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Whole Genome Association Study of the
Plasma Metabolome Identifies Metabolites
Linked to Cardiometabolic Disease in Black
Individuals

Usman A. Tahir1,185, Daniel H. Katz1,185, Julian Avila-Pachecho 2,185,
Alexander G. Bick 2, Akhil Pampana 2, Jeremy M. Robbins1, Zhi Yu 2,
Zsu-Zsu Chen1, Mark D. Benson1, Daniel E. Cruz1, Debby Ngo1, Shuliang Deng1,
Xu Shi1, Shuning Zheng1, Aaron S. Eisman 1, Laurie Farrell1, Michael E. Hall3,
Adolfo Correa 3, Russell P. Tracy 4, Peter Durda4, Kent D. Taylor5,
Yongmei Liu6, W. Craig Johnson 7, Xiuqing Guo 5, Jie Yao5, Yii-Der Ida Chen5,
Ani W. Manichaikul8,9, Frederick L. Ruberg10, William S. Blaner 11, Deepti Jain12,
NHLBI Trans-Omics for Precision Medicine 1 Consortium*, Claude Bouchard 13,
Mark A. Sarzynski 14, Stephen S. Rich 8,9, Jerome I. Rotter5, Thomas J. Wang15,
James G. Wilson1, Clary B. Clish 2,185, Pradeep Natarajan2,16,185 &
Robert E. Gerszten 1,2,185

Integrating genetic information with metabolomics has provided new insights
into genes affecting human metabolism. However, gene-metabolite integra-
tion has been primarily studied in individuals of European Ancestry, limiting
the opportunity to leverage genomic diversity for discovery. In addition, these
analyses have principally involved knownmetabolites, with themajority of the
profiled peaks left unannotated.Here,weperformawhole genomeassociation
study of 2,291 metabolite peaks (known and unknown features) in 2,466 Black
individuals from the Jackson Heart Study. We identify 519 locus-metabolite
associations for 427 metabolite peaks and validate our findings in two multi-
ethnic cohorts. A significant proportion of these associations are in ancestry
specific alleles including findings in APOE, TTR and CD36. We leverage tandem
mass spectrometry to annotate unknown metabolites, providing new insight
into hereditary diseases including transthyretin amyloidosis and sickle cell
disease. Our integrative omics approach leverages genomic diversity to pro-
vide novel insights into diverse cardiometabolic diseases.

Disturbed metabolism plays a central role across a spectrum of
pathological processes from cancer to cardiometabolic disease1,2.
Metabolomics aims to systematically measure small molecules and
provides a snapshot of metabolic activity, capturing both genetic and
environmental influences on disease pathogenesis3. The integration of

genomics andmetabolomics hasbeen increasingly leveraged in efforts
to identify bioactive metabolites linked to human disease, as large-
scale genome-wide association studies (GWAS) have played a critical
role in our understanding of loci that affect disease risk. Previous
GWAS of the metabolome has identified associations between
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hundreds of genomic loci across a broad range of metabolite classes,
including amino acids, nucleosides, and lipids among others4–24. While
prior studies have ranged in sample sizes from several hundred to a
few thousand individuals, a recent study performed a GWAS meta-
analysis across several large cohorts for 171 metabolites (in up to
86,507 individuals) measured using various metabolomic profiling
platforms, including liquid chromatography-mass spectrometry (LC-
MS) and nuclear magnetic resonance (NMR) spectroscopy23. This
cross-platform analysis highlighted the robustness of findings in
metabolomics GWAS and the ability to detect clinically relevant asso-
ciations, helping to illuminate biology in both common diseases such
as diabetes and rare conditions such as macular telangiectasia type II.

Despite these efforts, the vast majority of metabolomics GWAS to
date have been undertaken in cohorts of European ancestry, limiting
the opportunity to leverage genomic diversity for biological
discovery25–27. Individuals of African ancestry are more genetically
diverse than those of European ancestry28, and carry ancestry-specific
mutations which may illuminate biology and therapeutic strategies in
cardiometabolic disease29. Further, most GWAS of the metabolome to
date have used genotyping arrayswithmeasurement of a limited set of
tag single nucleotide polymorphisms (SNP) with the imputation of
remaining variants, limiting the ability to accurately assess low-
frequency protein-coding and non-coding variation. Finally, while
tools for unbiased metabolomic profiling can now measure hundreds
of known metabolites as well as thousands of unknown metabolite
peaks30,31, the latter have eluded definitive compound identification,
thus limiting biological insight into locus-metabolite associations.
There are significant challenges in unknown metabolomic profiling,
and attempts at further annotating these peaks in prior GWAS have
been limited. First, unknownmetabolite peaksmust be separated from
background noise and adduct ions of known and other unknown
metabolites32. In addition, chemical identification of unique peaks
requires downstream resource-intensive processes for structural elu-
cidation, identification including the acquisition of product ion mass
spectra (MS/MS) to generate metabolite fragmentation data as “che-
mical fingerprints” that can help improve compound identification33.
We have previously demonstrated proof-of-principle suggesting the
utility of integrating LC-MS of unknown peaks with genetic findings.

For example, when peak levels map to solute carriers or enzymes with
known functions, including substrates and products, this may help
narrow the potential compound matches for chemical standard
validation34. However, this has remained an arduous process, limiting
its application in metabolomics GWAS of unknown peaks in large
population-based studies.

To extend prior work, we performed a genome-wide associa-
tion study integrating whole genome sequencing (WGS) of 2,291
metabolite peaks in 2466 participants from the Jackson Heart Study
(JHS), a Black epidemiological cohort in Jackson, Mississippi, and
validated findings in the Multi-Ethnic Study of Atherosclerosis
(MESA; n = 995) and Health, Risk Factors, Exercise Training and
Genetics Family Study (HERITAGE; n = 658). Beyond confirming
prior known locus-metabolite associations in a Black cohort—an
important next step to test the generalizability of prior work—we
highlight many novel findings, including associations in ancestry-
specific alleles for heritable conditionsmore commonly observed in
Black individuals, including transthyretin amyloidosis and sickle
cell disease. We acquired MS/MS on metabolite features and have
integrated WGS findings and recently developed bioinformatic
tools that leverage MS fragmentation data for more efficient
annotation and identification of unknown metabolite peaks. We
have developed and made available an extensive sample library of
metabolite peaks, linking MS/MS spectra, genomic associations,
and clinical traits that can be leveraged for annotation and identi-
fication of unknown metabolites implicated in diverse disease
processes. Our integrative omics approach highlights the value of
whole genome sequencing analysis of the metabolome in diverse
populations for biological discovery and contributes to a roadmap
for the identification of metabolites implicated in human disease.

Results
We performed a whole genome association study (WGAS) in 2466
Black participants from JHS on 30,672,656 variants limited to an allele
count of at least five against 2291 metabolites (337 knownmetabolites
and 1954 unknownmetabolites peaks; Fig. 1). Clinical characteristics of
the study population are detailed in Supplementary Table 1. At a
Bonferroni threshold of significance of 8E-11 (based on 5E-8 /602

Fig. 1 | Whole Genome Association Study of known and unknown metabolites
in the Jackson Heart Study. Flow diagram detailing whole genome association
study of the metabolome, main results, and subsequent bioinformatic pipeline for
unknownmetabolite identification. Rareminor allele frequency is defined as <1% in

NFE using gnomAD. Confirmation of metabolite identities was limited to com-
mercially available metabolite standards. WGAS whole genome association study,
MS mass spectrometry; NFE non-Finish Europeans, GNPS global natural product
social networking.
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Fig. 2 | Phenogram of 519 locus-metabolite relationships in the Jackson Heart
Study. 118 loci-metabolite associations are for knownmetabolites. 401 associations
are for unknownmetabolite features. The most commonmetabolite class includes

amino acids, peptides, and analogs. Highlighted are sentinel genes with ≧4 locus-
metabolite associations.

Fig. 3 | Genetic architecture of metabolite-WGAS associations. A Number of
metabolites associatedwith each locus;BAbsolute distance frommQTLposition to
transcription start site; C Minor allele frequency and effect size; D Frequency of

mQTL sentinel allele in non-Finnish European Individuals vs African individuals;
E Location of mQTL. WGAS whole genome association study, mQTL metabolite
quantitative loci.
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principal components, which explain 95%of the variance inmetabolite
peak levels), there were 519 locus-metabolite associations, represent-
ing 427 metabolite peaks and 226 sentinel SNPs (Fig. 2). Of these, 118
locus-metabolite associations were determined from known metabo-
lite analysis, representing 91 distinctmetabolites. Comparison to prior
GWAS of plasma metabolites, using publicly available summary sta-
tistics through PhenoScanner V235 and the GWAS Catalog36 as well as
manual review of previously published metabolomics GWAS (Supple-
mentary Methods), suggests 33 of these locus-known metabolite
associations are novel. In addition, we identified 401 locus-metabolite
associations from the unknownmetabolite peak analysis, representing
336metabolite features, highlighting a large amount of information in
the yet-to-be-identified peaks.

Of the 226 metabolite quantitative trait loci (mQTLs), there were
159 unique genes annotated as the lead candidate gene (closest
protein-coding gene to the mQTL). Of the sentinel SNPs, 65% were
expression quantitative loci (eQTL) for their corresponding gene as
determined by PhenoScanner v2.0 (p value <2E-4; Supplementary
Data 2). Of those that were not eQTLs for the candidate gene, the
majority were rare in individuals of non-Finnish European Ancestry
(MAF <1% in gnomAD), highlighting a key limitation of presently
available genomic information when performing investigations in
Black individuals. Among the sentinel SNPs, 22% were located in exons
and anadditional 19%were in enhancer orpromoter regions (Fig. 3 and
Supplementary Data 2).

Of the 519 locus-metabolite associations meeting the Bonferroni
level of significance, 368 locus-metabolite peak relationships were
available for validation in both MESA and HERITAGE, of which 91%
were validated with a p value <0.05 and consistent direction of effect.
An additional 100 locus-metabolite peak associations were available in
eitherMESA or HERITAGE, of which 86% were validated. Overall, there
was 90% validation of available locus-metabolite associations with p
value <0.05; 68% validation (318 of 468 locus-metabolite associations
available) using Bonferroni level of significance (0.05/468; p value <1E-
4; Supplementary Data 2).

Ancestry-specific variants and metabolite associations
WGS of diverse populations provides an opportunity to assess allelic
architectures of populations of different ancestries and inform
underlying biology. In particular, for our study, 17% of the 226 sentinel
SNPs that were rare (MAF <1%) in Non-Finnish Europeans were com-
mon in individuals of African ancestry (MAF >5%; Supplementary
Data 2). Overall, 29% of the sentinel SNPs were nearly monoallelic in
individuals of NFE ancestry with a MAF <0.01% in gnomAD37. Here, we
highlight several novel locus-metabolite relationships with SNPs that
are rare in NFE (Table 1).

As an example, The TTR variant (V122I) is present in 3–4% of
Black individuals and has been implicated in the pathophysiology of
heart failure in the elderly, often unrecognized. We found the V122I
in TTR to be associated with an unknown metabolite (m/z 269.226)
in JHS (ß = − 0.76, p value = 4.4E-14). The TTR tetramer complexes
with retinol-binding protein (RBP4). This metabolite peak is corre-
lated with RBP4 (r2 = 0.64) measured by aptamer-based proteomic
profiling38 and V122I is significantly associated with RBP4 levels in
JHS. Leveraging MS/MS data and its genetic association with TTR
and correlation with RBP4, we predicted this compound to be all-
trans-retinol (vitamin A), which we subsequently confirmed with an
authentic standard (Supplementary Fig. 1). In addition, another
variant that is nearly monoallelic in individuals of European ances-
try, in APOE (rs769455), is associated with an unknown metabolite
peak (m/z 269.226; ß = 0.71, p value = 1.5E-12) that has an identical
molecular mass to all-trans-retinol (Fig. 4) and MS fragmentation
analysis and MS comparison against chemical standards and all-
trans-retinol and other retinol species predicts that it is a cis-isomer
of retinol.

Annotation for unknown metabolite peaks associated with
genomic loci
Of the 2291 metabolites measured, 1954 were unknown metabolite
peaks, of which 336were associatedwith genomic loci (p value <8E-11).
Of the mQTLs associated with unknown features, 15 had no prior
metabolite associations within 500 kb of the sentinel SNP; 12 of these
SNPs were rare in individuals of NFE ancestry. (Supplementary Data 2).
In the first step of assigning chemical identities to unknown metabo-
lites, we clustered metabolite peaks measured in the positive mode
(known and unknown metabolites) to identify primary metabolite
features and their adducts (Supplementary Data 3). After applying our
clustering algorithm, 49 of the 336 unknown metabolite peaks were
part of clusters with known metabolites and were assigned the che-
mical identity of this primary metabolite. Of the 287 unknown meta-
bolites not clustered with known compounds, 63 were adducts or
fragments of other primaryunknownmetabolites, leaving 224 asmajor
ions or primary unknown metabolites (Fig. 5).

Next, to aid in the identification of the unknown metabolites, we
applied MS/MS profiling to metabolite peaks measured in positive
mode, resulting in MS/MS data on 91% of unknown metabolite peaks
designated as major ions or primary metabolites in our study. Using
CANOPUS39, a bioinformatics tool which uses MS/MS data to annotate
chemical compound class for metabolites, 72% of primary unknown
metabolite features were assigned a metabolite compound class;
lipids, amino acids, and fatty acids were the most commonmetabolite
groups. SIRIUS40, a software tool that uses MS/MS data for metabolite
structural elucidation, assigned chemical predictions in rank order for
182 primary unknown metabolites received (top three metabolite
predictions for each feature in Supplementary Data 3). Leveraging
these chemical predictions, we assigned high-confidence metabolite
IDs to 33 metabolites that carried additional evidence for supporting
the annotation using complementary tools, including Global Natural
Product Social Molecular Networking (GNPS; n = 8)41, a database for
MS/MS spectra in metabolomics studies, and the HumanMetabolome
Database (HMDB; n = 5)32, MS data for related compounds from our in-
house metabolite library (n = 12) or validation with chemical stan-
dards (n = 8).

In addition to providing a database of MS/MS data for metabo-
lomics studies, GNPS allows visualization of networks of structurally
similar metabolites based on MS fragmentation data within studies to
derivemetabolite identities. As an example, chemical annotation using
SIRIUS failed to generate a high-confidence metabolite prediction for
an unknown metabolite withm/z 536.4354. However, using GNPS and
comparing MS fragmentation data of this metabolite peak to
community-based MS/MS spectra repositories, we were able to anno-
tate this peak as carotene. Carotene is associated with rs2293440
(ß =0.20, p value = 4.73E-11, an exonic variant in Scavenger Receptor
Class B Receptor 1 (SCARB1). SCARB1 plays a key role in lipoprotein
metabolism through its action on reverse cholesterol transport and is
associated with cholesterol levels in large population genomic
studies42. Additionally, SCARB1 has been associated with the cellular
uptake of carotenoids43, increasing our confidence in our metabolite
annotation. Using GNPS, we mapped structurally similar unknown
metabolites based on MS/MS spectra (Fig. 6A). A closely related
metabolite peak (m/z 568.427) with a cosine similarity score for frag-
mentation spectra of 0.88 (Fig. 6B; high similarity score designated as
>0.7) was noted to be associated with the Beta-carotene 15,15-dioxe-
gynase (BCO1) and Intestine Specific Homeobox (ISX) loci. BCO1 converts
carotenoids to retinal and ISX participates in carotenoid metabolism
by regulating the expression of BCO144. Anchoring our potential
metabolite identification on these genomic associations, we searched
through related carotenoid species based on mass differences
between this peak and carotene and annotated this compound to be a
carotenoid, zeaxanthin (Fig. 6D), which we subsequently validated
with a chemical standard. In addition, the GNPS network identified
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another closely related compound in this network of unknown peaks,
cryptoxanthin, a naturally occurring carotenoid compound.

Of the 37 high-confidence metabolite IDs from unique primary
unknown metabolites (33 from SIRIUS predictions with supporting
sources of information and four using GNPS; Supplementary Data 6),
92% (34/37) were evaluated as having genomic evidence in support of
the chemical compound predictions based on the known metabolic
pathways of the assigned lead candidate gene (SupplementaryData 2).
In addition, CANOPUS annotated 29 of the 37 with metabolite class, of
which 27 were in support of the metabolite annotation. We confirmed
11 unknown metabolite compound annotations with commercially
available chemical standards; five of these are part of novel associa-
tions in a metabolomics GWAS: all-trans-retinol, zeaxanthin, 5,6 dihy-
drouridine, AICA-Riboside, and cholestanone (Supplementary Data 3
and Supplementary Fig. 1). MS/MS data on all metabolites associated
with genomic loci in our study are made available (Supplemen-
tary Data 7).

Discussion
In the present study, we used WGAS to identify genetic determinants
of plasma metabolites in a Black population from JHS and applied
novel chemical profiling and bioinformatic methods to annotate
unknown metabolite peaks. In our cohort of Black individuals, the
presence of ancestry-specific alleles that are nearly monoallelic in
individuals of European ancestry increases the power to detect novel
metabolomic associations with established cardiovascular risk loci—
and represents an important first step in the broader discovery of
ancestry-specific, pathogenically significant metabolic differences.

In this study, we show a novel association in a clinically relevant
polymorphism in TTR (Transthyretein), which is associated with
increased risk of heart failure in Black individuals, and an unknown
metabolite feature we identify as all-trans-retinol. The TTR V122I
polymorphism described in 3–4% of Black individuals destabilizes the
TTR-RBP4 tetramer, thereby displacing RBP4 and promoting amyloid
fibril formation that precipitates heart failure and death45. The reduced
circulating all-trans retinol observed in our study may similarly be

related to increased clearance and a potential marker of TTR-RBP4
tetramer stability, as has been postulated in cases with ATTRv V122I
amyloidosis45. The effect of reduced all-trans retinol on downstream
active retinol metabolites, including retinoic acid, and its potential
contribution toward pathologic cardiac hypertrophy needs
further study.

The Apolipoprotein E locus is a complex genomic region encoding
APOE and the isoformsproduced from its polymorphic alleles. APOE is
involved in critical metabolic pathways, including lipid transport and
metabolism46, and is associated with chronic diseases, including the
development of atherosclerosis and Alzheimer’s disease, presumably
mediated by its role in the transport and clearance of cholesterol and
amyloid peptides to the brain47. We show an association between a
missense variant in APOE (rs769455), a nearly monoallelic poly-
morphism in individuals of European ancestry, with an unknown
metabolite peak (m/z 269.226). This unknown metabolite has an
identical molecular mass to all-trans-retinol and MS fragmentation
analysis suggests that it is a potential isomer of retinol. While retinyl
esters form with chylomicrons transported by APOE, the role of APOE
transport on retinol species and potential downstream implications
for retinoid transport and bioavailability has yet-to-be elucidated.
Variants near retinoic acid transporters and receptors (downstream
and activemetabolites of retinol) have shown associationswith risk for
Alzheimer’s disease and defective transport of retinol and related
species has been implicated in this disease48,49. Our findings showing
associations between APOE and cis-retinol may have potential impli-
cations for the biological roles of APOE in disease pathways.

We show a novel association between an ancestry-specific variant
in CD36 (Platelet Glycoprotein IV; rs3211938) associated with specific
plasmalogens, a subclass of phospholipids integral to cell membrane
signaling and stability. CD36 is an integral transmembrane protein
involved in the sequestration of malarial species, plasmodium falci-
parum, preventing splenic destruction of the organisms. As such,
variants in CD36 offer protection against malaria infection50. In addi-
tion, CD36 functions as a receptor for several important inflammatory
mediators, fatty acids, and lipids among others, and is implicated in

Table 1 | Ancestry-specific mQTLs in the Jackson Heart Study

rsID Position Metabolite Gene Position Allele Beta P Value AFR AF

rs141239670 Chr1:171219209 Succinic acid SDHA Exon T 1.01 4.4E-11 0.01

rs56072071 Chr2:215328065 AICA-riboside** ATIC Intron A 0.38 2.9E-17 0.11

rs754490766 Chr3:51959148 N-acetylglutamic Acid PCBP4 Intron A 1.40 3.0E-36 0.015

rs754490766 Chr3:51959148 N-acetylserine PCBP4 Intron A 1.06 1.2E-21 0.015

rs73733867 Chr6:44207081 N4-acetylcytidine MYMX Intergenic T 1.29 1.9E-37 0.02

rs3211938 Chr7:80671133 C38:6 PE plasmalogen CD36 Exon G 0.38 1.6E-15 0.09

rs3211938 Chr7:80671133 C38:7 PC plasmalogen CD36 Exon G 0.38 1.6E-15 0.09

rs115027210 Chr7:76062732 2-Hydroxyglutaric Acid MDH2 Exon C 0.53 4.6E-16 0.05

rs28832309 Chr7:80690622 C40:7 PE plasmalogen SEMAC3C Intergenic C 0.35 2.3E-12 0.09

rs7079286 Chr10:106656814 N(6),N(6)-dimethyl-lysine F8MD8 Exon T −0.48 1.2E-23 0.11

rs334 Chr11:5227002 LPC(OH-16:0)* HBB Exon A 0.48 4.19E-11 0.04

rs624307 Chr11:65376604 3-Hydroxycarnitine SLC25A45 Exon T −0.42 7.6E-14 0.08

rs12322356 Chr12:56378580 UDP-GlcNAc APOF Intergenic C 0.29 6.0E-17 0.31

rs13333418 Chr16:30975943 Cholestanone** SETD1A Exon C −0.23 1.4E-13 0.30

rs28934585 Chr17:7220519 CAR 14:1 ACADVL Exon T −0.37 3.0E-15 0.11

rs28934585 Chr17:7220519 CAR 14:2 ACADVL Exon T −0.38 1.8E-14 0.11

rs28934585 Chr17:7220519 CAR 12:0 ACADVL Exon T −0.35 2.5E-13 0.11

rs76992529 Chr18:31598655 All-trans retinol** TTR Exon A −0.76 4.6E-14 0.02

rs12721054 Chr19:44919330 DG (36:4) APOC1 UTR G −0.31 1.3E-11 0.12

Novel, ancestry-specific mQTLs for known and unknown metabolites in the Jackson Heart Study (minor allele frequency for sentinel SNP less than 1% in non-Finish Europeans).
AFR African, AF allele frequency, UTR untranslated region.
*Unknown metabolite annotated using MS/MS data.
**Unknown metabolite annotated with MS/MS and confirmed with the chemical standard.
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Fig. 4 | Ancestry-specific alleles reveal novel associations of TTRandAPOEwith
retinol species. A Association of V122I in TTRwith an unknownmetabolite (QI722;
m/z 269.226); B Correlation between QI722 and retinol-binding protein;
C Association of rs769455 missense variant in APOE with unknown metabolite

(QI176;m/z 269.226);D TTR associatedunknownmetabolitematching spectrawith
trans-retinol; APOE associated unknown metabolite with identical molecular mass
but earlier retention time indicating it’s a cis-isomer of retinol. Additional isomers
tested without compound match include 9 and 11-cis retinol.

Fig. 5 | Unknown metabolite annotation pipeline using bioinformatic tools
leveraging MS/MS spectra. Unknown metabolite identification with initial
clustering of features to elucidate adducts and fragments of primary features

or major ions. Subsequent implementation of tools leveraging MS/MS data,
including SIRIUS, GNPS, and CANOPUS. Metabolite ID validation is limited to
commercially available standards.
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processes including regulation of blood pressure51, lipids52, and the
development of atherosclerosis in model systems53–55. Novel associa-
tions of CD36 with plasmalogen species, which are glyceropho-
spholipids with important antioxidant properties and have been
associated with the protection of endothelial cells in hypoxic
conditions56, as well as with cell signaling and membrane stability50,
highlight potential lipid mediators, and mechanisms for the role of
CD36 in cardiometabolic disease development.

Sickle cell anemia is characterized by severe vascular abnormal-
ities and leads to chronic cardiovasculardiseases, includingpulmonary
hypertension, heart failure, and stroke57. In addition, individuals with
the sickle cell trait are also at increased risk of developing chronic
kidney disease58. Our findings show an association between the sickle
mutation, rs334, and an unknownmetabolite which we predict to be a
lysophosphatidylcholine, a major component of red blood cell mem-
branes. Red blood cell membrane structure is significantly altered in
individuals with sickle cell disease, which affects cell shape, hemody-
namics, and protein-membrane signaling interactions59. This metabo-
lite association may be a marker of red blood cell membrane
remodeling that occurs in sickle cell disease and may help elucidate
mechanisms of red blood cell pathology and resulting downstream
complications of ischemic and inflammatory tissue damage.

Unknown metabolomic profiling presents an opportunity for
unbiased discovery in metabolomics GWAS. However, given the
breadth anddiversity of themetabolome, annotatingmetabolite peaks
with subsequent validation of proposed metabolite identities is a
lengthy and arduous process, traditionally requiring extensive manual
curation of study features against reference databases. To facilitate a
more efficient annotation pipeline for large-scale metabolomics
GWAS, we performed additional tandem MS profiling to obtain MS
fragmentation data for all our peaks and implemented recently
developed bioinformatic methods that leverage MS/MS spectra in
metabolomics studies to help annotate unknown compounds with

chemical and/or class identities. Individualmethods can help elucidate
chemical identity by detailing compound sub-structure (SIRIUS),
structural similarity to other metabolomic features (GNPS), and com-
pound class (CANOPUS). In our study, no one method provided a
complete annotationof study features, highlighting the challenges and
complexity ofworkingwith unknownmetabolomics. However, the use
of complementary tools to elucidate metabolite identities enabled
structural and/or class annotation for a majority of profiled peaks and
represents the first systematic application of these bioinformatic tools
to identify unknown peaks in a genomic association study.

We have previously demonstrated how genomic integration with
MS fragmentation data on unknownmetabolite peaks can help narrow
the focus for these features, by mapping loci to predicted compounds
based on shared metabolic pathways34. Here we have systematically
integrated genetic associations with MS/MS spectra-based metabolite
predictions from bioinformatic techniques. We find that a majority of
our metabolite annotations, based on chemical identity, can be map-
ped to the metabolic/functional pathway of the associated lead can-
didate gene, providing an additional layer of support as we decipher
metabolite identities associated with cardiometabolic diseases. As an
example, an unknown metabolite feature with m/z 259.1036 is asso-
ciated with triglycerides, DM, and CHD among other traits in JHS
(Supplementary Data 4). This metabolite peak maps to the ATIC gene,
which encodes 5-Aminoimidazole-4-Carboxamide Ribonucleotide For-
myl transferase/IMP Cyclohydrolase, a protein-coding gene involved in
purine biosynthesis. One of the top computational predictions based
on tandem MS for this metabolite was AICA-Riboside (Acedesine).
While this compound has been described as an AMP-activated protein
kinase agonist with investigational applications in treatments for dia-
betes and lymphoma60–62, there is evidence that endogenous levels of
the compound are physiologically important. ATIC deficiency, a
recessive genetic disease, results in impaired purine synthesis and
increased urinary AICA-Riboside and is marked by severe

Fig. 6 | GNPS molecular network identifies carotenoid metabolites linked with
genomic loci. A Molecular network of unknown features matching beta-carotene
(m/z 536.4354; identified usingMS/MS database) and carotene-related compounds
using the Global Natural Products Social Molecular Networking. Nodes represent
MS/MS spectra obtained at either discreet collision energies ranging from 10 to
50V or stepped (SV) collision energies. The circular node shape illustrates whether
features are representative ions (highest mean abundance) in clusters of co-eluting
features with abundances correlating with Spearman coefficients >0.80. Con-
versely, square nodes correspond to features that based on correlation with co-
eluting compounds, are potentially redundant fragments or adducts. Edges

represent the cosine similarity among MS/MS spectra and formulas. Zeaxanthin is
the predicted metabolite atm/z 568.427 based onm/z differences and association
with BCO1, which catalyzes the conversion of carotenoids to retinal and ISX, which
regulates the expression of BCO1. B Spectral comparison of plasma unknowns
matching carotene and zeaxanthin MS/MS obtained using stepped and discrete
collision energy, respectively, illustrating an edge cosine similarity score of 0.88.
C Validation of compound identities for zeaxanthin and carotene confirming the
retention time match of authentic standards with the unknown features in plasma
(D) as well as their MS/MS spectrum match.
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neurodevelopmental delays, growth impairment, and dysmorphic
features63,64. The association of AICA-Riboside, with its canonical
enzymatic pathway in WGAS, narrowed our metabolite search to this
single bioinformatic prediction, which we then confirmed with a
commercial standard (Supplementary Fig. 1). Thus, the integration of
genetics and MS/MS spectra can sometimes enable an efficient pipe-
line for identification of metabolites associated with cardiometabolic
disease.

Our study represents one of the few analyses of genome-
metabolome integration in a Black population. As such, validation of
locus-metabolite associations presents a significant challenge, espe-
cially for associations in ancestry-specific alleles, given the scarcity of
both known and unknown metabolomics profiling in Black popula-
tions. In addition, metabolomics GWAS have traditionally imple-
mented genotype imputation of SNP array using reference panels.
However, in an admixed population such as JHS, limited representative
reference panels necessitate the use of more accurate imputation
panels or whole genome sequencing. Further efforts to apply meta-
bolomic profiling in Black populations and integrate with WGS will be
essential to replicate key locus-metabolomic findings, though many
have strong biologic plausibility. To assess the novelty of our findings,
we used the most up-to-date genomic databases assessing genotype-
phenotype associations, as well as a manual review of prior published
metabolomicsGWAS.However, there is the potential thatwemayhave
missed some previously published locus-metabolite associations. In
addition, though we have made significant progress in compound
identification for unknown metabolite features, a significant number
still lack validation with chemical standards, and there may be some
inaccuracies in chemical and/or compound class annotations, though
we believe the integration of genetic findings and novel bioinformatic
tools have helpedminimizemisclassification.Whilewewill continue to
systematically validate these compound IDs, we make available our
sample library of MS/MS spectra with clinical and genomic associa-
tions, which can be leveraged across the omics community, providing
a crowdsourcing opportunity formetabolite identification and serving
as an ongoing resource for validation of metabolite peaks.

In summary, our integrative approach toward the identification of
known and unknown metabolites involved in diverse disease pro-
cesses usingWGAS in a Black population highlights novel and clinically
relevant locus-metabolite associations. In addition, genomic integra-
tion with advanced chemical phenotyping using tandemMS improves
the ability to annotate unknownmetabolite peaks, the “darkmatter” of
the metabolome. This sample library of MS/MS spectra of metabolite
features linked to genomic loci and clinical traits will improve the
identification of biologically relevant metabolites.

Methods
Cohorts
The study designs and methods for JHS, MESA, and HERITAGE have
been described in refs. 65–67. JHS is a prospective population-based
observational study designed to investigate risk factors for cardio-
vascular disease (CVD) in Black individuals. In 2000–2004, 5306 Black
individuals from the Jackson, Mississippi tri-county area (Hinds, Ran-
kin, and Madison counties) were recruited for a baseline examination.
Of the original cohort, 2466 individuals hadwhole genome sequencing
and metabolomic profiling performed from baseline fasting samples
and were included in the analyses. MESA included 6814 participants
between the ages of 45–84 years recruited at six clinical centers across
the US, who were identified as members of four racial/ethnic groups:
White, Hispanic, Asian, or Black (28%). Included in the present study
are 995 individuals across all four racial/ethnic groups with metabo-
lomic profiling and WGS at baseline exam. HERITAGE enrolled a
combination of self-identified white and Black family units, totaling
763 sedentary participants (38% Black) between the ages of 17–65
years, in a 20-week, graded endurance exercise training study across

four clinical centers in the US and Canada in 1995. Included in the
present study is a random subset of 658 individuals with baseline
metabolomic profiling and genotyping.

Study approval
The Institutional Review Boards of Beth Israel Deaconess Medical
Center, University of Mississippi Medical Center, University of
Washington (MESA), and HERITAGE clinical centers approved the
human studyprotocols, and all participants providedwritten informed
consent.

LC-MS metabolite profiling
Metabolite profiling was performed using two LC-MS methods.
Organic acids and other intermediary metabolites were separated
using amide chromatography (Waters XBridge Amide column) and
measured using targeted negative ion mode multiple reaction mon-
itoring (MRM)MSwith an LC-MS system comprised of an Agilent 1290
infinity LC coupled to an Agilent 6490 triple quadrupole mass spec-
trometer. MRM data were processed using Agilent Masshunter QQQ
Quantitative analysis software68.

Separately, amino acids, acylcarnitines, and other polar metabo-
lites (including both known and unknown metabolite features) were
separated using hydrophilic interaction liquid chromatography
(HILIC) using an Atlantis HILIC column (Waters; Mildford, MA) and
measured using nontargeted, full scan, high-resolution MS in the
positive ion mode overm/z 70–800 with an LC-MS system comprised
of a Nexera X2 U-HPLC (Shimadzu Corp.; Marlborough, MA) coupled
to aQ Exactivemass spectrometer (ThermoFisher Scientific;Waltham,
MA). Raw data were processed using TraceFinder 3.3 (Thermo Fisher
Scientific; Waltham, MA) for supervised integration of a subset of
identified metabolites and quality control. Progenesis QI (Nonlinear
Dynamics; Newcastle upon Tyne, UK) was used for the detection and
integration of both identified and unknown features. Each feature in
the dataset was tracked by its measured mass to charge ratio and
chromatographic retention time, which serves as a unique “tag” for
each LC-MS peak. Known compounds were annotated using mixtures
of authentic reference standards analyzed with each batch and refer-
ence data. Thesemetabolites had previously been annotated in human
plasma and confirmed via spiking experiments with standards and by
matching retention times and MS data. Metabolites with a coefficient
of variation69 greater than 30% and those missing in more than 30% of
measured samples were removed from the analysis70.

Isotope-labeled internal standards were monitored in each sam-
ple to ensure proper MS sensitivity for quality control. Pooled plasma
samples were interspersed at intervals of 20 participant samples in the
HILIC method and intervals of 10 participant samples in the amide
chromatography method to enable correction of drift in instrument
sensitivity over time and to scale data between batches. We used a
linear scaling approach to the nearest pooled plasma sample in the
queue. An additional pooled plasma sample was interspersed at every
20 injections to determine the coefficient of variation for each meta-
bolite and unknown over the run. Peaks were manually reviewed in a
blinded fashion to assess quality.

MS/MS data acquisition
We acquired product ion mass spectra (MS/MS) on unknown features
to aid their identification. All MS/MS data were acquired using an LC-
MS system comprised of a Nexera X2 U-HPLC (Shimadzu Corp.;
Marlborough, MA) coupled to an ID-X orbitrap mass spectrometer
(Thermo Fisher Scientific; Waltham, MA). LC conditions were identical
to those used in the nontargeted HILIC method, and electrospray
ionizationMS settings were spray voltage 3.5 kV, sheath gas 40, sweep
gas 2, capillary temperature 350 °C, heater temperature 300 °C, S-lens
RF 40. MS/MS data were generated using a combination of data-
dependent acquisition (DDA) and inclusion list-directed MS/MS
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acquisition. For DDA, we used the AcquireX pipeline providedwith the
Thermo ID-X instrument and five consecutive injections of the JHS
pooled plasma sample used for QC. The AcquireX scan cycle included
an MS survey scan (70–800m/z) followed by five MS/MS scans with a
stepped collision energy of 10, 25, and 50eV. ToobtainMS/MSdata on
features not capturedby the unsupervisedAcquireX approach,we also
used a directed MS/MS data acquisition approach in which lists of
specific ions and retention time windows (inclusion lists) were created
as required to measure spectra for ions of interest. First, we split all
features in the study into 24 individual mass inclusion lists, separated
based on ranges ofmetabolite peak retention times obtained from the
initial LC-MS experiment, to improve the sensitivity of MS/MS data
acquisition. We then generated MS/MS spectra using higher-energy C-
trap dissociation (HCD) with stepped collision energies (10, 25, 50 V).
Second, we targeted unknown features with GWAS hits and generated
MS/MS with an expanded set of collision energies ranging from 10 to
50 V in 10 V increments. In order to increase the likelihoodof capturing
low abundance features in the JHS pool pooled plasma, samples used
for MS/MS acquisition were concentrated ten-fold. Metabolites were
extracted from 100 µL of pooled plasma using 900 µL of 74.9:24.9:0.2
(v/v/v) acetonitrile/methanol/formic acid. The samples were cen-
trifuged (10min, 9000×g, 4 °C) and the supernatants were dried under
a gentle stream of nitrogen gas TurboVap LV, Biotage). Dried extracts
were resuspended in 100 µL of 10:67.4:22.4:0.18 (v/v/v/v) water/acet-
onitrile/methanol/formic acid containing stable isotope-labeled inter-
nal standards (valine-d8, Sigma-Aldrich; St. Louis, MO; and
phenylalanine-d8, Cambridge Isotope Laboratories; Andover,MA) and
10 µL were injected per LC-MS/MS analysis.

MS/MS data processing
Rawfiles were converted to *.mzML formatfiles usingMSConvert71 and
both extracted ion chromatograms37 and matching MS/MS scans for
each individual feature were generated using the R package MSnbase
v. 3.1272, and in-house scripts for producing EIC and MS/MS spectra
visualizations. Feature retention times and peak quality in the con-
centrated pools were confirmed by visually inspecting the chromato-
graphy peak shapes of each individual feature. After confirming the
study retention times in the MS/MS acquisition, the extraction of
MS/MS data was conducted by finding scans with precursors within
±0.2 a.m.u. of the known features and ±0.1min from the apex of the
peak detected in theMS/MS run. MatchingMS/MS peaks within 5 ppm
across MS/MS scans spanning the range were aggregated whenever
more than one MS/MS scan was mapped to each individual feature.
The resulting peak height for aggregated peaks was determined as the
average of the aggregated peak intensities. Peaks inconsistently
detected across MS/MS scans were removed from the final MS/MS
inventory. Additionally, an electronic noise fragment detected in the
MS/MS of low abundance peaks within 30 ppm of m/z of 173.46 was
removed from parsed data. Parsed MS/MS was formatted as input for
molecular structure predictions (*.ms) or MS/MS-based similarity
networks (*.MGF). For MS/MS-based similarity predictions, spectra
generated for individual features usingmore than one collision energy
were kept as independent molecular features.

Genotyping
Whole genomesequencing (WGS) in JHS andMESAhas beendescribed
in ref. 73. Participant samples underwent >30×WGS through theTrans-
Omics for PrecisionMedicine project at theNorthwestGenomeCenter
at the University of Washington and the Broad Institute and joint
genotype calling with participants in Freeze 6; genotype calling was
performed by the Informatics Resource Center at the University of
Michigan. Genotyping in HERITAGE was performed on the Illumina
Infinium Global Screening Array. Genotypes were called using Illumi-
na’s GenCall based on the TOP/BOT strand method. Genotype impu-
tation to the TOPMed Freeze5 reference panel was performed using

the University of Michigan Imputation Server Minimac4. In addition,
phasing was performed with Eagle v2.4. Sites with call rates <90%,
mismatched alleles, or invalid alleles were excluded.

Whole genome association study
Metabolite LC-MS peak areas were log-transformed and scaled to a
mean of zero and standard deviation of 1 and subsequently residua-
lized on age, sex, batch, and principal components (PCs) of ancestry
1–10 as determined by the GENetic EStimation and Inference in
Structured samples (GENESIS)74, and subsequently inversenormalized.
The association between these values and genetic variants was tested
using linear mixed-effects models adjusted for age, sex, the genetic
relationship matrix, and PCs 1–10 using the fastGWA model imple-
mented in the GCTA software package75. Variants with a minor allele
count less than 5 in a given cohort were excluded from analysis in that
cohort. A Bonferroni adjusted significance threshold of 8E-11 (5 × 10−8/
602 PC’s explaining 95% of the variance of metabolite levels) was used
for discovery in JHS. To identify sentinel SNPs and metabolite quanti-
tative loci (mQTL), we first defined a 1Mb region around each SNP
significantly associated with a given metabolite. Starting at the SNP
with the lowest p value, overlappingmQTLs for a particularmetabolite
were merged. This process was repeated until no more overlapping
regions existed for the given metabolite, and the lead variant was
identified as the one with the lowest p value. Lead variants that were
not in overlapping regions but in linkage disequilibrium (LD) with
r2 ≥0.8 were again combined using SNPClip76, and this final merged
region was designated as the mQTL, with the most significant SNP
retained as the sentinel variant. Where association statistics were
available in both MESA and HERITAGE, the two cohorts were meta-
analyzed by the inverse-variance weighted method using the “meta-
gen” package in R. Validation threshold was set at p <0.05 with a
consistent direction of effect.

Variant annotations
Reference allele frequencies from gnomAD and variant functional
annotations using GENCODE and ClinVar disease annotations were
obtained from the Functional Annotation of Variants—OnlineResource
(available favor.genohub.org, download date August 1, 2020).

Comparing to previous mQTLs
We used existing genomic databases and prior blood metabolomics
GWAS to assess the novelty of our locus-metabolite associations. To
determine whether mQTLs of known metabolites were novel, we first
utilized the PhenoScanner package for R. A 1 MB region around each
sentinel SNP associated with a metabolite was passed to the Phe-
noScanner function in R: build was set to “38”, p value to 5 × 10−8,
catalog to “mQTL” (query date 12/1/2021). Novel locus-metabolite
associations were cross-referenced against the GWAS Catalogue using
the sentinel SNP and a 1 MB surrounding region. In addition, gene-
metabolite associations were manually reviewed for novelty across 21
published GWAS of metabolomics (details of individual studies
reviewed in Supplementary Methods)3–23.

mQTL and phenotype associations
To determine overlap between clinical GWAS analyses and mQTLs in
this analysis, we utilized the PhenoScanner package for R. All sentinel
SNPs associatedwithmetabolite peaks as identified abovewerepassed
to the PhenoScanner function in Rwith the following arguments: build
was set to “38”, p value to “1 × 10−5”, catalog to “GWAS”, r2 was set to
“0.8”, proxies set to “None” (query date 12/1/2021).

Unknown metabolite peak annotation
Metabolite peak clustering. The electrospray ionization process used
in LC-MS can generatemore than one type of ion adduct of amolecule
(e.g., [M +H]+, [M +Na]+, etc.), partially fragment molecules, and
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generate multimer ions. A single metabolite may therefore give rise to
multiple unknown peaks. However, such redundant features share the
same chromatographic retention time and have highly correlated
signal intensities. To filter redundant features, all profiled metabolite
peaks (HILIC platform) were grouped into clusters based on a reten-
tion time similarity of ±0.25min and a signal intensity spearman cor-
relation coefficient >0.80. The [M+H] + ion, if identified by mass
differences among features in the cluster or the feature with the
highest signal intensity, was identified as the primary feature.

Metabolite annotations leveraging MS/MS spectra and bioinfor-
matic tools. Parsed MS/MS data (*.ms) were loaded into SIRIUS CSI-
Finger ID version 4.7.240. Molecular formula predictions generated
with Orbitrap-specific settings (MS/MS isotope scorer: ignore, mass
deviation: 5 ppm, Candidates: 10, Candidates per ion: 1, possible ioni-
zations: [M +H] + , [M+K] + , [M+Na]+). Structure elucidations were
done using PubChem and the adducts [M +H] + , [M+K] + , [M +Na]+).
Predictions were exported and the top three structure elucidations
were parsed for each feature. Parsed MS/MS data for each metabolite
peak were annotated for predicted metabolite class using ClassyFire
ontology through CANOPUS39. MS/MS-based networks were built
using the Global Natural Products Social Molecular Networking
(GNPS)41, and the resulting networks were visualized with Cytoscape v.
3.8.277. To provide supporting information for our metabolite anno-
tations, we searched the Human Metabolome database with
m/z ± 5 ppm32.

Metabolite annotation scheme. Results from metabolite feature
clustering, class, and chemical structure elucidations were integrated
to annotate metabolite peaks. We subsequently assigned each anno-
tation to a category based on levels of supporting evidence. In addi-
tion, we classified the categories of metabolite identification in
accordance with the Metabolomics Standards Initiative (MSI) recom-
mendations (Supplementary Table 2):78 Category 1: metabolite match
to an authentic reference standard; Category 2: metabolite clusters
with a known compoundwhich has previously validated with standard
(Category 1 and 2 corresponds to MSI Classification 1 as Identified
Metabolite); Category 3: metabolite withMS/MS-based GNPS database
match (MSI Classification 2: putatively annotated metabolite); Cate-
gory 4:Metabolite with similar MS/MS spectra and retention timewith
the representative backbone of chemical standard for a compound in
the metabolite family (manual curation) using in-house metabolite
library (MSI classification 3: putatively annotated metabolite class). In
addition, we add category 5: SIRIUS MS/MS-based chemical formula/
compound predictions and Category 6: compound match using m/z
search in HMDB, which are not included in the 2007MSI classification
scheme. Primary unknown metabolites with multiple sources of sup-
porting evidence represented high-confidencemetabolite annotations
and were assigned specific metabolite IDs.

Genomic and metabolite pathway integration. Genetic associations
with unknown metabolite peaks can be integrated with MS/MS and
bioinformatic metabolite annotations in an effort to further illuminate
metabolite identifications and/or offer supporting evidence for pre-
dictions based on the known pathways of the locus. Each lead candi-
date gene (nearest gene to sentinel SNP) was annotated for its
associatedmetabolic pathways using the KEGG database79. Metabolite
annotations were evaluated in the context of the metabolic pathways
of the candidate gene or its prior GWAS associations to assess whether
there was genomic evidence in support of the chemical compound
identification.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The WGAS summary statistics data generated in this study have been
deposited in the GWAS catalog under accession code GCST90104476.
Individual WGS data for TOPMed and metabolomic data for JHS and
MESA, can be obtained by application to dbGaP with accession num-
bers for JHS and MESA are phs000964/phs002256.v5.p1 and
phs001416.v2.p1. In addition, MS/MS spectra and analyses via Global
Natural Product Structural Molecular Networking (GNPS) Job ID:
aa6d11c8be15436abcb7d3d44fee5836 can be accessed at.
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