. (3.1)

The luminosity can be determined from the LHC beam parameters via

L =
N2
b nbfrevγF

4πεnβ∗
. (3.2)

Here Nb is the number of particles per bunch, nb is the number of bunches, frev =
c/26.7 km = 11.2 kHz is the LHC revolution frequency, and γ is the usual relativistic
γ-factor of the protons. F is a correction factor due to the LHC crossing angle at
the interaction point, which is put in place to prevent “parasitic collisions” from
occurring between unintended bunches, which would reduce the beam intensity and
confuse detector data collection. εn is the normalized transverse beam emittance, a
measure of the phase and momentum space occupied by the beam. β∗ is the value
of the beam envelope function beta at the interaction point, and hence a measure of
the beam size and focusing distance at the collision point.

The LHC design luminosity is 1034 cm−2s−1, to be acheived with Nb = 1.15 ×
1011, εn = 3.75µm, and β∗ = 0.55 m. The data analyzed in this work reflect LHC
instantaneous luminosities of at most 6.6× 1028 cm−2s−1, with only a few bunches in
the machine and β∗ either 2 m or 10 m.

3.2 The ATLAS Detector

The ATLAS detector is a large, general-purpose particle detector build around LHC
interaction point 1, close to the main CERN site. It is designed to cover nearly the
entire solid angle around the interaction point, excepting a narrow range around the
LHC beam pipe: elements of ATLAS come within 1 degree of the beam axis. The
angle from the beam axis is typically parameterized by the pseudorapidity η; in this
variable, coverage by ATLAS extends to |η| < 4.9. ATLAS, like other such detec-
tors, is built as a series of concentric subdetectors, which are built with cylindrical
symmetry. An overall illustration of ATLAS appears in Figure 3.3.

The portion of the ATLAS detector closest to the interaction point is known as
the Inner Detector (Section 3.2.1), and is devoted to the tracking of charged particles.
It is surrounded by a 2T solenoidal magnet, which causes the paths of particles to
curve in order to enable the measurement of their momentum. Outside of that,
the calorimeter system (Section 3.2.3) absorbs and measures the energy of photons,
electrons, and strongly interacting particles; its inner section (the electromagnetic
calorimeter) has good spatial segmentation to optimize the separation of electrons,
photons, and jets, while the outer hadronic calorimeter has sufficient depth to contain
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Figure 3.3: An overview of the ATLAS detector, from [4].

most hadronic jets. The outermost part of ATLAS is the muon system (Section 3.2.4),
which identifies and measures muons, which pass through the rest of the detector if
their momentum is above a few GeV.

3.2.1 Inner Detector

The Inner Detector, shown in Figure 3.4, occupies an overall volume 1.15 meters in
radius and total length 7 meters along the Z axis, covering a pseudorapidity range of
|η| < 2.5. It contains three separate technologies, with the highest precision in the
innermost layers near the interaction points. The two innermost subdetectors, the
Pixel Detector and Semiconductor Tracker, consist of well-separated layers of sensitive
silicon, from which a charge is read out when electrons and holes are separated by
a passing charged particle. The outermost Transition Radiation Tracker consists of
arrays of 4 mm diameter gas-filled tubes; the gas is ionized by passing particles, with
charges collected via the voltage between an outer cathode and inner anode wire.
Each of these subdetector systems is separated into cylindrical barrel sections with
active detector elements perpendicular to the radial direction, and endcap sections
with detector elements perpendicular to the beam; this design optimizes the resolution
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perpendicular to the particle path and minimizes the total material that particles pass
through.

Figure 3.4: The ATLAS Inner Detector, from [4].

The track reconstruction algorithms, which determine the trajectories and mo-
menta of charged particles by combining the pattern of energy deposits (“hits”) in
the Inner Detector, are discussed in Section 4.2.1.

3.2.1.1 Pixel Detector

The Pixel Detector provides precision measurements of particle paths close to the
beam pipe; its precision 50× 400 µm silicon pixels are designed for the identification
of secondary vertices. Its central barrel region has a length of 801 mm, with three
layers at a radius of 50.5, 88.5, and 122.5 mm from the center of ATLAS, so that all
tracks in the region |η| < 1.9 pass through all three layers. On each side, three disks
at a distance of 495 mm, 580 mm, and 650 mm are positioned in such a way that the
region of three-layer coverage is extended to |η| < 2.5, as seen in Figure 3.5.

The Pixel Detector is the closest part of ATLAS to the interaction point, and
will be exposed to a very high flux of particles over the lifetime of the experiment.
Therefore several design features are geared toward survival in the intense radiation
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Figure 3.5: Details of the layout of the Inner Detector layers and subdetectors, from [4].

environment. The on-detector circuitry and layout are specialized to minimize radia-
tion damage. The bulk silicon has oxygen impurities introduced to enhance resistance
to damage; it is initially n-type, but becomes p-type as radiation damage changes the
effective doping concentration. The sensor structure is designed to ensure functional-
ity through this type inversion. The pixel sensors are n+-doped, and there are p-type
implants on the opposite side of the bulk; thus during initial operation, the depletion
region grows from the back side but extends to the pixels. After type inversion, the
depletion region grows from the pixel side so that readout remains possible. The
leakage current increases with radiation damage, but can be reduced by operating
the detector at roughly −7 ◦C; further damage from annealing is also reduced at this
temperature. Despite these measures, the innermost layer of the pixel detector (the
B-layer) will have to be replaced after a few years of high-luminosity running.
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3.2.1.2 Semiconductor Tracker

The Semiconductor Tracker (SCT) is designed to provide precision silicon tracking
similar to that of the Pixel Detector, but because it is at a greater distance from the
Interaction Point, the requirements placed on its measurement precision and radiation
response are less stringent. It contains silicon strips of width 80 µm in the precision
φ direction, but 12 cm in extent in the perpendicular direction (Z in the barrel, r in
the endcaps). It nevertheless provides precision measurements in the perpendicular
direction, because each of its layers have a double layer of strips. The strips on one
side of the layer are offset by 40 µrad with respect to each other, so that when a
charged particle passes through, information on which strips on each side have charge
deposited can be combined. The SCT consists of four double barrel layers at radii
from 29.9 cm to 56.3 cm, and each of its endcaps have a total of nine layers with Z
distance from 85.4 to 272.0 cm; the geometry may be seen in more detail in Figure 3.5.

3.2.1.3 Transition Radiation Tracker

The Transition Radiation Tracker covers |η| < 2.0 with polyimide drift tubes 4 mm
in diameter, such that a typical track passes through at least 36 straws (except in
the transition region between barrel and endcap). In the barrel, tubes are 144 cm
long and run along the z direction; in the endcaps, they are 37 cm in length and run
radially. The central anode wire, 31 µm in diameter, is made of tungsten plated with
gold. The cathode, on the inside of the tube itself, is made of aluminum protected by
a layer of graphite-polyimide. The anode is held at ground voltage, while the cathode
is operated at -1530V. When the standard gas mixture is ionized by a charged particle
passing through the tube, this gives a gain of 2.5×104 and an electron collection time
of 48 ns. The standard gas mixture is 70% Xe, 27% CO2, and 3% O2.

The TRT straws are interleaved with polypropeline fibers or foils that cause elec-
trons with momentum above 2 GeV to produce significant numbers of transition
radiation photons. The Xe absorbs these low-energy photons, producing a signifi-
cantly amplified signal; the front-end electronics have a high-threshold discriminator
to detect these signals, allowing electrons to be identified as tracks with a significant
number of high-threshold hits.

In the context of the present work, the TRT is used primarily to provide additional
high-radius measurements on tracks already found by the silicon detectors, thereby
refining measurements of the track parameters. In particular, the curvature measure-
ment for very straight tracks is enhanced, thereby improving momentum resolution
for high-momentum tracks and reducing mismeasurements (cf. Section 5.2).
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3.2.2 Trigger System

The ATLAS trigger system has three levels of processing, each progressively taking
more time and making more refined decisions of which events should be recorded for
further analysis. The Level-1 trigger system is built on specialized on-detector hard-
ware, which makes a decision on each event within 2.5 µs in order for all subdetectors
to read out the data from that event; its maximum rate is up to 75 kHz, about three
orders of magnitude below the LHC bunch-crossing rate at full capacity. The Level-2
trigger system is based on off-detector processing using a special configuration of the
ATLAS reconstruction software that focuses on Regions of Interest defined by the
location of the L1 Trigger; it selects events at a rate of roughly 3.5 kHz. The Event
Filter is based on full reconstruction of events, and selects roughly 200 events per
second for permanent storage.

As the present work makes an inclusive measurement using early, low-rate ATLAS
data, the full power of this trigger system is not used. Events are selected based on
the Level 1 signal from the Minimum Bias Trigger Scintillators (MBTS) [75], which
are designed to collect as inclusive a signature is possible. Studies of this trigger
selection use events selected randomly from all events with LHC beam crossings, as
measured using the Beam Pickup Timing devices (BPTX).

3.2.2.1 Minimum Bias Trigger Scintillators

The ATLAS MBTS system is composed of segmented polystyrene scintillator counters
mounted on the liquid argon calorimeter endcap cryostat on each side of the detector,
3.65 m from the interaction point. They cover the pseudrapidity region 2.09 < |η| <
3.84. They were installed in order to identify bunch crossings with inelastic proton-
proton collisions with minimal further requirements during low-luminosity running,
and trigger on almost any significant particle activity. On each side, there are two
segments in the radial direction and 8 in φ, for a total of 32 channels. The MBTS
system is not designed for substantial radiation exposure, and is expected to lose
efficiency as the LHC luminosity increases during 2011.

The MBTS trigger is the primary trigger used for this analysis. Events with
even the low-momentum jets studied have many more particles than the average pp
collision, so the trigger is extremely efficient, as discussed in Section 4.3.1.

3.2.2.2 Beam Pickup Timing Devices

The BPTX stations are part of the instrumentation of the LHC itself, situated along
the beam pipe 175 m from the ATLAS collision point in each direction. On each
side, they consist of four electrostatic button pick-up detectors, which sum the signal

28



Chapter 3. The Large Hadron Collider and ATLAS Detector

induced by the passage of each charged LHC bunch. They are operated by ATLAS,
and used for both the overal timing and for “zero bias” triggering.

3.2.3 Calorimetry

The calorimeter system is divided into a number of subdetectors, and also into two
conceptual regions: an inner electromagnetic calorimeter, and an outer hadronic
calorimeter. The former is finely segmented and designed to differentiate between
photons, electrons, and strongly interacting particles through the shape of the parti-
cle cascades they produce when they interact with the material. The electromagnetic
calorimeter measures energy deposits, but does not completely contain the typical
high-energy hadronic jet. This is the task of the hadronic calorimeter, which is less
finely segmented and precise but has sufficient depth to completely absorb showers
from even the highest-energy jets.

A schematic of the calorimeter system is shown in Figure 3.6. The inner parts of
the system are contained within one central and two endcap cryostats, allowing them
to use liquid argon as their active readout material. The central cryostat contains
the central electromagnetic calorimeter, which covers |η| < 1.475 and uses lead as its
absorber. The endcap cryostats contain the similarly-designed electromagnetic end-
cap calorimeter (EMEC), covering 1.375 < |η| < 3.2, beyond which is the hadronic
endcap (HEC), which covers 1.5 < |η| < 3.2 and uses copper as its absorbing mate-
rial. Inside the EMEC and HEC, at radii occupied by the Inner Detector at smaller
|z|, is the forward calorimeter (FCal), which as one electromagnetic module with cop-
per absorber followed by two hadronic modules using tungsten absorber. The Tile
Calorimeter system surrounds the cryostats and provides additional depth at central
rapidity, |η| < 1.7, with central and extended barrel sections. It uses lead as its
absorber and doped polystyrene scintillators to measure the deposited energy.

Although the calorimeter system is the primary ATLAS System for measuring
jets, it is not used in the present analysis (except for a limited set of cross-checks de-
scribed in Section 4.5). This is because it is optimised for good resolution in measuring
high-momentum jets, and not for measurement of individual low-momentum parti-
cles or low-momentum jets. Calorimeter-based measurements of jet shapes and jet
constituents have been made [11], but the present analysis is designed to be comple-
mentary and to have independent systematic uncertainties. In principle, an algorithm
that combined tracking information for charged particles with calorimeter-based mea-
surements for individual neutral particles (primarily pions) could be considered as an
extension to this analysis. Such an algorithm has been implemented by the CMS ex-
periment, where it enhances jet energy resolution at all energies; the gains for ATLAS
would be considerably less.
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Figure 3.6: The ATLAS calorimeter systems, from [4].

3.2.4 Muon System

The ATLAS muon system is the outermost part of the ATLAS detector, which iden-
tifies muons by relying on the fact that high-momentum muons pass through the
calorimeter system. A measurement of their momentum is also made, which is very
important for extremely high-momentum muons whose tracks in the Inner Detector
appear essentially straight; the muon system resolution is approximately 10% for 1
TeV muons, and acceptable momentum resolution and good charge identification are
available even at 3 TeV. This momentum measurement is made possible by the large
air core toroid magnet systems: eight barrel toroid coils and eight endcap coils pro-
duce a magnetic field that provides significant bending power

∫
Bdl over the region

|η| < 2.7: up to 7.5 Tm and over 1 Tm everywhere except in the transition region
between barrel and encap magnets (1.4 < |η| < 1.6).

Four technologies are used for muon measurements: the Monitored Drift Tubes
(MDTs) and Cathode Strip Chambers (CSCs) for precision tracking, and the Re-
sistive Plate Chambers (RPCs) and Thin Gap Chambers (TGCs) for triggering and
transverse coordinate measurement. There are several layers of MDT chambers; each
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chamber consists of three to eight layers of drift tubes conceptually similar to those
found in the TRT, although larger. The MDTs have a resolution of about 80 µm
per tube, or 35 µm per chamber, in the precision direction. (Because the toroidal
magnetic field curves tracks forward or backward, the precision direction is z in the
barrel and R in the endcaps.) The MDTs cover all of |η| < 2.7, except for the inner-
most layer at |η| > 2.0, where they are replaced by the CSCs. The CSCs are designed
to better cope with the higher muon flux closer to the IP and LHC beam; these
are multiwire proportional chambers with strips designed for measurements in both
R and φ, which have a faster response time and better radiation hardness than the
MDTs. RPCs are responsible for triggering and transverse measurements in the bar-
rel region (|η| < 1.05); these chambers contain parallel plates without wires, spaced
by about 2 mm and with a voltage difference of 10 kV; the plates are divided into
strips measuring z and φ with a width of 23-35 mm. At higher η, up to 2.4, these
functions are performed by the multiwire porportional chamber TGCs, whose wires
are separated by 1.8 mm and operate at 2900 V. Both RPCs and TGCs provide fast
measurements that can be used for Level 1 Triggering based on a rough estimate of
muon momentum.
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Data Analysis

In this work, distributions of observables for charged particle jets are measured by re-
constructing the paths of charged particles (tracks) in the ATLAS detector, applying
a jet-finding algorithm to group these particles together, and then correcting these
distributions for the effects of track- and event-finding efficiencies and measurement
resolutions. The distributions to be measured are defined in Section 4.1. The pro-
cedure for reconstructing tracks and identifying their points of origin is described in
Section 4.2. The selection of collision events to be used is described in Section 4.3, and
the selection of tracks in Section 4.4. The properties of selected tracks and validation
of tracking simulation appear in Section 4.5. The algorithm used to produce jets from
tracks is discussed in Section 4.6. Finally, the procedure for correcting distributions
to the level of true charged particle jets, based on simulated events, is described in
detail in Section 4.7.

4.1 Measured Variables

Five quantities are measured for charged particle jets, which together encapsulate
global properties such as the rate at which they occur and their total momentum, as
well as the number, momentum, and spatial distribution of their constituent charged
particles. The first is the inclusive jet cross section, given differentially as a function
of jet transverse momentum (pT) and rapidity (y):

d2σjet
dpTjetdyjet

. (4.1)

(Note that, throughout this work, the subscript jet will be used to clarify that a
variable is a property of a jet. Likewise, ch will be used for a charged particle, and
trk for a measured track. These subscripts may be omitted when the object being
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discussed is clear from context.)
The second quantity measured is the probability for a jet to have a given number

of tracks N ch
jet:

1

Njet

dNjet

dN ch
jet

. (4.2)

The third is the distribution of charged particle z values over jets in a given pT

range:

1

Njet

dNch

dz
, (4.3)

where the variable z is the momentum fraction of the particle along the jet axis, given
by.

z =
~pch · ~pjet
|~pjet|2

, (4.4)

where ~pch is the momentum of the charged particle and ~pjet is the momentum of the jet
that contains it. The z distribution presented here differs from the usual definition
(in [18], for example), which would include neutral particles and low-momentum
charged particles in the total jet momentum.

Fourth, the charged particle momentum distribution transverse to the jet axis is
measured:

1

Njet

dNch

dprelT

. (4.5)

Because QCD predicts that the scale of jet transverse momenta is ΛQCD, this dis-
tribution is measured in GeV rather than being a fraction with respect to the jet
momentum. The variable prelT is the momentum of charged particles in a jet trans-
verse to that jet’s axis:

prelT =
|~pch × ~pjet|
|~pjet|

. (4.6)

Because QCD predicts that the scale of jet transverse momenta is ΛQCD, this distri-
bution is measured in absolute units rather than being a fraction with respect to the
jet momentum.

Finally, the density of charged particles in φ-y space, ρch(r), is measured as a
function of the radial distance r of charged particles from the axis of the jet that
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contains them, where r is given by

r = ∆R(ch, jet) =
√

(φch − φjet)2 + (ych − yjet)2. (4.7)

Thus for an annulus of inner radius r1 and outer radius r2, containing a total of
N r1<r<r2
ch charged particle entries, ρch(r) is given by

ρch(r) =
1

Njet

N r1<r<r2
ch

π(r2
2 − r2

1)
. (4.8)

Note that this is a particle number density, rather than the related energy density
variable used for calorimeter-based jet shape measurements.

The multiplicity and per-particle distributions are separately corrected and pro-
duced for five jet momentum ranges: 4−6 GeV, 6−10 GeV, 10−15 GeV, 15−24 GeV,
and 24 − 40 GeV. All distributions are corrected as a function of rapidity in four
ranges: 0− 0.5, 0.5, 1.0, 1.0− 1.5, and 1.5− 1.9.

4.2 Track Reconstruction

Charged particle tracks in the ATLAS detector are identified by reconstructing the
curved paths they produce as they pass through the Inner Detector. In the approxi-
mation of a uniform magnetic field and no energy loss in the Inner Detector, a charged
particle follows a helix that may be parameterized with the following variables.

• q/pT, the charge divided by the component of the particle momentum transverse
to the beam, which can be derived from the track curvature ρ and magnetic
field strength B via ρ = Bq/pT.

• d0, the transverse impact parameter, defined as the distance of closest approach
of the particle, in the transverse plane, to some fixed origin point.

• Z0, the longitudinal impact parameter, defined as the Z position of the point of
closest approach used in the d0 definition.

• φ0, the azimuthal angle of the particle trajectory at the distance of closest
approach.

• η, the pseudorapidity of the particle trajectory.

The “fixed origin point” is ultimately the primary vertex (PV), the point in space
where the two protons originally collided. An event may have multiple primary ver-
tices if several proton pairs from the same bunches collide. In order to identify the
primary vertices in an event, tracks must be reconstructed and selected, and in this
case the beam spot (BS) is used as the origin point; this is the average location of
proton-proton collisions. The beam spot itself must also be determined by observ-
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ing the distribution of primary vertices over many events. Thus track-, PV-, and
BS-finding are an iterative process; track-finding algoirthms are described in Sec-
tion 4.2.1, and PV and BS reconstruction are discussed in discussed in Section 4.2.2.

4.2.1 Track Reconstruction Algorithms

The track reconstruction algorithms [76] are modularized and highly customizable.
The present analysis uses default settings and cuts that match initial charged particle
analyses [7].

Track reconstruction begins with the raw signals from the Inner Detector, the
information on deposits of charge in the Pixel Detector and SCT; raw data from the
TRT is incorporated at a later step. First, within each pixel or SCT layer, deposits
in adjacent pixels or SCT strips are combined into clusters. The raw silicon cluster
information is then processed to produce space points, abstract, detector-independent,
three-dimensional objects to which the track algorithms can be applied. For the
Pixel Detector, the space point location is taken from the charge-weighted location
of the constituent hits. In the SCT detector, after adjacent strips are combined into
clusters, the position in the long strip dimension is determined by combining adjacent
clusters on double layers; the 40 µrad angle between the two strips gives a well-defined
position.

Space points are then combined into track seeds, which are constructed from three
space points on separate layers assuming a uniform magnetic field and no particle
scattering. These seeds are then used to define roads, to which pixel and SCT clusters
(not space points) are attached. Hits are attached sequentially, with track fitting
updated after each added hit using a Kalman filter [77]; during this step, a model of
the ATLAS magnetic field and detector geometry is used to incorporate scattering
into the trajectory calculations.

Once the process of adding hits to seeds is complete, an additional step called
ambiguity solving [78] is applied. This step removes fake tracks assembled out of
chance combinations of hits, as well as reducing the number of hits that are shared
between multiple tracks. Tracks are given scores based on the quality of the fit, and
the number of hits, and the number of holes (missing hits in places where one would
be expected along the track). Hits assigned to multiple tracks are iteratively assigned
to the highest-scoring track, then tracks are refit and rescored as necessary before
the next hit is processed. Remaining tracks that pass basic quality cuts have roads
extended into the TRT, TRT hits added, and are refit for a final time.
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4.2.2 Primary Vertex and Beam Spot Reconstruction

After track-finding is run, tracks meeting the following criteria are used in primary
vertex reconstruction [79]:

• transverse momentum pT > 150 MeV;

• transverse impact parameter |d0| < 4 mm;

• estimated uncertainty on the transversee impact parameter σ(d0) < 5 mm;

• estimated uncertainty on the longitudinal impact parameter σ(Z0) < 10 mm;

• at least 4 hits in the SCT detector; and

• at least 6 total hits in the pixel and SCT detectors.

The impact parameters are calculated with respect to the beam spot if it has already
been reconstructed; otherwise they are calculated with respect to the center of the
detector.

The seed for the initial primary vertex is identified based on the maximum in the
distribution of the tracks’ Z0 distributions. The vertex position is then determined
using adaptive vertex fitting [80], a χ2-based algorithm which iteratively reduces the
weighting for outlying tracks. If the beam spot has been found, it is also used as
a constraint for the fit. Tracks whose χ2 value for consistency with the calculated
vertex is greater than 49 are excluded from the vertex and instead used to seed a new
vertex. The procedure is repeated until all tracks are used or no additional vertex
fits succeed.

Beam spot finding [81] is done by means of an unbinned maximum likelihood fit
applied to all primary vertices in a subset of the data. It is computed separately for
each period of roughly 10 minutes.

4.3 Event Selection

This measurement uses a sample of early ATLAS data, with total integrated luminos-
ity of 799µb−1 and a peak luminosity of 6.6 × 1028 cm−2s−1 (0.066µb−1s−1). Lumi-
nosities are calibrated using the Van-der-Meer method of scanning the beams against
each other in the horizontal and vertical planes [75]. The systematic uncertainty is
3.4% which is dominated by the uncertainty on the beam currents.

Events from colliding proton bunches are selected if the MBTS trigger recorded
one or more counters above threshold on either side. They are further required to
have a primary vertex [82] reconstructed using beam-spot information [83]. Events
with additional reconstructed primary vertices are rejected. The number of average
collisions per bunch crossing µ depends on luminosity; most of the data are collected
with µ . 0.01, with a maximum value of 0.14. A total of 42,719,645 selected events
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satisfy these criteria.
To determine the differential cross section from the number of corrected jets per

pT and y bin, the following formula is applicable:

d2σjet
dpTjetdyjet

=
Ncorr(pT, y)

εevtL∆pT∆y
, (4.9)

where Ncorr(pT, y) is the number of corrected jets per pT and y bin (as computed via
the procedure described in Section 4.7), εevt is the event selection efficiency, L is the
total luminosity, and ∆pT and ∆y are the bin widths. The event selection efficiency
may be further factorized into

εevt = εtrigεvtxεvtx<2, (4.10)

where εtrig is the trigger efficiency, εvtx the primary vertex reconstruction efficiency,
and εvtx<2 the efficiency of the additional primary vertex rejection cut, all given the
presence of a track jet used in this analysis.

4.3.1 Trigger Efficiency

The efficiency of the trigger given the presence of one or more track jets was deter-
mined using a random subset of the data triggered using only the BPTX. Events were
selected that passed the track trigger and and contained a track jet reconstructed of-
fline passing the cuts in Section 4.4. Of 150,981 (234,856) such events with R = 0.4
(0.6), all passed the MBTS trigger as well, demonstrating that the MBTS trigger
efficiency has a negligible difference from 100% for events containing jets of interest
to this analysis.

4.3.2 Vertexing Efficiency

The efficiency for vertex finding given the presence of one or more jets is determined
from data by removing the track selection cuts that use impact parameter with respect
to the primary vertex described in Section 4.4. Other cuts are kept as described, and a
requirement is added that the transverse impact parameter with respect to the beam
spot satisfy |d0| < 4.0 mm. Jets are then reconstructed from tracks satisfying this new
selection, and the fraction of events containing jets that also have a primary vertex
reconstructed is determined. In the full dataset, out of 4,685,266 (7,301,911) events
containing jets with R = 0.4 (0.6), a primary vertex is found in 4,685,167 (7,301,809)
events, demonstrating that the vertex-finding efficiency is essentially 100% for events
containing jets used in this analysis.
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4.3.3 Rejection of Events with Additional Vertices

The efficiency of having exactly one vertex may be further factorized into

εvtx<2 = εpileupfreeεnosplit, (4.11)

where εpileupfree is the fraction of collisions retained after rejection of real additional
vertices, and εnosplit is the efficiency of reconstructing only a single vertex in events
with only one collision (i.e., avoiding fake vertices). The former is a function of
the average number of collisions per crossing µ, while the latter is a function of the
activity in the primary collision, parameterized by the number of charged particles in
the event.

The fraction of collisions that occur without additional primary vertices, εpileupfree,
is computed from data for each luminosity block∗ based the value of µ in that block,
and accounts for the fact that multiple events that would otherwise have passed the
event selection are lost. It amounts to roughly a 3% effect, averaged over the entire
dataset, which can be considered a correction to the luminosity. For each luminosity
block, it is given by the ratio between the number of collisions in events with only
one reconstructed vertex and the total number of collisions:

εpileupfree =
Ncoll,vtx<2

Ncoll

=
1

Ncoll

∞∑
Nvtx=1

NvtxP (Nvtx, µLB)(1− εadditional)Nvtx−1, (4.12)

where

Ncoll =
∞∑

Nvtx=1

NvtxP (Nvtx, µLB). (4.13)

Here µLB is the average number of collisions in that luminosity block, P (Nvtx, µLB) is
the probability of Nvtx vertices given by the Poisson distribution with mean µLB, and
εadditional is the efficiency of reconstructing additional vertices beyond the first. (The
efficiency of reconstructing the first vertex, in events of interest, is essentially 100%, as
described in Section 4.3.2.) Because the probability of each collision is independent,
one can take εadditional to be the ratio of σvis to σtot. These are the visible and total
inelastic cross sections respectively, as defined in [75]; σvis has been corrected due to
improved luminosity calculations, from 58.7 mb to 56.6 mb. The ratio σvis/σtot can be
varied by a substantial amount without changing this correction significantly; hence
there is no systematic uncertainty assigned based on the unknown total cross section.

∗A luminosity block is a period of 1-2 minutes during a run in which detector conditions remain
roughly constant.
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There is a further 5.7% correction due to the probability of additional collisions
occurring at nearly the same Z is the primary collision, thereby rendering the vertex
unresolvable, as illustrated in Figure 4.1. (Of course, such events are then included
in the sample, but due to the small average number of collisions per event and the
low activity of the average visible collision, this contribution is negligible.)

The efficiency εpileupfree varies from roughly 88% in luminosity blocks in which
µ ∼ 0.15 up to nearly 100% in luminosity blocks with µ . 0.01. The number of
events per unit luminosity declines with µ in a manner consistent with this calculation;
Nevt/εpileupfreeL is independent of µ, except for a 1% disagreement between runs with
µ . 0.04 and the last few runs with µ & 0.1, as is shown in Figure 4.2. This
disagreement is consistent with differences between luminosity computation methods
in different runs, and is well within the overall luminosity uncertainty. Over all
luminosity blocks used, the adjustment to the total luminosity associated with this
efficiency is

Lεpileupfree =
∑
LB

L(LB)εpileupfree(LB) = 773 µb−1, (4.14)

where the sum runs over all luminosity blocks the analysis.
The fraction of collisions with no pileup, but which are removed due to the erro-

neous reconstruction of multiple vertices, is determined from simulation as a function
of selected track multiplicity in the event. The value of εnosplit is 0.25% for 10 or fewer
selected tracks, rising to 1% around 30 tracks and 4% at about 100 tracks, in events
with one truth jet. This is corrected for by weighting the data events according to the
number of selected tracks in the event. Because the determination is made entirely
from simulation, the full value of the correction (1.8%−2.2%) is taken as a systematic
uncertainty, as described in Section 5.3.

4.4 Track Selection

For this analysis, each reconstructed track is required to have

• transverse momentum pT > 300 MeV;

• pseudorapidity |η| < 2.5;

• transverse impact parameter with respect to the primary vertex |d0| < 1.5 mm
(0.2 mm) for tracks with pT less than (greater than) 10 GeV;

• longitudinal impact parameter with respect to the primary vertex Z0 satisfying
|Z0sinθ| < 1.5 mm;

• if a signal (or hit) is expected in the Pixel Detector B-layer (i.e. if the extrap-
olated track passes through a section of that layer with functioning instrumen-
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Figure 4.1: The difference in Z coordinate of the two vertices in events where exactly
two primary vertices are identified. The distribution is fit to a double Gaussian in the
range |∆Z| < 80 mm, excluding the “dip” region with |∆Z| < 10mm which arises
because of the resolution of the primary vertex reconstruction algorithm. Vertical dotted
lines illustrated the excluded region; the solid red line illustrates the fit. The contribution
of Z-overlaps to εadditional, the efficiency of reconstructing vertices beyond the first, is
computed using the difference between the fit and the distribution in the excluded region:
it is found to be about 5.7%.

tation), then such a hit is required, with one pixel hit in any layer required
otherwise;

• at least 6 SCT hits.

The momentum requirement was selected to ensure that tracks traverse, at mini-
mum, all layers of the pixel and SCT detectors. The pixel and SCT hit requirements
are necessary to ensure sufficient information for a good track fit. The requirement
of a B-layer hit, if expected, is to select primary tracks rather than those resulting
from long-lived particle decays and interaction with the detector material. The im-
pact parameter requirements are designed to reject tracks from secondary vertices.
At pT > 10 GeV, the |d0| resolution is improved to the point that the tightened cut is
highly efficient for tracks from the primary vertex in simulated events; the tightened
cut is designed to remove misreconstructed tracks, particularly those with artificially
high momentum, as discussed in Section 5.2.
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Figure 4.2: The number of events per unit luminosity, after correcting for the efficiency,
is flat over runs, except for a 1% discontinuity as discussed in the text.

4.5 Tracking Efficiencies and Distributions

In order to have confidence in the correction procedure, which is based on simulated
data, it is important to verify that the properties of tracks and track selection agree
between the data and simulation. The pT, η, and φ distributions of all reconstructed
tracks, compared with the ATLAS MC09 tune of Pythia, are shown in Figure 4.3,
along with the ∆R to the nearest track. All track selection cuts are applied except
the tighter of the d0 cut at high momentum. The pT spectra do not agree, reflecting
physics differences between data and MC; this is accounted for in the systematic
uncertainties based on range of tunes (Section 5.1.3).

The efficiency of the high-pT d0 cut is shown in Figure 4.4. The efficiency as
a function of pT is extended down to 5 GeV (where the cut is not otherwise ap-
plied for the analysis), to illustrate that the cut efficiency has plateaued by 10 GeV.
The efficiency then decreases at higher momenta. This is most likely caused by mis-
measured high-momentum tracks, which result from lower-momentum particles that
scatter in such a way that they are reconstructed at high momentum; this conclusion
is supported by the decrease because as momentum increases, fewer and fewer of the
reconstructed tracks are really high-pT particles. The systematic uncertainty for this
effect, discussed in Section 5.2, also allows for the possibility that the d0 resolution
at high-pT is mismodelled. The efficiency as a function of η exhibits the greatest
deviations in the most forward parts of the Inner Detector, especially for |η| > 2.3.
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Figure 4.3: Raw distributions of reconstructed tracks selected in this analysis, compared
with simulation, excluding the high-momentum d0 cut. ∆R is the distance in η−φ space
to the nearest selected track.

However, after the requirement that the tracks have pT > 10 GeV, all tracks appear-
ing in the analysis have |η| < 2.1; this is because tracks at high η will “pull” the jet
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that contains them out of the rapidity range used (|yjet| < 1.9).
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Figure 4.4: Efficiency of the high momentum d0 cut, compared with simulation, as a
function of pT and η.

In order to investigate the tracking performance in the high-density environment
of jets, the B-layer hit efficiency is studied. This is the layer with the highest density
of track hits, and also plays a special role in the track selection. The denominator
of the efficiency calculation uses tracks which pass all selection requirements except
the pixel hit requirement, and which have a B-layer hit expected. The efficiency for
identifying a B-layer hit for all such tracks is shown as a function of track pT in
Figure 4.5(a). In Figures 4.5(b)-4.5(f), the efficiency is shown for the subset of these
tracks which are within ∆R < 0.2 of the nearest track jet; these plots are separated
based on the jet momentum. As the nearest jet momentum increases, the B-layer
hit efficiency decreases markedly for tracks of pT less than a few GeV. The B-layer
hit efficiency rises again at very low momentum, because tracks are less likely to be
found in the first place without a B-layer hit.

Although the tracking is clearly impacted inside higher-momentum jets, the im-
pact is accounted for fairly well by the detector simulation and will thus be properly
accounted for by the corrections described in Section 4. The deviations between data
and simulation are significantly smaller than the tracking efficiency uncertainties de-
scribed in Section 5.1.1. Therefore no additional systematic uncertainty is applied.
(N.B. The local minimum in plots (b)-(f) around a track pT in fact reflects two
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(d) Jet pT > 20 GeV
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(e) Jet pT > 30 GeV
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Figure 4.5: B-layer hit efficiency, as a function of track pT, for (a) all tracks, and (b)-
(f) tracks within ∆R < 0.2 of the jet axis of track jets with pT above the momentum
indicated, for data and Monte Carlo.

competing effects: B-layer hit efficiency is rising with track momentum, but at very
low momenta tracks are not accurately extrapolated to the primary vertex without
a B-layer hit. Thus in the latter case, tracks fail the d0 cut and enter neither the
numerator nor the denominator.)

Additional plots with hit properties of tracks, as a function of their distance to the
nearest calorimeter jet, appear in Figure 4.6 to Figure 4.8. Track cuts are the same
as in the rest of the analysis, except that no B-layer hit is required, and no check is
made whether one is expected; instead, the requirement is that the track have a pixel
hit in any layer. Agreement is generally good between data and the MC09 simulated
events.
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Figure 4.6: Mean number of Pixel Detector hits per track with pT > 300 MeV, as a
function of ∆R from the nearest calorimeter jet with |yjet| < 1.9 and pT,jet as indicated.
Track cuts are the same as in the rest of the analysis, except that no B-layer hit is required,
and no check is made whether one is expected; instead, the requirement is that the track
have a pixel hit in any layer.
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Figure 4.7: Mean number of SCT hits per track with pT > 300 MeV, as a function of
∆R from the nearest calorimeter jet with |yjet| < 1.9 and pT,jet as indicated. Track cuts
are the same as in the rest of the analysis, except that no B-layer hit is required, and no
check is made whether one is expected; instead, the requirement is that the track have a
pixel hit in any layer.

4.6 Jet Definition

Although the basic picture presented by the parton model (Section 2.3) identifies jets
as originating from a single outgoing quark or gluon, the particles arising from the
underlying event contribution (Section 2.6) and other soft physics make contributions
to the topology of the event that cannot be distinguished on an event-by-event basis.
Jets are therefore produced using an algorithm that combines charged particles re-
gardless of their “source,” which can be applied consistently to reconstructed tracks.
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Figure 4.8: Fraction of tracks with pT > 300 MeV that have a B-layer hit, as a function
of ∆R from the nearest calorimeter jet with |yjet| < 1.9 and pT,jet as indicated. Track
cuts are the same as in the rest of the analysis, except that no B-layer hit is required,
and no check is made whether one is expected; instead, the requirement is that the track
have a pixel hit in any layer.

The anti-kt algorithm [84] combines objects (tracks, jets, etc.) into jets by iteratively
combining pairs of objects. It does this by forming a list of all “distances” dij be-
tween each pair of objects i and j, along with the distances diB from each object to
the beam, defined by

dij = min(p−2
Ti , p

−2
Tj )

[∆R(i, j)]2

R2
, (4.15)

diB = p−2
Ti (4.16)

.
where ∆R(i, j) is the usual distance in φ-y space between objects i and j and R is the
“radius parameter” for the algorithm. If the smallest value on this list of distances
is a dij, then the objects i and j are combined into a single object (by adding their
four-momenta) and the list is recreated. If the smallest value is a diB, then this object
is designated a final jet and removed from the list. The process terminates when only
final jets remain.

In the anti-kt algorithm, objects that are most collinear and have the highest
momentum are combined first. This may be contrasted with the kt algorithm [85;
86], in which the negative exponents on the transverse momenta in Equation 4.15
are replaced by positive ones so that low-momentum collinear objects are combined
first. This procedure comes closest to “reversing” the parton branching by which
high-momentum jets are formed, but it produces jets of large irregular spatial extent
for which experimental background corrections are more difficult. Anti-kt produces
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“cone-like” jets, in the sense that the region in which a potential constituent is added
to a jet is roughly circular in φ-y space. Anti-kt, like kt, has a distinct advantage
over older cone algorithms in that it is infrared-safe, i.e., two jets cannot be merged
together by the addition of an arbitrarily soft additional particle.

Measurements in this work are made both with radius parameter R = 0.4 and R
= 0.6. In order to produce 4-vectors for reconstructed tracks for the application of
the algorithm, the pion mass is assumed for all tracks. After the algorithm is applied,
track jets with pT > 4 GeV and |y| < 1.9 are accepted, including those with only one
constituent track. The rapidity cut is chosen to ensure that jets are fully contained
within the tracking acceptance |η| < 2.5 in the R = 0.6 case; for the narrower R =
0.4 jets, the same rapidity cut is used for consistency.

Truth-level charged particle jets, which are the objects ultimately measured after
the completion of the correction procedure, are derived from MC events. Similarly
to reconstructed track jets, they also have the anti-kt algorithm applied to primary
charged particles with pT > 300 MeV. The momentum cut is chosen in order to re-
flect the choice of cut track level, in order to minimize model-dependent corrections
and extrapolation. Each particle’s true mass is used in the application of the algo-
rithm. Primary charged particles are defined as charged particles with a mean lifetime
τ > 0.3 × 10−10 s, including muons, which are produced in the primary collision or
from subsequent decays of particles with a shorter lifetime. Thus the charged decay
products of KS particles are not included. Charged particle jets are required to meet
the pT and y requirements given for track jets above.

4.7 Unfolding Procedure

The corrections used in this analysis, from detector-level track jets to truth-level
charged particle jets, are derived from a Monte Carlo (MC) simulated sample using
the Pythia 6.421 event generator program [50] with the ATLAS AMBT1 tune [7],
which is described in Section 2.7. In order to derive corrections, which account for
tracking efficiency and momentum resolution, these events are then passed through
the ATLAS detector simulation [87], based on GEANT 4 [88].

Reconstructed jets are binned in pT, constituent multiplicity, and rapidity, i.e., a
3-dimensional distribution is produced for the purpose of applying corrections. Sim-
ilarly, for the z corrections, each track in each jet is binned in z, the parent jet
momentum, and parent jet rapidity; the prelT and r distributions likewise are binned
with parent jet momentum and rapidity as two additional variables. For the jet-level
quantities as well as track-level z, prelT , and r, corrections are applied simultaneously
in the three binned variables using the Bayesian Iterative Unfolding [89] algorithm
implemented in the RooUnfold [90] program. As this correction method is central to
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the analysis, its general properties are reviewed in Section 4.7.1. Its implementation
in the present analysis is discussed in Section 4.7.2, the properties of the simulated
distributions used for corrections are discussed in Section 4.7.3, and the validation of
the method with data-sized simulated samples is described in Section 4.7.4.

4.7.1 Bayesian Iterative Unfolding Algorithm

The Bayesian Iterative Unfolding algorithm is a method for correcting an experimen-
tally measured distribution to the true values of that distribution that would have
been measured by a perfect detector. It assumes that both distributions are binned;
the binning is identical in the present case, although this is not necessary. It accounts
for efficiency, which is defined as the probability that a true entry will appear in any
measured bin (as opposed to simply being lost). It also accounts for transfers between
bins; that is, cases where an entry appears in a different bin than its original true
bin. In contrast to bin-by-bin unfolding, this algorithm does not perform differently
for stable events than for those with bin-to-bin transfers. Nor does it assume any
sort of conceptual ordering between bins; therefore, multi-dimensional unfolding is
mathematically equivalent to one-dimensional unfolding with a large number of bins.

In general, there are three sets of numbers used by the algorithm. There are NM

measured bins, labeled M1,M2, ...,Mi, ...,MNM
; the number of events in these bins

n(Mi) is measured in the experiment being run. There areNT true bins T1, T2, ..., Tj, ...,
TNT

; these are to be determined, but a prior value is also used by the algorithm, as
will be discussed below. Finally there is the NM ×NT response matrix R, for which
Rij is the probability of an entry in true bin i being reconstructed in measured bin
j. Thus we have

n(Mj) = Rijn(Ti), (4.17)

where n denotes the number of events in the given bin.
The method does not account for unmatched reconstructed objects, which must

be corrected for before it is applied, so we have the probability of a measured entry
coming from any true entry is unity:∑

i

Rij = 1. (4.18)

On the other hand, a true entry need not be reconstructed anywhere; if the efficiency
for it being found is εi, then ∑

j

Rij = εi. (4.19)
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The response matrix must be derived from simulated events, which of course do
not necessarily reflect the true efficiencies or resolutions of the ATLAS detector. If
the response matrix entries are systematically incorrect, then the algorithm does not
produce the correct Ti values from the measured Ri. The systematic uncertainties on
the measurement that are assigned to account for this are discussed in Chapter 5.

The core calculation in the Bayesian Iterative Unfolding algorithm is based on
Bayes’s Theorem, which in this context is

P (Ti|Mj) =
P (Mj|Ti)P (Ti)

P (Mj)
=

P (Mj|Ti)P (Ti)∑
k P (Mj|Tk)P (Tk)

. (4.20)

In this equation, repeated indices are not summed unless explicitly indicated. P (Ti|Mj)
is the probability, given an entry measured in bin j, of the true value being in bin
i. P (Mj|Ti) uses analogous notation and therefore equals Rij. P (Ti) is the proba-
bility distribution for the true bins, and P (Mj) the probability distribution for the
measured bins. As written, the formula is therefore trivial, because it depends on the
quantity we are trying to compute. However, if we take the distribution P (Ti) to be
a prior (initial) probability, we can then calculate iteratively via

n1(Ti) =
1

εi

∑
j

n(Mj)P (Ti|Mj) =
1

εi

∑
j

n(Mj)
Rijn0(Ti)∑
k Rkjn0(Tk)

, (4.21)

where n0(Ti) is the initial distribution from MC, and n1(Ti) is the newly calculated
unfolded distribution. If the result of this computation is self-consistent, then we
have shown that, given our measured distribution and our response matrix, our ini-
tial probability distribution was the correct one. In practice, this will not be the
case. However, we can take the new distribution n1(Ti) and repeat the procedure to
calculate n2(Ti), and so on until reasonable consistency is achieved.

4.7.2 Unfolding Algorithm Implementation

In the present analysis, unfolding is performed over four different three-dimensional
distributions. Distributions in pTjet and N ch

jet are derived from a distribution with
one entry per jet, binned in (pTjet,N

ch
jet, yjet). Distributions in z are derived from

a distribution with one entry per charged particle in a jet, binned in (z,pTjet,yjet);
distributions in prelT and rch are derived from similar distributions. Thus for all dis-
tributions, the bin indices i and j from the previous section run over bins that cover
particular ranges in three variables, and the response matrices are six-dimensional.

A reconstructed track jet is defined to be matched to a truth-level charged particle
jet if it is within ∆R < 0.2 (0.3) for jet radius 0.4 (0.6). Because this is half the jet
radius, ambiguities in the matching are impossible. (The analysis was also performed
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with a match cut up to 0.75 times the jet radius; this resulted in higher efficiencies by
up to 2% in some bins, but had a negligible impact on the final results.) In the case
of the z response matrix, if a truth jet is unmatched then all its tracks are counted
as lost to inefficiency. If it is matched, then each of its constituent charged particles
are matched to the closest track within ∆R < 0.04; if there is no such track, then
that particular particle is lost to inefficiency. The response matrices for prelT and r are
handled similarly.

As noted above, before the Bayesian Iterative Unfolding algorithm can be applied,
a correction must be made for unmatched reconstructed jets. This correction is deter-
mined from the AMBT1 sample by the ratio between the reconstructed distributions
and the matched reconstructed distributions. A systematic uncertainty is computed
for this correction, and described in Section 5.4.

Three iterations of the algorithm are used; validation of that choice is discussed
in Section 4.7.4. Statistical uncertainties on the unfolded variables are determined
by producing 100 pseudoexperiment distributions, which vary the contents of each
input bin randomly, then calculating the covariance matrix from the variation in the
output of the unfolding.

4.7.3 Response Matrix Properties

The response matrix is best visualized with some variables projected out or fixed, to
reduce the dimensionality of the 3 to 3 variable mapping. The efficiency of matching
a jet with |y| < 0.5 and any number of constituents is shown as a function of pT in
Figure 4.9(a), and the efficiency of matching a jet with |y| < 0.5 and 10 < pT/GeV <
15 as a function of multiplicity is shown in Figure 4.9(b). Efficiency is defined by

Efficiency =
Truth jets in the bin with any matching reconstructed jet

Truth jets in the bin
. (4.22)

The distribution of reconstructed jet pT, as a function of truth jet pT, for |y| < 0.5
and any number constituents, is shown in Figure 4.10. It may be seen that there is
a narrow distribution around the correct value, corresponding to smearing of track
pT, along with a large low-momentum tail corresponding to tracks lost to inefficiency.
This is further illustrated in Figure 4.11, which shows the probability distribution of
reconstructed jet pT and multiplicity, for |y| < 0.5, 10 < pT/GeV < 11, and 4 tracks
at truth level.

Purity and stability measure the number of bin-by-bin transfers in the response

50



Chapter 4. Data Analysis

 [GeV]
T

Charged Truth Jet p
10 210

M
a

tc
h

in
g

 e
ff

ic
ie

n
c
y

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(a)

jet
ch

N

2 4 6 8 10 12 14 16 18 20

M
a

tc
h

in
g

 e
ff

ic
ie

n
c
y

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

(b)

Figure 4.9: The efficiency for matching a track jet to a truth jet with |y| < 0.5 (a) as a
function of pT, (b) as a function of multiplicity (for 10 < pT/ GeV < 15).

matrix. They are defined by

Purity =
Reconstructed jets in the bin with a matching truth jet in the same bin

Reconstructed jets in the bin
,

(4.23)
and

Stability =
Truth jets in the bin with a matching reconstructed jet in the same bin

Truth jets in the bin
.

(4.24)
The purity and stability of the response matrix are shown in Figure 4.12. Truth

jets in the same pT bin as their reconstructed counterpart, but with a different number
of charged particles than the number of tracks and the reconstructed jet, are counted
here as pure or stable. It is worth noting that a transfer in momentum bin usually also
implies a transfer in charged particle multiplicity bin, as is illustrated by Figure 4.11.

As an additional consistency check, one can visualize the response matrix through
the ratio between truth jets and reconstructed jets as a function of jet momentum
and charged particles per jet. This is a simple ratio that does not depend on whether
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Figure 4.10: Distribution of matching track jets pT as a function of a truth jet pT, shown
as (a) a 2-dimensional matrix, and (b) 1-dimensional track jet pT distributions for selected
truth jet pT bins. It should be noted that lines in (b) are included only to guide the eye,
and do not represent fits and have not been normalized to bin widths. (Thus for example
the 60-70 GeV bin has the best probability to have the jet reconstructed in the same bin
because the bin is widest.)

the jets migrated between bins; it corresponds to what a bin-by-bin correction would
be if that were the correction being made. For (pT, N) and |y| < 0.5, the ratio in the
MC sample and the ratio in the data are compared in Figure 4.13. For the bins with
most of the data, these ratios are of order one and are consistent with each other.

4.7.4 Unfolding Validation and Choice of Iteration Parameter

In order to validate the behavior of the unfolding and validate the choice of three
iterations, 196 subsamples of the training MC sample are used; these subsamples
have roughly the same number of jets as the data, although the low-momentum
events must be reweighed. (These separately generated and simulated subsamples
are distinct from the internal pseudoexperiments done to determine the statistical
uncertainties output by the unfolding algorithm.) These subsamples are then each
unfolded, and for each bin, the distribution over the subsamples for the pulls and
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Figure 4.11: Distribution of matching track jet pT and N ch, given a truth jet with 10 <
pT/GeV < 11 and 4 constituent tracks. This illustrates that the low tails in Figure 4.10
are associated primarily with jets where one or more tracks are not reconstructed.

residuals are studied:

Residual =
Ncorr −Ntruth

Ntruth

, (4.25)

Pull =
Ncorr −Ntruth

σcorr
, (4.26)

where Ncorr is the corrected number of events in a given bin, Ntruth is the true number
of events in that bin, and σcorr is the statistical error for that bin as reported by the
unfolding procedure. Residual and pull distributions for a typical momentum bin are
shown in Figure 4.14.

The mean of the pull and residual distributions would be consistent with zero
if there were no bias introduced by the unfolding. This is not always the case. For
example, Figure 4.15(a) illustrates a 2% deviation at low momentum, which falls with
increasing momentum but eventually rises again to 6% at the very highest momenta.
The deviation in the residual mean is taken as a systematic uncertainty, described
further in Section 5.5. The root mean square (RMS) of the pull distribution should be
consistent with one if the statistical uncertainty is correctly computed. As is shown
in Figure 4.15(b), the distributions improve with the number of iterations used; after

53



Chapter 4. Data Analysis

 [GeV]
T

Reconstructed Track jet p
10 210

P
u

ri
ty

0.45

0.5

0.55

0.6

0.65

0.7

0.75

(a) Purity

 [GeV]
T

Charged truth jet p
10 210

S
ta

b
ili

ty

0.3

0.35

0.4

0.45

0.5

0.55

(b) Stability

Figure 4.12: The (a) purity and (b) stability of the response matrix for anti-kt jets with R =
0.6, as defined in the text. Note that charged truth jets with the same momentum range as
their matching reconstructed track jet are defined here to be stable, and the reconstructed
track jet to be pure, even if they have a different number of charged particles. Jumps in
these quantities occur where the bin width changes.

three, the average pull RMS is close to one, although some bins are not consistent
with one. In order to account for this, the statistical errors in the final results are
scaled by the RMS values found in the closure tests. This scaling is at most roughly
1.5 except for a few outlying bins in the multiplicity and prelT distributions that have
very low statistics.

This procedure is repeated with the same samples, but using the Phojet truth
spectrum as the prior distribution in computing the output. As the response matrix
itself is unchanged, an additional bias in this case would correspond to a system-
atic uncertainty associated with initial “guess” being different from the true answer.
However, there is no significant additional bias after 3 iterations, as is shown in Fig-
ure 4.16(a). (It can be seen that there is significant additional bias after only 1 or 2
iterations.) This demonstrates that no uncertainty needs to be assigned and that 3
iterations are sufficient to “converge” independent of reasonable initial assumptions.
The pull RMS distributions also remain similar, as shown in Figure 4.16(b).

Similar distributions are studied for 20 data-sized subsamples of the Perugia2010
MC. In this case, bias in the residual mean should be consistent with the systematic
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Figure 4.13: (a) The ratio of truth to reconstructed jets as determined from MC, and (b)
the ratio of unfolded result to reconstructed data, both as a function of charged jet pT

and charged particles per jet.

uncertainty due to MC tuning described in Section 5.1.3, added in quadrature to the
unfolding biases described above. The pull widths should remain consistent with one
despite the additional bias. Indeed, both of these consistency checks are passed, as
shown in Figure 4.17.

Some of the closure test RMS distributions in prelT or charged particle multiplicity
have significant deviations from 1 even after 3 or 4 iterations. These distributions,
being “doubly differential” in the sense of being made for subranges of jet momentum,
suffer more from non-Gaussian bin migrations; the residual mean and pull RMS are
shown in Figure 4.18 for one of the worst such distributions, the prelT distribution for
4 GeV < pTjet < 6 GeV, which has scale factors significantly larger than the typical
upper bound of 1.5 in the highest-momentum (very low statistics) bins. As noted
above, the final statistical errors are scaled to account for this.

55



Chapter 4. Data Analysis

­0.1 ­0.05 0 0.05 0.1
0

2

4

6

8

10

12

14

16

Mean   0.002724± ­0.005006 

RMS    0.001926± 0.03814 

(a) Residual

­3 ­2 ­1 0 1 2 3
0

2

4

6

8

10

12

14

16

Mean   0.07391± ­0.1704 

RMS    0.05226±  1.035 

(b) Pull

Figure 4.14: The distribution of (a) residuals, and (b) pulls over 196 data-sized subsamples
as described in the text. This is for the 40-45 GeV bin for R = 0.6 jets, after 3 iterations.
The mean of the left plot appears as a point in Figure 4.15(a), and the RMS of the right
plot as a point in Figure 4.15(b).
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Figure 4.15: For the pT distribution with 0 < |y| < 0.5, (a) the mean of the residuals and
(b) the RMS of the pulls, over 196 data-sized fully simulated samples.
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Figure 4.16: For the pT distribution with 0 < |y| < 0.5, (a) the mean of the residuals
and (b) the RMS of the pulls, over 196 data-sized fully simulated samples. The response
matrix and data-sized samples both use the AMBT1 tuning, but the “initial guess” in the
unfolding algorithm is set to the truth spectrum from Phojet. In figure (a), the process
of convergence from the incorrect initial prior distribution to the final value is illustrated.
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Figure 4.17: For the pT distribution with 0 < |y| < 0.5 (a) the mean of the residuals
and (b) the RMS of the pulls, over 20 data-sized fully simulated samples. The response
matrix is constructed the AMBT1 tuning, but the samples use the Perugia2010 tuning.
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(a) Residual Mean (b) Pull RMS

Figure 4.18: For the prelT distribution with |yjet| < 1.9 and 4 GeV < pTjet < 6 GeV,
(a) the mean of the residuals and (b) the RMS of the pulls, over 196 data-sized fully
simulated samples. As discussed in the text, this distribution has amongst the largest
scale pull RMS values, particularly in the highest momentum bins.
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Systematic Uncertainties

As we know, there are known knowns;
there are things we know we know. We
also know there are known unknowns;
that is to say we know there are some
things we do not know.

Donald Rumsfeld

Systematic uncertainties quantify the degree to which the corrected measurement
of a physical observable may differ from the true value because the assumptions
used in making the corrections are incorrect. They are distinguished from statistical
uncertainties because such assumptions are wrong by a consistent amount rather than
a random amount. Statistical uncertainties vary randomly from one bin to the next,
because by chance there will simply be more objects in some bins than the average
and fewer in others; thus, statistical uncertainties become smaller as more data are
recorded. By contrast, if an assumption is systematically wrong, the result will be
that every bin disagrees with the true value in a correlated way.

To take a concrete example from this work, the uncertainty on the track-finding
efficiency is the dominant systematic uncertainty for most bins in the charged particle
jet cross section and multiplicity distributions. This is computed by creating data-
like samples which include the largest “reasonable” deviation in the track finding
efficiency, then applying the correction procedure to these samples; the resulting
change in the corrected distributions is taken as the systematic uncertainty. If tracking
efficiency is, for example, decreased from the baseline used in corrections, then jets
are more likely to be lost when their core tracks are not reconstructed; jets will
also be reconstructed with a smaller fraction of their true momentum and a lower
multiplicity. As a result, the cross section would be reduced for every momentum bin,
and the multiplicity distribution would be biased toward lower values. By contrast,
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the particle property distributions are only modestly biased by changes in efficiency,
because they are normalized to the number of jets; these distributions have dominant
systematics from other sources.

The systematic uncertainties that contribute to the overall uncertainty in this
analysis are described below. The calculated uncertainty values for representative
bins appear in Appendix 5.A.

5.1 Uncertainties Computed using Smeared Samples

Systematic uncertainties due to tracking efficiency, tracking resolution, and variations
in MC simulation are computed through use of simulated events in which aspects of
detector performance or the physics simulation is varied. For each type of variation,
an ensemble of 50 or more subsamples with the same number of events as the data is
required.

Because full simulation of a sufficient number of events is impractical, a “toy”
smearing mechanism is used. Using the baseline MC sample, the tracking efficiency
and the resolution in 1/pT are determined in bins of η, 1/pT , and ∆R from the
nearest charged particle. For each generator tune, the events in the samples then
have their particles vetoed or smeared according to the determined efficiency and
resolution. In order to bring event generation to a manageable scale, events with low
leading jet momentum are produced in reduced numbers and given weights; at high
jet momentum, events are always used with a weight of one.

Truth particles are smeared, with the smearing possibly modified, and then the jet
algorithm is applied and the usual distributions produced. Many data-sized samples
are produced in this manner, and they are then unfolded. The baseline is an ensemble
of 196 data-sized AMBT1 samples. Uncertainties due to track-finding efficiency are
found by reusing the same truth particles but using different efficiencies to smear
them (Section 5.1.1). Likewise, uncertainties in tracking resolution are investigated
by applying an additional Gaussian smearing (Section 5.1.2). Uncertainties associated
with varying MC parameters are determined by producing ensembles of data-sized
events using other tunes, applying the same smearing as to the baseline sample, and
comparing the derived corrections. In all cases, the largest (smallest) increase is taken
as an upper-bound (lower-bound) systematic uncertainty.

5.1.1 Tracking Efficiency

The systematic uncertainty associated with uncertainties on the tracking efficiency
is determined by varying the properties of the smearing. The same set of 196 data-
sized AMBT1 samples is used to produce three smeared samples: one using the
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baseline, one with the efficiency increased, and one with the efficiency decreased.
The amount of the change is obtained from effciency uncertainties computed for the
ATLAS experiment’s inclusive charged particle measurement [7], which are measured
as a function of momentum and rapidity; they vary from roughly 2% for particles
with pT > 500 MeV and |η| < 1.3, up to 7% for 300 MeV < pT < 350 MeV and
2.3 < |η| < 2.5. When the efficiency used for the smearing is increased (decreased),
the correction factors become smaller (larger), so that the computed cross section is
reduced (increased). Thus for each bin, the positive and negative uncertainties due
to tracking efficiency are given by:

UTrk. eff.,+ =
Nsmeared down

Nsmeared, base

− 1, (5.1)

UTrk. eff.,− = 1− Nsmeared up

Nsmeared, base

, (5.2)

where Nsmeared, base is the number of events found in that bin after unfolding the
baseline smeared sample, while Nsmeared down (Nsmeared up) is the number of events
found after unfolding the sample smeared with lowered (raised) efficiency.

5.1.2 Tracking Resolution

High-momentum tracks are known from muon studies [91] to have a wider Inner De-
tector momentum resolution than appears in MC; this is determined by comparing a
muon’s momentum as measured in the Inner Detector with the muon system measure-
ment. It is assumed that this discrepancy is relevant for all particles. The difference
between the MC baseline and the measurement from data is taken as the basis for
a systematic uncertainty due to resolution. An additional “wide resolution” jet col-
lection is built for the primary AMBT1 ensemble of data-sized samples. The tracks
with pT > 5 GeV in this collection have an additional Gaussian smearing to bring the
resolution into agreement with that measured from data. (Below this momentum,
the additional smearing is too small to have a significant impact.) The difference in
average correction between this ensemble and the baseline is taken (symmetrically)
as the uncertainty due to resolution smearing, so the uncertainty is given by

UTrk.Res.,± =

∣∣∣∣Nsmeared, wide res.

Nsmeared, base

− 1

∣∣∣∣ , (5.3)

where Nsmeared, wide res. is the number of events found in a given bin after unfolding the
sample with widened resolution. It should be noted that symmetrizing this uncer-
tainty is somewhat artificial, corresponding to narrowing the resolution as compared
with data. This is a conservative way to obtain a two-sided uncertainty given the
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available information, and the impact on the measurement is small.

5.1.3 Monte Carlo Tuning

The uncertainties associated with differing MC tunings are explored through smeared
data-sized subsamples using all event generators and tunings described in Section 2.7.
The ratio of unfolded-to-reconstructed values in each bin is compared to that of the
central tuning; the largest increase is taken as the upper bound systematic uncertainty,
while the largest decrease is taken as the lower bound:

UMC,+ = max
MC

{(
Nsmeared

Ntrue

)
MC

/(
Nsmeared

Ntrue

)
base

}
− 1, (5.4)

UMC,− = 1−min
MC

{(
Nsmeared

Ntrue

)
MC

/(
Nsmeared

Ntrue

)
base

}
, (5.5)

where Ntrue denotes the number of true events in a given bin, Nsmeared denotes the
number of events in the bin after smearing, and the subscript MC refers to each
Monte Carlo sample, while base refers to the baseline AMBT1 sample. Unlike the
foregoing samples, this is formulated as a double ratio because it is the sample used
that changes, rather than the properties of the smearing; thus the number of true
events that should be present changes from sample to sample, whereas it previously
did not. As in other cases, the computation is based on averaging many data-sized
subsamples – 196 for AMBT1, 20 for Perugia2010, 50 for others, as dictated by the
available number of events – in order to reduce statistical fluctuations.

Although the response matrix primarily models “detector effects,” there are sev-
eral ways that truth-level details can impact the corrections. Differing jet or track
momentum distributions change the population within bins; so for example if one
MC sample has an average jet pT of 5.2 GeV in the 5-6 GeV bin, and another has
an average of 5.3, the response associated with the 5-6 GeV bin will reflect a higher
weight on higher-momentum jets in the latter. Differences in the amount or distri-
bution of activity in the underlying event can significantly change the fragmentation
distribution, especially in the low-momentum bins, because these tracks are not cor-
related with the jet direction and so may appear at large radii. Differing strangeness
fractions can change the distribution of long-lifetime tracks that decay and produce
kinks in the tracker, leading to momentum mismeasurements and/or loss of tracks
due to failed hit requirements.

The variation over tunes also accounts for PDF uncertainties, because MC proper-
ties are tuned with a particular PDF and several different PDFs are used. Reweighting
events according to a set of PDF errors is not performed, because the samples used are
all minimum bias samples, which use leading order PDFs with very large uncertain-
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ties at low x. Because MC properties are tuned to data assuming a particular PDF
set, such a variation would greatly overestimate the variation in event properties.

5.2 High-Momentum Mismeasured Tracks

Despite the tightening of the d0 cut for high-momentum tracks, in simulation a sig-
nificant fraction of selected tracks at very high momentum do not have a matching
truth particle with momentum within 50% (Figure 5.1(a)). The impact of these
significantly mismeasured tracks on the measurement is accounted for the unfolding
procedure provided that the fraction is similar in data; however, the data have a
larger fraction of tracks failing the d0 cut, as shown in Figure 5.1(b). A systematic
uncertainty on the number of mismeasured tracks in data is computed and propagated
to assess its impact on jets. The upper bound of this uncertainty assumes that all
such extra tracks are well-measured, but did not pass the d0 cut due to poorer-than-
modelled resolution; the lower bound is based on the assumption that the increase
in rejected tracks corresponds to a proportional increase in accepted mismeasured
tracks. Therefore the uncertainties for tracks are given by

uHigh-pT,+ = IData − IMC , (5.6)

uHigh-pT,− =
IData
IMC

MMC , (5.7)

where uHigh-pT,± is the upper/lower uncertainties, I is the inefficiency of the d0 cut,
and M is the fraction of mismeasured tracks. These uncertainties are shown as
a function of track momentum in Table 5.1. Similar uncertainties, albeit slightly
smaller, are obtained by replacing the high-momentum d0 cut with a high-momentum
TRT extension requirement.

These uncertainties are then propagated to each measured jet bin, with the scale
factor determined by the fraction of jets in a given bin with leading track in each
momentum range:

UHigh-pT,±(pTjet, N
ch
jet) =∑

pT,lead track

f (pTjet, N
ch
jet, pT,lead track)uHigh-pT,±(pT,lead track) (5.8)

,
where UHigh-pT,±(pTjet, N

ch
jet) is the upper/lower systematic uncertainty on the number

of reconstructed jets in that (pTjet, N
ch
jet) bin, and f(pTjet, N

ch
jet, pT,lead track) is the frac-
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Figure 5.1: Information used to compute the high-momentum mismeasured track uncer-
tainty. (a) Fraction of accepted tracks in MC that do not match to any charged truth par-
ticle whose momentum is within 50%. (b) Fraction of tracks failing the high-momentum
d0 cut in data (red triangles) and MC09 simulation (black circles).

tion of tracks in that bin with lead track momentum pT,lead track in the given range.
Thus the correction is large at high jet momentum and low number of particles per
jet, because these jets have the highest leading track momenta, and hence the greatest
impact from high-momentum mismeasured tracks.

This uncertainty on the reconstructed bins is then used to scale up and down the
data, with the unfolding applied in each case and compared to the unfolding central
value. The resulting differences in each measured bin give the final uncertainty due
to high-momentum mismeasured tracks.

This correction is also applied to the z, prelT , and r distributions. Each bin is scaled
in proportion to the fraction of tracks in that bin that come from a jet whose leading
track is in a given range, in proportion to the uncertainty on tracks in that range.
The corrections are only significant for high-z bins in high-pT jets. The corrections
are then propagated through the unfolding as in the jet-based distributions, and the
result compared to the central value.
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Table 5.1: Fractional uncertainties on the number of high-momentum tracks, computed
from the text. These uncertainties are then propagated to jets based on the distribution
of the leading track momenta within each (pT,N ch) jet bin.

Track pT [GeV] Upper uncertainty (uHigh-pT,+) lower uncertainty (uHigh-pT,−)

10-12 +0.3% -0.5%

12-15 +0.7% -0.9%

15-20 +0.7% -1.3%

20-25 +2.7% -2.1%

25-30 +4.1% -4.1%

30-40 +4.1% -8.7%

40-60 +10.8% -11.4%

60-80 +16.3% -18.3%

80-100 +23.6% -53.0%

5.3 Misreconstruction of Multiple Vertices

The data are corrected as a function of the number of selected tracks in the event, as
discussed in Section 4.3.3. A weight of 1/εnosplit is applied on an event-by-event basis;
the correction is less than 0.25% for 10 or fewer selected tracks, rising to 1% around
30 tracks and continuing steadly to 4% at about 100 tracks. As the correction is
derived entirely from MC, the full value of the correction is taken as a (symmetrized)
uncertainty. After unfolding, the value of this correction is relatively flat as a function
of jet momentum, varying from about 1.8% at 4-5 GeV to 2.2% at 90-100 GeV.

5.4 Unmatched Reconstructed Tracks

As described in Section 4.7.3, a scaling correction is applied to the data to account
for unmatched reconstructed jets, because these jets would otherwise not appear in
the response matrix and not be accounted for in the unfolding. In order to assign an
uncertainty to this correction, the unfolding is repeated with a correction determined
from the Perugia 2010 sample rather than AMBT1. The fractional difference in
the unfolding output between this and the baseline configuration is taken to be the
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uncertainty on the correction; the uncertainty is symmetrized.

UUnmatched,± =

∣∣∣∣Ndata, Perugia 2010

Ndata,AMBT1

− 1

∣∣∣∣ , (5.9)

where Ndata, Perugia 2010 is the number of events in a given bin when the data is un-
folded using the Perugia 2010 correction, while Ndata,AMBT1 is the number of events
obtained when unfolding the data with the baseline AMBT1 correction. Perugia
2010 is the only sample that can be used for this purpose, because it is the only fully
simulated sample other than the baseline AMBT1 that has sufficient events in the
high-momentum bins.

5.5 Unfolding Uncertainties

As discussed in Section 4.7.4, the closure tests do not achieve perfect consistency
between the true value and the result after unfolding for all bins. The deviation is
determined by averaging over the 196 data-sized AMBT1 samples, with the unfolding
applied to fully simulated events; it is typically a few percent or less. The uncertainty
on the final result is taken to be the size of the disagreement for each bin, and is
symmetrized. Thus the uncertainty for each bin is thus given by

UClosure,± =

∣∣∣∣Nunfolded

Ntrue

− 1

∣∣∣∣ , (5.10)

where Nunfolded is the average number of events after full simulation and unfolding,
while Ntrue is the average number of true events in the bin.

Appendix 5.A Uncertainties for Selected Bins

Uncertainties for representative bins and distributions are given in the tables on the
following pages. Cross section and prelT uncertainties appear in Table 5.2; multiplicity
uncertainties appear in Table 5.3; and z and ρch(r) uncertainties appear in Table 5.4.
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Chapter 6

Results and Discussion

A selection of the distributions measured in this analysis appear in Figures 6.1–6.10;
other rapidity ranges may be found in Appendix A. They are compared the MC
distributions described in Section 2.7.

6.1 Charged particle jet cross section

cross sections as a function of jet pT are shown in Figure 6.1. The simulated cross
sections shown for comparison are scaled to the data, using the scale factor S defined
by:

S = σtotaldata /σ
total
MC , (6.1)

where

σtotal =

∫ 100 GeV

4 GeV

dpTjet

∫ 1.9

−1.9

dyjet
d2σjet

dpTjetdyjet
. (6.2)

The scale factors for the various MC’s are given in Table 6.1.
In all cases except Herwig++ 2.4.2, the scale factors S for R = 0.6 are larger than

those for R = 0.4. Since the larger radius parameter results in the inclusion of more
particles not directly associated with perturbative scattering, this implies that the
models underestimate the contribution of the underlying event required to reproduce
the data. Phojet has the best agreement between the scale factors at R = 0.4 and
R = 0.6. The Pythia Perugia tunes also agree well for the two radii, and are most
consistent with one.

The jet cross section distributions (Fig. 6.1) fall by 6 orders of magnitude between
jet momenta of 4 and 100 GeV. The MC models considered agree broadly with this
trend, but do not agree well in detail. By construction of the normalization factor
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Chapter 6. Results and Discussion

Table 6.1: Scale factors S for Monte Carlo cross section normalization as defined in
Equation 6.1. The total Monte Carlo cross sections are normalized to the total for the
data, over the full momentum and rapidity ranges investigated in this analysis, 4 GeV <
pTjet < 100 GeV and |yjet| < 1.9. The statistical uncertainties on these ratios are
less than 0.1%. The systematic uncertainties are +4.9%

−4.8% (±5.0%) for R = 0.4 (0.6);
these uncertainties are entirely correlated within columns, and largely correlated between
columns.

Tune S (R = 0.4) S (R = 0.6)

AMBT1 0.838 0.896

Perugia-0 0.981 1.087

Perugia HARD 0.936 1.058

Perugia SOFT 0.968 1.036

Perugia 2010 0.976 1.044

DW 0.894 1.045

Herwig++ 2.4.2 0.753 0.612

Herwig++ 2.5.1 UE7 0.425 0.458

Pythia 8 0.777 0.815

Phojet 0.643 0.668

S, all distributions agree with the data in the lowest momentum bins; most also give
qualitative agreement for the shape at the lowest momenta. The MC distributions
diverge from the data in the 10–20 GeV range, with some having a harder and others
a softer momentum dependence,. At higher pT, many of the models’ momentum
dependence agrees well with the data. If one identifies the higher-momentum region
as dominated by perturbative modeling and the low-momentum region as dominated
by soft physics, this indicates that perturbative modeling of charged particle jets is
in fair agreement for most of the tunes. It is the transition from soft physics to the
perturbative region that is not successfully modeled.

The Pythia models give a harder shape for the momentum spectrum than the data
below a jet pT of about 20 GeV, after which they exhibit roughly the same momentum
dependence or become slightly softer. By contrast, the Phojet and Herwig++ mod-
els produce spectra that are softer than the data in the 10–20 GeV range but have
relatively good shape agreement outside, although the Herwig++ 2.5.1 UE7 tune has
the additional feature of producing too hard a spectrum at momenta below 10 GeV.
The DW tune, has a cross section that rises much too rapidly in the transition region,
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Figure 6.1: The cross section for anti-kt charged particle jets as a function of pT, with
|y| < 0.5 and radius parameter R as indicated. The shaded area is the total uncertainty
for the corrected data distribution, excluding the overall 3.4% luminosity uncertainty. The
data are compared to a range of theoretical results from Monte Carlo event generators,
and normalized to the data over the full momentum and rapidity range measured, using
the scale factor S as defined in the text. The bottom inserts show the fractional difference
between these distributions and the data. The distributions for the Perugia HARD (Perugia
SOFT) tune, not shown, agree qualitatively with the Perugia2010 (Perugia 0) tune.

and falls much too rapidly at high momentum; this effect is especially pronounced for
R = 0.6. This suggests that the Q2-ordered showering used by the DW tune is less
successful in modeling the jet momentum spectrum.

Cross sections as a function of rapidity are shown in Figure 6.2. The MC dis-
tributions are normalized to the data in each momentum bin separately rather than
to the scale factor S. The rapidity dependence of the cross section shows generally
good agreement between data and MC. The cross section decreases only slightly with
increasing rapidity at low momenta, but by a somewhat higher amount at higher
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Figure 6.2: The cross section for anti-kt charged particle jets as a function of rapidity, for
selected momentum bins and radius parameter R as indicated. The shaded area is the
total uncertainty for the corrected data distribution, excluding the overall 3.4% luminosity
uncertainty. The data are compared to a range of theoretical results from Monte Carlo
event generators, which are normalized to the data separately for each momentum range.
The distributions for all Perugia samples agree qualitatively, so only Perugia 0 is shown.
The two Herwig++ tunes agree, so only Herwig++ 2.4.2 is shown.

momenta.

6.2 Charged particle kinematics and multiplicity in jets

The multiplicity of charged tracks per jet, for several momentum ranges over the
full range |yjet| < 1.9, is shown in Figure 6.3 (6.4) for R = 0.4 (0.6). The charged
particle z, prelT , and ρch(r) distributions are shown for same central rapidity range in
Figures 6.5 (6.6), 6.7 (6.8), and 6.9 (6.10) respectively for R = 0.4 (0.6).

No tune describes well all of the kinematic distributions and multiplicities of
charged particles within jets. For z, the ATLAS AMBT1 and Perugia SOFT give
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Figure 6.3: Multiplicity of particles per charged particle jet, over the full measured rapidity
range |y| < 1.9, with anti-kt radius parameter R = 0.4. figure (a) shows the distributions
for five momentum ranges, and Figure (b) shows the fractional difference between a range
of Monte Carlo event generator predictions and the data. The distributions for the Perugia
2010 tune, not shown, agree qualitatively with the Perugia 0 tune.

good descriptions of the data. For ρch(r), AMBT1 gives a good description. For
prelT and multiplicity, no tune correctly describes all data. For all distributions, Her-
wig++ 2.4.2 shows strong disagreement with the data, characterized by an excess
of low-momentum particles, which is especially pronounced for the larger jet-finding
parameter R and at large particle r (as defined in Equation 4.7). Herwig++ 2.5.1 UE
7000 represents a significant improvement, so Herwig++ 2.4.2 will not be discussed
further.

All models give good agreement for the average charged particle multiplicity per
jet. The AMBT1 and Perugia SOFT tunes agree well with the multiplicity distri-
butions (Figures 6.3 and 6.4) for the vast majority of jets, and Perugia 0, Perugia
2010, and Phojet give fair agreement for R = 0.4, although the high-multiplicity tail
in data is greatly underestimated by all models. Herwig++ 2.5.1 UE7 and Perugia
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Figure 6.4: Multiplicity of particles per charged particle jet, over the full measured rapidity
range |y| < 1.9, with anti-kt radius parameter R = 0.6. figure (a) shows the distributions
for five momentum ranges, and Figure (b) shows the fractional difference between a range
of Monte Carlo event generator predictions and the data. The distributions for the Perugia
2010 tune, not shown, agree qualitatively with the Perugia 0 tune.

HARD have a significant excess of low-multiplicity jets, while Pythia 8.145 4C and
Pythia DW exhibit a deficit.

The AMBT1 and Perugia SOFT tunes give good agreement with the measured
longitudinal momentum fraction z (Figures 6.5 and 6.6); Perugia-0 also agrees well
for R = 0.4. The other MC’s (except Herwig++ 2.4.2) agree within 30% at low z, but
diverge more significantly at high z. Perugia HARD has the most significant excess
of high-z particles, with excesses also present for Phojet and Perugia 0. The excess is
particularly large at lower jet momenta and R = 0.6, suggesting that the soft physics
model is characterized by fewer particles with higher momentum. By contrast, Pythia
8.145 4C, Pythia DW, and Herwig++ 2.5.1 UE 7000 have too few high-z particles,
with variations again larger for R = 0.6. Pythia DW exhibits an excess at mid-z at
low jet momenta, which is seen at progressively lower z values as the jet momentum
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Figure 6.5: The distribution of the fragmentation variable z for anti-kt jets with radius
parameter R = 0.4, in the rapidity range |y| < 1.9. figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data. The distributions for the Perugia
2010 (Perugia SOFT) tune, not shown, agree qualitatively with the Perugia 0 (AMBT1)
tune.

increases, implying an excess of particles with a momentum of roughly 2 GeV that is
not associated with jet structure.

The transverse momentum prelT (Figures 6.7 and 6.8) is in fair agreement (∼20%)
at low-to-moderate values for all MC generators except Herwig++ 2.4.2. At the
lowest jet momenta and highest measurable prelT , Phojet and Herwig++ 2.5.1 UE7
have an excess of particles, while Pythia DW has a deficit. At higher jet momenta,
the data have more high-prelT particles than any tune, with Perugia 2010 and Perugia
HARD giving the closest description and Perugia SOFT the furthest. Perugia 2010
and Perugia HARD agree better than do the other Perugia tunes.

The AMBT1, Pythia 8.145 4C, and Herwig++ 2.5.1 UE7 tunes provide a good
description of the charged particle number density ρch(r) (Figures 6.9 and 6.10) at
all radii. Phojet and the Perugia tunes (especially SOFT) have an excess of particles
very close to the jet axis, which is most pronounced at high jet momentum and for
R = 0.6; Perugia 2010 agrees better in this region than do the other Perugia tunes.
At high r, Phojet and all Pythia tunes except AMBT1 and Perugia SOFT have too
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Figure 6.6: The distribution of the fragmentation variable z for anti-kt jets with radius
parameter R = 0.6, in the rapidity range |y| < 1.9. figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data. The distributions for the Perugia
2010 (Perugia SOFT) tune, not shown, agree qualitatively with the Perugia 0 (AMBT1)
tune.

few particles. However, the disagreement is less pronounced than is seen at high prelT ,
implying that high-radius soft particles from the underlying event are better-described
than high-radius hard radiation.
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Figure 6.7: The distribution of the fragmentation variable prelT for anti-kt jets with radius
parameter R = 0.4, in the rapidity range |y| < 1.9. figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure 6.8: The distribution of the fragmentation variable prelT for anti-kt jets with radius
parameter R = 0.6, in the rapidity range |y| < 1.9. figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure 6.9: The distribution of the fragmentation variable r for anti-kt jets with radius
parameter R = 0.4, in the rapidity range |y| < 1.9. figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure 6.10: The distribution of the fragmentation variable r for anti-kt jets with radius
parameter R = 0.6, in the rapidity range |y| < 1.9. figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Conclusions

A measurement is presented of the charged particle jet cross section as a function
of transverse momentum and rapidity, along with the transverse momentum, longi-
tudinal momentum fraction, and number density as a function of radius for charged
particles within these jets, with the ATLAS detector using early 7 TeV LHC colli-
sions. The results for all distributions are in qualitative agreement with most of the
theoretical models considered, but differences are quite large for some distributions.
No tune presented here agrees with all quantities measured within their uncertainties,
suggesting that future MC tunes may be improved.

Difficulty in modeling the transition between soft and perturbative physics is in-
dicated by disagreements between data and all MC distributions in the 10-20 GeV
range in the dependence of the charged jet cross section on jet momentum. Depen-
dence of the cross section on rapidity is consistent with predictions. Particles with
large transverse momentum prelT with respect to the jet that contains them are pro-
duced more copiously than any model predicts, as are jets with large charged particle
multiplicity. The longitudinal momentum fraction z is best described by the Pythia
6.421 AMBT1 tune. The charged particle number density ρch(r) is well-described by
the Pythia 6.421 AMBT1, Pythia 8.145 4C, and Herwig++ 2.5.1 UE7 tunes. With
the exception of the Herwig++ 2.4.2 default tune, which greatly disagrees with these
measurements, all models appear to underestimate the contribution of the underlying
event required to model the data.

The study of jets with tracks allows for precise measurements of low-momentum
jets and their properties, thus complementing calorimeter-based jet measurements
and allowing the study of the transition from soft collisions to jet production in the
perturbative regime of QCD. It also provides additional observables for consideration
in the tuning of MC event generators, which complement existing studies such as
“minimum bias” and underlying event measurements. These results may thus be
used to derive better MC tunes and models, which will in turn lead to a better
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understanding of QCD at the Large Hadron Collider. These improvements will feed
back into models of pileup and other backgrounds, thereby improving future searches
and discoveries at the LHC.
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Appendix A

Plots of Additional Results

In this Appendix, additional plots analagous to those appearing in Chapter 6 are
presented, but for all individual rapidity ranges. They do not suggest additional
qualitative conclusions, but the measurements for all bins will be made available [92]

for the purposes of Monte Carlo tuning.
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Figure A.1: The cross section for anti-kt charged particle jets as a function of pT, with
|y| < 0.5 and radius parameter R as indicated. The shaded area is the total uncertainty
for the corrected data distribution, excluding the overall 3.4% luminosity uncertainty. The
data are compared to a range of theoretical results from Monte Carlo event generators,
which are normalized to the data over the full momentum and rapidity range measured,
using the a scale factor analagous to the scale factor S from the text but normalizing only
to the pT range 30–100 GeV. The bottom inserts show the fractional difference between
these distributions and the data. The distributions for the Perugia HARD (Perugia SOFT)
tune, not shown, agree qualitatively with the Perugia2010 (Perugia 0) tune.
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Figure A.2: The cross section for anti-kt charged particle jets as a function of pT, with
rapidity range and radius parameter R = 0.4. The shaded area is the total uncertainty for
the corrected data distribution, excluding the overall 3.4% luminosity uncertainty. The
data are compared to a range of theoretical results from Monte Carlo event generators, and
normalized to the data over the full momentum and rapidity range measured, using the
scale factor S as defined in the text. The section at right shows the fractional difference
between these distributions and the data.
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Figure A.3: The cross section for anti-kt charged particle jets as a function of pT, with
rapidity range and radius parameter R = 0.6. The shaded area is the total uncertainty for
the corrected data distribution, excluding the overall 3.4% luminosity uncertainty. The
data are compared to a range of theoretical results from Monte Carlo event generators, and
normalized to the data over the full momentum and rapidity range measured, using the
scale factor S as defined in the text. The section at right shows the fractional difference
between these distributions and the data.
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Figure A.4: Multiplicity of particles per charged particle jet, over the rapidity range |y| <
0.5, with anti-kt radius parameter R = 0.4. Figure (a) shows the distributions for five
momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure A.5: Multiplicity of particles per charged particle jet, over the rapidity range |y| <
0.5, with anti-kt radius parameter R = 0.6. Figure (a) shows the distributions for five
momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure A.6: Multiplicity of particles per charged particle jet, over the rapidity range 0.5 <
|y| < 1.0, with anti-kt radius parameter R = 0.4. Figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure A.7: Multiplicity of particles per charged particle jet, over the rapidity range 0.5 <
|y| < 1.0, with anti-kt radius parameter R = 0.6. Figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure A.8: Multiplicity of particles per charged particle jet, over the rapidity range 1.0 <
|y| < 1.5, with anti-kt radius parameter R = 0.4. Figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure A.9: Multiplicity of particles per charged particle jet, over the rapidity range 1.0 <
|y| < 1.5, with anti-kt radius parameter R = 0.6. Figure (a) shows the distributions for
five momentum ranges, and Figure (b) shows the fractional difference between a range of
Monte Carlo event generator predictions and the data.
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Figure A.10: Multiplicity of particles per charged particle jet, over the rapidity range
1.5 < |y| < 1.9, with anti-kt radius parameter R = 0.4. Figure (a) shows the distributions
for five momentum ranges, and Figure (b) shows the fractional difference between a range
of Monte Carlo event generator predictions and the data.
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Figure A.11: Multiplicity of particles per charged particle jet, over the rapidity range
1.5 < |y| < 1.9, with anti-kt radius parameter R = 0.6. Figure (a) shows the distributions
for five momentum ranges, and Figure (b) shows the fractional difference between a range
of Monte Carlo event generator predictions and the data.

104



Chapter A. Plots of Additional Results

zCharged Particle 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
z

/d
c
h

)(
d

N
je

t
(1

/N

1
10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

1410
 = 7 TeVsData 2010   

Pythia6 AMBT1
Herwig++ 2.4.2
Herwig++ 2.5.1 UE7
Pythia 8.145 4C
Pythia6 Perugia 0
Pythia6 Perugia HARD
Pythia6 Perugia SOFT
Pythia6 Perugia 2010
Pythia6 Per. 2010NOCR
Pythia6 DW
Phojet + Pythia6

4 ­ 6 GeV

)210×
6 ­ 10 GeV (

)
410×

10 ­ 15 GeV (

R = 0.4

ATLAS

|y| < 0.5

)
610×

15 ­ 24 GeV (

)
810×

24 ­ 40 GeV (

(a) R = 0.4 Distribution

zCharged Particle 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5

D
a
ta

M
C

 ­
 D

a
ta

4 ­ 6 GeV

6 ­ 10 GeV

10 ­ 15 GeV

R = 0.4
ATLAS

15 ­ 24 GeV

24 ­ 40 GeV

(b) R = 0.4 Data-MC Difference

zCharged Particle 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

)
z

/d
c
h

)(
d

N
je

t
(1

/N

1
10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

1410  = 7 TeVsData 2010   
Pythia6 AMBT1
Herwig++ 2.4.2
Herwig++ 2.5.1 UE7
Pythia 8.145 4C
Pythia6 Perugia 0
Pythia6 Perugia HARD
Pythia6 Perugia SOFT
Pythia6 Perugia 2010
Pythia6 Per. 2010NOCR
Pythia6 DW
Phojet + Pythia6

4 ­ 6 GeV

)
210×

6 ­ 10 GeV (

)
410×

10 ­ 15 GeV (

R = 0.6

ATLAS

|y| < 0.5

)
610×

15 ­ 24 GeV (

)
810×

24 ­ 40 GeV (

(c) R = 0.6 Distribution

zCharged Particle 

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

­0.5

0

0.5

D
a
ta

M
C

 ­
 D

a
ta

4 ­ 6 GeV

6 ­ 10 GeV

10 ­ 15 GeV

R = 0.6
ATLAS

15 ­ 24 GeV

24 ­ 40 GeV

(d) R = 0.6 Data-MC Difference

Figure A.12: The distribution of the fragmentation variable z for anti-kt jets with radius
parameter R as indicated, in the rapidity range |y| < 0.5. Figures (a) and (c) show the
distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and Figures
(b) and (d) show the fractional difference between a range of Monte Carlo event generator
predictions and the data.
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Figure A.13: The distribution of the fragmentation variable z for anti-kt jets with radius
parameter R as indicated, in the rapidity range 0.5 < |y| < 1.0. Figures (a) and (c)
show the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and
Figures (b) and (d) show the fractional difference between a range of Monte Carlo event
generator predictions and the data.
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Figure A.14: The distribution of the fragmentation variable z for anti-kt jets with radius
parameter R as indicated, in the rapidity range 1.0 < |y| < 1.5. Figures (a) and (c)
show the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and
Figures (b) and (d) show the fractional difference between a range of Monte Carlo event
generator predictions and the data.
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Figure A.15: The distribution of the fragmentation variable z for anti-kt jets with radius
parameter R as indicated, in the rapidity range 1.5 < |y| < 1.9. Figures (a) and (c)
show the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and
Figures (b) and (d) show the fractional difference between a range of Monte Carlo event
generator predictions and the data.
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Figure A.16: The distribution of the fragmentation variable prelT for anti-kt jets with radius
parameter R as indicated, in the rapidity range |y| < 0.5. Figures (a) and (c) show the
distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and Figures
(b) and (d) show the fractional difference between a range of Monte Carlo event generator
predictions and the data.
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Figure A.17: The distribution of the fragmentation variable prelT for anti-kt jets with radius
parameter R as indicated, in the rapidity range 0.5 < |y| < 1.0. Figures (a) and (c) show
the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and Figures
(b) and (d) show the fractional difference between a range of Monte Carlo event generator
predictions and the data.
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Figure A.18: The distribution of the fragmentation variable prelT for anti-kt jets with radius
parameter R as indicated, in the rapidity range 1.0 < |y| < 1.5. Figures (a) and (c) show
the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and Figures
(b) and (d) show the fractional difference between a range of Monte Carlo event generator
predictions and the data.

111



Chapter A. Plots of Additional Results

 [GeV]rel

T
pCharged Particle 

0 0.5 1 1.5 2 2.5

]
­1

) 
[G

e
V

re
l

T
p

/d
c
h

)(
d

N
je

t
(1

/N

­210

­110
1

10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

1410
 = 7 TeVsData 2010   

Pythia6 AMBT1
Herwig++ 2.4.2
Herwig++ 2.5.1 UE7
Pythia 8.145 4C
Pythia6 Perugia 0
Pythia6 Perugia HARD
Pythia6 Perugia SOFT
Pythia6 Perugia 2010
Pythia6 Per. 2010NOCR
Pythia6 DW
Phojet + Pythia6

4 ­ 6 GeV

)210×6 ­ 10 GeV (

)
410×

10 ­ 15 GeV (

R = 0.4

ATLAS

1.5 < |y| < 1.9

)
610×

15 ­ 24 GeV (

)
810×

24 ­ 40 GeV (

(a) R = 0.4 Distribution

 [GeV]rel

T
pCharged Particle 

0 0.5 1 1.5 2 2.5

­0.5

0

0.50 0.5 1 1.5 2 2.5

­0.5

0

0.50 0.5 1 1.5 2 2.5

­0.5

0

0.50 0.5 1 1.5 2 2.5

­0.5

0

0.50 0.5 1 1.5 2 2.5

­0.5

0

0.5

D
a
ta

M
C

 ­
 D

a
ta

4 ­ 6 GeV

6 ­ 10 GeV

10 ­ 15 GeV

R = 0.4

ATLAS

15 ­ 24 GeV

24 ­ 40 GeV

(b) R = 0.4 Data-MC Difference

 [GeV]rel

T
pCharged Particle 

0 0.5 1 1.5 2 2.5 3 3.5 4

]
­1

) 
[G

e
V

re
l

T
p

/d
c
h

)(
d

N
je

t
(1

/N

­210

­110
1

10

210

310

410

510

610

710

810

910

1010

1110

1210

1310

1410
 = 7 TeVsData 2010   

Pythia6 AMBT1
Herwig++ 2.4.2
Herwig++ 2.5.1 UE7
Pythia 8.145 4C
Pythia6 Perugia 0
Pythia6 Perugia HARD
Pythia6 Perugia SOFT
Pythia6 Perugia 2010
Pythia6 Per. 2010NOCR
Pythia6 DW
Phojet + Pythia6

4 ­ 6 GeV

)210×6 ­ 10 GeV (

)
410

×

10 ­ 15 GeV (

R = 0.6

ATLAS

1.5 < |y| < 1.9

)
610×

15 ­ 24 GeV (

)
810×

24 ­ 40 GeV (

(c) R = 0.6 Distribution

 [GeV]rel

T
pCharged Particle 

0 0.5 1 1.5 2 2.5 3 3.5 4

­0.5

0

0.50 0.5 1 1.5 2 2.5 3 3.5 4

­0.5

0

0.50 0.5 1 1.5 2 2.5 3 3.5 4

­0.5

0

0.50 0.5 1 1.5 2 2.5 3 3.5 4

­0.5

0

0.50 0.5 1 1.5 2 2.5 3 3.5 4

­0.5

0

0.5

D
a
ta

M
C

 ­
 D

a
ta

4 ­ 6 GeV

6 ­ 10 GeV

10 ­ 15 GeV

R = 0.6

ATLAS

15 ­ 24 GeV

24 ­ 40 GeV

(d) R = 0.6 Data-MC Difference

Figure A.19: The distribution of the fragmentation variable prelT for anti-kt jets with radius
parameter R as indicated, in the rapidity range 1.5 < |y| < 1.9. Figures (a) and (c) show
the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and Figures
(b) and (d) show the fractional difference between a range of Monte Carlo event generator
predictions and the data.
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Figure A.20: The distribution of the fragmentation variable r for anti-kt jets with radius
parameter R as indicated, in the rapidity range |y| < 0.5. Figures (a) and (c) show the
distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and Figures
(b) and (d) show the fractional difference between a range of Monte Carlo event generator
predictions and the data.
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Figure A.21: The distribution of the fragmentation variable r for anti-kt jets with radius
parameter R as indicated, in the rapidity range 0.5 < |y| < 1.0. Figures (a) and (c)
show the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and
Figures (b) and (d) show the fractional difference between a range of Monte Carlo event
generator predictions and the data.
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Figure A.22: The distribution of the fragmentation variable r for anti-kt jets with radius
parameter R as indicated, in the rapidity range 1.0 < |y| < 1.5. Figures (a) and (c)
show the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and
Figures (b) and (d) show the fractional difference between a range of Monte Carlo event
generator predictions and the data.
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Figure A.23: The distribution of the fragmentation variable r for anti-kt jets with radius
parameter R as indicated, in the rapidity range 1.5 < |y| < 1.9. Figures (a) and (c)
show the distributions for five momentum ranges with R = 0.4 and 0.6, respectively, and
Figures (b) and (d) show the fractional difference between a range of Monte Carlo event
generator predictions and the data.
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