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Abstract: Substantial human and animal studies support the beneficial effects ofω-3 polyunsaturated
fatty acids (PUFAs) on colonic inflammation and colorectal cancer (CRC). However, there are
inconsistent results, which have shown that ω-3 PUFAs have no effect or even detrimental effects,
making it difficult to effectively implementω-3 PUFAs for disease prevention. A better understanding
of the molecular mechanisms for the anti-inflammatory and anticancer effects of ω-3 PUFAs will
help to clarify their potential health-promoting effects, provide a scientific base for cautions for their
use, and establish dietary recommendations. In this review, we summarize recent studies of ω-3
PUFAs on colonic inflammation and CRC and discuss the potential roles ofω-3 PUFA-metabolizing
enzymes, notably the cytochrome P450 monooxygenases, in mediating the actions ofω-3 PUFAs.

Keywords: ω-3 PUFAs; colonic inflammation; colorectal cancer; eicosanoids; cytochrome P450
monooxygenases; soluble epoxide hydrolase

1. Introduction

There are ~1.8 million new cases of and ~881,000 deaths from colorectal cancer (CRC) every year [1].
It is estimated that ~30% of cancers in developed countries are diet-related [2]. Therefore, it is important
to develop effective diet-based prevention strategies to reduce CRC risks. Epidemiological and
preclinical data support thatω-3 polyunsaturated fatty acids (PUFAs), such as plant-derivedα-linolenic
acid (ALA, 18:3ω-3) and marine fish-derived eicosapentaenoic acid (EPA, 20:5ω-3), docosapentaenoic
acid (DPA, 22:5ω-3), and docosahexaenoic acid (DHA, 22:6ω-3), may reduce CRC risks, in part, through
suppressing colonic inflammation. In contrast, ω-6 PUFAs, such as linoleic acid (LA, 18:2ω-6) and
arachidonic acid (ARA, 20:4ω-6), are suggested to exaggerate the development of colonic inflammation
and CRC [3–8]. This is important because the current Western diet has 30–50-times moreω-6 PUFAs
thanω-3 PUFAs. The validation of the beneficial effects ofω-3 PUFAs on CRC will have a significant
impact on public health. However, after decades of research, the anti-CRC efficacy of ω-3 PUFAs
remains inconclusive, making it difficult to make dietary recommendations or guidelines ofω-3 PUFAs
for CRC prevention [9]. The inconsistent results suggest that there could be more complex mechanisms,
which may be subject to specific cellular and/or metabolic modulation, involved in the anticancer and
anti-inflammatory effects of ω-3 PUFAs. Therefore, it is of critical importance to better understand the
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mechanisms behind the anticancer and anti-inflammatory activities ofω-3 PUFAs to optimize their
use for CRC prevention.

A widely accepted molecular mechanism to explain the potential health-promoting effects ofω-3
PUFAs is that they can compete with ARA (a majorω-6 PUFA) for the enzymatic metabolism catalyzed
by cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P450 (CYP) enzymes, leading to
reduced levels ofω-6-series metabolites (termed eicosanoids) that are predominately proinflammatory
and protumorigenic, and/or increased levels ofω-3-series metabolites, which have less detrimental or
even beneficial effects [10–13]. A recent study showed that there is a high degree of interindividual
variability in metabolizing ω-3 PUFAs to generate lipid metabolites [14]. Thus, it is feasible that
polymorphisms in the genes encoding theω-3 PUFA-metabolizing enzymes could affect the metabolism
ofω-3 PUFAs, impacting the generation of bioactive lipid metabolites in tissues and contributing to
observed mixed results inω-3 PUFA studies [15]. A better understanding of the interactions ofω-3
PUFAs with their metabolizing enzymes could lead to targeted human studies to better understand
the metabolic individuality and nutrition effects ofω-3 PUFAs [15,16].

In this review, we summarize recent studies of ω-3 PUFAs on CRC and colonic inflammation
(inflammatory bowel disease (IBD)) and discuss the potential roles ofω-3 PUFA-metabolizing enzymes,
notably the CYP enzymes, in mediating the actions ofω-3 PUFAs.

2. Effects ofω-3 PUFAs on CRC and IBD

2.1. Effects of ω-3 PUFAs on CRC

Epidemiological and preclinical studies support the preventive effects of ω-3 PUFAs on CRC.
In Table 1, we focus on the recent human studies on ω-3 PUFAs, as well as previous studies that
have shown the beneficial effect of theω-3 PUFAs and have been discussed by other review articles.
A meta-analysis demonstrated a small but significant ~12% reduction of CRC risk between the highest
and lowest ω-3 PUFA consumption groups [17]. In the VITamins And Lifestyle (VITAL) cohort study,
the individuals who routinely took fish oil supplements had lower risks of developing CRC compared
with those who did not take supplements [18]. The European Prospective Investigation into Cancer
and Nutrition (EPIC) study also showed that increasedω-3 PUFA consumption reduced CRC risks [19].
In a randomized, double-blind, placebo-controlled trial, EPA intake was associated with reduced polyp
number and size in familial adenomatous polyposis (FAP) patients [20]. Increased intake ofω-3 PUFAs
was also associated with improved disease-free survival in stage III CRC patients [21]. In a phase II
double-blind, randomized, placebo-controlled trial, EPA intake increased overall survival in advanced
CRC patients undergoing liver resection due to liver metastases (CRCLM) [22]. Together, these studies
support the conclusion thatω-3 PUFAs reduce the risks of CRC.
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Table 1. Recent epidemiological and clinical studies ofω-3 polyunsaturated fatty acid (PUFA) supplementation for the prevention/treatment of colorectal cancer (CRC).

Study Individuals N ω-3 PUFA Treatment Dose Duration Control Treatment Results Reference

VITAL prospective cohort US adults 68,109 Fish oil supplements N/A 4+days/week for
3+years no use ↓ CRC risk Kantor et al.,

2014 [18]

EPIC prospective cohort European adults 521,324 Highestω-3
PUFAs intake >470 mg/day Median 14.9 years lowestω-3

PUFAs intake ↓ CRC risk Aglago et al.,
2020 [19]

Randomized, double-blind,
placebo-controlled trial FAP patients EPA-FFA (n = 28) EPA-FFA 2 g/day 6 months Placebo

(n = 27) ↓ polyp diameters West et al., 2010
[20]

CALGB adjuvant
chemotherapy trial

stage III
colon

cancer patients
1011 Highest marineω-3

PUFAs intake 0.33-0.57 g/day >8 years lowest marineω-3
PUFAs intake

↑ disease-free
survival

Blarigan et al.,
2018 [21]

Double-blind, randomised,
placebo-controlled trial CRCLM patients EPA-FFA (n = 43) EPA-FFA 2 g/day 12–65 days Placebo

(n = 45)

↑ overall survival;
no effect in disease

burden and
early CRC

recurrence rates

Cockbain et al.,
2014 [22]

HPFS and NHS cohort US adults 123,529 Highest marineω-3
PUFAs intake

≥ 0.30 g/day (women)
≥ 0.41 g/day (men) 24–26 years lowest marineω-3

PUFAs intake

No effect on overall
CRC risk; ↑ distal

colon cancer risk in
men and women;
↓ rectal cancer risk

in men

Song et al.,
2014 [23]

Randomized, double-blind,
placebo-controlled clinical trial colon cancer patients ω-3 PUFA (n = 21) ω-3 PUFA

intravenous infusion 0.2 g/ kg/day
night before and

morning after
resection surgery

Saline infusions
(n = 23)

↑ infectious
complications

Bakker et al.,
2020 [24]

Abbreviations: VITAL, VITamins And Lifestyle; EPIC, European Prospective Investigation into Cancer and Nutrition; EPA, eicosapentaenoic acid; FFA, free fatty acid; FAP, familial
adenomatous polyposis; CALGB, Cancer and Leukemia Group B; CRCLM, colorectal cancer liver metastases; HPFS, Health Professionals Follow-Up Study; NHS, Nurses’ Health Study; ↑,
Increase; ↓, Decrease.
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Consistent with the human studies, recent animal studies also support the beneficial effects ofω-3
PUFAs on CRC (Table 2). Treatment with anω-3 PUFA mixture or EPA reduced intestinal polyposis
formation in a spontaneous intestinal cancer model (using ApcMin/+ mice) [25,26]. Dietary administration
of EPA also decreased tumor incidence and multiplicity in a chemically induced colitis-associated
colorectal cancer (CAC) model [27]. In addition, administration of fish oil suppressed the aberrant
crypt foci number and adenoma incidence in 1,2-dimethylhydrazine (DMH) or azoxymethane
(AOM)-induced CRC models in rats [28,29]. Besides dietary feeding studies using ω-3 PUFAs,
previous studies also showed that fat-1 transgenic mice, which have higher tissue levels ofω-3 PUFAs,
have reduced development of CRC in both Apc gene mutation-induced CRC model [30] and chemically
induced CAC model [31,32].

In addition to the orthotropic CRC tumor models discussed above, ω-3 PUFAs have also been
shown to inhibit CRC in xenograft and metastasis models. Our recent study showed that administration
of anω-3 PUFAs-enriched diet inhibited MC38 (murine colon adenocarcinoma cell) tumor growth in a
murine xenograft model [33]. Consistent with our result, fish oil- or DHA-rich diets attenuated tumor
burden and aggressivity in HCT-116 or SW620 (both are human colon cancer cells) xenograft tumor
models in nude mice [34–36]. In a MC-26 colon cancer cell-induced CRC metastasis model, treatment of
EPA suppressed liver metastases in BALB/c mice [37]. In a CC531 colon cancer cell-derived liver
metastasis model in rats, administration of anω-3 PUFAs-rich diet reduced hepatic tumor incidence
and burden [38]. Moreover,ω-3 PUFAs could be used to enhance the actions and reduce the toxicity of
anticancer drugs. The coadministration of oxaliplatin and DHA synergistically inhibited HCT-116
xenograft tumor growth in nude mice [35]. Overall, these results support the anti-CRC effects of
ω-3 PUFAs.

Human and animal studies also support that the dietary intake ofω-3 PUFAs-rich foods, such as
fish, flaxseed, and walnuts, reduces the risks of CRC. In the EPIC cohort study, the consumption of
ω-3 PUFAs-rich fish was linked with lower risks of developing CRC [19]. Stage III CRC patients who
regularly consumed dark fish (≥1 time per week) had increased disease-free survival rates and lower
cancer recurrence/motility risks compared to those who did not [21]. Consistent with the human studies,
the administration of a flaxseed-rich diet reduced aberrant crypt foci formation in both proximal and
distal colon in an AOM-induced CRC model in rats [39]. The intake of a walnut-added diet also
attenuated tumor growth in a HT29 cell-induced CRC xenograft model in mice [40]. ω-3 PUFAs could
exhibit beneficial effects via regulating microbiota during CRC. The administration of EPA increased
the abundance of Lactobacillus in a CAC cancer model in mice [27]. The intake of EPA and DHA
mixture could also increase the levels of Bifidobacterium, Roseburia, and Lactobacillus in humans [41].
Though more studies are needed to determine the extent to which food components, besides the ω-3
PUFAs, contribute to the observed anti-CRC effects, these results further support the beneficial effects
ofω-3 PUFAs on CRC.

Though many studies support the beneficial effects ofω-3 PUFAs on CRC, there are inconsistent
results from animal and human studies. Some reports, in fact, have shown that ω-3 PUFAs had no
effect [42,43] or even detrimental effects on the development of CRC [44,45] (Tables 1 and 2). The Health
Professionals Follow-Up Study (HPFS) and Nurses’ Health Study (NHS) cohort studies showed thatω-3
PUFA intake had no effect on overall CRC risks, and even increased distal colon cancer risk in certain
individuals [23]. The supplementation ofω-3 PUFAs had no effect on the recurrence or survival rate in
stage III colon cancer patients [46]. Moreover, in a randomized, double-blind, placebo-controlled clinical
trial, compared with saline infusion, intravenous infusions of ω-3 PUFAs worsened the infectious
complications in CRC patients undergoing colon resection [24]. Other postoperative complications were
also reported in CRC patients who receivedω-3 PUFAs after surgery [47]. Animal studies also showed
that the treatment of fish oil exacerbated Helicobacter hepaticus-induced colitis and adenocarcinoma in
SMAD3-deficient mice [45]. These inconsistent results make it difficult to effectively implementω-3
PUFAs to reduce the risks of CRC.
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Table 2. Preclinical studies ofω-3 PUFA supplementation for the prevention/treatment of CRC.

Model Species ω-3 PUFA Treatment Dose Duration Control Treatment Results Reference

ApcMin/+ mouse
C57BL/6
mouse Fish oil 12% in diet 10 weeks Standard diet with

soybean oil ↓ intestinal polyp growth Notarnicola et al., 2017
[25]

ApcMin/+

mouse
C57BL/6
mouse EPA-FFA 2.5% or 5% in diet 12 weeks AIN-93G diet with

soybean oil

↓ polyp number and load in
both small intestine

and colon.
Fini et al., 2010 [26]

ApcMin/+ mouse
C57BL/6
mouse

Endogenousω-3 PUFA synthesis by transgene
of fat-1 20 weeks

ApcMin/+ mice
on standard diet with

safflower oil
↓ intestinal polyposis Han et al., 2016 [30]

AOM/DSS-induced
CRC model

C57BL/6
mouse

Endogenousω-3 PUFA synthesis by transgene
of fat-1 16 weeks Wild-type mice on

standard diet ↓ Tumor number Han et al., 2016 [31]

AOM/DSS-induced
CRC model

C57BL/6
mouse

Endogenousω-3 PUFA synthesis by transgene
of fat-1 11 weeks Wild-type mice on AIN-93G

diet with safflower oil ↓ incidence and growth rate Nowak et al., 2007 [32]

AOM/DSS-induced
CRC model

C57BL/6
mouse EPA-FFA 1% in diet 15 weeks AIN-93G diet with corn oil

↓ tumor multiplicity,
incidence and maximum

tumor size
Piazzi et al., 2014 [27]

DMH-induced
CRC model Wistar rat Fish oil 18% in diet 36 weeks AIN-93G diet with

soybean oil

↓ number of aberrant
crypt foci;

↓ incidence of adenoma
Moreira et al., 2009 [28]

AOM-induced
CRC model F344 rat Fish oil 10% in diet 26 weeks AIN-93G diet with

mixed lipids
↓ colon tumor incidence

and multiplicity Reddy et al., 2005 [29]

MC38 cell-based
xenograft

model

C57BL/6
mouse

DHASCO
Algae oil 8% in diet 5 weeks AIN-93G diet with corn oil ↓ tumor volume and weight Wang et al., 2016 [33]

SW620 cell-based
xenograft

model
Nude mouse Fish oil 12% by calorie 6 weeks Standard diet ↓ tumor growth and

less aggressive Bathen et al., 2008 [34]

HCT116 cell-based
xenograft

model
Nude mouse DHA 10 mg/kg every other day for

13 days Ethanol ↓ tumor size Jeong et al., 2019 [35]

HCT116 cell-based
xenograft

model
Nude mouse DHA 3% in diet 14 days Standard diet with

sunflower oil ↓ tumor growth Fluckiger et al., 2016 [36]

H.
hepaticus-induced

CRC
model

SMAD3
deficiency

mouse
Fish oil 6% in diet 12 weeks AIN-93G diet with corn oil ↑ adenocarcinoma formation Woodworth et al.,

2010 [45]

Abbreviations: AIN, American Institute of Nutrition; AOM, azoxymethane; DSS, dextran sodium sulfate; DMH, 1,2-Dimethylhydrazine; i.p. intraperitoneal; SMAD3, mothers against
decapentaplegic homolog 3; ↑, Increase; ↓, Decrease.
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2.2. Effects of ω-3 PUFAs on IBD

IBD, which is characterized by chronic inflammation in intestinal tissues, severely impacts the
quality of life of the patients. Symptoms include abdominal pain, vomiting, diarrhea, and rectal
bleeding. The incidence and prevalence of IBD have risen dramatically in recent decades: In 2015,
~1.3% of US adults (3 million) were estimated to be diagnosed with IBD [48], representing a 50% increase
from 1999 (2 million) [49]. To date, there is no cure for IBD, and the current anti-IBD treatments could
lead to serious side effects, including infection, bone marrow dysfunction, and organ dysfunction [50].
Therefore, it is important to develop novel preventive strategies to reduce the risks of IBD.

Human and animal studies support the beneficial effects of ω-3 PUFAs on the development
of IBD. The intake of fish oil reduced the abundance and activity of cytotoxic NK cells and improved
the disease condition in IBD patients [51]. Fish oil also decreased disease activity index and reduced
neutrophil infiltration in ulcerative colitis (UC, a subtype of IBD) patients [52,53]. In animal models,
ω-3 PUFAs suppressed T cell-transplantation-induced colitis in severe combined immunodeficient
(SCID) mice [54]. The treatment of a ω-3 PUFA (using linseed oil)-rich diet reduced the incidence
of ovalbumin-induced allergic diarrhea in a food allergy mouse model [55]. The intake of ω-3
PUFAs, especially the EPA, reduced tissue damage and IBD-associated diarrhea, bloody stools,
and weight loss in dextran sodium sulfate (DSS)-induced colitis models in mice and rats [56–58].
In ischemia-reperfusion (IR) rats, the intake ofω-3 PUFA-attenuated IR-induced mucosal injury in
intestine [59]. In addition to the nutritional intervention ofω-3 PUFAs, fat-1 transgenic mice, which have
higher tissue levels ofω-3 PUFAs, have been shown to exhibit reduced colonic inflammation in DSS- or
2,4,6-trinitrobenzenesulfonic acid (TNBS)-induced colitis [60,61]. ω-3 PUFAs mainly exhibit beneficial
effects via regulating immune cell infiltration during IBD. The administration ofω-3 PUFAs reduced the
colonic infiltration of neutrophils [53,58], macrophages [62], T cells [54], and NK cells [51] in IBD mice
and patients. Moreover,ω-3 PUFAs have been shown to decrease proinflammatory cytokines (TNF-α,
IL-12, IL-1β, iNOS, and/or IL-6), enhance epithelial barrier function, upregulate antioxidative enzymes,
and reduce lipid oxidation-derived compounds [54,57–61], and therefore inhibit the development of
IBD in mice or rats.

There are also inconsistent reports, which have shown that ω-3 PUFAs have no effect or even
adverse effects on IBD. In randomized, placebo-controlled trials,ω-3 PUFAs intake has had no effect in
improving the recovery of colitis [63,64], and has even enhanced disease activity in UC patients [65].
Moreover,ω-3 PUFAs had no effect on either chemotherapy-induced enterocolitis in acute myeloid
leukemia (AML) patients [66] or type 2 diabetes-induced duodenal inflammation in obesity patient [67].
In animal models, the treatment of fish oil has had little effect on DSS- or TNBS-induced colitis in
rats [68,69], and has exacerbated the DSS-induced colitis in mice [70]. ω-3 PUFAs have also been
shown to exaggerate chemotherapy (5-fluorouracil)-induced small intestine damage in rats [71].

2.3. Potential Reasons for the Mixed Results of ω-3 PUFAs

Overall, the effects of ω-3 PUFAs on CRC and IBD are controversial, making it difficult to
effectively use ω-3 PUFAs for disease prevention. There are several possible reasons for the mixed
results inω-3 PUFA studies.

1. Both CRC and IBD are highly heterogeneous diseases, and previous studies have shown thatω-3
PUFAs have varied effects on different types of diseases. The plasma level of ω-3 PUFAs was
negatively associated with the risks of proximal colon cancer, but with not distal colon cancer or
overall CRC risk [19]. The consumption ofω-3 PUFAs decreased the risks of developing rectal
cancer but increased the risks of developing distal colon cancer in men [23]. The administration of
fish oil reduced the aberrant crypt foci and adenoma incidence, but not the carcinoma incidence,
in a DMH-induced CRC model in rats [28]. It is feasible that ω-3 PUFAs target some specific
types of colon carcinogenesis or inflammation, which remains to be better defined.
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2. Interindividual genetic variations could also influence the effects of ω-3 PUFAs on CRC
and IBD. Many human studies have demonstrated significant interindividual variations in
response to ω-3 PUFAs [14,15,72–76], which has made it difficult to confirm the efficacy
of ω-3 PUFAs. The continuation of the current ω-3 PUFA research paradigms that neglect
interindividual variation can be expected to keep generating mixed results and to fail to clarify
their effects [15,16]. Notably, recent research supports that ω-3 PUFA-metabolizing enzymes
contribute to the biological actions of ω-3 PUFAs. A recent study showed that there is a high
degree of interindividual variability in metabolizingω-3 PUFAs to generate lipid metabolites [14].
In addition, many studies support the critical roles of ω-3 lipid metabolizing enzymes in
the activities of ω-3 PUFAs. For example, Dwyer et al. [75] showed that a diet rich in ω-3
PUFAs decreased, while a diet rich in ω-6 PUAFs increased, the risks of atherosclerosis in the
subpopulation carrying a specific 5-LOX genotype but not in the general population. Other
studies have also supported that polymorphism in genes encoding lipid-metabolizing genes
affect the effects of ω-3 PUFAs on CRC. Notably, in a population-based case-control study, lower
DHA consumption is linked to increased CRC risk in individuals with polymorphic variants in
the PTGS1 gene [74]. Theω-3 PUFAs consumption only increased disease-free survival rate in
CRC patients with upregulation of the PTGS2 gene [21,77]. These results emphasize the need to
better understand the roles of lipid metabolism in the actions ofω-3 PUFAs.

3. Contamination and impurities in medication, supplements, and products can potentially
compromise the protective effects ofω-3 PUFAs in clinical applications. ω-3 PUFAs are highly
unstable and are easily oxidized. Oxidized ω-3 PUFAs release lipid peroxidation/oxidative
products, which are cytotoxic and genotoxic to colonic cells [78,79]. Moreover, persistent organic
pollutants (POPs) and foreign contaminations in fish oil supplements could exacerbate the colon
carcinogenesis by stimulating aberrant crypt foci formation in rats [80]. The use of high-quality
ω-3 PUFAs is critical in future human and animal studies to exclude the potential adverse effects
from lipid oxidative products and contaminations. In addition, multiple studies have shown that
the beneficial effects ofω-3 PUFAs, including anti-inflammation [81,82], anti-atherosclerosis [83],
and anti-metastasis [84] effects, are dose-dependent. More studies are needed to determine the
optimal dose and treatment time to maximize the beneficial effect ofω-3 PUFAs and to establish
the official recommended daily intake for the general public and for CRC patients.

3. Roles ofω-3 PUFA Metabolism in Mediating Inflammation and Cancer

3.1. Enzymatic Metabolism of ω-3 PUFAs

A widely accepted hypothesis explaining the effects of ω-3 PUFAs is that they can compete
with ARA for the enzymatic metabolism catalyzed by COX, LOX, and CYP enzymes, leading to
reduced levels of ω-6-series eicosanoids that are predominately proinflammatory and proangiogenic,
and/or increased levels of ω-3-series metabolites, which have less detrimental or even beneficial
effects [10–13]. For example, EPA can effectively compete with ARA for metabolism by cyclooxygenase-2
(COX-2), leading to reduced tissue concentrations of ARA-derived prostaglandin E2 (PGE2) which has
potent proinflammatory and protumorigenic actions, and increased concentrations of EPA-derived
prostaglandin E3 (PGE3), which is less proinflammatory [13,85]. The 5-lipoxygenase (5-LOX)
metabolite of DHA, 4-hydroxy-docosahexaenoic acid (4-HDHA), has a potent antiangiogenic effect,
while the corresponding metabolite from ARA stimulates angiogenesis [12]. Another DHA metabolite,
17-hydroxy-docosahexaenoic acid (17-HDHA), which is produced by the actions of 15-LOX, has shown
anti-inflammatory in experimental colitis and arthritis models [86].

Whereas previous mechanistic research of ω-3 PUFAs has focused on the COX and LOX
pathways [12,13,85,87–93], the role of the CYP pathway, which is widely regarded as the third
branch of the eicosanoid cascade, in the metabolism and activity of ω-3 PUFAs is understudied.
CYP monooxygenases (mainly CYP2C and CYP2J isoforms) convert PUFAs to the corresponding
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mono-epoxides (Figure 1). A series of PUFAs, includingω-6 PUFAs (LA and ARA) andω-3 PUFAs
(EPA and DHA), are substrates of the CYP enzymes. For example, DHA has six C=C double bonds,
and can be converted by the CYP enzymes to generate six regioisomers: 4,5-, 7,8-, 10,11-, 13,14-,
16,17-, and 19,20-epoxydocosapentaenoic acid (EDP). Previous studies support that in many tissues,
19,20-EDP is the most abundant isomer [94,95]. Recent research by us and others has shown that
ω-3 PUFAs are mainly metabolized by the CYP pathway [94,96–99], and they are known to be poor
substrates of other lipid metabolizing enzymes, such as COX and LOX [100–102].
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Figure 1. Cytochrome P450 (CYP) pathway-mediated metabolism ofω-3 PUFAs. EPA, eicosapentaenoic
acid; DHA, docosahexaenoic acid; EEQ, epoxyeicosatetraenoic acid; EDP, epoxydocosapentaenoic acid;
DiHETE, dihydroxy-eicoxatetraeonic acid; DiHDPA, dihydroxy-docosapentaenoic acid.

3.2. Effects of CYP-Produced ω-3 PUFA Metabolites on Inflammation and Cancer

Recent research by us and others has shown that EDPs, which are metabolites of DHA produced by
CYP monooxygenases, potently inhibited angiogenesis, tumor growth, and metastasis, both in vitro and
in vivo [103,104]. We showed that systematic treatment of 19,20-EDP (dose = 0.05 mg/kg/day), which
was stabilized by the coadministration of a soluble epoxide hydrolase (sEH) inhibitor, inhibited tumor
growth in a Met-1 breast tumor model in FVB mice and attenuated lung tumor metastasis in a
Lewis lung carcinoma (LLC)-derived lung metastasis model in C57BL/6 mice [103]. Our recent study
also showed that treatment with EDPs (dose = 0.5 mg/kg/day) reduced primary tumor growth in
a MC38 xenograft CRC model in mice [33]. The anticancer effects of EDPs could be due to their
anti-angiogenic actions. EDPs, including 7,8-, 10,11-, 13,14-, 16,17-, and 19,20-EDP, potently inhibited
vascular endothelial growth factor (VEGF)-induced angiogenesis, as assessed by a Matrigel plug
assay in mice [103]. EDP also inhibited VEGF-induced cell migration and tube formation in cultured
endothelial cells [103]. Treatment with 19,20-EDP, or dietary feeding of ω-3 PUFAs, in Tie2-CYP2C8-Tr
mice and sEH (soluble epoxide hydrolase) deficiency mice, suppressed pathological angiogenesis in a
laser-induced choroidal neovascularization model [104,105].

Epoxyeicosatetraenoic acids (EEQs), which are metabolites of EPA produced by CYP monooxygenases,
have been shown to have potent anti-inflammatory effects. Treatment of 17,18-EEQ decreased the incidence
of ovalbumin-induced allergic diarrhea, as well as the severity of cholera toxin-induced cholera diarrhea,
in murine intestinal diarrhea models [55]. 17,18-EEQ also reduced 2,4-dinitrofluorobenzene-induced
contact hypersensitivity in both murine and cynomolgus macaques models of contact dermatitis [106].
Combined treatment of 17,18-EEQ and HEPEs (5-HEPE and 9-HEPE) reduced macrophage migration
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in adipose tissue in HFD-induced obese mice [107]. Treatment of 17,18-EEQ attenuated pathological
angiogenesis in a laser-induced CNV model [104].

In addition to animal data, ex vivo and in vitro data also support the anti-inflammatory
actions of EEQ. 17,18-EEQ alleviated methacholine-triggered Ca2+ hypersensitivity and its associated
hyperresponsiveness in an ex vivo bronchial inflammatory model [108]. 17,18-EEQ reduced
methacholine-induced contractile responses in a guinea pig airway explant [109]. The treatment of
mixed EEQ isomers or 17,18-EEQ suppressed the activation of the JNK signaling pathway and attenuated
inflammatory responses in palmitate-triggered macrophage cells [107]. Together, these results support
the anti-inflammatory and antiangiogenic effects of EEQ.

17,18-EEQ can be further metabolized by 12-LOX to form 12-hydroxy-17,18-epoxyeicosatetraenoic
acid (12-OH-17,18-EEQ). Both 17,18-EEQ and 12-OH-17,18-EEQ inhibited zymosan-induced peritonitis
by limiting neutrophil infiltration in peritoneal lavages in a murine peritonitis model [110].
The administration of 12-OH-17,18-EEQ, instead of 17,18-EEQ, reduced airway inflammation in
an ovalbumin-induced asthma model [111]. 12-OH-17,18-EEQ has also been shown to attenuate
LTB4-induced neutrophil mobility and activation [110]. Together, these results support that EEQs and
its downstream metabolites have anti-inflammatory effects.

Opposite to the effects of ω-3 metabolites (EDPs and EEQs), the correspondingω-6 metabolites,
such as LA-derived epoxyoctadecenoic acids (EpOMEs) and ARA-derived EETs, have been shown
to enhance tumorigenesis [112,113]. Notably, our recent research showed that systematic treatment
with 12,13-EpOME increased tumor multiplicity and tumor size in an AOM/DSS-induced CRC model
in mice, demonstrating its CRC-enhancing effects [112]. We further showed that treatment with
EpOME, at nM concentrations, induced inflammatory responses in macrophage cells and colon cancer
cells [112]. Overall, these results suggest thatω-3 vs. ω-6 metabolites produced by the CYP enzymes
have opposite effects on CRC, supporting the hypothesis that the CYP pathway could contribute to the
anti-CRC effects ofω-3 PUFAs.

3.3. Roles of CYP Pathway in the Pathogenesis of CRC

Our recent research showed that the CYP pathway is upregulated in CRC and contributes
to the pathogenesis of CRC [112]. Compared with healthy control mice, the concentrations of
CYP-produced lipid metabolites are increased in the colon and plasma of AOM/DSS-induced CRC
mice. The expression of a series of mouse Cyp genes, including Cyp2c38, Cyp2c39, Cyp2c55, Cyp2c65,
Cyp2c70, Cyp2j6, Cyp2j9, and Cyp2j13, were increased in the colon tumor tissue of AOM/DSS-induced
CRC mice [112]. Pharmacological inhibition or genetic ablation of CYP monooxygenases attenuated
the development of AOM/DSS-induced CRC in mice, supporting the conclusion that the CYP enzymes
play critical roles in the pathogenesis of CRC. In agreement with our finding, previous studies have
also shown that, compared with matched benign samples, CYP2C9 is upregulated in human colon
tumor samples [114]. Overall, these results support that the previously unappreciated CYP pathway
contributes to colon tumorigenesis.

SEH is a downstream enzyme of the CYP-mediated lipid metabolism pathway (Figure 1).
It converts the fatty acid epoxides to the corresponding fatty acid diols [115]. Recent research supports
that the sEH enzyme also plays critical roles in colonic inflammation and CRC. SEH is upregulated
in colonic dysplasia and adenocarcinoma samples from UC or CRC patients [114,116], and is also
upregulated in colon tissues in obesity-induced colonic inflammation and food allergen-trigged
intestinal inflammation models [117–119]. Inhibition of sEH has been shown to stabilize fatty acid
epoxides and enforce their anti-inflammation effects in colitis and CRC. Inhibition of sEH reduced the
ulcer formation by increasing the fatty acid epoxide levels, decreasing colonic cytokine (Tnf-α, Il1β,
Mcp-1) expression and neutrophil infiltration in the Il10−/− and DSS-induced colitis models [116,120,121].
Moreover, sEH deficiency reduced tumor incidence and precancerous dysplasia in an Il10−/−-associated
cancer model and CAC cancer model [116,122]. Our recent study showed that the inhibition or ablation
of sEH attenuated obesity-induced colonic inflammation, gut leakage, activation of the protumorigenic
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Wnt pathway, and systemic inflammation [117,118]. Together, these studies suggest that sEH also
contributes to the pathogenesis of colonic inflammation and CRC.

3.4. Therapeutic Benefit of sEH inhibitors with ω-3 PUFAs Combination in Inflammation and Cancer

Recent research supports that coadministration of sEH inhibitors synergizes withω-3 PUFAs to
suppress disease development. The administration of sEH inhibitor t-TUCB attenuated obesity-induced
hepatic steatosis in fat-1 mice [123]. Treatment with sEH inhibitors in fat-1 mice elevatedω-3 series fatty
acid epoxides (17,18-EEQ and 19,20-EDP) in liver and facilitated macrophage polarization from M1 into
M2 phenotypes [123]. Moreover, the combined administration of 17,18-EEQ and sEH inhibitor AUDA
attenuated methacholine-induced hyperresponsiveness and TNF-α-induced calcium hypersensitivity
in an ex vivo bronchial inflammatory model [108].

In cancer treatment, the combined administration of 19,20-EDP and sEH inhibitor suppressed Met-1
cell-derived breast tumor growth in FVB female mice [103]. Interestingly, regorafenib, a widely used
anticancer drug, is a potent inhibitor of sEH [124]. Acting as sEH inhibitor, regorafenib administration
increased plasma levels of 11,12-EET, 14,15-EET, and 19,20-EDP in plasma in liver cancer patients,
which could facilitate the synergistic action of DHA and regorafenib in cancer treatment [125]. In a
mouse xenograft tumor model of renal carcinoma, the combined treatment of DHA and regorafenib
results in greater inhibition in tumor growth and invasiveness compared to individual treatment [126].
Moreover, multiple orally active sEH inhibitors are available commercially. Two potent inhibitors
have undergone multiple human safety trials, and one is entering phase 1b of human trials [127,128].
Together, the combination of sEH inhibition and ω-3 PUFAs demonstrate attractive and promising
therapeutic applications in treating inflammation-related diseases. More studies are needed to explore
the potential synergistic effect ofω-3 PUFAs and sEH inhibitors in colonic inflammation and CRC.

4. Summary

ω-3 PUFAs have been widely accepted as dietary supplements and prescription agents used
in the US. Accumulating evidence from epidemiologic, clinical, and preclinical studies demonstrate
the beneficial actions ofω-3 PUFAs in combatting CRC and its protective effects in attenuating IBD
in humans and animals. However, studies have consistently questioned the efficacy of ω-3 PUFAs,
especially in clinical application, due to their contradictory effects. The conflicting results are mainly
due to the complexity of the disease, insufficient population number, inappropriate placebo selection,
and interindividual genetic and metabolism variance. Further studies are warranted to clarify the
underlying reasons leading to the inconsistent results and explore the unknown mechanism of beneficial
action ofω-3 PUFAs.

The ω-3 PUFAs act mainly via the formation of bioactive lipid metabolites, which have potent
effects to regulate inflammation and homeostasis [10–12,103,129]. However, the specific lipid
metabolizing enzymes and lipid metabolites involved in the anticancer activities of ω-3 PUAFs
are largely unknown. The elucidation of the specific lipid-metabolizing pathways and metabolites
required for the anti-inflammatory and anticancer effects of ω-3 PUFAs will greatly facilitate the
development of ω-3 PUFA biomarkers, leading to optimized use of ω-3 PUFAs for cancer prevention.
Recent studies by us and others support that the CYP monooxygenase pathway plays a critical role
in the pathogenesis of CRC [112]. In addition, the CYP-produced ω-3 metabolites (e.g., EDPs from
DHA) inhibited angiogenesis, tumor growth, and tumor metastasis [103], while the CYP-produced
ω-6 metabolites (e.g., EETs from ARA and EpOMEs from LA) increased tumorigenesis [112,113].
These results support the hypothesis that the previously unappreciated CYP pathway could contribute
to the anticancer effects ofω-3 PUAFs. Further studies are needed to test this hypothesis, which can
help to elucidate the molecular mechanisms and clarify the health-promoting effects of ω-3 PUFAs, as
well as develop personalized nutrition strategies. Moreover, due to the complexity and interindividual
variance, the use of an individual nutrient is unlikely to effectively achieve beneficial effects in clinic
application, as the synergistic effect of multiple approaches in disease treatment has been proposed [130].
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Given sEH as a novel therapeutic target in the pathogenesis of colonic inflammation and CRC, it is
important to develop novel combined treatment ofω-3 PUFAs with sEH pharmacological inhibitors to
suppress colonic inflammation and CRC.
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