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Professor Tarek I. Zohdi
Professor Edgar Knobloch

Fall 2017



Stability, and Robustness of Three-dimensional Gaussian Vortices in a
Rotating, Stratified, Boussinesq flow: Linear and Nonlinear Analyses

Copyright 2017
by

Mani Mahdinia



1

Abstract

Stability, and Robustness of Three-dimensional Gaussian Vortices in a Rotating, Stratified,
Boussinesq flow: Linear and Nonlinear Analyses

by

Mani Mahdinia

Doctor of Philosophy in Engineering – Mechanical Engineering

University of California, Berkeley

Professor Philip S. Marcus, Chair

Large coherent vortices are the abundant features of geophysical and astrophysical tur-
bulent flows. Here we explore and investigate a widely-used model for these vortices, that
uses an axisymmetric Gaussian structure for pressure distribution. We discuss the linear
stability of the vortices, their long-term evolution, and their robustness in the ocean. It has
been suggested by other studies that these vortices can strongly affect their surroundings, for
example by efficiently mixing and transporting heat, momentum, and material, and so un-
derstanding the dynamics of these vortices, such as their formation, robustness, and stability,
is of great interest. The first chapter discusses the introductory material and summarizes
the results of this work.

In the first part of this work (i.e., in chapter 2 of the thesis), the linear stability of
three-dimensional (3D) vortices in rotating, stratified flows is studied by analyzing the non-
hydrostatic inviscid Boussinesq equations. We have focused on a widely-used model of
geophysical and astrophysical vortices, which assumes an axisymmetric Gaussian structure
for pressure anomalies in the horizontal and vertical directions. For a range of Rossby
number (−0.5 < Ro < 0.5) and Burger number (0.02 < Bu < 2.3) relevant to observed
long-lived vortices, the growth rate and spatial structure of the most unstable eigenmodes
have been numerically calculated and presented as a function of Ro − Bu. We have found
neutrally-stable vortices only over a small region of the Ro−Bu parameter space: cyclones
with Ro ∼ 0.02− 0.05 and Bu ∼ 0.85− 0.95. However, we have also found that anticyclones
in general have slower growth rates compared to cyclones. In particular, the growth rate
of the most unstable eigenmode for anticyclones in a large region of the parameter space
(e.g., Ro < 0 and 0.5 . Bu . 1.3) is slower than 50 turn-around times of the vortex
(which often corresponds to several years for ocean eddies). For cyclones, the region with
such slow growth rates is confined to 0 < Ro < 0.1 and 0.5 . Bu . 1.3. While most
calculations have been done for f/N̄ = 0.1 (where f and N̄ are the Coriolis and background
Brunt-Väisälä frequencies), we have numerically verified and explained analytically, using
non-dimensionalized equations, the insensitivity of the results to reducing f/N̄ to the more
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ocean-relevant value of 0.01. The results of our stability analysis of Gaussian vortices both
support and contradict findings of earlier studies with QG or multi-layer models or with
other families of vortices. The results of this study provide a steppingstone to study the
more complicated problems of the stability of geophysical (e.g., those in the atmospheres of
giant planets) and astrophysical vortices (in accretion disks).

In the second part of this work (i.e., in chapter 3 of the thesis), the evolution and
finite-amplitude stability of 3D vortices has been studied with an initial value code in a
rotating stratified flow. Focusing on axisymmetric Gaussian vortices, the chapter 2 analysis
showed, by analyzing the vortices’ linear stability, that anticyclones have slower growth
rates than those of cyclones. Here we examine the nonlinear stability for vortices that
have growth rates faster than 50 turnaround times of the vortex, and for different finite
amplitude perturbations (i.e., with different types, and/or amplitudes), for a range of Rossby
number (−0.5 < Ro < 0.5) and Burger number (0.07 < Bu < 2), that are again relevant
to the observations. We demonstrate that despite these vortices’ fast growth rates, the
perturbations quickly plateau – at a constant value, and the vortices usually have small-sized
attracting basins (with only one vortex splitting radially, i.e., into tripoles), and for almost
all cases we examined the initial and final equilibria remain close. For the non-splitting cases,
the vortex’s core always remains close to a Gaussian state. All the calculations here have
been done for f/N̄ = 0.1, and effects of changing f/N̄ is therefore forwarded to a future
study. While we mostly use enstrophy measures to describe the vortex dynamics (i.e., as
they evolve towards their final equilibria), we also show, for the vortices with close initial
unperturbed and final equilibria, that their long-term evolution is represented entirely by a
simple analytical solution, with the deviations from this representation shown to be small
(that is after the flow reaches quasi-steady state). It should be noted as well that, while
generally a fast instability growth rate can destroy a vortex via nonlinear finite-amplitude
instabilities, it also is possible that the perturbations quickly saturate, such that the initial
unperturbed and final equilibria remain close to each other. Our goal here has been to
demonstrate the latter. Our explanation for the equilibria’s robustness does not require a
direct forcing mechanism; it only involves damping of velocity and density far from the initial
conditions’ position and at our numerically implemented sponge layers.
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As far as the laws of mathematics refer to reality, they are not certain;
and as far as they are certain, they do not refer to reality.

A. Einstein
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and David Steigmann for them.

I would like to thank the current and former members of our lab: Joe Barranco, Pedram
Hassanzadeh, Suyang Pei, Caleb Levy, Nelson Chen, Chiyu Jiang, Andrew Sanville, Anzhu
Sun, Haris Moazam Sheikh, and Aidi Zhang. Specifically, I am grateful to Joe for providing
the Spectral parallel code that I used (and modified) for my Ph.D. research. I would like
to thank Pedram, for helping me choose my thesis’ topic, for his contribution in preparing
the first part of this work, and for his advice and support throughout the years. I am
also grateful to Suyang for his help and support at the beginning of my Ph.D., and to
Caleb for helping run and post-process some of the simulations. I appreciate scholarships
and fellowships I received from Graduate Division Block Fellowship, and Jonathan Laitone
Memorial Scholarship.

I would like to thank my Bachelor’s and Master’s degree advisor Bahar Firoozabadi,
who introduced me to the world of fluid mechanics, and who provided me with invaluable
help and support when I was her student. I would like to thank my other Master’s degree
advisor Mohammad Farshchi, for providing research support when I was his student. I as
well am thankful to Bahar Firoozabadi and Mohammad Farshchi for providing me with great
opportunities to do research and obtain valuable skills. Furthermore, I am grateful to Hossein
Afshin, and Amir Ghassemi with whom I collaborated during my Master’s degree’s work,
for being great supporters and friends. I am also grateful to Bijan Farhanieh and Hossein
Afshin for providing me an opportunity to work on a real world problem (i.e., about design
and CFD calculations for the subway ventilation systems) during my Master’s degree’s work.

I as well am thankful to all my friends (I would prefer not to list their names here, as I
may miss some of them). I really can’t thank them enough for their support and friendship,
and for simply being there for me.

Finally I am thankful beyond words to my family Nahid and Abbas, for their never-
ending love and support, and for always being there for me. I can’t begin to describe how
appreciative I am for their presence within my life and for what they have done for me.



1

Chapter 1

Introduction

Coherent long-lived vortices are the well distinguished identities of geophysical and astro-
physical flows. Possible examples are Gulf Stream rings (see figure 1.1) [Olson 1991] , vortices
near strong oceanic currents [Lai & Richardson 1977; Lutjeharms et al. 2003; Kurian et al.
2011] and Meddies (see figure 1.2) [McWilliams 1985; Armi et al. 1988] in the ocean [also
Chelton et al. 2011], similar vortices in other regions including the Ulleung Basin, Red Sea,
and bay of Biscay [Meschanov & Shapiro 1998; Carton 2001; Chang et al. 2004], as well as
vortices in the atmosphere of Jupiter [Marcus 1993], and other planets [Garate-Lopez et al.
2013; O’Neill et al. 2015], geophysical atmospheric vortices [Tyrlis & Hoskins 2008; Has-
sanzadeh et al. 2014; Hassanzadeh & Kuang 2015] and vortices in the protoplanetary disks
[Barge & Sommeria 1995; Barranco & Marcus 2005; Marcus et al. 2013]. Understanding
the dynamics of these vortices, such as their formation, longevity, and stability, are of great
interest as these vortices can strongly affect their surroundings, for example, by efficiently
mixing and transporting heat, momentum, and material [Provenzale 1999; Gascard et al.
2002; Marcus 2004; de Pater et al. 2010; Dong et al. 2014; Marcus et al. 2015]. There is a
growing need to understand the attributes of these vortices, such as their nonlinear stability
(i.e., their finite-amplitude evolution).

The linear and nonlinear (i.e., finite-amplitude) stability of vortices in rotating, stratified
flows has been extensively studied in the past 30 years. However, the majority of those studies
have used idealized models for the vortices or for the governing equations. For example, Ikeda
[1981], Helfrich & Send [1988], and Benilov [2005a] studied quasi-geostrophic (QG) vortices in
discrete two-layer flows; Gent & McWilliams [1986] studied columnar (i.e., with no variation
in the vertical direction) QG vortices; Flierl [1988] examined columnar and 3D QG vortices;
Nguyen et al. [2012] studied 3D QG vortices; Carton & McWilliams [1989] investigated one
and two-layer QG vortices; Dewar & Killworth [1995], Killworth et al. [1997], Dewar et al.
[1999], Baey & Carton [2002], Benilov [2004], Benilov [2005b], Benilov & Flanagan [2008],
Lahaye & Zeitlin [2015], and Benilov et al. [1998] examined two-layer ageostrophic vortices
(the latter also studied geostrophic vortices); Katsman et al. [2003] examined multi-layer
ageostrophic vortices; Smyth & McWilliams [1998], Billant et al. [2006], and Yim & Billant
[2015] studied columnar ageostrophic vortices; Stegner & Dritschel [2000] examined shallow-



2

Figure 1.1: (Colour online) Vortices at the surface of the Gulf Stream off the US east coast.
The different gray shades (different colours, in colour) demonstrate sea surface temperature
anomaly, light gray (red, in colour) showing largest values and dark gray (green, in colour)
demonstrating smallest ones, near current. The current is illustrated with the straight lines
on the top right, and the vortices are shown as closed loops (Credit: Ocean Surface Current
Analyses Real-time - a NASA supported research project).

water ageostrophic vortices; Lazar et al. [2013a], and Lazar et al. [2013b] studied shallow-
water inertially-unstable vortices; Sutyrin [2015] examined two and three-layer ageostrophic
vortices; Brunner-Suzuki et al. [2012] investigated the evolution of 3D ageostrophic vortices
(but this was not technically a stability study because the initial vortices were created
through geostrophic adjustment and thus out-of-equilibrium); and Tsang & Dritschel [2015]
also studied the evolution, rather than the stability, of 3D ageostrophic vortices made from
piecewise-constant elements of potential vorticity that were not exact equilibrium solutions
of their equations of motion. One study focused on 3D equilibrium vortices using the full
3D Boussinesq equation is that of Yim et al. [2016] who examined the linear stability of a
specific family of vortices with Gaussian angular velocity.

While valuable information on the stability of vortices in rotating stratified flows, vortices
in planetary atmospheres, and oceanic eddies has been gained through the aforementioned
studies, further investigation of the linear and nonlinear stability that extends beyond the
simplifications and limitations of these studies is still needed.

Vortices in ocean and atmosphere (to several of which we referred above) have various
length and time scales, and exist in different environments. However, a common aspect of
these vortices is that their dynamics are predominantly controlled by the rotation, stratifi-
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Figure 1.2: (Colour online) Meddies shown via the sea surface temperature anomaly. The
dark gray (red, in colour) shows meddies entering into ocean, which is demonstrated over the
left, where light gray (green, in colour) shows ocean temperature anomaly. Meddies usually
are anticyclonic (i.e., their rotation direction is the opposite of the earth’s rotation direction)
(Credit: University of Delaware).

cation, and (in some cases) shear of their environment. Therefore, here we propose a study
of these vortices, that is specifically planned to examine the vortex dynamics in a rotating
stratified flow. Some of the questions about these vortices that we will answer in this thesis:

• Long lives: why some vortices have loner life times than others?

• Size: what controls the horizontal and vertical length scales of the vortices?

• Cyclone/anticyclone asymmetry: observed cyclones and anticyclones differ in terms of
their life times, and populations. How can this asymmetry be explained?

• Critical layers: how do singular critical layers affect vortex dynamics?

• Robustness: why do some vortices remain robust, despite conditions (i.e., perturba-
tions, fast growth rates, etc) that suggest that they should be quickly destroyed?

• Finite-amplitude perturbations: how do finite-amplitude perturbations (interaction
with waves, other vortices, currents, topography, etc) affect vortex dynamics?

• Other possible items that are not discussed here, but are included in our work below.
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This study’s purpose is to address the linear and nonlinear stability of three dimensional
(3D) axisymmetric vortices in rotating, stably-stratified, inviscid flows by analyzing the
non-hydrostatic Boussinesq equations with an f -plane approximation in a 3D domain with
periodic boundary conditions (and with numerical sponge layers implemented as Rayleigh
drag and Newtonian cooling at distances far from the vortices). We focus on a widely-
used model of geophysical and astrophysical vortices, which have pressure anomalies that
are Gaussian in the radial and vertical directions and are in exact equilibrium. Our work
extends the analyses of the previous studies in several ways:

(i) We examine the vortices with finite Rossby numbers and with internal stratifications
that significantly differ from the stratification of the background flow.

(ii) We examine three-dimensional vortices (rather than 2D Taylor column).

(iii) The 3D baroclinic vortices studied here are exact equilibrium solutions of the 3D non-
hydrostatic Boussinesq equations.

(iv) Our domain has as boundary conditions, numerically implemented sponge layers, which
allow us to simulate a flow that is in fact unbounded.

In chapter 2, that appears in Mahdinia et al. [2017], we examine the vortices’ linear
stability, by calculating their most unstable eigenmodes’ eigenvalues and eigenvectors, as
function of the Rossby number Ro (i.e., which shows rotation), and Burger number Bu
(i.e., which shows stratification). We show that neutrally-stable vortices exist over a small
Ro-Bu parameter space region, and the cyclones have faster growth rates than those of the
anticyclones. In particular most cyclones (i.e., for the parameter values that we examine
in this study) have growth rates faster than 50 vortex turn around times (which for ocean
eddies can corresponds to several years), and a confined anticyclonic region has growth
rates slower than this value. This might explain the cyclone-anticyclone asymmetry of the
vortices in the oceans. Furthermore, we examine the eigenmodes with critical layers, and
show that when the eigenvalues go from unstable to neutrally-stable, the eigenmode family
continues to exist, due to its phase speed being continuous across this transition, rather than
ceasing to exist. Further proof is provided by showing that the unstable and neutrally stable
eigenmodes have similar vertical structures, and are therefore clearly part of the same family.
While most calculations here were done for f/N̄ = 0.1 (where f and N̄ are the Coriolis and
background Brunt-Väisälä frequencies), we also numerically verify and explain analytically,
using non-dimensionalized equations; the insensitivity of the results to reducing f/N̄ to the
more ocean-relevant value of 0.01.

In chapter 3, we continue the chapter 2’s analysis, by examining vortex nonlinear sta-
bility. For vortices that have growth rates faster than 50 vortex turnaround times, the
evolution and finite-amplitude stability of the vortices, as they move towards their final
equilibria, is studied with an initial value code. The initial-value calculations are for differ-
ent vortex finite-amplitude perturbations (i.e., with different types, and/or amplitudes), and
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it is demonstrated that, the initially large linear growth rates for some vortices (mentioned
above) does not mean that vortices are destroyed or disintegrated; but rather that perturba-
tions quickly saturate and the initial unperturbed and final equilibria remain close to each
other. Our initial-value calculations above are carried out for a range (see chapter 3, §3.1)
of Rossby number, Ro, and Burger number, Bu, that are relevant to the observations. We
demonstrate that despite vortices being perturbed, the perturbations quickly plateau – at a
constant value, and the vortices almost always have small-sized attraction basins (with only
one vortex splitting radially, i.e., into tripoles), and for nearly all cases we examined here the
final equilibria remain close to each other. All the above calculations are done for f/N̄ = 0.1,
and effects of changing f/N̄ is therefore forwarded to a future study. We also show for the
vortices that have close initial unperturbed and final equilibria; that the long-term evolution
is simply represented by an analytical solution, with the deviations from this representation
shown to be small (that is after the flow reaches quasi-steady state). It should be noted as
well that, our explanation for the equilibria’s robustness does not require a direct forcing
mechanism; it only involves damping of velocity and density far from the initial conditions’
position and at our numerically implemented sponge layers.

Although our work above discusses in detail about linear and nonlinear stability of three-
dimensional Gaussian axisymmetric vortices in a rotating stratified flow, perhaps the most
important physical result of our work here is that, while a fast instability growth rate can
destroy a vortex via nonlinear finite-amplitude instabilities (i.e., as might be suggested by
some other studies), it also is possible that the perturbations quickly saturate, such that the
initial unperturbed and final equilibria remain close to each other. Our goal here has been
to demonstrate the latter.
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Chapter 2

Linear analysis

2.1 Introduction

Two of the main motivations for some of the previous stability studies (see chapter 1) have
been (a) the observed stability of the long-lived, approximately axisymmetric vortices in the
oceans, and (b) the observed cyclone-anticyclone asymmetry in the oceans and planetary
atmospheres. It has been observed through tracking individual vortices and by satellite
observations that coherent oceanic vortices with radii of tens to hundreds of kilometers
can last for months and even years (∼ 1/2 - 3) while remaining nearly axisymmetric [Lai
& Richardson 1977; Armi et al. 1989; Olson 1991; Chelton et al. 2011]. However, most
theoretical studies of axisymmetric vortices in rotating stratified flows have found them to
be linearly unstable (usually with fast growth rates that are incompatible with the observed
longevity of these vortices), unless unrealistic parameters or vertical structures are assumed
[see the discussions in Stegner & Dritschel 2000; Benilov 2004; Benilov 2005a; Sutyrin 2015].
Observations of planetary atmospheres [Mac Low & Ingersoll 1986; Cho & Polvani 1996],
and oceans at the mesoscales [McWilliams 1985; Chelton et al. 2007; Chelton et al. 2011;
Mkhinini et al. 2014] show that long-lived vortices are predominantly anticyclones. Whether
this asymmetry is due to differences between the stability (linear or nonlinear) properties
of cyclones and anticyclones requires a better understanding of how stability changes with
the Rossby number. It should be noted that factors other than stability can be responsible
for, or at least contribute to, the observed cyclone-anticyclone asymmetry; for example, the
creation mechanisms might favor anticyclones [Perret et al. 2011], anticyclones might decay
slower than cyclones [Hoskins et al. 1985, §7; Graves et al. 2006], or coherent cyclones might
be harder to observe in planetary atmospheres than anticyclones [Marcus 2004].

In the current study, we address the stability of isolated, 3D, axisymmetric vortices in
rotating, stably-stratified, inviscid flows by analyzing the full non-hydrostatic Boussinesq

With minor modifications, some chapter 1 parts and chapter 2 are reprinted with permission from:
Mahdinia M., P. Hassanzadeh, P. S. Marcus, & C.-H. Jiang. “Stability of three-dimensional Gaussian
vortices in an unbounded, rotating, vertically stratified, Boussinesq flow: linear analysis”. In: J. Fluid
Mech. 824 (2017), pp. 97–134.
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equations with an f -plane approximation in a 3D domain with periodic boundary conditions
(modified to simulate an unbounded flow). We focus on a widely-used model of geophysical
and astrophysical vortices, which have pressure anomalies that are Gaussian in the radial
and vertical directions and are in exact equilibrium [e.g., McWilliams 1985; van Heijst &
Clercx 2009; Chelton et al. 2011; Hassanzadeh et al. 2012]. Our work extends the analyses
of the previous studies in several ways, including:

(i) By using the Boussinesq equations, we can study vortex dynamics with any Rossby
number and internal stratification. Here we focus on cyclones and anticyclones in the
geostrophic balance regime (−0.5 < Ro < 0.5), which is the range of Ro relevant to
most long-lived geophysical and astrophysical vortices [e.g., Olson 1991; Aubert et al.
2012] (all parameters and dimensionless numbers are defined in §2.2). The vertical
stratification inside the 3D equilibrium vortices that are studied here can be much
stronger or much weaker compared to the stratification of the background (i.e., far
from the vortex) flow, which is also the case for many oceanic and atmospheric vortices
[e.g., Aubert et al. 2012]. Considering vortices with finite Rossby numbers and with
internal stratifications that significantly differ from the stratification of the background
flow extends the stability analysis well beyond the QG approximation.

(ii) Geophysical and astrophysical vortices that are far from both horizontal and vertical
boundaries (e.g., free surfaces or solid surfaces) and that are in quasi-equilibrium have
been observed to be three-dimensional (rather than 2D Taylor columns); examples
include Jupiter’s Great Red Spot [Marcus 1993], Meddies [Aubert et al. 2012; Bash-
machnikov et al. 2015], and zombie vortices in the protoplanetary disks [Barranco &
Marcus 2005; Marcus et al. 2013; Marcus et al. 2015]. The vertical length scales of
these vortices are finite and usually much smaller than their horizontal length scales,
which can be understood as a direct consequence of the gradient-wind balance [see
Hassanzadeh et al. 2012]. The present study extends the rigorous stability analysis of
Boussinesq vortices beyond barotropic Taylor columns.

(iii) Exploiting the universal scaling law of Hassanzadeh et al. [2012] and Aubert et al.
[2012], the 3D baroclinic vortices studied here are exact equilibrium solutions of the
full 3D non-hydrostatic Boussinesq equations (see §2.2). The exact equilibrium is par-
ticularly important for a rigorous linear analysis, which is the subject of this study.

(iv) By using the full, 3D, non-hydrostatic Boussinesq equations, we avoid restrictions on
the vertical structure of the vortex or background flow that result from the QG or
multi-layer models discussed above. Although here we focus on background flows with
stable stratification such that the density decreases linearly with height (i.e., constant
Brunt-Väisälä frequency N̄), background flows with more realistic N̄(z) profiles can be
easily included in this framework.

(v) The family of Gaussian vortices that is studied here has been shown to fit many types of
oceanic and laboratory vortices reasonably well [e.g., van Heijst & Clercx 2009; Chelton
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et al. 2011] and has been widely-used as a model in various theoretical studies [e.g.,
McWilliams 1985; Morel & McWilliams 1997; Hassanzadeh et al. 2012; Negretti & Bil-
lant 2013]. Furthermore in this model, all fields (e.g., velocity, potential vorticity, and
density) are continuous and smooth, which eliminate unphysical instabilities that can
arise from discontinuities (which are present, for example, when vortices are modeled
with piecewise-constant shells or patches of potential vorticity).

In this chapter we address the linear stability of 3D vortices in rotating stratified flows
and discuss the growth rates and most unstable eigenmodes as functions of the Rossby
number Ro (for −0.5 < Ro < 0.5), the Burger number Bu (for 0.02 < Bu < 2.3), and
f/N̄ = 0.1 and 0.01. One of the main purposes of this chapter is to extend the linear stability
analysis of a specific family of 3D equilibrium vortices beyond some of the approximations
or constraints imposed in previous studies and produce the parameter map of stability for
3D non-hydrostatic Boussinesq flows. We also investigate how different modes take over as
the most unstable one as the Burger number changes and explore the vertical and horizontal
structures of these modes and their critical layers. We discuss how the stability properties
found here compare with those reported in other studies using QG or multi-layer equations
or using a different vortex model. Furthermore, we show numerically that the linear stability
of the family of 3D vortices that we examine is only weakly dependent on the value of f/N̄
for f/N̄ ≤ 0.1 and we discuss the reason behind this behavior.

The results of this study improve the understanding of the generic stability properties of
3D vortices in rotating stratified flows, and have implications for the dynamics of some of
the geophysical and astrophysical vortices. These results are most relevant to the stability of
interior (i.e., far from boundaries) oceanic vortices such as Meddies. It is acknowledged that
the exclusion of horizontal and vertical background shear, free surface, lateral boundaries,
bottom topography, compressible effects, and vertical variation of N̄ limit the direct applica-
bility of the current analysis to other oceanic eddies and planetary and astrophysical vortices.
However, the numerical framework presented here can be readily adapted to account for the
aforementioned boundary conditions/physical processes in future studies, and the results of
this study will be needed to evaluate the influence of these boundary conditions/processes
on the stability properties of these vortices.

The remainder of this chapter is structured as follows. The equations of motion, numerical
method, Gaussian vortex model, and eigenmode solver are discussed in §2.2. The eigenmodes
with critical layers are discussed in §2.3, and the results of the linear stability analysis and the
stability map along with comparison with previous studies are presented in §2.4. Insensitivity
of the most unstable modes to f/N̄ is discussed in §2.5 and the radial and vertical structures
of the most unstable modes are presented in §2.6. Discussion and summary are in §2.7.

2.2 Problem formulation
Equations of motion

The Boussinesq approximation of the equations of motion for 3D rotating, stratified, inviscid
flows in the Cartesian coordinates (x, y, z), as observed in a frame rotating with angular



9

velocity (f/2) ẑ, is [Vallis 2006]

Dv

Dt
= −∇p

ρo
+ v × f ẑ + b ẑ,

Db

Dt
= −N̄2vz, ∇ · v = 0, (2.1)

where the operator D/Dt ≡ ∂/∂t + v · ∇ is the material derivative, t denotes time, v =
(vx, vy, vz) is the 3D velocity vector, f is the Coriolis frequency (constant in our study), and
g is the acceleration of gravity. The total pressure and the total density of the fluid are
ptot ≡ p̄(z) + p(x, y, z, t) and ρtot ≡ ρ̄(z) + ρ(x, y, z, t), where ρ̄(z = 0) = ρo. We define the
buoyancy as b(x, y, z, t) ≡ −gρ/ρo. Quantities with a bar are properties of the equilibrium
background flow (i.e., far from the vortex where v → 0, b → 0, ρ → 0, and p → 0).
The background pressure p̄ and density ρ̄ are in hydrostatic balance dp̄/dz = −ρ̄g. The
background Brunt-Väisälä frequency N̄ ≡

√
−(g/ρo)(dρ̄/dz) is assumed to be constant, so

that ρ̄(z) = ρo(1− N̄2z/g).
In the above equations, we have ignored viscosity in the momentum equations and dif-

fusion in the density equation, which are reasonable approximations for atmospheric and
oceanic flows. Furthermore, we have dropped the planetary centrifugal term from the mo-
mentum equations, assuming that the rotational Froude number f 2d/g is small [Barcilon &
Pedlosky 1967], where d is the distance between the center of the vortex and the planetary
rotation axis.

Numerical method

A pseudo-spectral initial-value solver is developed to solve (2.1) in a triply periodic domain
with 256 or 512 Fourier modes in each direction. In numerical simulations of strongly rotating
stratified flows, resolving the fast inertia-gravity waves can substantially limit the size of the
time step ∆t and thus increase the computational cost. Here we use the semi-analytic
method developed by Barranco & Marcus [2006] for rotating stratified flows, which enables
us to accurately and efficiently deal with large f∆t and N̄∆t.

A vortex in the middle of a periodic domain interacts with its periodic images. To
minimize this interaction and its potential impact on the stability of the vortex (and to
simulate having an unbounded flow) the computational domain size is chosen to be large
compared to the vortex size: the domain size in the x and y directions, i.e., the values of Lx
and Ly are 7.5 (or more often 15) times larger than the initial vortex diameter (2L), and,
similarly, the domain size in the z direction Lz is 7.5 (or more often 15) times larger than the
initial vortex height (2H). There are two reasons for sometimes making the domain size very
large. First, we wanted to ensure that the periodic boundary conditions had no perceptible
effects on the flow dynamics; secondly, in the follow-up chapter to this one (see our Discussion
§2.7) unstable vortices often fragmented with pieces of the initial vortices becoming widely
separated so that the calculations required a large domain. To help simulate an unbounded
flow, we also added a cylindrical sponge layer near the boundaries of the computational
domain (see Appendix B). The sponge layer, implemented as Rayleigh drag and Newtonian
cooling in (2.1), damps v and ρ outside a cylindrical surface of diameter 24L and height 24H
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(for the large domain calculations) or 12L and height 12H (for the small domain calculations)
around the center of the domain. Another advantage of adding the sponge layer is that it
damps the reflection of the outgoing inertia-gravity waves, and occasional detached filaments
back to the domain at the periodic boundaries. One more advantage of the axisymmetric
sponge layer is that we find that it prevents the (non-axisymmetric) periodic boundary
conditions in x and y from adding any significant non-axisymmetric perturbations to the
initial vortices. The latter is important when computing the stability of the vortices. One
way of determining if the domain size is too small is to compute the ratio of the magnitude
of each component of the velocity and density of a numerically computed eigenmode at
a damped location just inside the sponge layer to the maximum value of that component
over the entire domain. With the domain sizes presented here, that ratio is always of order
10−4 (or smaller), but the ratio increases to values with orders as large as 10−2 when the
computational domain is reduced to (10L)×(10L)×(10H) and a sponge layer with diameter
of 8L and height 8H.

Hyperviscosities and hyperdiffusivities are added to our otherwise inviscid and non-
diffusive calculations to stabilize the code. See Barranco & Marcus [2006] for more details.

Initial equilibria: Gaussian vortices

In this study we focus on 3D axisymmetric baroclinic vortices that are initially in horizontal
cyclo-geostrophic balance and vertical hydrostatic balance, and hence they are in gradient-
wind balance [Vallis 2006]. The initial vortex is centered at r = 0 and z = 0, where r denotes
the radial coordinate. A widely-used model for oceanic and laboratory vortices is that of an
axisymmetric vortex with a Gaussian pressure distribution [e.g., McWilliams 1985]

p = po χ(r, z), (2.2)

where χ(r, z) ≡ exp [−(r/L)2 − (z/H)2]. Using (2.2) and the definitions presented in §2.2,
an exact, steady, axisymmetric equilibrium solution to the Boussinesq equations in (2.1) is
the vortex

vφ(r, z) =
fr

2

(
−1 +

√
1− (8poχ(r, z)) / (ρof 2L2)

)
, vr = vz = 0, (2.3)

b(r, z) = − 2poz

ρoH2
χ(r, z), (2.4)

where the cylindrical coordinate is used for convenience (vφ is the azimuthal velocity). For
any vortex, whether or not it is Gaussian, we shall define a quantity written with a subscript
“c” to mean that the quantity is to be evaluated at the vortex center, so Nc is the Brunt-
Väisälä frequency at the center of a vortex, or N2

c ≡ N̄2 +(∂b/∂z)c. For the Gaussian vortex
described by (2.3)-(2.4),

N2
c = N̄2 − 2po/(ρoH

2). (2.5)
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As discussed in the next section, for some values of po, N
2
c < 0, which means that the density

distribution is locally unstable at the vortex center with heavy fluid over light fluid (i.e.,
statically unstable). It is convenient to define the Rossby number Ro, which by definition
has Ro > 0 for a cyclone and Ro < 0 for an anticyclone, in terms of the maximum (or
minimum) value of a vortex’s vertical vorticity ωE, such that Ro ≡ ωE/2f . For the Gaussian
vortices described above ωE = ωc, and

Ro = ω(r = 0, z = 0)/2f = −1/2 +
√

1/4− 2po/(ρof 2L2). (2.6)

Note that the Gaussian vortex has an aspect ratio of(
H

L

)2

=
−Ro(1 +Ro)f 2

N̄2[1− (Nc/N̄)2]
, (2.7)

in accord with the universal scaling law of Hassanzadeh et al. [2012] and Aubert et al. [2012],
which is valid for all vortices that are in cyclo-geostrophic and hydrostatic balance. This can
be seen by simply replacing 2po/ρo in (2.6) with H2(N̄2 −N2

c ) using (2.5), and then solving
for H/L.

The three independent dimensional parameters in the governing equations (2.1) are f , N̄ ,
and ρo. The sizes of the computational domain Lx×Ly×Lz have no effect (on the dimensional
analysis), due to the fact that the cylindrical sponge layer is far from the vortices, and that
the net circulations of the flow are zero, which makes the velocity due to the vortices fall off
exponentially fast and be effectively zero at the sponge layer. (See the definition of shielded
below and in the appendices.) The equilibrium Gaussian vortices in (2.2)-(2.4) introduce
three additional dimensional parameters H, L, and po. Thus, there are three independent,
dimensionless parameters that describe the dynamics of Gaussian vortices. The choice of
these parameters is not unique, but here we choose Ro, f/N̄ , and

Bu ≡
(
N̄

f

H

L

)2

= (Lr/L)2, (2.8)

where the latter is the Burger number, and Lr ≡ HN̄/f is the deformation radius. It should
be noted that whether the vortices studied here are big or small depends on the inverse of
their Burger number, which is the square of the vortex radius over Lr. Big vortices have
small Bu, and vice versa.

The Gaussian vortices defined in the above model are shielded. Here we define a shielded
flow as one in which the circulation computed with the z-component of the vorticity over
the entire (x, y)-plane for any fixed value of z is zero. In addition, the circulation computed
with the x-component of the vorticity over the (y, z)-plane for any fixed value of x is zero;
and the circulation computed with the y-component of the vorticity over the (x, z)-plane for
any fixed value of y is zero. (n.b. Figure 2.1(b) does not violate our definition of shielded
because the figure shows the vertical component of the vorticity in an x-z plane, not an x-y
plane.) Our governing equations and boundary conditions show that if the initial flow is
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shielded, then the flow is shielded for all time. In practical terms, a shielded isolated vortex
is one in which the central core of the vortex is surrounded, or partially surrounded, by a
region (shield) of opposite vorticity and that the circulation quickly vanishes outside the
shield. For an arbitrary (i.e., not necessarily Gaussian) cyclonic vortex, the core of a cyclone
is a contiguous region at and near the vortex center where the vertical component of its
vorticity ω is greater than or equal to zero. The shield is a region around the core (usually
looking like a shell or annular ring) located not too far from the core, where ω < 0. The
precise definitions that we use for core and shield are in Appendix A. The core and shield
of an example Gaussian vortex are illustrated in figures 2.1(a) and (b). The definitions of
the core and shield of an anticyclone are analogous to those of the cyclone. For Gaussian
vortices and many other types of shielded cyclones, outside the shield the amplitude of the
vorticity decays exponentially with the radial distance r (or rp with p ≥ 2) from the vortex
center. In our calculations, the circulation due to the vertical component of the vorticity∫
ω(x, y, z) dx dy (where the integral is over the entire x-y computational domain) at each

value of z must remain zero due to the periodic boundary conditions.
Commonly, in the studies of oceanic and atmospheric vortices, potential vorticity (PV)

is used to describe the vortices, instead of vertical vorticity, due to its conservation property
[Hoskins et al. 1985; Morel & McWilliams 1997]. Ertel’s PV in figure 2.1 is defined [Ertel
1942] as

Q ≡ [ω + f ẑ] ·

(
∇b+ N̄2ẑ

fN̄2

)
− 1, (2.9)

where ω ≡ ∇ × v is the vorticity vector as observed in the rotating frame. To provide
a better sense about the PV structure of the vortices studied here, Q(r, z) for a Gaussian
vortex with Ro = 0.2 and three values of Bu = 0.1, 1 and 2 is depicted in figures 2.1(c)-(e),
showing that the PV structure can significantly change with Bu (see Morel & McWilliams
[1997] for a discussion of potential vorticity of Gaussian vortices). Our purpose for showing
the PV of Gaussian vortices is to allow the reader the ability to make comparisons of the
vortex model with what is used in some other stability studies such as Tsang & Dritschel
[2015] who model the initial vortex with uniform patches of PV.

Finally it should be noted that there is a restriction on the equilibrium of anticyclones
in the Gaussian model (2.2)-(2.4); there is no equilibrium for anticyclones for Ro < −0.5.
This is because (2.3) and (2.6) show that vφ does not have a real solution for Ro < −0.5, as
noted, for example, by McWilliams [1985] and Olson [1991].

Eigenmodes

The symmetries of the governing equations in (2.1) linearized around the equilibrium vortex
(2.2)-(2.4) are presented in dimensionless form in §2.5 in equations (2.22)-(2.26). These
equations and their boundary conditions show that the eigenfunctions are either symmetric
or anti-symmetric with respect to the z = 0 horizontal plane and have an m-fold azimuthal
symmetry about the z-axis. We use the labels Sm or Am for each eigenmode, to identify
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Figure 2.1: (Colour online) Vertical vorticity ω(r, z) and potential vorticity Q(r, z) for Gaus-
sian cyclones defined by (2.2)-(2.4). Panel (a) shows ω at z = 0 as a function of r as a
solid curve (blue, in colour) for Ro = 0.2, Bu = 0.1, and f/N̄ = 0.1. The thin and thick
dashed vertical lines show the boundaries of the core and the shield (see Appendix A). The
solid vertical lines at large radii show, with increasing thickness from left to right, where
the boundary damping function fbd (see Appendix B) reaches values of 0.01, 0.5 and 0.99,
respectively. Panel (b) shows ω(r, z) in units of 2f in the r-z plane of the vortex in panel
(a). Dashed lines indicate the boundaries of the core and shield. Panels (c) to (e) show the
potential vorticity Q(r, z) for a Gaussian vortex with Ro = 0.2 and f/N̄ = 0.1, for Bu = 0.1,
Bu = 1.0 and Bu = 2.0, respectively. For larger values of Bu, the distributions of Q and ω
are similar.
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it as Symmetric (or Anti-symmetric) with respect to the z = 0 horizontal plane and with
m-fold symmetry.

The complex eigenvalues λ and eigenfunctions are of the form

eλt geig(r, z) eimφ = eσt geig(r, z) eim(φ−ct), (2.10)

where the eigenvector has 3 velocity components, a density component, and a pressure
component:

geig(r, z) ≡ [vr,eig, vφ,eig, vz,eig, ρeig, peig]. (2.11)

The three velocity components are with respect to cylindrical coordinates, where m is the
integer azimuthal wave number, σ is a real growth (or decay) rate, and c is a real azimuthal
phase speed. By taking the complex conjugate of the linearized equation, we can show that
if λ is an eigenvalue with eigenfunction given by (2.11), then λ† is also an eigenvalue with
eigenfunction g†eig(r, z) ≡ [v†r,eig, v

†
φ,eig, v

†
z,eig, ρ

†
eig, p

†
eig], with m replaced by −m, c unchanged,

and where the superscript † denotes complex conjugate. Or in other words, the eigenvalues
λ when plotted in the complex plane are symmetric with respect to the real axis. Because
the equations are non-dissipative, replacing t with −t in the linearized equations shows that
if λ ≡ σ− imc is an eigenvalue with eigenfunction given by (2.11), then λ′ ≡ −σ− im′c′ is an
eigenvalue that corresponds to g′eig(r, z) ≡ [vr,eig,−vφ,eig, vz,eig,−ρeig,−peig], with m′ = −m
and c′ = c. Or in other words, the eigenvalues λ when plotted in the complex plane are
symmetric with respect to the imaginary axis, and for each eigenfunction with a positive
growth rate, there is one with a negative growth rate and vice versa. The flow can never be
linearly stable with all of its eigenmodes having decay rates. The flow can either be unstable
or be neutrally stable with all of its eigenmodes on the imaginary axis with σ = 0. For the
Gaussian vortices, the two symmetries of the linearized equations combine and therefore the
eigenvalues appear as quartets of the form ±a± ib, with all four possible combinations of the
signs, and where a and b are real functions of m and of the parameters of the unperturbed
vortex Ro, Bu, and f/N̄ . For Hamiltonian systems [Ozorio de Almeida 1988], it can be
shown that the quartet of eigenvalues is of a more specialized form:

λ = ±
√
A± iB, (2.12)

with all four possible combinations of the signs, and where A and B are real functions of
the control parameters of the system. For many non-dissipative flows, e.g. unidirectional
shears flows with vortex sheets and/or vortex layers made up of piecewise-constant vorticity
[Drazin & Reid 2004], it can be shown that the quartets of the eigenvalues are of the form
of (2.12). Consider a system with eigenvalue quartets such as those in (2.12). When A > 0,
the eigenvalues in the quartets are symmetric about the real and imaginary axes, and each
quartet has 2 unstable and 2 stable eigenmodes. If a control parameter changes such that A
decreases, then eigenvalues symmetrically approach the imaginary axis and collide when A =
0. For that parameter value, there are two pairs of degenerate, neutrally-stable eigenmodes
with all 4 eigenvalues on the imaginary axis. If the control parameter is further changed
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such that A continues to decrease and becomes negative, then the eigenvalues are no longer
degenerate, but they remain on the imaginary axis and all 4 eigenmodes remain neutrally
stable, regardless of how negative A becomes. (It is also possible that the eigenvalues always
remain on the imaginary axis. For example, if A is equal to −D2, where D is a real number,
for a positive D the vortex has four imaginary eigenvalues all on the imaginary axis. If D
then goes to zero, the eigenvalues approach, collide and become degenerate. If D is further
decreased such that it becomes negative, the eigenvalues are no longer degenerate, but remain
on the imaginary axis [Kirillov 2017]. Here however our numerical calculations show that
the eigenvalues never remain on the imaginary axis; i.e., they develop a real part and move
away from it. For more details, see the next two sections). Although we cannot prove that
the eigenvalue quartets of the linear eigenmodes of the Gaussian vortex have the form of
(2.12), all of our numerical simulations are consistent with (2.12). (See §2.3.)

Note that although we are studying the stability of axisymmetric vortices, we solve (2.1) in
Cartesian coordinates rather than in cylindrical coordinates. A numerical solver in Cartesian
coordinates avoids the difficulties of handling the singularity at the origin (r = 0), which
requires using special polynomial basis functions [Matsushima & Marcus 1995]. However, our
main reason for using Cartesian coordinates is that future studies can include background
shear flows, so that the stability of vortices in planetary atmospheres and protoplanetary
disks can be examined, as discussed in the thesis Introduction. To minimize the effect of
the square computational domain, we have used a circular sponge layer as described in §2.2.
In order to find the eigenmodes with various classes of azimuthal (and vertical) symmetry
in the Cartesian coordinates, we use our initial-value solver as an eigenvector/eigenvalue
solver and additionally use a spatial symmetrizer (see Appendix C for details). Using the
spatial symmetrizer, the eigenmodes can be restricted to be symmetric or anti-symmetric in
the vertical direction, while in the azimuthal direction we can enforce one of the following
classes of symmetry: m odd; m even not divisible-by-4; and m even and divisible-by-4.
We use these specific symmetry groups to apply the azimuthal symmetry directly in the
Cartesian coordinates, which greatly speeds up the convergence of the calculations, and also
avoids introducing additional errors due to transformation between Cartesian and cylindrical
coordinates (see Appendix C).

2.3 Critical layers

Eigenmodes of unidirectional equilibrium flows such as the Gaussian vortices studied here
can have critical layers, i.e., singularities at locations where the azimuthal phase speed c is
equal to the azimuthal velocity vφ(r, z) of the unperturbed vortex [Maslowe 1986; Benilov
2003].1 Here we show examples of eigenmodes with critical layers and discuss, for a few
cases, how different modes take over as the fastest-growing mode as Bu changes, which
will be used later to interpret the results of §2.4. It should be noted that despite the

1In stratified unidirectional flows, critical layers can appear at other locations as well [Marcus et al. 2013;
Marcus et al. 2015].
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peculiar nature of critical layers, it is not difficult to accurately compute them using high-
resolution numerical simulations. For example, Nguyen et al. [2012] and Yim et al. [2016]
have simulated critical layers in 3D QG and Boussinesq vortices, respectively. Recently,
we have numerically computed critical layers, with and without dissipation, in stratified,
rotating, unidirectional flows and found that with sufficient spatial resolution the locations,
widths and other analytically-known properties of the critical layers can be quantitatively
reproduced [Marcus et al. 2013; Marcus et al. 2015]. In the results presented here, the
location of the critical layers and the phase speed of the eigenmode containing the critical
layer are insensitive to the numerical resolution and remain the same when the resolution is
increased by a factor of 4 by halving the domain size in each direction to (15L)×(15L)×(15H)
and increasing the Fourier modes from 2563 to 5123 (the figures showing the structure of the
eigenmodes in this section are from the higher resolution).

The singularity in the eigenmode occurs where the coefficient [vφ(r, z)/r − c − iσ/m]
in front of the highest-order derivative terms in the governing equations of the eigenmode
becomes zero. Unless the growth rate σ is zero and the eigenmode is neutrally stable, the
eigenmode is no longer formally singular. However, the amplitudes of the eigenmodes remain
large at locations where vφ(r, z)/r = c for parameter values where σ > 0 and the mode is
weakly growing. For parameter values where the analytically computed eigenmode has σ = 0,
but the eigenmode is computed numerically with a modified initial-value code (as done here)
with weak hyperdissipation, the computed eigenmode has large amplitude at vφ(r, z)/r = c,
and the magnitude of the numerically computed growth rates σ are typically less than or
equal to 0.002 in inverse units of the vortex turnaround time τ ≡ 4π/ωc, where ωc is the
absolute value of the vertical vorticity at the center of the vortex.

We argued in §2.2 that as a parameter value, such as the Burger number, is changed such
that a growing/decaying pair of eigenmodes has its eigenvalues λ collide on the imaginary
axis, the eigenmodes become neutrally stable and degenerate. As the parameter value further
changes, the eigenvalues remain neutrally stable and their phase speeds become distinct from
each other. Here we demonstrate in detail that this scenario of eigenvalue collision, in which
the families of eigenmodes continue after the collision rather than ceasing to exist due to
the singularity of the critical layer, is correct by illustrating the collision for three distinct
families of eigenmodes with critical layers. In particular, we show that as the Bu changes and
the eigenmode goes from unstable to neutrally stable, the family containing that eigenmode
continues to exist and remains neutrally stable as the Bu is further changed. We need these
three demonstrations to not only show that our numerical computations of eigenmodes are
accurate, but also to highlight the physics of the collisions.

Figure 2.2 shows the growth rate σ and phase speed c of the fastest-growing eigenmode
with S2 symmetry for Ro = 0.05 and 0 ≤ Bu ≤ 2.1. As Bu increases, the growth rate
in figure 2.2(a) changes from positive (unstable) to zero (neutrally stable) at Bu ' 0.823.
Note that we have computed three neutrally-stable eigenmodes in this family. There can be
multiple neutrally-stable S2 eigenmodes for the same Ro, f/N̄ , and Bu so it is necessary
to show that the eigenvalues with Bu . 0.823 and Bu & 0.823 belong to eigenmodes in
the same family. We do this in two ways. Figure 2.2(b) shows the phase speeds c for the
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eigenmodes illustrated in figure 2.2(a). According to (2.12), a necessary condition that the
eigenmodes belong to the same family is that there is no discontinuity in c at the value
of Bu where σ changes from positive to zero.2 Figure 2.2(b) shows that this condition is
met. Figure 2.3 shows the vertical vorticity of the eigenmodes whose eigenvalues are shown
in figure 2.2 with Bu = 0.7 (where the eigenmode is unstable) and Bu = 0.9 (where the
eigenmode is neutrally stable). The eigenmodes clearly have similar radial structures and
are therefore part of the same family. The continuous, nearly-circular curve (dark green,
in colour) is the locus in the r-z plane where vφ(r, z)/r = c and indicates the theoretical
location of the critical layer. The large vorticity that is nearly coincident with the continuous
curve is the critical layer.

Figures 2.4 and 2.5 show the growth rates, phase speeds, and the vertical vorticity of
another family of eigenmodes with critical layers for Ro = 0.05 and 0 ≤ Bu ≤ 2.1. These
eigenmodes have A1 symmetry and are the fastest growing eigenmodes when Bu . 0.2. As
Bu increases, the growth rate changes from positive (unstable) to zero (neutrally stable)
at Bu ' 0.177. The continuity of c and the similarity of the vorticity distributions for the
unstable and neutrally-stable eigenmodes indicate that the unstable and neutrally-stable
eigenmodes belong to the same family and that the family does not end abruptly at the
value of Bu where the eigenmodes pass from unstable to neutrally stable.

Figures 2.6 and 2.7 also show the growth rates and phase speeds and the vertical vorticity
of a different family of eigenmodes with critical layers with A1 symmetry for Ro = 0.05 and
0 ≤ Bu ≤ 2.1. For this family as Bu decreases, the growth rate changes from positive (unsta-
ble) to zero (neutrally stable) at Bu ' 1.02. Again, the continuity of c and the similarity of
the vorticity distributions for the unstable and neutrally stable eigenmodes indicate that the
unstable and neutrally-stable eigenmodes belong to the same family and that the family does
not end abruptly at the value of Bu where the eigenmodes pass from unstable to neutrally
stable. Note that although the set of figures 2.4 and 2.5 and the set of figures 2.6 and 2.7
both illustrate A1 eigenmodes, they are different families of eigenmodes. The distinction
is easily seen because the radial structures of the eigenmodes differ and because the phase
speeds differ. We have illustrated these two different families of A1 eigenmodes to emphasize
the fact that we can easily determine when two families of eigenmodes are distinct and when
they are not. These results demonstrate that the unstable and neutrally-stable eigenmodes
in figure 2.2 (or in figure 2.4 or in figure 2.6) are part of the same family and confirm that
when a pair of eigenvalues of eigenmodes of the vortices studied here collide on the imaginary
axis, the families of eigenmodes do not terminate. This finding will be used later to interpret
the results of §2.4 (specifically, figure 2.9).

Finally, it should be mentioned that for the cases examined here (Ro = 0.05, 0.1 . Bu .
1.6), the peripheral location of critical layers is found to be generic (figures 2.3, 2.5, 2.7, and
2.14(f)), which is consistent with the QG analysis of Nguyen et al. [2012].

2Note that the slope of c can be discontinuous at the Bu where σ changes from positive to zero.
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Figure 2.2: (a) Growth rates σ (in units of τ−1) of eigenmodes with S2 symmetry as functions
of Bu for Ro = 0.05 and f/N̄ = 0.1. The lines connecting the symbols are to “guide the eye”.
The eigenmodes with S2 symmetry are unstable in the range Bu . 0.823 (they are the fastest-
growing for 0.2 . Bu . 0.823). As Bu increases, the eigenmode changes from unstable to neutrally
stable at Bu ' 0.823 (shown with the vertical broken line), but the family of eigenmodes does
not terminate there. (b) The phase speed c (in units of τ−1) corresponding to the growth rates
shown in panel (a). The thick lines connecting the symbols are to “guide the eye”. If (2.12)
holds, the second neutrally stable eigenmode branch’s eigenvalues can be calculated analytically
(our calculations here show that A is quadratic in Bu and that B is linear in Bu). The thin line in
the neutrally stable range shows the phase speed of this second neutrally stable eigenmode branch.
Generically, we would expect A to be linear in Bu (and not quadratic). However our data indicates
that A is quadratic in Bu. This suggests that due to the symmetries of the problem, there are
degeneracies that cause this non-generic behavior. It may be that adding an asymmetry to the
problem will unfold a degeneracy and make the problem generic. The phase speed is continuous
when it passes through the vertical broken line, which is a necessary condition for the unstable and
neutrally-stable eigenmodes to belong to the same family. Note that because our computation uses
a small hyperdissipation, the “neutral” modes in panel (a) have a slight decay rate of ∼ 0.002τ−1;
however, as the value of the hyperdissipation decreases (with a corresponding increase in spatial
resolution to prevent an accumulation of energy and enstrophy at the smallest resolvable length
scales), so does the decay rate, suggesting that a dissipationless calculation would show that family
of eigenmodes with Bu > 0.823 are truly neutral.
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Figure 2.3: (Colour online) Vertical vorticity in the (r − z) plane of two of the eigenmodes
shown in figure 2.2, with medium shade being zero (cyan, in colour), light shade being the
most cyclonic (yellow, in colour), and dark shade the most anticyclonic (blue, in colour).
The center of each panel corresponds to the center of the unperturbed Gaussian vortex.
The azimuthal angle of each panel was chosen so that the critical layer is prominent. The
theoretical location of each critical layer is indicated by the continuous, nearly circular curve
(dark green, in colour), which is where the phase speed c is equal to the azimuthal velocity
of the unperturbed vortex. Both eigenmodes have S2 symmetry. (a) For the unstable
eigenmode at Bu = 0.7. (b) For the neutrally-stable eigenmode at Bu = 0.9. The similarity
of the radial structure of the unstable and neutrally-stable eigenmodes indicates that they
are part of the same family and that the family does not terminate when the growth rate
changes from positive to zero.

2.4 Parameter map of stability

Here, we explore the stability and linear growth rates of Gaussian vortices as functions of
Ro and Bu for f/N̄ = 0.1. Like many other studies, for most cases we have used f/N̄ =
0.1, rather than f/N̄ = 0.01 (which is a better representative of the mid-latitude oceans,
see Chelton et al. [1998]; Lelong & Sundermeyer [2005]), because small values of f/N̄ are
computationally expensive to tackle [see, e.g., Brunner-Suzuki et al. 2012; Tsang & Dritschel
2015]. However in this study, we use the semi-analytic method of Barranco & Marcus [2006],
which allows us to compute flows efficiently for a wide range of f/N̄ , including the more
physically relevant value of 0.01. Some cases are repeated with f/N̄ = 0.01 and discussed in
§2.5. The results presented in this section are all obtained using the computational domain
of (30L)× (30L)× (30H) and resolution of 2563.

For each of the vortices we examined, we computed the eigenvalues and eigenvectors (as
given by (2.10)) of the fastest-growing eigenmode and also for the fastest-growing eigenmodes
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Figure 2.4: As in figure 2.2 but for the family of A1 eigenmodes that are the fastest growing
for Ro = 0.05, f/N̄ = 0.1 and in the range Bu . 0.2. Triangles indicate the numerically
computed values of σ and c. The eigenmode goes from unstable to neutrally stable at
Bu ' 0.177, indicated by the vertical broken line. As in figure 2.2, the A has a non-generic
quadratic behavior, which we use to plot the thin solid line in panel (b) to the right of the
vertical dashed line.

of each of the six symmetry classes that could be computed by the simultaneous application of
the spatial symmetrizer in z (which forced the eigenmode to be symmetric or anti-symmetric
in z) and the azimuthal symmetrizer (which forced the eigenmode to have an odd azimuthal
wave number m, or to have an even m that was not divisible by 4, or to have an even m
that was divisible by 4). For some cases, the fastest-growing eigenmodes were also computed
without a spatial symmetrizer, which were found to be identical (up to 3 significant digits)
to the fastest-growing eigenmode of the six eigenmodes that were computed with one of the
enforced symmetries.

The results are compared and contrasted with the most relevant published results ob-
tained from analyzing the QG, shallow-water, and full Boussinesq equations in §2.4.
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Figure 2.5: (Colour online) As in figure 2.3 but for two of the eigenmodes shown in figure 2.4
with A1 symmetry. (a) For the unstable eigenmode at Bu = 0.15. (b) For the neutrally-
stable eigenmode at Bu = 0.25.

Spatial symmetries and growth rates of the eigenmodes

The parameter map of stability in the Ro − Bu space is shown in figure 2.8(a). Gaussian
anticyclones do not exist with Ro < −0.5 (see §2.2). The region to the lower left of the
thick dashed black curve corresponds to equilibrium Gaussian vortices for which N2

c < 0 (or
Bu < −Ro(1 + Ro) according to (2.7)). These vortices are not unphysical, but near their
cores they have heavy fluid above light fluid (i.e., ∂ρ/∂z > 0 at the vortex center).

As shown in figure 2.8(a), the most unstable eigenmodes (i.e, those with the largest
growth rates) of the vortices generally have either S2 or A1 symmetries. A few points in
the figure correspond to vortices for which the fastest-growing eigenmode is A2, A3 or A4.
We found that no vortex had a fastest-growing eigenmode with a symmetry different from
those just listed. To our surprise, only 4 out of the 130 vortices that we examined were
neutrally stable. All the neutrally-stable vortices were cyclones with 0.02 . Ro . 0.05 and
0.8 . Bu . 1. The neutrally-stable eigenmodes are denoted in figure 2.8(a) as solid circles
in the region circumscribed by a small rectangle. The rectangle is to “guide the eye” and
is used to denote the approximate boundary of the region of neutral stability. Computing
the actual boundary between the regions where vortices are all neutrally stable and where
they are unstable would be expensive and rather pointless given how small the neutrally-
stable region is. Anticyclones have linear growth rates that are slow and would not destroy
a vortex in less than 50 vortex turnaround times if 0.5 . Bu . 1.3. For nearly geostrophic
cyclones with |Ro| < 0.05, linear growth rates are slow and would not destroy a vortex in
less than 50 vortex turnaround times if 0.7 . Bu . 1.2. As Ro increases, the growth rates
of large-diameter cyclones (i.e., with Bu . 1.05 or L & 0.98Lr) becomes faster.
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Figure 2.6: As in figure 2.2 but for the family of A1 eigenmodes that are the fastest growing
for Ro = 0.05, f/N̄ = 0.1, and Bu & 1. Solid circles indicate the numerically computed
values of σ and c. The eigenmode goes from neutrally stable to unstable at Bu ' 1.02
indicated by the vertical broken line (for a description about the panel(b)’s thin solid line,
see figure 2.2 and 2.4’s captions). Also note that the families illustrated here and in figure 2.4
both have A1 symmetry, but they are different families.

Considering the smallness of the region of neutral stability, clearly, linear stability cannot
be used to explain the differences between the numbers of observed cyclones and anticyclones
in the oceans or in planetary atmospheres. On the other hand, ocean vortices can survive
for more than 50 of their own turn-around times, τ . So, one plausible explanation of the
cyclonic/anticyclonic asymmetry in the frequency of observation of mesoscale oceanic eddies
and of planetary vortices might depend on the differences of the growth rates of the linear
instabilities, rather than just the fact that some vortices are not linearly unstable and others
are. For example, if there are physical processes (such as turbulence, interactions with other
vortices or currents or boundaries) that are likely to destroy a vortex after 50 τ , which is
more than ∼ 1/2 year for ocean Meddies [McWilliams 1985; Armi et al. 1989; Hebert et al.
1990; Pingree & Le Cann 1993; D’Asaro et al. 1994; Prater & Sanford 1994; Paillet et al.



23

r/L

z
/
H

 

 

−2 0 2

−2

0

2

(a)

r/L
z
/
H

 

 

−2 0 2

−2

0

2

(b)

−1

−0.5

0

0.5

1

Figure 2.7: (Colour online) As in figure 2.3 but for two of the eigenmodes shown in figure 2.6
with A1 symmetry. (a) For the unstable eigenmode at Bu = 1.2. (b) For the neutrally-stable
eigenmode at Bu = 0.9. Note that the eigenmodes illustrated here and in figure 2.5 both
have A1 symmetry, but they are different eigenmodes.

2002], then a vortex need not be neutrally stable to be observed, it needs only have growth
rates less than ∼ 1/50 τ−1. So, it is plausible that the asymmetry between the numbers of
observed cyclones and anticyclones depends upon the relative amount of area in Ro − Bu
parameter space for which the fastest-growing eigenmodes grow slower than ∼ 1/50 τ−1, or
some other critical growth rate. For Gaussian vortices, the region in Ro − Bu parameter
space where the growth rate of the fastest-growing eigenmode is less than 1/50 τ−1 (i.e., the
“slow growth region” for linear instability) is the region bounded above by the solid (blue,
in colour) and dotted (red, in colour) curves in figure 2.8(a) and to the lower left by the
thick dashed curve. Along the solid curve (blue, in colour), the fastest-growing eigenmode
has S2 symmetry, whereas along the dotted curve (red, in colour) it is A1. The solid and
dotted curves are drawn to “guide the eye”, and the vortices corresponding to the black solid
circles have σ < 1/50 τ−1. In general, for large Bu, the fastest-growing eigenmodes have
A1 symmetry, while for smaller Bu, they have S2 symmetry. However, for cyclones with
Bu . 0.4, some of the fastest-growing eigenmodes also have A1 symmetry, or even A2, A3
or A4 symmetry, and the growth rates are often faster than 1 τ−1. There are two regions
in the Ro−Bu parameter space where the fastest-growing eigenmodes of the cyclones have
A1 symmetry. In the region with higher Bu, the growth rate of the fastest-growing modes is
smaller than that in the lower Bu region, and, as discussed previously and elaborated on in
§2.6, the radial structures of the fastest-growing A1 eigenmodes in the large and small Bu
regions differ as well.

Of course, our choice of 50 τ to define the “slow growth region” for linear instability is
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Figure 2.8: (Colour online) Parameter map of the stability of Gaussian vortices in the Ro − Bu
space. No equilibrium Gaussian vortices exist with Ro < −0.5. The thick black dashed line in the
lower left corner indicates the locus over which N2

c = 0, i.e., Bu = −Ro(1 + Ro), with N2
c < 0 for

vortices with smaller Ro or Bu. Panel (a): The thick solid (blue, in colour) and thick dotted (red,
in colour) lines indicate the iso-surface where σ of the fastest-growing eigenmode is 0.02 τ−1. The
region bounded by this iso-surface, the thick black dashed curve (but see the caveat in the text
describing figure 2.10), and the bottom of the figure has σ < 0.02 τ−1 (the iso-contour is to “guide
the eye” and is approximated by interpolating among the growth rates calculated at the locations of
the discrete symbols). The symbols denote the spatial symmetry of the fastest-growing eigenmode,
with diamonds (blue, in colour) as S2, solid triangles (red, in colour) as A1, squares (green, in
colour) as A2, hollow triangles as A3, and hollow circles as A4. Black solid circles correspond to
vortices for which the most unstable eigenmodes have growth rates slower than 0.02τ−1. Panel (b):
Four iso-contours (approximated as in (a)) of growth rate σ of the fastest-growing eigenmode. Each
contour consists of one solid curve (blue, in colour) and one or two dotted curves (red, in colour).
The fastest-growing eigenmodes along the dotted curves (red, in colour) have A1 symmetry and
along the solid curves (blue, in colour) have S2 symmetry. The small rectangular box near Bu = 1
is to guide the eye and shows the approximate, very small, region where all of the eigenmodes of
the cyclones are neutrally stable. The σ and the symmetries of the most unstable eigenmodes with
σ > 0.02 τ−1 for vortices with N2

c > 0 in panel (a) are given in Appendix E.
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arbitrary, so figure 2.8(b) shows how the “slow growth” region changes when we change our
choice from 50 τ to 20 τ , 10 τ , or 6.67 τ . That is, the two sets of (solid/broken) curves are
iso-surfaces in Ro − Bu parameter space where σ is 0.02, 0.05, 0.1, and 0.15 in units of
τ−1. For the iso-surface for the growth rate of 0.15 τ−1 in figure 2.8(b), the fastest-growing
eigenmode has S2 symmetry for 0.5 . Bu . 1.8, otherwise the fastest-growing eigenmode
has A1 symmetry. Note that the iso-surfaces for the growth rates of 0.10 τ−1 and 0.15 τ−1

are very close to each other for Bu . 0.3. Most of the fastest-growing eigenmodes in the
Ro − Bu parameter space shown in figure 2.8 have σ < 0.2 τ−1. However, cyclones in the
upper left corner of figure 2.8 can have σ of order one τ−1. As shown below, anticyclones to
the lower left of the thick dashed curve in the lower left side of figure 2.8 (with N2

c < 0) can
have much larger σ.

The growth rates of the three fastest-growing eigenmodes for Ro = 0.05 as functions of
Bu are plotted in figure 2.9(a) (combining figures 2.2, 2.4, and 2.6) showing that the fastest
growing eigenmode is A1 for Bu . 0.2; is S2 for 0.2 . Bu . 0.8; and is A1 for 1 . Bu . 2.1.
However, for 0.8 . Bu . 1, the eigenmodes are all neutrally stable. This region of neutral
stability is consistent with the neutrally stable region shown in figure 2.8. The change in the
spatial symmetry from A1 to S2 back to A1 of the fastest growing eigenmode as Bu increases
was discussed in §2.3 and it was shown that i) the family of eigenmodes continues to exist
even after the eigenmodes become neutrally stable, and ii) the A1 modes at small and large
Bu belong to two different families of eigenmodes. Similar changes in the symmetries of the
most unstable mode are observed at Ro = 0.2 (figure 2.9(b)); however, at Ro = 0.2 there is
not a region where the vortex is neutrally stable to all eigenmodes. Similar to Ro = 0.05, the
two families of A1 eigenmodes shown in figure 2.9(b) with triangles and with filled circles
are distinct families with different radial structures. How these results, particularly at the
small Ro of 0.05, compare with those obtained, analyzing QG equations is discussed in the
next subsection.

The growth rates for region with statically unstable vortex cores, i.e., with N2
c < 0, are

shown in figure 2.10. Eigenmodes for this region have A4 symmetry and the growth rates
can be as large as ∼ 100 τ−1. The σ as a function of Bu (for fixed Ro), and as a function of
Ro (for fixed Bu) for vortices with N2

c < 0 are shown in figures 2.11(a) and (b), respectively.
In each of the eight panels, the value of the horizontal coordinate axis on the right side of
the panel corresponds to a vortex with N2

c = 0 (i.e., a point on the thick dashed curve in
figure 2.8 or in the broken curve in figure 2.10). The figure shows that σ increases rapidly
as a function of distance from the N2

c = 0 boundary. Due to this rapid growth in σ, for all
practical purposes we can consider the thick dashed line at N2

c = 0 to be the left boundary
of the region in figure 2.8(b) in Ro−Bu for which σ < 0.02 τ−1, and also the boundary for
the region 0.02 τ−1 ≤ σ < 0.05 τ−1, and for the region 0.05 τ−1 ≤ σ < 0.10 τ−1.

Comparison with previous studies

As discussed in §2.1, this study extends the analyses of previous studies by using the full
3D non-hydrostatic Boussinesq equations and by employing the 3D Gaussian vortex model,
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Figure 2.9: Growth rates σ (in units of τ−1) of the three fastest-growing modes as functions
of Bu for fixed Ro. f/N̄ = 0.1. Triangles, filled circles, and diamonds, respectively indicate
the fastest growing eigenmodes at low Bu (which have A1 symmetry), the fastest growing
eigenmodes at high Bu (which also have A1 symmetry), and the fastest growing eigenmodes
for intermediate Bu (which have S2 symmetry). The three lines connecting the three sets
of symbols are to “guide the eye” to show the three families of eigenmodes. (a) Ro = 0.05;
In this case as Bu increases, the fastest-growing mode changes from A1 to S2; then all
modes are linearly neutrally stable; then the fastest-growing mode is A1. (b) Ro = 0.2; the
fastest-growing mode changes from A1 to S2 and again to A1 as Bu increases.



27

0 0.1 0.2
−0.5

−0.4

−0.3

−0.2

−0.1

0

Bu

R
o

80
67 37

57 21
43

32 13
21

22 6.3

10

Figure 2.10: (Colour online) Blow up of the lower left corner of figure 2.8(a), showing details
of the eigenvalues in the region where the Gaussian vortices have N2

c < 0. The axes of the
figure, line styles, and symbols have the same meaning as they do in figure 2.8(a). In the
lower left region, below the broken line, numbers rather than symbols are used to indicate
where in parameter space we have carried out linear stability calculations. The numbers are
the values σ (in units of τ−1) of the fastest-growing eigenmode (which in all cases has an A4
symmetry).

which has continuous velocity and density (and PV) fields and is initially in exact equilibrium.
The latter is necessary for a rigorous linear stability analysis. A comparison of our results
with those of many previous studies is not straightforward because various different vortex
models and flow models have been used. Below we compare our parameter map of stability
with the results of the most relevant study in the QG limit [Nguyen et al. 2012] and with
the results of several relevant studies using multi-layer models. We also discuss the results
of Yim et al. [2016], who used the full Boussinesq equations but studied a different family of
vortices.

In the limit of vanishing Ro, the most relevant study to ours is that of Nguyen et al.
[2012], who numerically calculated the unstable modes of a Gaussian vortex using the QG
equations. They found that the fastest-growing mode changes from S2 to A1 around Bu = 1,
which along with the general dependence of the growth rate of the fastest-growing mode on
Bu in their figure 1(a) agrees overall with the results of current study (see figure 2.9(a)
which is for Ro = 0.05). However, they also found that for Bu as small as 0.05, modes with
higher m dominate. In our results, for anticyclones, as Bu decreases, the most unstable
mode changes from S2 to A4 once the vortex becomes statically unstable (this instability
is not considered in the QG framework used by Nguyen et al. [2012]). For cyclones, as Bu
decreases, the most unstable mode changes from S2 to A1 for small Ro and to A2 or A3 for
moderate Ro (see figure 2.8).
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Figure 2.11: Growth rates (in units of τ−1) for the most unstable eigenmode of vortices
with N2

c < 0 for fixed Ro and Bu. f/N̄ = 0.1. For all vortices examined in this region,
the fastest-growing eigenmode has A4 symmetry; Panel (a): σ as a function of Bu for
Ro = −0.4, −0.3, −0.2 and −0.1; Panel (b): σ as a function of Ro for Bu = 0.225, 0.19, 0.14
and 0.075. In each panel, the value of the horizontal coordinate axis on the right side of the
panel corresponds to a vortex with N2

c = 0. The dotted lines are to “guide the eye”.
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There are a number of studies which have used the shallow-water equations with the
Gaussian vortex model and are relevant to current work. Consistent with the results of our
analysis, these studies find that anticyclones become more stable as the absolute value of the
Rossby number increases, whereas for cyclones the growth rates decrease with decreasing the
Rossby number [Stegner & Dritschel 2000; Baey & Carton 2002; Benilov & Flanagan 2008].
(In this section note that our results are only for vortices with stably-stratified interiors.)

How the growth rates in these studies vary with the Burger number, however, shows a
strong dependence on the vertical structure of the vortex and the background flow. Stegner
& Dritschel [2000] studied the stability of isolated Gaussian vortices using a 1 − 1/2 layer
model and found that for vortices with small Rossby numbers, the growth rate decreases with
decreasing the Burger number. This is consistent with our results only for Bu & 1. Benilov &
Flanagan [2008] used a two-layer model to examine the stability of the “compensated” (i.e.,
v = 0 in the bottom layer) Gaussian vortices, and also Gaussian vortices with uniform PV in
the lower layer. They found that compensated vortices are neutrally stable for intermediate
Burger numbers, while vortices with uniform PV in the lower layer are neutrally stable for
Burger numbers smaller than a critical value of order 1. Baey & Carton [2002] studied two-
layer Gaussian vortices and found, in contrast to the previous results and those of ours, that
the growth rate decreases with Burger number for both cyclones and anticyclones and the
eigenmodes are stable for Burger numbers larger than a critical value. It is apparent that
identifying a unique stability behavior with Burger number in these studies is difficult and
the behavior is highly dependent on the vertical structure of the flow/vortex. An example of
such dependence is given by Sutyrin [2015], who examined two and three layer compensated
shallow water vortices and showed that the addition of a third middle layer with uniform
PV weakens the coupling between the upper and lower layers and enhances the stability
of vortices. Considering these results, comparing the Burger number dependence of the
stability behavior of 3D vortices in continuously-stratified Boussinesq flows and vortices in
shallow water and layer models is not particularly useful.

Only few studies have used the full Boussinesq equations, and even those have focused
on very different vortex models such as barotropic Taylor columns [Smyth & McWilliams
1998], evolving (out-of-equilibrium) 3D vortices interacting with large-scale internal waves
[Brunner-Suzuki et al. 2012], out-of-equilibrium, ellipsoidal 3D vortices with discontinuous
PV profiles [Tsang & Dritschel 2015], and 3D equilibrium vortices with Gaussian angular
velocity [Yim et al. 2016]. Here we focus on the latter, because the main difference between
our analysis and that of Yim et al. [2016] is in the vortex model: Gaussian pressure anomaly
in the current study versus their Gaussian angular velocity (also note that the flow in their
study is not inviscid). Such comparison provides some understanding of how the stability
properties depend on the vortex profile.

Yim et al. [2016] conducted a linear stability analysis of 3D equilibrium vortices with
Gaussian angular velocity in unbounded, rotating, stratified flows for a wide range of Rossby
number, |Ro| ≤ 20. Here we only focus on their results for |Ro| ≤ 0.5 and inviscid and
non-diffusive flows, which are relevant to the present study. Consistent with our results,
for Bu & 1, they found A1 as the most unstable mode for both cyclones and anticyclones
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(their figures 39(d) and (f)), which they attributed to the instability mechanism of Gent &
McWilliams [1986] (this is also consistent with the results of Smyth & McWilliams [1998]
for Taylor columns). For Bu . 1, Yim et al. [2016] found anticyclones neutrally stable
for 0.5 . Bu . 1 (while we found them weakly unstable), and they found S2 as the most
unstable mode for anticyclones between the statically-unstable region and Bu ∼ 0.4 − 0.5
(depending on Ro), which is consistent with our results. For cyclones with Bu . 1, Yim
et al. [2016] found a neutrally-stable region between 0.5 . Bu . 1 (variable with Ro), which
is much larger than (and encompasses) the neutrally-stable region we found; they also found
that as Bu decreases from one, modes with m = 2 become the most unstable ones before
modes with m = 1 also becoming unstable at lower Bu, which is overall consistent with our
results. At Bu as low as 0.3, the family of vortices studied by Yim et al. [2016] can have
statically-unstable cyclones, while cyclones in the family of vortices we studied are always
statically stable. The comparison of the results of the current study and those of Yim et al.
[2016], as summarized above, suggests that for these two vortex families, while the linear
stability properties are not sensitive to the vortex profile for Bu & 1, the stability properties
strongly depend on the vortex profile for Bu . 1. Whether this behavior is generic or not
requires further studies with other vortex families.

2.5 Effect of f/N̄ on linear stability

Despite the fact that f/N̄ is of order 0.01 in the mid-latitude oceans [Chelton et al. 1998;
Sundermeyer & Lelong 2005], f/N̄ ∼ 0.1 is commonly used in studies of the oceanic vortices
to reduce the computational cost; small values of f/N̄ in explicit codes makes the equations
of motion numerically “stiff”, which means they must be computed with small time steps. In
this study calculations are done with f/N̄ = 0.1 for the purpose of sweeping a large region
of the Ro − Bu parameter space and comparing our results with those of others who have
used this value.

Several other studies [Smyth & McWilliams 1998; Sundermeyer & Lelong 2005; Brunner-
Suzuki et al. 2012; Dritschel & Mckiver 2015; Tsang & Dritschel 2015] have shown numeri-
cally that the stability properties and some aspects of the dynamics of vortices in rotating,
stratified flows are not very sensitive to the specific value of f/N̄ as long as this value is
small. Here, we show numerically that the eigenvectors and eigenvalues of Gaussian vortices
(with N2

c > 0), when properly scaled, are nearly independent of f/N̄ for small f/N̄ . Fur-
thermore, by properly non-dimensionalizing the linearized equations of motion, we explain
the insensitivity of the eigenvalues and eigenvector structures of the fastest-growing modes
to the value of f/N̄ .

Exploiting our semi-analytic method that enables us to accurately and efficiently deal
with large f∆t and N̄∆t, we have repeated over 40 of the simulations with f/N̄ = 0.01.
Table 2.1 shows the linear growth rate and the spatial symmetry of the fastest-growing
eigenmode of several Gaussian vortices for f/N̄ = 0.1 and f/N̄ = 0.01. The symmetries
are the same in all cases, as are the growth rates (in units of τ−1) within 4%. Figure 2.12
shows examples of the most unstable eigenvectors (with dimension in z scaled by H, and
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f/N̄ = 0.1 f/N̄ = 0.01

Ro Bu Symmetry σ Symmetry σ

+0.45 0.3 A3 1.5 A3 1.5
+0.4 1.2 S2 0.14 S2 0.14
+0.4 1.6 A1 0.13 A1 0.13
+0.2 0.15 A2 1.1 A2 1.1
+0.2 1.0 S2 0.058 S2 0.058
+0.2 2.0 A1 0.097 A1 0.098
+0.05 1.4 A1 0.040 A1 0.039
+0.02 0.5 S2 0.029 S2 0.029
−0.02 1.4 A1 0.028 A1 0.028
−0.18 0.15 S2 0.024 S2 0.023
−0.2 0.45 - < 0.02 - < 0.02
−0.2 2.0 A1 0.042 A1 0.043
−0.3 1.6 - < 0.02 - < 0.02
−0.4 1.72 - < 0.02 - < 0.02
−0.4 1.8 A1 0.021 A1 0.021

Table 2.1: Comparison of the linear growth rates (in units of τ−1) and symmetries of the
most unstable eigenmode of selected Gaussian vortices in the Ro−Bu space for f/N̄ = 0.1
and f/N̄ = 0.01.

dimensions of r, x, and y scaled by L). The eigenmodes are nearly indistinguishable for
f/N̄ = 0.1 and f/N̄ = 0.01.

The insensitivity to f/N̄ is easily explained by non-dimensionalizing the equations of
motion (2.1) with 4π/ωc ≡ τ as the unit of time, L as the unit of horizontal length, H
as the unit of vertical length, L/τ as the unit of horizontal velocity, H/τ as the unit of
vertical velocity, ρofL

2/τ as the unit of pressure, ρo as the unit of density, and fL2/(Hτ)
as the unit of buoyancy. In the following equations, asterisk superscripts indicate the non-
dimensionalized quantity or operator(
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Only (2.15) depends on f/N̄ . For f/N̄ ≤ 0.1 and for Burger numbers of order unity or
less, the left side of (2.15) is of order 10−3, whereas the two terms on the right side are
both of order unity if we have chosen “proper” units of length, time, and mass in our non-
dimensionalization such that the dimensionless quantities denoted with asterisk superscripts
and their derivatives with respect to the dimensionless length and time inside the square
brackets are of order unity or less. Thus those two terms nearly cancel each other, or

∂p∗

∂z∗
= b∗ +O(10−3). (2.18)

So, hydrostatic equilibrium is enforced to one part in a thousand. Thus, replacing the dy-
namic equation (2.15) with the kinematic equation (2.18) is a very good approximation, and
with the replacement, the equations of motion are formally independent of f/N̄ . However,
the argument above is not particularly useful because there is no a priori way of knowing
that we chose “proper” units, and, in fact, for many types of waves, with this choice of units,
the dimensionless expressions inside the square brackets are much greater than unity, and
the waves are not in hydrostatic balance and the value of f/N̄ is important.

However, with the choice of units above, the dimensionless form of our initial Gaussian
equilibrium vortices is

p̂∗ = (−π)(1 +Ro)χ∗(r∗, z∗), (2.19)

v̂∗φ =
( π

Ro

)
(r∗)

(
−1 +

√
1 + 4Ro(1 +Ro)χ∗(r∗, z∗)

)
, v̂∗r = v̂∗z = 0, (2.20)

b̂∗ = (2π)(1 +Ro)z∗χ∗(r∗, z∗), (2.21)

where χ∗ ≡ exp [−(r∗)2 − (z∗)2]. Note that the vortices depend on Ro, but not on f/N̄ or
Bu. Also note that as Ro→ 0, the equilibrium velocity v̂∗φ → 2πr∗χ∗(r∗, z∗) and remains of
order unity or less. The equilibrium p∗ and b∗ are also of order unity or less for |Ro| of order
unity or less.

The non-dimensional equations linearized around the non-dimensional Gaussian vortex
are (after dropping the asterisk superscripts and writing v = v̂+ ṽ, p = p̂+ p̃, and b = b̂+ b̃,
where tilde denotes the linear eigenmode)(
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ṽr +

(∂v̂φ
∂z

)
ṽz +

( v̂φ
r

)
ṽr
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For the fastest-growing eigenmodes of vortices with N2
c > 0, we have numerically computed

the dimensionless values of the quantities inside the square brackets and found them to be of
order unity or less for all of the eigenmodes represented in figure 2.8. This calculation shows
that for vortices whose interior is statically stable, the fastest-growing eigenmodes are in
vertical hydrostatic balance and therefore explains why the non-dimensionalized eigenvalues
and eigenmodes are insensitive to the value of f/N̄ for f/N̄ . 0.1. It should be emphasized
that we could not assume a priori that the fastest-growing eigenmodes of our vortices are
in hydrostatic balance. Here we have numerically tested and verified the validity of this
assumption. It is worth mentioning that non-hydrostatic effects can be important in the
dynamics and evolutions of some geophysical and astrophysical vortices; for example, our
previous calculations of vortices [Marcus & Hassanzadeh 2014], especially the longevity of
the Great Red Spot (GRS) of Jupiter (and we remind the reader that longevity of vortices
was the motivation of the study), showed that small departures from vertical hydrostatic
equilibrium caused large changes to the lifetime of the GRS (albeit, due to nonlinear effects).

Finally, it is not surprising that for vortices with statically-unstable interiors (N2
c < 0),

the terms in the square brackets are large and therefore the most unstable eigenmodes are
not in hydrostatic balance. We have not carried out further eigenmode calculations with
f/N̄ = 0.01 in this region because they are computationally very expensive.

2.6 Radial and vertical structure of the unstable

eigenmodes

In this section we investigate the radial distribution of vorticity in the fastest-growing eigen-
modes. The spatial distribution of these eigenmodes can be characterized quantitatively by
determining the fractional amounts of its vertical enstrophy that are within the Gaussian
vortex’s core Score and within its shield Sshield, where we use the definitions of core and shield
given in Appendix A:

Score ≡
∫
core
|ωeig|2 d3x∫
|ωeig|2 d3x

, (2.27)

Sshield ≡
∫
shield

|ωeig|2 d3x∫
|ωeig|2 d3x

, (2.28)

where ωeig is the vertical vorticity of the eigenmode, the integrals in the numerators of
(2.27) and (2.28) are over the core and shield respectively of the unperturbed vortex, and
where the integrals in the denominators are taken over the entire computational domain.
Not surprisingly, Score + Sshield > 0.95, meaning that eigenmodes do not effectively extend
radially beyond the shield of the unperturbed vortex. Figures 2.13 and 2.14 show that the
radial structure of the fastest-growing mode depends in a simple way on its vertical and
azimuthal symmetry. Figure 2.13(a) is a simplified version of figure 2.8(a) and divides the
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Figure 2.12: (Colour online) Vertical vorticity of eigenmodes normalized such that the maximum
value of |ω| is 1. The eigenmodes are virtually indistinguishable for f/N̄ = 0.1 and f/N̄ = 0.01.
The four rows from top to bottom correspond to the first four rows in table 2.1. The broken lines
denote the boundaries of the core and shield of the unperturbed Gaussian vortex. In each row, the
left two panels are for f/N̄ = 0.1 and the right two are for f/N̄ = 0.01. The first and third panels
in each row show the eigenmodes in the x-y plane for a fixed z. For the z-symmetric eigenmode in
the second row, this fixed value is z = 0. For the anti-symmetric eigenmodes in rows 1, 3, and 4,
the fixed value of z is the positive value of z at which |ω| of the eigenmode obtains its maximum
value. The second and fourth panels in each row show the eigenmodes in the r-z plane for fixed
azimuthal angle φ. In all cases, φ is chosen so that it is the angle at which ω of the eigenmode
obtains its maximum value.
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Ro − Bu space into 5 regions. The two unlabeled regions correspond to the region with
N2
c < 0, and to the region of slow growth with σ ≤ 0.02 τ−1.

The three regions labeled A1, S2, and A, correspond accordingly to the vertical-azimuthal
symmetry of the fastest-growing eigenmodes with the region labeled A having fastest-growing
eigenmodes that are anti-symmetric in z with an azimuthal wave number m of 1, 2, 3 or
4. The fastest-growing eigenmodes in the A1 region are always (that is, for the vortices
illustrated in figure 2.8(a)) concentrated radially in the core with 0.71 ≤ Score ≤ 0.75. The
A1 eigenmode indicated by the label (f) in figure 2.13 is shown in the two panels labeled
(f) in figure 2.14, which clearly show the radial concentration of the eigenmode in the core.
The fastest-growing eigenmodes in the A region of figure 2.13(a) are even more strongly
concentrated in the core and have Score > 0.87. The A1 eigenmode of the cyclone indicated
by the label (e) in figure 2.13 is shown in the two panels labeled (e) in figure 2.14, which show
the concentration in the core. In contrast, the fastest-growing eigenmodes in the S2 region
are either radially concentrated in the shield or are spread throughout the core and shield.
Figure 2.13(b) is a blow-up of figure 2.13(a) and shows iso-contours of Sshield, which varies in
the region of Ro−Bu space that we examined from 0.95 at low Bu to 0.55 at high Bu. Thus,
for low values of Bu, the fastest-growing S2 eigenmodes are very concentrated in the shields,
and as Bu increases, the radial structure spreads into the core such that for the largest values
of Bu that we examined, the eigenmode is approximately equally spread between the shield
and core. The radial dependence on Bu of the S2 eigenmodes is illustrated in panels (a)-(d)
in figure 2.14. The implications of the spatial structure of the most unstable eigenmodes will
be discussed in the subsequent chapter that is focused on the nonlinear evolution of these
vortices and is outlined in the Discussion.

2.7 Discussion and summary

We have studied the linear stability of 3D axisymmetric Gaussian vortices as a function of
their Rossby number, Ro, and Burger number, Bu, over the wide range of values where
long-lived geophysical and astrophysical vortices are often observed (−0.5 < Ro < 0.5 and
0.02 < Bu < 2.3). For each (Ro,Bu), the growth rate, σ, and the eigenvector of the most
unstable eigenmode have been calculated by numerically solving the 3D non-hydrostatic
Boussinesq equations.

The results of the stability analysis are summarized in the Ro − Bu parameter map
(figure 2.8). These results show that neutrally-stable (i.e., σ = 0) cyclones only exist over a
small region of the parameter space where Ro ∼ 0.02 − 0.05 and Bu ∼ 0.85 − 0.95; we do
not find any neutrally-stable anticyclone. On the other hand, the most unstable eigenmodes
of anticyclones generally have slower growth rates compared to those of the cyclones. Over
a large region of the Ro − Bu parameter space (mainly Ro < 0 and 0.5 . Bu . 1.3),
the maximum growth rates of the anticyclones are smaller than 50 turn-around time (τ) of
the vortex. For Bu & 1.3, the maximum growth rate of anticyclones increases (decreases)
with increasing Bu (|Ro|). In this region, the eigenvector of the most unstable modes is
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Figure 2.13: Panel (a): Simplification of the parameter map in figure 2.8(a). The fastest-
growing eigenmodes in the region labeled A are anti-symmetric in z and have azimuthal
wave numbers of 1, 2, 3, or 4; otherwise, the fastest-growing eigenmodes have the symmetry
of the large labels. The small labels (a)-(f) indicate the locations in parameter space of the
vortices whose fastest-growing eigenmodes are plotted in figure 2.14. Panel (b): Blow up of
the S2 region in panel (a). The thin solid curves are the iso-contours of the enstrophy Sshield
of the vertical vorticity of the eigenmode in the vortex shield. The value of Sshield in the
S2 region decreases from 0.95 to 0.55 with increasing Bu. The approximate average value
of Score in the A and A1 regions are 0.95 and 0.73, respectively. In the lower left corner of
panel (a) where N2

c < 0, Score ' 0.99.
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Figure 2.14: (Colour online) Vertical vorticity ω of the eigenmodes of the Gaussian vortices
for which the locations in Ro − Bu space are indicated with letters in figure 2.13(a). The
vorticity (normalized as in figure 2.12) and boundaries of the shields and cores are plotted as
in figure 2.12. The first and third columns of panels show eigenmodes in the x-y plane, and
the second and fourth columns show them in the r-z plane. Consistent with figure 2.13, the
A and A1 eigenmodes [i.e., (e) and (f)] are mainly confined to the cores of the unperturbed
vortices. The S2 eigenmodes with low Bu [i.e., (a) and (b)] are mainly confined to the shield.
The S2 eigenmodes with higher Bu [i.e., (c) and (d)] are spread over the core and the shield.

anti-symmetric with respect to the z = 0 plane and has m = 1 azimuthal wave number
(denoted as A1 mode), and the vertical vorticity (ω) of the most unstable modes is mainly
confined to the core of the initial (i.e., unperturbed) anticyclone (similar to figure 2.14(f), but
for an anticyclone). Preliminarily investigation of the nonlinear evolution of these vortices
shows that, in addition to the growth rate, the structure of the most unstable mode is
also important in determining how the nonlinearly-equilibrated vortex compares with the
initial vortex (nonlinear evolution will be addressed in the second chapter). For Bu . 0.5,
the maximum growth rate of anticyclones increases with decreasing Bu or |Ro|. In this
region, the eigenvector of the most unstable modes is symmetric with respect to the z = 0
plane and has m = 2 azimuthal wave number (S2 mode). The vertical vorticity of these
modes is mainly confined to the shield or spread over the core and the shield of the initial
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anticyclone depending on the Burger number (see figures 2.14(a)-(c)). For anticyclones if
Bu < −Ro(1 +Ro), the interior of the vortex is statically unstable. The growth rates of the
most unstable mode for these anticyclones are much larger (by factors up to several thousand
or more) compared to those of the anticyclones outside this region (see figures 2.10 and 2.11).

For cyclones, the region of small growth rate (σ < 0.02 τ−1) is much smaller and confined
to Ro < 0.1 and 0.5 . Bu . 1.3. For Bu & 1, the maximum growth rate of cyclones increases
with increasing Bu or Ro. As was the case for anticyclones with large Bu, in this region the
eigenvector of the most unstable modes is (generally) an A1 mode, and the vertical vorticity
of these modes is mainly confined to the core of the initial cyclone (see figure 2.14(f)). For
Bu . 1, the maximum growth rate of cyclones increases with decreasing Bu or increasing
Ro. In this region, for moderate values of Bu, the eigenvector of the most unstable modes
is a S2 mode, and its vertical vorticity is spread over the core and the shield of the initial
cyclone (see figure 2.14(d)). For smaller values of Bu, the eigenvector is anti-symmetric with
respect to the z = 0 plane and has m = 1, 2, 3 or 4, and its ω is confined to the core of
the initial cyclone. Further analysis shows that although the fastest-growing eigenmodes of
cyclones are A1 for both small and large values of Bu, the families of these eigenmodes are
in fact distinct and have different spatial structures (see figures 2.4–2.7 and 2.14).

The findings described above are compared and contrasted with the relevant published
work in §2.4. In particular, in the QG limit, Nguyen et al. [2012] found that the fastest-
growing mode changes from S2 to A1 around Bu = 1, which along with the general de-
pendence of the growth rate of the most unstable mode on Bu agrees with our results for
small Ro. However, there are differences at the limit of small Bu (. 0.05): the QG analysis
showed the dominance of modes with higher m, while our analysis using the non-hydrostatic
Boussinesq equations shows anticyclones to be statically-unstable with A4 modes dominat-
ing, and cyclones to be unstable with A1 modes dominating at low Ro and A2 or A3 modes
dominating at moderate Ro. We have also investigated critical layers in the eigenmodes of
unstable and neutrally-stable vortices (see §2.3), and have found them at the periphery of
the vortex core for a wide range of Bu, in agreement with the QG analysis of Nguyen et al.
[2012].

We have also examined how the vortex profile affects the stability properties by comparing
our results for the family of vortices with Gaussian pressure anomaly with those of Yim et al.
[2016] who studied the linear stability of a family of vortices with Gaussian angular velocity
using non-hydrostatic Boussinesq equations. While for Bu & 1 both families of vortices
have most unstable modes with A1 symmetries, for Bu . 1, there are notable similarities
and differences: Yim et al. [2016] found that both cyclones and anticyclones can become
statically-unstable at low Bu (while we found that only for anticyclones); they found that
anticyclones are neutrally stable for moderate Burger numbers 0.5 . Bu . 1 (while we found
them weakly unstable) and are unstable with S2 modes dominating for smaller Bu (which is
consistent with our results); Yim et al. [2016] found similar stability properties for cyclones
as reported here although they found a much larger neutrally-stable region compared to
what we found.

Most of the calculations reported in this study have been done for f/N̄ = 0.1. This
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value, which is approximately 10 times larger than the value in ocean at mid-latitudes, was
commonly used in studies of vortices in rotating stratified flows because at smaller values
the equations of motion are computationally stiff and therefore computationally expensive
to compute because small time steps are necessary. Focusing on vortices whose interiors are
statically stable (i.e., N2

c ≥ 0), we have repeated some of the calculations with f/N̄ = 0.01
and found the results to remain quantitatively the same (see Table 2.1 and figure 2.12).
We have further shown that the insensitivity of the growth rate and eigenvector of the
most unstable modes to f/N̄ can be explained from the non-dimensionalized equations of
motion. This is because the most unstable eigenmodes are found to be approximately in
the hydrostatic balance, which could not be assumed a priori. As a result, the dynamics of
these modes are nearly independent of f/N̄ (as long as this ratio is small, e.g., . 0.1) given
that this ratio only appears on the left-hand side of the vertical momentum equation (see
§2.5 for details). Note that such insensitivity to f/N̄ is not expected in the region where
the vortex interior is statically unstable (i.e., N2

c < 0).
The results of this study improve the understanding of the generic stability properties

of 3D vortices in rotating stratified flows, and as discussed in §2.1, extend the analyses of
the previous studies in several ways, including: using the full 3D non-hydrostatic Boussinesq
equations, which extends the stability analysis well beyond the usually-used QG and shallow-
water approximations; focusing on a widely-used model of geophysical and astrophysical
vortices, i.e., 3D Gaussian vortices with continuous vorticity and density profiles, which, for
many applications, is more appropriate than 2D models, Taylor columns, and/or PV patches
that are often used to simplify the numerical or analytical stability analysis; and performing
the linear stability analysis on vortices that are exact equilibrium solutions of the full 3D
non-hydrostatic Boussinesq equations.

The results also have implications for the two problems that have motivated many studies
of vortex stability in the past: the observed stability of long-lived, axisymmetric vortices in
the oceans and the observed predominance of anticyclones over cyclones in the oceans (at the
mesoscales) and planetary atmospheres (see §2.1 for more details). As described above, while
neutrally-stable vortices are found only in a very small region of the Ro−Bu parameter space,
the maximum (linear) growth rates in a large region of the parameter space, particularly for
anticyclones, are small compared to the vortex turn-around time, which means that these
vortices can remain nearly axisymmetric for months and even years despite being linearly
unstable. This might explain the observations of long-lived axisymmetric vortices in the
oceans, given that the slowly-growing non-axisymmetric flow can be difficult to detect in
the satellite or ship-based observations and in time-averaged measurements (but also see
the next two paragraphs for several caveats). Furthermore, we found the region of slow
growth rates for anticyclones to be much larger than that of the cyclones; whether this
offers an explanation for the observed cyclone-anticyclone asymmetry in the oceans (at the
mesoscales) and atmospheres requires further studies (see below).

Of course for both problems, the nonlinear stability and nonlinear evolution of these
vortices are very important as well, and will be the subject of the next chapter. In particular,
we will discuss that small linear growth rate is neither a necessary nor a sufficient condition
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for a vortex to survive long to be observed. It is not necessary because our nonlinear
simulations show that vortices with eigenmodes with very fast growth rates can have very
large Landau coefficients [Drazin & Reid 2004]. Thus, even though the original Gaussian
vortex becomes quickly unstable, the instability quickly saturates, and a new equilibrium
that looks very similar to the initial unstable Gaussian vortex is established. A slow growth
rate of the fastest-growing eigenmode is not sufficient because the equilibrium vortex may
be hard to create from realistic initial conditions, or nonlinear instabilities may destroy it.

The limitations and several important caveats of our analysis, discussed in §2.1, should
be again emphasized. The exclusion of background shear, compressible effects, and vertical
variation of N̄ limit the direct application of the results to vortices in the atmospheres and
protoplanetary disk, while using an unbounded domain (hence the absence of free surface,
bottom topography, lateral boundaries) and vertical variation of N̄ limit the direct applica-
bility of the current analysis to most oceanic eddies. The results are most relevant to the
stability of interior oceanic vortices such as Meddies. Still, while our results for stability
properties and slow growth rates might explain the observations of long-lived nearly axi-
symmetric Meddies, our results for cyclone-anticyclone asymmetry are not relevant to the
dominance of anticyclones among Meddies, which has been suggested to be a result of how
Meddies form [McWilliams 1985].

Nonetheless, the results of this study provide a steppingstone to study the more compli-
cated problems of the stability of geophysical and astrophysical vortices, and the framework
developed here can be readily extended to include further complexities such as the merid-
ional dependence of f (i.e., the β-effect), compressible effects (e.g., by using the anelastic
approximation), and the z-dependence of N̄ , for example, to account for the thermocline.
The framework can be also extended to study the linear and nonlinear stability of vortices
in rotating stratified shearing flows such as Jovian vortices, vortices in protoplanetary disks,
and oceanic eddies in the Gulf Stream and Antarctic Circumpolar Current. For example,
planetary anticyclones on Jupiter appear to have |Ro| < 0.3 and Bu ∼ 1, which gives them
a very slow linear growth rate of instability (according to figure 2.8). Understanding how
the Jupiter’s strong shear influences the growth rate and the most unstable eigenmode is of
great interest and can be studied in the modified framework.
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Chapter 3

Nonlinear analysis

3.1 Introduction

An inspiring aspect of some of the vortices is their unexplained robustness over time, for con-
ditions that suggest that they should be quickly destroyed. Finite-amplitude perturbations,
e.g., interaction with high-amplitude waves, with other vortices, with jets and currents, and
topography, or sea surface, or turbulence, are some of the phenomena, that can cause evo-
lution to new equilibria, or even disintegration in time for these vortices [Armi et al. 1989;
Olson 1991; Koszalka et al. 2009; Brunner-Suzuki et al. 2012]. Nonetheless, it has been
found, via direct observations, that some vortices remain robust for years in the ocean [Lai
& Richardson 1977; Armi et al. 1989; Budéus et al. 2004; Chelton et al. 2011]. Different
mechanisms (e.g., seasonal recharging by surface forcing, or addition of a supporting circu-
lation with uniform potential vorticity) have been proposed, for the long term sustenance of
these vortices [Budéus et al. 2004; Benilov 2005a]. However, our goal here, is to explain the
vortex robustness, by not using an external forcing mechanism, but rather one that does so
without it, or at least with minimum forcing (i.e., vortices’ dynamics, are due to adjustment
to the rotation and stratification of the flow they are in). Such an assumption is safely
applicable for the vortices that evolve naturally in time.

In the first part of this work, linear stability for 3D axisymmetric vortices in rotating
vertically-stratified Boussinesq flows was examined in chapter 2 (for same vortices studied
here). The focus of the study was on a widely-used model of geophysical and astrophysical
vortices, assuming an axisymmetric Gaussian structure for pressure anomalies in the hori-
zontal and vertical directions. For a range of Rossby number, Ro, and Burger number, Bu
(same as in this study), the eigenvalue and the spatial structure of the most unstable eigen-
modes (i.e., the fastest-growing ones) were calculated numerically, as a function of Ro−Bu.
It was shown that, only a small region of the parameter space was neutrally stable, with the
growth rate of all of the eigenmodes equal to zero. However, it was also found that anticy-
clones generally have a smaller growth rate σ, compared to the cyclones. Specifically, the
most unstable eigenmode of the anticyclones has, over a significant portion of the parameter
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map (e.g., Ro < 0 and Bu . 0.5), growth rates slower than 50 turnaround times of the
vortex (which can for example correspond to 2 to 3 years for oceanic eddies). For cyclones,
a region of slow growth rate was found as well, but for a small region 0 < Ro < 0.1 and
0.5 . Bu . 1.3. Also note that, while most of the calculations in this study where done for
f/N̄ = 0.1 (where f and N̄ are the Coriolis and background Brunt-Väisälä frequencies), we
have verified and explained, the insensitivity of the stability results in chapter 2 to reducing
f/N̄ to the more ocean-relevant value of 0.01.

In this study we examine the finite-amplitude stability of 3D vortices in rotating stratified
flows and discuss the evolution of the unstable vortices for various perturbations, as functions
of Rossby number Ro (for −0.5 < Ro < 0.5) and Burger number Bu (for 0.07 < Bu < 2).
We study the finite-amplitude stability by examining points in the region of Ro−Bu param-
eter space in which the vortices have at least one unstable eigenmode with a growth rate that
is faster than 50 turnaround times (see chapter 2, §2.4). Although the Boussinesq equations
that are solved here are undamped, we use sponge layers as the boundary conditions for the
domain of the solution. The sponge layer which is modeled as Rayleigh drag, and Newton
cooling, acts on the weak filaments shed from the vortices and inertia-gravity waves (bound-
ary damping only damps kinetic energy, but it can damp or increase potential energy) that
are radiated to the periphery of the domain. This allows the vortices to evolve towards the
final equilibria gradually. Shedding of filaments during vortex evolution has been observed
extensively before [Dritschel & De La Torre JuáRez 1996; Humphreys & Marcus 2007], and
radiation of inertia-gravity waves has been observed before in the laboratory [Aubert et al.
2012] and numerical calculations [Hassanzadeh et al. 2012]. Our calculations show that most
of the vortices do not deviate much, from their initial unperturbed equilibria, and regard-
less of the perturbations, vortices always evolve to well-defined basins of attraction. The
unexpected robustness of the equilibria and the small sizes of the attracting basins are ex-
plained using the numerical results, as well as a simplified representation of the flow and an
analytical solution for the evolution (i.e., the Landau equation). Note that, our explanation
of the robustness of baroclinic vortices does not require a direct forcing mechanism (e.g.,
vortex merger, or interaction with shear flow). The dynamics of the vortices is expected to
dependent only weakly on f/N̄ , for f/N̄ ≤ 0.1, which is the range relevant to oceanic flows.
Therefore, we leave the study on the effects of f/N̄ on the long-term stability of the vortices
to a future work.

The remainder of the chapter is structured as follows. The equations of motion, numerical
method, Gaussian vortex model, finite-amplitude perturbations, vortex evolution enstrophy
measures, and the method to identify dominant symmetries are discussed in §3.2. The
results of the finite-amplitude stability analysis, along with the attracting basins, different
vortex groups, and parameter map of stability are presented in §3.3. The simplified flow
representation for the vortex groups, and also the Landau equation are discussed in §3.4.
Discussion and summary for this work are in §3.5.



43

3.2 Problem formulation

Equations of motion

We solve the non-hydrostatic Boussinesq equations, in a constant angular velocity rotating
frame, on the f -plane, with a background density stratification ρ̄(z) varying linearly in z
(here an overbar is used for the background flow, which lets us denote the imposed flow far
from the vortex). To simplify the equations, we define the buoyancy as b ≡ (−g)(ρ/ρo),
which when used in the equations, it simply removes acceleration of the gravity −g (here
the density ρo is ρ(z = 0)). Our idealized simulations, thus exclude some of oceanic and
atmospheric phenomena, e.g. Rossby waves, β-effects, external shear, topographic elements,
and free-surface effects, which lets us exclusively study the evolution in each simulation.

The governing equations of motion (with negligible viscosity and diffusion), in Cartesian
coordinates, with x and y horizontal directions, and z denoting the vertical direction, and
as observed in a frame rotating with an angular frequency f/2, are

∇ · v = 0,

Dv/Dt = −∇p/ρo + v × f ẑ + b ẑ, (3.1)

Db/Dt = −N̄2vz,

where v = (vx, vy, vz) is the 3D velocity vector, D/Dt ≡ ∂/∂t+v·∇ is the material derivative,
and ẑ is the unit vector in the vertical direction. The Coriolis frequency is f (constant in this
study). Here the pressure anomaly and the density anomaly are p(x, t) = ptot(x, t) − p̄(z)
and ρ(x, t) = ρtot(x, t) − ρ̄(z), where ptot and ρtot are the values of the total pressure and
total density, respectively. N̄ ≡

√
−(g/ρo)(dρ̄/dz) is the Brunt-Väisälä frequency of the

background flow (constant here). The background pressure p̄ and density ρ̄ are in hydrostatic
balance dp̄/dz = −ρ̄g. The Rayleigh drag, and Newtonian cooling (at large radial and
vertical distances) act on the momentum and density, respectively. The details about these
terms are given in the next section.

Numerical method

A pseudo-spectral initial-value code is used to solve (3.1), on a triply-periodic domain with
256 Fourier modes in each direction. The rotating stratified flows in (3.1) allow propagation
of the inertia-gravity waves. Here we use a semi-analytic method, which lets us track, and
resolve these waves, accurately and efficiently. Details of the numerical method here and of
Barranco & Marcus [2006] are the same.

The vortices in this study gradually evolve towards their attraction basins. To ensure that
the domain boundaries do not alter the evolution significantly, the computational domain
size is chosen to be large compared to the vortex size, before, during, and after the evolution
of the vortex (for the cases with splitting, the simulations are carried out to the time resulting
tripoles move well within the boundary damping region). The domain size in the x and y
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directions, i.e., the values of Lx and Ly are 15 times larger than the initial vortex diameter
(2L), and, similarly, the domain size in the z direction Lz is 15 times larger than the initial
vortex height (2H). Our investigation of the vortex evolution, and about the late-time fate
of the vortices, assumes that there is a basin of attraction to which unstable vortices evolve.
Generally, non-dissipative equations, such as the inviscid Boussinesq equations1 that we solve
here with an initial value code do not allow attractors. However note that our calculations
have sponge layers as the boundary conditions that may absorb kinetic or potential energy.
They are located far from the location of the initial vortex and far from most of the vortices
spawned from the initial vortex. The direct effects of the boundary-vortex interactions are
initially small. In fact, due to the initial vortices being “shielded” (that is, the circulation
in the total flow at each height is equal to zero. See §2.2 of chapter 2), the long-range
velocity of an initially-compact vortex falls off as 1/r2, where r is the radial distance (i.e.,
r = (x2 +y2)1/2). The sponge layer, implemented as Rayleigh drag and Newtonian cooling in
(3.1), damps v and ρ outside a cylindrical surface of diameter 24L and height 24H around the
center of the domain. The vortices shed filaments of vorticity and/or density, when they are
not steady. These filaments carry significant energy and momentum to distances far from the
vortex and are absorbed by the sponge layer. Similarly, the vortices in an ambient-stratified
fluid radiate inertia-gravity waves in their evolutions, which can also carry momentum and
energy to the domain boundaries, and are damped by the boundary damping. Thus, although
the Boussinesq equations that we solve here are undamped, filament shedding, and/or wave
emission, along with the energy absorption at the sponge layer allow the vortices to evolve
into their final equilibria (see Appendix B). By following the evolution of the vortices with
an initial-value code for several hundred turnaround times, we find that vortices remain
unchanged, after reaching their basins of attraction, also for hundreds of turnaround times
(see below for the vortex turnaround time definition).

Hyperviscosities and hyperdiffusivities, that are added to our calculations here, are used
to stabilize the code. See Barranco & Marcus [2006] for more details.

Gaussian vortices, finite-amplitude perturbations, and evolution
enstrophy measures

Here, the equilibria are 3D axisymmetric baroclinic vortices that are initially in horizontal
cyclo-geostrophic balance and vertical hydrostatic balance, and hence they are in gradient-
wind balance. The initial vortex is centered, and is shown to remain centered, at r = 0, and
z = 0, for all cases studied here (except when vortices split). In the first part of this work, we
explored the linear stability and linear growth rates of Gaussian vortices as functions of Ro

1We have dissipation in our system, in hyperviscosity and hyperdiffusivity form, to stabilize our code.
Hyperdiffusivity can both add and remove potential energy from the flow, while hyperviscosity only removes
kinetic energy from the high wave numbers of the velocity field. However, we argued previously in chapter
2 and will also show here the fact that our results are not largely affected by the hyperdissipation. The real
use of the hyperviscosity here is that it allows vortex lines to connect and reconnect, which is not possible
in a viscous-free calculation.
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and Bu, the results of which, will be useful for this study. Here, we will again examine the
stability of Gaussian vortices (a representation of which is shown by the equations (2.2)-(2.4)
in chapter 2, §2.2), but our investigation will be confined to finite-amplitude perturbation
and evolution of the vortices that have σ (i.e., where σ is the linear growth rate of the
vortex’s fastest growing eigenmode) larger than 0.02 inverse vortex turnaround times (the
vortex turnaround time is defined below). To simulate the evolution of these vortices, the
flow is initialized by adding perturbations that can differ from each other, not only by
the type, but by the perturbation amplitude as well. This allows us to replicate different
perturbations efficiently. Additionally, to make sure that perturbation type or amplitude do
not have a significant effect on our calculations, two or more different simulations are carried
out for each vortex whose evolution is studied. However, it should also be noted that, as
shown in the next section, for the vortices with locally unstable density gradient at the
vortex center, denoted as statically unstable, the most-unstable eigenmode always has the
same spatial symmetry, and σ that is significantly larger than the σ of the other eigenmode
symmetry classes, and is therefore the only eigenmode class used as the perturbation for
these vortices. Also, our study’s perturbations are implemented from the following specific
groups: (a) One (or more) of the fastest growing eigenmodes in the six previously-identified
symmetry classes (in accord with the constraints presented in chapter 2, §2.2), (b) white
noise, implemented as divergence-free noise in the flow velocity, or (c) a combination of
an eigenmode and white noise. For these perturbations, we define the initial perturbation
amplitude, as AIC,i ≡

∫
|v′i|2d3x /

∫
|ṽ|2d3x, where v′i demonstrates the velocity of the ith

perturbation, and ṽ denotes the velocity of the unperturbed equilibrium (from here onwards,
a tilde is used to represent the initial unperturbed equilibrium). The integrals in the equation
are calculated over the entire computational domain. Note that because relevant observations
of the ocean and atmosphere vortices are nearly axisymmetric, values of the initial amplitudes
in our simulations are chosen small (such that AIC,i . 10−2). In what follows, any quantity
denoted with a subscript E is calculated at the point of maximum absolute vertical vorticity
value. To track the vortex quantitatively, we define for its horizontal extent and angular
velocity, the horizontal length scale L ≡

√
|4pE/(∇2

hp)E| (i.e., L is the vortex radius), and
the Rossby number Ro ≡ ωE/2f (i.e., ω is the vertical vorticity), respectively. Also, the
subscript h means horizontal component. For Gaussian vortices here ω̃E = ω̃c (where c
denotes the vortex center). If σ = 0, a simulation initialized with an axisymmetric 3D
vortex in dissipationless equilibrium and a Gaussian p (as described above) remains similar
to the initial equilibrium, e.g., its Nc 6= N̄ remains the same (N ≡

√
−(g/ρo)(dρ/dz) is the

Brunt-Väisälä frequency). Furthermore, it was shown before that the σ of the vortex in a
region of the parameter space was . 50 inverse turnaround times (i.e. often corresponding
to several years for ocean eddies). For more details about that study see chapter 2. Here,
we examine the evolution of the vortices with σ larger than 50 turnaround times, towards
their attracting basins (the vortex turnaround time is defined as τ ≡ 4π/ω̃c). Note that the
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initial Gaussian vortex has an aspect ratio of(
H

L

)2

=
−Ro(1 +Ro)

N̄2[1− (Nc/N̄)2]
, (3.2)

(we have not used tildes in (3.2) for simplicity) in accord with the universal scaling law of Has-
sanzadeh et al. [2012] and Aubert et al. [2012]. Also, our definition ofH ≡

√
|2pE/(∂2p/∂z2)E|,

is the same as in Hassanzadeh et al. [2012] and Marcus & Hassanzadeh [2014], where the
vortex’s mid-plane is the horizontal plane z = 0, and H is its pressure anomaly’s vertical
length scale (i.e., its half-hight from the z = 0) calculated using the second order z derivative.
The Burger number is defined as

Bu ≡
(
N̄

f

H

L

)2

. (3.3)

We have a non-standard way of measuring the volume of the basin of attraction of our
perturbed equilibrium Gaussian vortices. Our initial-value experiments begin with an exact
equilibrium Gaussian vortex, that is perturbed with several kinds of initial perturbations
that give the initial conditions different initial energies and momenta. The flow then evolves,
shedding internal gravity waves to our dissipative boundary conditions. Therefore, we would
not expect all of the initial conditions to relax to the same final state. Rather our cloud of
initial conditions relax to a cloud of final states. This cloud of final states represents a basin
of attraction. For N sets of perturbations, the vortices evolve to the equilibria ω1, ω2, ...,
and ωN , where the equilibrium is represented for each case j by using its vertical vorticity
ωj. The individual final equilibria are each located and oriented differently. To compare
final equilibria to each other and their average, we account for each case’s translations and
rotations, using a coordinate system, with an origin E, and an x axis pointing in the direction
of minimum vertical vorticity (i.e., for the cyclones). Also, the z axis is always oriented in the
vertical direction. Below we will often use the vertical vorticity ω to refer to the equilibria
in this study. We define the average final equilibrium

ω̂(x, y, z) ≡
(

1

N

) N∑
j=1

〈ωj(x, y, z, t)〉, (3.4)

where the angle brackets 〈 〉 show the time average after reaching quasi-steady state, i.e.,
time during which fractional changes – fluctuation amplitude over mean, of the kinetic energy
KE/K̃E, the enstrophy EN/ẼN , the horizontal length scale L/L̃, the vertical length scale
H/H̃, Rossby number Ro, and Burger number Bu values become . 0.1. Enstrophy is
defined as EN ≡

∫
ω2d3x, where the integral is over the entire computational domain. In

the following, we use a hat to show the average final equilibrium’s properties. The size of
the attracting basin depends on the difference between individual final equilibria, and the
average final equilibrium ω̂, and is calculated numerically for each simulation, by defining
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the quantity

dj ≡
∫

(〈ωj〉 − ω̂)2d3x∫
ω̂2d3x

, (3.5)

where the numerator and denominator integrals are calculated over the computational do-
main. Also, the changes in Ro,

δRoj ≡ |Roj − R̂o|, (3.6)

indicate the magnitude difference between Roj for the time-averaged final equilibrium 〈ωj〉
and R̂o for the average equilibrium ω̂. The δBuj definition,

δBuj ≡ |Buj − B̂u|, (3.7)

for the Burger number is analogous. We note that, generally, for vortices with basins of
attraction, the final equilibrium can be similar to the initial vortex (that has large growth
rates), or different from it. More accurately, we calculate the differences inside the initial
vortex’s shield Ds, as well as inside its core Dc, by defining the quantities

Ds ≡
∫
shield

(ω̂ − ω̃)2d3x∫
shield

ω̃2d3x
, (3.8)

Dc ≡
∫
core

(ω̂ − ω̃)2d3x∫
core

ω̃2d3x
, (3.9)

where the integrals in equations (3.8) and (3.9) are calculated inside the shield and core,
respectively, of the initial equilibrium vortex. Also, the changes in Ro,

∆Ro ≡ |R̂o− R̃o|, (3.10)

indicate the magnitude difference between R̂o for the average final equilibrium ω̂ and R̃o for
the initial unperturbed equilibrium ω̃. Furthermore, the ∆Bu definition

∆Bu ≡ |B̂u− B̃u|, (3.11)

for the Burger number is analogously implemented. The equilibria in this study are gener-
ally, Gaussian, Gaussian-like, or non-Gaussian-like. A Gaussian equilibrium is one, with a
prefect Gaussian pressure distribution, in horizontal cyclo-geostrophic balance and vertical
hydrostatic balance. The unperturbed initial equilibria here all are Gaussian. In the follow-
ing, for a cyclonic equilibrium vortex the core of the cyclone is a contiguous region at and
near the vortex center where the ω is greater than zero or zero. The shield is a contiguous
region ω < 0, surrounding the core (usually looking like a shell or annular ring) located not
too far from the core. We will show quantitatively in §3.3 and below that the core of all
vortices in this study remain close to a Gaussian state (except for a case for which the vortex
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splits). For Gaussian-like final equilibria the core and shield remain close to Gaussian, but
they are not perfectly Gaussian. Therefore, the cases with Dc . 0.1 and Ds . 0.4, i.e., with
the final equilibrium’s core and shield near initial Gaussian vortex’s core and shield, have
a Gaussian-like final equilibrium. Our choice of 0.4 for Ds’s upper limit is large, because
we find that there are some cases for which part of the shield deforms or breaks, while a
large part of it remains close to the Gaussian vortex’s shield. We describe this family of final
equilibria as Gaussian-like as well. For the cases with Dc & 0.1, i.e., for the vortices with the
final equilibrium’s core far from the initial Gaussian vortex’s core, we define the quantities

Fs ≡
∫
shield

(ω̂ − ω̃NEW )2d3x∫
shield

(ω̃NEW )2d3x
, (3.12)

Fc ≡
∫
core

(ω̂ − ω̃NEW )2d3x∫
core

(ω̃NEW )2d3x
, (3.13)

where ω̃NEW (x, y, z) is the value of the Gaussian vortex’s vertical vorticity, demonstrated for
Ro = R̂o and Bu = B̂u, and the integrals in equations (3.12) and (3.13) are calculated inside
the shield and core, respectively, of ω̃NEW (x, y, z). The cases with Fc . 0.1 and Fs . 0.4,
i.e., with the final equilibrium’s core and shield near ω̃NEW (x, y, z)’s core and shield, have a
Gaussian-like final equilibrium. For the cases, other than the ones listed above for Gaussian
and Gaussian-like final equilibria, the final equilibrium is non-Gaussian-like. Furthermore,
for the vortices with Gaussian-like and non-Gaussian-like final equilibria the “shield” in some
cases breaks into two (or more) satellite vortices that look different from the initial shield. For
such cases, the satellite vortices are the two, or four (or even six) regions rotating around the
core of the vortex, where the satellites’ vorticity is the opposite of that of the vortex’s core.
The precise definitions that we use for core, shield, and satellites are in Appendix A. During
the shield breaking, filaments are shed, which then carry energy and momentum, far from
the vortex, where their effects are exhausted by the sponge layer. The boundary damping
mechanism is particularly through the potential energy damping (as shown in Appendix
B), i.e, it removes the density anomalies by damping their potential energy magnitude.
Surprisingly, in this study all but one of the vortices have basins of attraction (see §3.3), for
which the sizes of the basins are shown to be small. For the final equilibria in such cases
we find that the amplitude of the vorticity decays exponentially outside the shield (or away
from the satellites) of the vortices with the radial distance r. This is because the vortices
are confined to the region near their cores and due to the boundary damping acting at large
radii. For the cases with splitting, the resulting tripoles quickly move to large radii, near the
boundary damping region. As such, the simulations for these cases are comparatively short.
In fact, the simulations are only carried out until the direct interaction of the vortices and
the boundary damping becomes significant. There is one case with splitting in this study,
i.e., last eight rows of table 3.4 (that is for a vortex which can split).

There are three dimensionless parameters that describe the Gaussian vortices’ dynamics
(e.g., see §2.2 of chapter 2). For vortices that remain Gaussian-like, again we use three
parameters for tracking vortices during evolution. To adequately and consistently describe
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the vortex dynamics, in this study we use, as tracking parameters, Ro, f/N̄ and Bu. The
differences between the unperturbed vortex’s shield and the final equilibrium’s broken shield
and/or satellite vortices are calculated numerically, as described above (Ds and Fs). Also,
note that for the vortices with a non-Gaussian-like final equilibrium, where the vortex breaks
into multiple smaller vortices, or splits into two separate parts, additional parameters are
required to describe the vortex characteristics (e.g., the distance between smaller vortices,
or the radial velocity of a tripole). Here we again use the same parameters and measures as
described above for vortices with a non-Gaussian-like final equilibrium. An analysis, carried
out for these cases with the additional parameters is forwarded to a future study.

To find out the possible form of time dependence (or independence) of the perturbations
throughout the vortex quasi-steady state (the quasi-steady state for vortices was defined
above), we define the quantity

EN ′∞,j(t > t∞) ≡
∫

(ωj − 〈ωj〉)2d3x∫
〈ωj〉2d3x

, (3.14)

where t∞ denotes the time at which ωj reaches quasi-steady, and the integral is calcu-
lated over the entire computational domain. The perturbations are approximately-steady,
if EN ′∞,j(t)’s temporal changes are less than 0.1, and are unsteady (and therefore can be
periodic, or aperiodic), if EN ′∞,j(t)’s temporal changes are & 0.1. In this study we find, by
examining the late-time perturbations, that for the cases with an attracting basin, EN ′∞,j
has approximately-steady values.

Dominant Symmetries

The differences between the initial and final equilibria for the vortices evolving towards an
attracting basin can be dominated by a symmetry. The difference flows that belong to a
dominant symmetry class, are either largely symmetric or anti-symmetric with respect to
the horizontal plane z = 0 and have a dominant m-fold azimuthal symmetry about the
z-axis (and therefore, for such flows, the other components of the difference flow, i.e., with
symmetries other than the dominant difference flow symmetry are much smaller). Here,
we use the labels Sm (or Am) for each flow component, to identify it as Symmetric (or
Anti-symmetric) with respect to the z = 0 horizontal plane and with m-fold symmetry.

The flow evolution from its axisymmetric Gaussian equilibrium can be described as

g(x, t) = g̃(r, z) + R(x, t), (3.15)

where the flow has 3 velocity components, a density component, and a pressure component
g ≡ [vr, vφ, vz, ρ, p], and we use R(x, t) to denote the remainder. The remainder can be
exactly decomposed into a symmetric part RS, and an anti-symmetric part RA, about the
horizontal plane z = 0. For the symmetric or anti-symmetric remainders, the (dimensionless)
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enstrophies are then defined as

γS ≡
∫
|ωR,S|2dx3∫
|ωR|2dx3

, (3.16)

γA ≡
∫
|ωR,A|2dx3∫
|ωR|2dx3

, (3.17)

where ωR shows the remainder vertical vorticity of the jth time-averaged final equilibrium,
or the average final equilibrium, the additional subscripts S and A are used to represent
symmetric and anti-symmetric parts, the numerator and denominator integrals are calculated
over the entire computational domain, and it can be shown that γS + γA = 1. If 1− γS � 1,
or 1 − γA � 1, then the difference flow possibly has a dominant symmetry. Otherwise, the
analysis here demonstrates that the remainder simply has no dominant symmetries (γS, γA

∼ O(0.1)). However, if the difference flow is found S or A dominant about z = 0 then,
the dominant symmetry remainder shown by a subscript ⊥ (i.e., R⊥ = RS for a largely
symmetric R, or R⊥ = RA for a largely anti-symmetric R) is again exactly decomposable
into (see Appendix D) a R⊥even part with the azimuthal wave numbers that are even, and
a R⊥odd part with the azimuthal wave numbers that are odd. For these remainders, the
(dimensionless) enstrophies are defined as

γ⊥even ≡
∫
|ω⊥even|2dx3∫
|ω⊥|2dx3

, (3.18)

γ⊥odd ≡
∫
|ω⊥odd|2dx3∫
|ω⊥|2dx3

, (3.19)

similar to the ratios given by (3.16) and (3.17), but where ω⊥ shows the R⊥ vertical vorticity
of the jth time-averaged final equilibrium, or the average final equilibrium, the additional
subscripts ‘even’ and ‘odd’ are used to represent even and odd parts, and it can be shown
that γ⊥even + γ⊥odd = 1. If 1 − γ⊥even � 1, or 1 − γ⊥odd � 1, then the difference flow is
shown to have ⊥ dominant symmetry about z = 0, and even or odd dominant symmetry
azimuthally. Otherwise, the analysis here demonstrates that the remainder simply has no
dominant symmetries (γ⊥even, γ⊥odd ∼ O(0.1)) (note as well that for a remainder part that is
not dominant, the even and odd enstrophies can be calculated to determine more exactly how
these enstrophies are allocated). For a difference flow dominated by⊥ symmetry about z = 0,
and by an even symmetry azimuthally, the R⊥even is further decomposable into (again see
Appendix D) a R⊥even,d4 part with the azimuthal wave numbers that are even and divisible-
by-4, and a R⊥even,nd4 part with the azimuthal wave numbers that are even not divisible-by-4.
For these remainders, the (dimensionless) enstrophies γ⊥even,d4 and γ⊥even,nd4 are defined in
a way, similar to (3.16) and (3.17), but with |ω⊥even,d4|2 and |ω⊥even,nd4|2 as the numerator
integrands, |ω⊥even|2 as the denominator integrand, and where γ⊥even,d4 + γ⊥even,nd4 = 1. If
1−γ⊥even,d4 � 1, or 1−γ⊥even,nd4 � 1, then the difference flow is shown to have ⊥ dominant
symmetry about z = 0, and even and divisible-by-4; or even not divisible-by-4 dominant
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symmetry azimuthally. Otherwise, the analysis here demonstrates that the remainder simply
has no dominant symmetries (γ⊥even,d4, γ⊥even,nd4 ∼ O(0.1)) (note as well that for an even
remainder part that is not dominant, the even and divisible-by-4; and even not divisible-by-4
enstrophies can be calculated to determine more exactly how these enstrophies are allocated).
Performing the stepped analysis above for any symmetry class symm specifically, the fraction
of the total remainder enstrophy pertaining to that symmetry class Γsymm can be accurately
found. The Γsymm is defined as

Γsymm ≡
∫
|ωsymm|2dx3∫
|ωR|2dx3

, (3.20)

where ωsymm is the vertical vorticity of the symmetry class symm. No dominant symmetries
exist for the cases that have Γsymm ∼ O(0.1) (for any symm).

Note that although the study here is on the finite-amplitude stability of axisymmetric
(or usually almost axisymmetric) vortices, in fact we use (3.1) in the Cartesian coordinates,
rather than in the cylindrical coordinates. A solution carried out in the Cartesian coordi-
nates avoids the difficulties of e.g., division by declining r at the origin (r = 0). In the
analysis above, the enstrophies calculations are done for the remainder parts that are sym-
metric or anti-symmetric in the vertical direction, while in the azimuthal direction there is
one of the following classes of symmetry: m odd; m even not divisible-by-4; and m even and
divisible-by-4. As used here, these specific symmetry groups can be directly sought for in
Cartesian coordinates and in fact also avoid introducing additional errors due to transfor-
mation between Cartesian and cylindrical coordinates (see Appendix D).

3.3 Evolution of the vortices and finite-amplitude

stability

Here, we examine the evolution for selected vortices with very fast growth rates (i.e., with
growth rates σ > 0.02 τ−1) towards each case’s final equilibrium. Also, we demonstrate how
the cloud of initial states for the cases examined, evolves to the cloud of final states in the
Ro−Bu parameter space. For all cases here we use fixed f/N̄ = 0.1, and effects of changing
f/N̄ on the dynamics of the vortices is therefore forwarded to a future study. Also, it is noted
that a vortex perturbed using different perturbations can evolve to different final equilibria.
Our initial-value calculations however show that there are basins of attraction with small
sizes (as demonstrated quantitatively below) to which the vortex cloud can be attracted,
such that in these cases, the final equilibria are independent of the initial perturbations that
are implemented in our code. Furthermore, we show that the flow is represented throughout
its complete evolution using a simple equation including the unperturbed equilibrium, its
dominant symmetry eigenmode, and a complex valued coefficient, where the latter can be
calculated analytically using the Landau equation.

We also calculate the difference between the final and the initial states of the vortices in
their cores and shields, as well as the values of the dimensionless enstrophies of the difference
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flow for the class of symmetry that is dominant, and also for those that are not dominant
(see §3.2). Then we show that there are six different groups of final equilibria, each of which
has different properties for their final equilibria, and a different class of dominant symmetry
(there also are groups of vortices with no dominant symmetries). It also is shown that there
are a few cases with the vortex splitting into two tripoles moving radially away, which clearly
have no attracting basins and no dominant symmetries.

Attracting basins, dominant symmetries and the vortex groups

Our initial-value calculations show that vortices generally evolve towards one of the attract-
ing basins within six different groups, where the difference between final and initial states of
the vortices have different core and shield (or satellite) configurations, and/or dominant sym-
metries of the difference flow. The six vortex groups and their characteristics are described
as follows:

Group 1

The qualitative distinction of these vortices is that they have quasi-steady final equilibria,
that are visually indistinguishable from the corresponding initial equilibria to which we
add the finite-amplitude perturbations. This observation can be made quantitative, by our
initial-value calculations for group 1 cases listed in table 3.1. The numerical values of dj
are O(10−4) or smaller, indicating that, there is a well-defined basin of attraction that these
vortices evolve to. Furthermore we show that Dc and Ds values are O(10−2) or smaller in
all the cases, so group 1’s final equilibria remain similar to their initial equilibria (i.e., in
the L2 norm terms). Also, under table 3.1’s ‘Differences (Ro and Bu)’, group 1’s Rossby
number changes δRoj (that are O(10−3) or smaller) and Burger number changes δBuj (that
are O(10−2) or smaller), more clearly show the small basin sizes for the final equilibria of
group 1; and the Rossby number changes ∆Ro (that are O(10−2) or smaller) and Burger
number changes ∆Bu (that are O(10−2) or smaller), more clearly show the resemblance
between group 1’s final and initial equilibria. Furthermore, the remainder flow has an A1
dominant symmetry for group 1’s final equilibria, as indicated by the values of ΓA1 & 0.9
shown in table 3.6 (and with the contributions of ΓS2 ' 0.03 and ΓS4 ' 0.03 shown to be
much smaller). The kinetic energy KE/K̃E, enstrophy EN/ẼN , horizontal length scale
L/L̃, vertical length scale H/H̃, Rossby number Ro, and Burger number Bu for different
perturbations of a group 1 vortex are demonstrated in figure 3.1, showing how the vortex
reaches quasi-steady state. Example group 1 vortices are illustrated in figures 3.2 and 3.3.
The former shows the Gaussian and average final equilibria as well as the details of the
vortex evolution, whereas the latter only shows the Gaussian and average final equilibria.

Group 2

Qualitatively, all group 2 vortices evolve towards quasi-steady final states, with their core in
the initial vortex state looking very similar to their final slightly-deformed cores, and with
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their shields breaking into two satellite vortices (on the vortex midplane). Again, a more
quantitative description of the above statements is presented via our initial-value calculations
for group 2 cases in table 3.2. The quantities dj and Dc for these vortices (and the δRoj,
δBuj, ∆Ro and ∆Bu also) have values of O(10−3) and O(10−2), or smaller (and have values
of O(10−3), O(10−2), O(10−2) and O(10−2), or smaller), for the cases we examined in this
group, therefore indicating the small size of the attraction basins for group 2 vortices, and also
closeness of the vortex cores in their final and initial equilibria. However as was explained
above, for group 2 vortices the shield sometimes breaks into two satellite vortices on the
midplane of the vortex. Even with these changes, for the family of group 2 final equilibria
we show that the Ds (see table 3.2) has intermediate values of . 0.4, and group 2 therefore
has Gaussian-like final equilibria. Also, for the vortices of group 2 the remainder flow shows
an S2 dominant symmetry, which is presented by the ΓS2 & 0.9 for table 3.6’s group 2 cases
(and with the contributions of ΓA1 ' 0.04 and ΓS4 ' 0.02 shown to be much smaller).
Furthermore it can be shown that for the group 2 vortices, for which all A1 eigenmodes are
neutrally stable (table 3.6’s last four group 2 cases), the difference flow only has S symmetry
(i.e., meaning that for such cases ΓA1 < 0.01). The time variation of different properties of
a group 2 vortex are in figure 3.4, demonstrating how the vortex reaches quasi-steady state,
and example group 2 vortices are illustrated in figures 3.5 and 3.6.

For the family of group 2 final equilibria we have shown 4 example cases in figure 3.7,
where the Gaussian-like final equilibria have broken shields around their cores. As shown in
figure 3.7, as the Bu increases, from panel (a) to panel (d), we find smaller parts of the shield
broken/deformed. This can be seen, by the fact that the dominant symmetry of these group
2 vortices is S2 and by noting that for low values of Bu, the fastest growing S2 eigenmodes
(i.e., of the Gaussian equilibria of group 2) are very concentrated in the shields, and as Bu
increases, the radial structure spreads into their core, e.g., as demonstrated by equation
(2.28) and figure 2.13(b) of chapter 2 using the fraction of the eigenmode enstrophy in the
vortex shield given by Sshield, which for the vortices with S2 fastest growing eigenmodes has
values that decrease from 0.94 at low Bu to 0.55 at high Bu. Also consistent with this is
that group 2’s Ds values decrease (see table 3.2) as Bu increases from 0.32 at low Bu to
0.036 at high Bu.

Groups 3a and 3b

These vortices have very fast growth rates (σ ∼ 0.1τ−1, or lager) and thus quickly evolve from
their initial equilibrium state towards a quasi-steady final equilibrium, where we find that
neither their core nor their shield look similar to the Gaussian equilibrium’s core and shield.
Here we use group 3a for anticyclones, with two cyclonic satellite vortices that reside on the
vortex’s midplane i.e., z = 0 (for the vortices of group 3a the fastest growing eigenmode
has S2 symmetry). Also, group 3b is to demonstrate initial cyclones which have one or two
satellite vortices that are above vortex’s midplane, and one or two that are below it (for
the vortices of group 3b the fastest growing eigenmode has A1 symmetry). Our initial-value
calculations for groups 3a and 3b are in table 3.3. The quantities δRoj, δBuj and dj for
groups 3a and 3b are shown to be small, with values O(10−2), O(10−2) and O(10−3), or
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Group
Init. Eq.

Symmetry
Enstrophy Values

R̃o B̃u ΓA1 ΓA2 ΓA4 ΓS1 ΓS2 ΓS4

1

+0.5 1.6 A1 0.93 − − − 0.044 0.035
+0.5 2.0 A1 0.93 − − − 0.040 0.034
+0.4 1.4 A1 0.93 − − − 0.039 0.033
+0.2 1.0 A1 0.92 − − − 0.042 0.035
+0.2 1.3 A1 0.94 − − − 0.033 0.031
+0.2 2.0 A1 0.94 − − − 0.032 0.030
+0.1 1.6 A1 0.95 − − − 0.032 0.024
−0.1 1.6 A1 0.95 − − − 0.028 0.022
−0.2 2.0 A1 0.95 − − − 0.028 0.024
−0.495 1.9 A1 0.96 − − − 0.022 0.020

2

+0.5 0.65 S2 0.064 − − − 0.92 0.011
+0.5 1.0 S2 0.043 − − − 0.93 0.036
+0.4 0.65 S2 0.062 − − − 0.93 0.012
+0.2 0.45 S2 0.057 − − − 0.93 0.012
+0.2 0.75 S2 − − − − 0.95 0.048
+0.1 0.6 S2 − − − − 0.95 0.048
+0.05 0.45 S2 − − − − 0.96 0.037
−0.18 0.17 S2 − − − − 0.96 0.044

3a −0.05 0.15 − − − − 0.062 0.45 0.49

3b
+0.45 0.3 − 0.27 − − − 0.084 0.65
+0.4 0.45 − 0.26 − − − 0.088 0.65
+0.05 0.15 − − − − 0.10 0.16 0.74

5

−0.1 0.07 S4 − − 0.033 − 0.017 0.95
−0.2 0.12 S4 − − 0.032 − 0.016 0.95
−0.3 0.17 S4 − − 0.027 − 0.017 0.96
−0.4 0.2 S4 − − 0.028 − 0.020 0.95

Table 3.6: The dimensionless enstrophies, ΓA1, ΓA2 ΓA4, ΓS1, ΓS2, and ΓS4, for different vortex
groups, and their average final equilibria ω̂. ΓA1 + ΓA2 + ΓA4 + ΓS1 + ΓS2 + ΓS4 ' 1. The
vortex dominant symmetries are indicated under ‘Symmetry’. The values of the enstrophies
for each of the final cloud’s time-averaged equilibria 〈ωj〉 are within 0.02 of the enstrophy
of the corresponding ω̂ that is demonstrated in the table. The dashes show symmetries for
which the fractional enstrophy < 0.01. For group 1, and group 2 cases examined, ΓA1 & 0.9,
and ΓS2 & 0.9, respectively. Furthermore, for the last four vortices of group 2, where all
A1 eigenmodes are neutrally stable, the final equilibria clearly have S symmetries only (i.e.,
meaning that for such cases ΓA1 < 0.01). Also note that for the group 3a, and group 3b cases
shown, even though ΓS4 has the largest value, we find that they have in fact no dominant
symmetries. For the group 3a case shown, the largest value is for S enstrophies, whereas,
for the group 3b cases with one satellite (or two satellites) above vortex midplane and one
(or two) below it, the enstrophy values are represented by ΓA1 ' 0.3 (or ΓS2 ' 0.2) and
ΓS4 ' 0.7 (or ΓS4 ' 0.8). For group 5 cases, it is shown that, as in groups 3a and 3b, the
largest enstrophy values are for ΓS4, but greater than those of groups 3a and 3b. The vortices
of group 5 have an A4 fastest growing eigenmode, and an S4 dominant symmetry. There
also is ΓA4 ' 0.03 in group 5’s final equilibria, with much smaller values than the indicated
values of ΓS4 ' 0.95 (with their ΓS2 ' 0.02 being small as well).
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Figure 3.1: (Colour online) Kinetic energy KE/K̃E, enstrophy EN/ẼN , horizontal length
scale L/L̃, vertical length scale H/H̃, Rossby number Ro, and Burger number Bu, for
different perturbations of a group 1 vortex, showing how for these cases the vortex reaches
quasi-steady state. Here R̃o = 0.2, and B̃u = 1.3. Different line styles (and colours, in
colour version) are for different perturbations; the black long-dashed lines have perturbation
amplitude (for definition of AIC,i see the text) AIC,A1 = 10−2; the short-dashed lines (red,
in colour) have AIC,A1 = 10−2, and AIC,N = 10−2.5; and the solid lines (blue, in colour) have
AIC,S2 = 10−2, and AIC,N = 10−2.5. At quasi-steady state the fractional changes (fluctuation
amplitude divided by mean) of all the quantities are smaller than ∼ 5× 10−4.
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Figure 3.2: (Colour online) Vertical vorticity ω of a group 1 vortex for the Gaussian equilibrium ω̃ and the
average final equilibrium ω̂, as well as for the numerical quantities that describe the vortex evolution. Here
R̃o = 0.2, B̃u = 1.3, and f/N̄ = 0.1. (a) and (b) show the ω̃ and ω̂, respectively, where for each panel,
the first figure is on the midplane of the vortex (i.e., z = 0), whereas the second figure outlines the vortex
on the (r − z) plane. For the average final equilibrium shown in (b), the (r − z) plane has an azimuthal
angle, chosen where the shield has its minimum vorticity value. The dashed-dotted lines (green, in colour)
are for 0.1 min [ω], indicating that the vortex’s shield remains almost axisymmetric here. The black dashed
lines indicate the boundaries of the core and shield. Panels (c1) to (c3) demonstrate for the initial cloud,
three different perturbation sets, each shown on the horizontal plane with the maximum magnitude of the
ω. The perturbation amplitude(s) for panel (c1) is AIC,A1 = 10−2; for panel (c2) are AIC,A1 = 10−2, and
AIC,N = 10−2.5; and for panel (c3) are AIC,S2 = 10−2, and AIC,N = 10−2.5. For these three cases, panels
(d1) to (d3) (given on the midplane of the vortex) show that the final cloud’s time-averaged equilibria 〈ωj〉
resemble each other closely and panel (b)’s average final equilibrium ω̂. The differences between the time-
averaged final equilibria and Gaussian equilibrium 〈ωj〉 − ω̃ in (e1) to (e3) (presented on the plane with
maximum |ω|) are small (fractional magnitudes ' 7.5× 10−3/0.1), which is consistent with the initial-value
calculations in table 3.1. (d12), (d13), and (d23) (presented on the plane with maximum |ω|) show that the
differences between each two time-averaged final equilibria 〈ωj1〉− 〈ωj2〉, j1 6= j2 are small (smaller than the
values of 〈ωj〉 − w̃, given in (e1)-(e3)), with fractional magnitudes that have values ' 1.5× 10−3/0.1.
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Figure 3.3: (Colour online) Similar to figure 3.2’s panels (a) and (b), but for a group 1
vortex, with R̃o = 0.1, B̃u = 1.6, and f/N̄ = 0.1. Figure 3.2’s panel (b) and the average
final equilibrium that is shown here, resemble each other closely, with the iso-contours of
0.1 min [ω] and the boundaries for the cores and shields being similar for the two cases (the
initial-value calculations for this group 1 case are in table 3.1).

smaller, respectively, which is due to the small size of the attraction basins for groups 3a and
3b vortices. However note that the quantities ∆Ro, ∆Bu, Dc and Ds are all O(0.1), and
neither the core nor the shield stay similar between their final equilibrium and the initial
equilibrium (i.e., that is the axisymmetric Gaussian equilibrium for Ro = R̃o, and Bu = B̃u).

On the other hand, we find that the final equilibria’s core for such cases can as well
be shown to be near the core of a Gaussian equilibrium, that has Ro = R̂o and Bu =
B̂u. Nevertheless, the shield for group 3a and group 3b’s final equilibria, does not remain
similar to the initial shield – it breaks into smaller satellite vortices, on, or above/below
vortex midplane, showing that the final equilibria are in fact non-Gaussian-like. The above
statements are also consistent with the Fc, and Fs values in table 3.3, that are O(10−2), or
smaller, and O(10−1).

We find here that groups 3a and 3b vortices clearly have no dominant symmetries. Fur-
thermore, for group 3a vortices the “remainder” flow is largely symmetric, as shown by
ΓS1 ' 0.06, ΓS2 ' 0.45, and ΓS4 ' 0.49 values for group 3a in table 3.6 below. Correspond-
ingly, for the group 3b cases with one satellite above vortex’s mid-plane and one below it,
the remainder flow is shown to have partly A1 symmetry, and partly S4 symmetry (with
the enstrophy values represented by ΓA1 ' 0.3, ΓS2 ' 0.1 and ΓS4 ' 0.6 as demonstrated
by table 3.6’s first two group 3b cases). Also, for the group 3b cases with two satellites
above vortex’s mid-plane and two below it, the remainder flow shows partly S2 symmetry,
and again partly S4 symmetry (with the enstrophy values here represented by ΓS1 ' 0.1,
ΓS2 ' 0.2 and ΓS4 ' 0.7 as shown by table 3.6’s last group 3b case). Different vortex proper-
ties for cases in groups 3a and 3b, and how they reach quasi-steady state are shown in figures
3.8 and 3.10; the initial equilibrium, vortex evolution, and final equilibrium for a group 3a
vortex are illustrated in figure 3.9, and two examples for group 3b vortices are demonstrated
in figures 3.11 and 3.12.

Group 4

The vortices of this group can split, i.e., that is, the vortex remains whole for a set of initial
conditions, whereas it can split for a different set of initial conditions (see table 3.4). Note
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Figure 3.4: (Colour online) As in figure 3.1, but for the evolution of a vortex in group 2. Here
R̃o = 0.2, and B̃u = 0.75. In this case, the dashed lines (red, in colour) have a perturbation
amplitude of AIC,N = 10−2.5; and the solid lines (blue, in colour) have perturbation ampli-
tudes of AIC,S2 = 10−2, and AIC,N = 10−2.5. At quasi-steady state the fractional changes of
all the quantities are smaller than ∼ 0.004.
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Figure 3.5: (Colour online) As in figure 3.2, but for a group 2 vortex with R̃o = 0.2,
B̃u = 0.75, and f/N̄ = 0.1. For the equilibria shown here, the dashed-dotted lines (green,
in colour) are for 0.6 min [ω] showing that a region of the initial shield breaks into satellite
vortices, with the other part of it remaining almost axisymmetric, as indicated by the shield’s
dashed line. In panel (b), therefore, the (r − z) plane’s azimuthal angle, is chosen where
the satellite vortices shown by the dashed-dotted curves (green, in colour) have the largest
magnitude. For this case, the perturbation amplitude(s) for panel (c1) is AIC,N = 10−2.5;
and for panel (c2) are AIC,S2 = 10−2, and AIC,N = 10−2.5. Panels (c1), (c2), (d1), (d2), (e1),
(e2), and (d12) are all on the midplane of the vortex (which is where the satellite vortices
are most prominent for this case). (d1) and (d2) show that the final cloud’s time-averaged
equilibria 〈ωj〉 resemble each other closely and panel (b)’s average final equilibrium ω̂. The
differences 〈ωj〉−ω̃ in (e1) and (e2) for the core are small (fractional magnitudes ' 0.02/0.2),
and for the shield are large (fractional magnitudes ' 0.02/0.03), which is consistent with the
initial-value calculations in table 3.2. (d12) shows that the difference 〈ω1〉 − 〈ω2〉 is small as
well (smaller than the values of 〈ωj〉− ω̃, given in (e1) and (e2)), with a fractional magnitude
that has a value ' 0.002/0.1.
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Figure 3.6: (Colour online) Similar to figure 3.5’s panels (a) and (b), but for a group 2
vortex, with R̃o = 0.1, B̃u = 0.6, and f/N̄ = 0.1. Figure 3.5’s panel (b) and the average
final equilibrium that is shown here, resemble each other closely, with the iso-contours of
0.6 min [ω] and the boundaries for the cores and shields, being similar for the two cases (the
initial-value calculations for this group 2 case are in table 3.2).

−0.01

0    

0.02 

0.04 

0.051

x/L̃

y
/
L̃

 

 

−2 0 2

−2

0

2

(a)

−0.01

0    

0.02 

0.04 

0.051

r/L̃

z
/
H̃

 

 

−2 0 2

−2

0

2

−0.019

0     

0.04  

0.08  

0.1   

x/L̃

y
/
L̃

 

 

−2 0 2

−2

0

2

(b)

−0.019

0     

0.04  

0.08  

0.1   

r/L̃

z
/
H̃

 

 

−2 0 2

−2

0

2

−0.039

0     

0.05  

0.1   

0.15  

0.2   

x/L̃

y
/
L̃

 

 

−2 0 2

−2

0

2

(c)

−0.039

0     

0.05  

0.1   

0.15  

0.2   

r/L̃

z
/
H̃

 

 

−2 0 2

−2

0

2

−0.11

0    

0.2  

0.4  

0.51 

x/L̃

y
/
L̃

 

 

−2 0 2

−2

0

2

(d)

−0.11

0    

0.2  

0.4  

0.51 

r/L̃

z
/
H̃

 

 

−2 0 2

−2

0

2

Figure 3.7: (Colour online) The average final equilibrium ω̂ for four vortices (panels a-d) in
group 2 with R̃o = 0.05, 0.1, 0.2, and 0.5; and B̃u = 0.45, 0.6, 0.75, and 1.0. The panels are
similar to panel (b) of figure 3.5. As B̃u increases from (a) to (c), the broken region shown
by the dashed-dotted curves (green, in colour) becomes smaller and the shield (contiguous)
region becomes larger. As B̃u increases, consistently, the values of Sshield (see §3.3) and Ds

(see table 3.2) decrease, and the shield becomes more axisymmetric. For the last case in
panel (d), the dashed-dotted curve (green, in colour) is shield-like (where the shield is nearly
axisymmetric).
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Figure 3.8: (Colour online) As in figure 3.1 again, but for a vortex in group 3a (midplane
satellites only). Here R̃o = −0.05, and B̃u = 0.15. In this case, the dashed lines (red, in
colour) have a perturbation amplitude of AIC,N = 10−2.5; and the solid lines (blue, in colour)
have perturbation amplitudes of AIC,S2 = 10−3, and AIC,N = 10−3.5. At quasi-steady state
the fractional changes of all the quantities are smaller than ∼ 0.04.
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Figure 3.9: (Colour online) As in figure 3.2, but for a group 3a vortex with R̃o = −0.05,
B̃u = 0.15, and f/N̄ = 0.1. The anticyclone shown in panel (b)† has two cyclonic satellites
on the vortex midplane, with neither the core nor the shield remaining similar between the
final and initial equilibria. In panel (b), the (r − z) plane’s azimuthal angle is where the
satellite vortices have the largest ω magnitude. The black dashed lines in panels (a), (c1) and
(c2) show the boundaries of the Gaussian equilibrium’s core and shield. The perturbation
amplitude(s) for panel (c1) is AIC,N = 10−2.5; and for panel (c2) are AIC,S2 = 10−3, and
AIC,N = 10−3.5. Panels (c1), (c2), and the following panels, are all on the z = 0 horizontal
plane here. Similar to previous cases, here we find that panels (d1) and (d2)’s time-averaged
final equilibria 〈ωj〉 are in fact very similar (we have not shown here, the final equilibria’s
core and shield, due to them being different than the core and shield of the axisymmetric
equilibrium, shown in (a)). The differences 〈ωj〉− ω̃ in (e1) and (e2) are large (i.e., fractional
magnitudes ' 0.02/0.03), which is consistent with the initial-value calculations in table 3.3.
(d12) shows that the difference 〈ω1〉−〈ω2〉 is small, with a fractional magnitude ' 0.003/0.03.
[†Note: Here, for the highly non-axisymmetric final equilibria of groups 3a and 3b, an average
over different final equilibria can be defined only after implementing the required rotations
and translations (see §3.2).]
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Figure 3.10: (Colour online) As in figure 3.1 again, but for a vortex in group 3b (which has
satellites above and below vortex midplane). Here R̃o = 0.4, and B̃u = 0.45. Different lines
here, are to demonstrate different perturbations. The short-dashed lines (red, in colour)
have amplitudes of AIC,A1 = 10−2, and AIC,N = 10−2.5; the black long-dashed lines have
amplitudes of AIC,S1 = 10−2, and AIC,N = 10−2.5; and the solid lines (blue, in colour) have
amplitudes of AIC,S2 = 10−2, and AIC,N = 10−2.5. In this case, at quasi-steady state the
fractional changes of all the quantities are smaller than ∼ 0.04.
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Figure 3.11: (Colour online) As in figure 3.2, but for a group 3b vortex with R̃o = 0.4, B̃u = 0.45, and
f/N̄ = 0.1. The cyclone in panel (b), not only has midplane satellites vortices, but also has a satellite
vortex above z = 0 (and one below it as well), so in addition to the (a) and (b)’s first figures showing vortex
midplane, two z = constant 6= 0 planes (i.e., where the satellites have their largest vorticity values) are
added within panels (a) and (b), with the headers above each, demonstrating the plane on which the vortex
is shown. The other parts of the figure are as in figure 3.9 (however here, the planes with maximum |ω| in
panels (c1) to (c3), (e1) to (e3), and (d12) to (d23) can have z 6= 0 values, as shown by the headers above
the figures). The perturbation amplitudes for panel (c1) are AIC,A1 = 10−2, and AIC,N = 10−2.5; for panel
(c2) are AIC,S1 = 10−2, and AIC,N = 10−2.5; and for panel (c3) are AIC,S2 = 10−2, and AIC,N = 10−2.5.
For this case, the differences 〈ωj〉 − ω̃ in (e1) to (e3) are large (i.e., fractional magnitudes ' 0.1/0.2), which
is consistent with the initial-value calculations in table 3.3. (d12), (d13), and (d23) show that the differences
〈ωj1〉 − 〈ωj2〉, j1 6= j2 are small, with fractional magnitudes ' 0.02/0.3.
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Figure 3.12: (Colour online) As panels (a) and (b) of figure 3.11, but for a group 3b vortex,
with R̃o = 0.45, B̃u = 0.3, and f/N̄ = 0.1. The average final equilibrium has a satellite
above its midplane, and one below it (the initial-value calculations for this group 3b case are
in table 3.3).

the very fast growth rate shown for the group 4 vortex in table 3.4 (σ ∼ 1 τ−1). A group 4
vortex is illustrated in figure 3.13, by showing its different final equilibria; the equilibria in
panels (b) and (c) are tripoles and pentapoles with two and four satellites, whereas for the
cases shown in panels (d) and (e), the vortex splits into two tripoles moving away from the
initial vortex’s position in the radial direction. The initial and final equilibria in groups 1,
2, 3a, 3b, and 4, all have N2

c > 0.

Group 5

Group 5 includes vortices with N2
c < 0, that have heavy fluid over light fluid near their cores,

for which the growth rate of the fastest-growing eigenmodes can be as large as ∼ 100 τ−1

(i.e., see chapter 2, §2.4, last paragraph, as well as figure 2.11). During a group 5 vortex’s
evolution, the core splits vertically into two similar parts that are approximately radially-
aligned, and that are contained in the very vicinity of the initial vortex’s core. Thus for group
5 vortices, the initial and final equilibria remain very close to each other. Our initial-value
simulations in table 3.5 show that the dj here are again small, O(10−4), or even smaller,
which is due to the small sizes of the attracting basins of the equilibria. The Dc, and Ds are
of orders 10−3, and 10−4 here indicating that for these cases, the final equilibrium remains
close to the initial equilibrium. Note also that for group 5 cases, Ro and Bu are not defined,
as these parameters’ previous definitions cannot be implemented for group 5 vortices and
their final equilibria (i.e., which have not one, but two cores). The vortices of group 5 have
A4 fastest growing eigenmodes and S4 dominant symmetry difference flows (i.e., as indicated
by the values of ΓS4 ' 0.95 shown for table 3.6’s group 5 cases, with the contributions of
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Figure 3.13: (Colour online) Vertical vorticity ω for a group 4 vortex, which can split into
two tripoles that move radially away from the initial equilibrium. R̃o = 0.2, B̃u = 0.1, and
f/N̄ = 0.1. (b) to (e) show four of the possible final equilibria ωj to which the vortex can
evolve. Panel (a) is as in panel (a) of figure 3.11, but shows the Gaussian equilibrium vortex
ω̃ here. Panels (b) and (c) are as in panel (b) of figure 3.11, but show two possible non-
splitting equilibria ωj for this case. On the other hand, the “final equilibria” in (d) and (e)
result from splitting. Here, for the cases for which the vortex splits into tripoles, the tripoles’
cores are on the z = 0 plane, and their satellites are on the z = constant planes above and
below z = 0, so (d) and (e)’s first figures show the z = 0 plane and their third and fourth
figures, the satellites’ planes. The second figure shows one of the tripoles in (r − z) plane.
The perturbation amplitude(s) for panel (b) is AIC,A3 = 10−4; for panel (c) is AIC,A2 = 10−4;
for panel (d) are AIC,S2 = 10−4, and AIC,N = 10−4.5; and for panel (e) are AIC,S4 = 10−4,
and AIC,N = 10−4.5, i.e., see table 3.4.
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Figure 3.14: (Colour online) Kinetic energy KE/K̃E, and enstrophy EN/ẼN , for different
perturbations of a group 5 vortex (i.e., N2

c < 0), showing that for all the cases demonstrated,
the vortex quickly reaches quasi-steady state. R̃o = −0.3, and B̃u = 0.17. Note also that
L/L̃, H/H̃, Ro, and Bu shown in figures 3.1, 3.4, 3.8, and 3.10 are not shown here, as their
definitions do not lend themselves to the final equilibria of group 5 (as shown in figures 3.15
and 3.16). The black long-dashed lines have perturbation amplitude of AIC,A4 = 10−4; the
short-dashed lines (red, in colour) have perturbation amplitude of AIC,N = 10−4.5; and the
solid lines (blue, in colour) have perturbation amplitudes of AIC,A4 = 10−4, and AIC,N =
10−4.5. In this case again, at the quasi-steady state the fractional changes of the shown
quantities are smaller than ∼ 0.004.

ΓA4 ' 0.03 and ΓS2 ' 0.02 shown to be much smaller). It should be noted that groups
3a and 3b cases also have large ΓS4 enstrophies, but smaller than the values of the ΓS4 for
the cases in group 5. The kinetic energy KE/K̃E, and enstrophy EN/ẼN saturation for
different perturbations (see table 3.5) of a group 5 vortex are in figure 3.14, indicating how the
perturbations grow quickly, but then saturate quickly as the vortex attains its quasi-steady
state. Two group 5 vortices are shown in figures 3.15 and 3.16.

Parameter map of stability

The parameter map of stability in the Ro − Bu space is shown in figure 3.17. Gaussian
anticyclones do not exist with Ro < −0.5 (see chapter 2, §2.2). The region to the lower
left of the thick dashed black curve corresponds to equilibrium Gaussian vortices for which
N2
c < 0 (i.e., the vortices of group 5), with B̃u = −R̃o(1 + R̃o) on the thick dashed black

curve (see (3.2)). Almost all final equilibria’s cores are on the vortex’s midplane, except for
group 5’s final equilibria, with one core above vortex midplane and the second core below it.

Figure 3.17(a) shows the regions of the parameter space, where the most unstable eigen-
modes have slow, or fast growth rates (i.e., σ < 0.02 τ−1, or σ > 0.02 τ−1). Vortices have
slow growth rates in the unlabeled region (e.g., see chapter 2, §2.4), and the other four
regions, indicated using large labels (red, in colour) have growth rates that are fast (where
σ > 0.02 τ−1) such that the vortices quickly evolve from their initial states. The labels show
symmetries of the regions’ most unstable eigenmodes, with the region labeled A having
fastest-growing eigenmodes that are anti-symmetric in z with an azimuthal wave number m
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Figure 3.15: (Colour online) The initial equilibrium ω̃, the average final equilibrium ω̂, and the numerical
quantities, describing vortex evolution for the vortices of group 5, where the core splits vertically, into two
cores radially-aligned at the initial vortex’s center. For the vortex in this figure, R̃o = −0.3, B̃u = 0.17, and
f/N̄ = 0.1. Here, once again, the first figure of (a) and (b) shows the vortex midplane (meaning z = 0),
but the second and third figures are on the planes of the cores of the ω̂. Similarly, (d1) to (d3) show the
time-averaged final equilibria 〈ωj〉 on the upper core’s plane (the second and third figures of (b) show that
the upper and lower cores are in fact similar). The white solid line(s) in (a), (b), and (d1) to (d3) are for
0.94 min [ω] iso-contour(s) showing the initial core splits into two similar pieces. The fourth figure of (a) and
(b) shows the vortex on the (r − z) plane. The black dashed lines indicate the boundaries of the core and
shield. Panels (c1) to (c3), (e1) to (e3), and (d12) to (d23) have the same interpretation, as those in figure
3.11. For all (x − y) figures, their headers indicate the plane of the figure. The perturbation amplitude(s)
for panel (c1) is AIC,A4 = 10−4; for panel (c2) is AIC,N = 10−4; and for panel (c3) are AIC,A4 = 10−4, and
AIC,N = 10−4.5. For these three cases, (d1) to (d3) show that the time-averaged final equilibria 〈ωj〉 resemble
each other closely and panel (b)’s ω̂. The differences 〈ωj〉 − ω̃ in (e1) to (e3) have fractional magnitudes of
' 0.08/0.3 (but consistent with the initial-value calculations in table 3.5 showing small Dc, and smaller Ds,
their magnitude is large only close to the initial vortex’s center). (d12) to (d23) show that the differences
〈ωj1〉 − 〈ωj2〉, j1 6= j2 are small, with fractional magnitudes ' 0.02/0.3.
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Figure 3.16: (Colour online) Similar to figure 3.15’s panels (a) and (b), but for a group 5
vortex, with R̃o = −0.4, B̃u = 0.2, and f/N̄ = 0.1. Figure 3.15’s panel (b) and the average
final equilibrium that is shown here have one core above z = 0, and another core below it
(the initial-value calculations for this group 5 case are in table 3.5).

of 1, 2, 3 or 4. Figure 3.17(b) shows the Gaussian equilibria in the Ro−Bu parameter space
and their vortex group (see previous subsection), with the vortices having final equilibria
that can belong to the six different vortex groups 1, 2, 3a, 3b, 4, and 5.

Note that while for the vortices of groups 1 and 2, the growth rates are in fact very fast
(as demonstrated in the ‘σ (τ−1)’ column of tables 3.1 and 3.2), their final equilibria remain
close to their Gaussian equilibrium, and obviously linear stability cannot be implemented
to explain the long lifetimes of the cyclonic vortices that are frequently observed in the
ocean (the vortices of groups 1 and 2 are largely cyclonic). So one possible explanation
for the robustness of the cyclones is therefore that, despite having fast growth rates, for
these vortices the perturbations quickly saturate such that they remain close to their initial
state, and the vortices are linearly unstable, but finite-amplitude stable. In §3.2 it was
demonstrated that, for the vortices remaining close to their Gaussian equilibrium there
should be Dc . 0.1 and Ds . 0.4, or Fc . 0.1 and Fs . 0.4, for the vortex core and
shield. Thus, the cyclones in a large region of the parameter space (groups 1 and 2) have
final equilibria that remain close to their Gaussian equilibrium (see figure 3.17(b)). Usually
for these vortices the fastest-growing eigenmode symmetry and the difference flow dominant
symmetry are the same (i.e., A1 symmetry for group 1 vortices and S2 symmetry for group
2 vortices). However, we find that there are several vortices (i.e., table 3.1’s first four cases)
with an S2 fastest growing eigenmode and an A1 dominant symmetry difference flow. Our
calculations show that these cases’ final equilibria are always within same attracting basins
regardless of the initial conditions. These vortices are shown with symbols ‘1’ within hollow
circles in figure 3.17(b). Also our calculations show there is a vortex in group 2 with A1
fastest growing eigenmode and S2 difference flow dominant symmetry, as demonstrated by
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Figure 3.17: (Colour online) Parameter map of stability of the vortices and their equilibria in Ro − Bu
space. No equilibrium Gaussian vortices exist with Ro < −0.5. The thick black dashed line in the lower
left corner of (a) and (b), indicates the locus over which N2

c = 0, or, B̃u = −R̃o(1 + R̃o), with N2
c < 0

for the points to its left (for their initial and final equilibria), which have small Ro and Bu. Panel (a):
Regions of parameter space with fast, and slow growth rates (i.e., σ > 0.02 τ−1, and σ < 0.02 τ−1) and
various eigenmode symmetries. The thick solid line indicates the iso-surface, where σ of the fastest-growing
eigenmode is 0.02τ−1. The region bounded by this iso-surface, the thick black dashed curve on the lower left
corner (i.e., where N2

c = 0), and the bottom of the figure has σ < 0.02 τ−1 (for more details see figures 2.8
and 2.13 of chapter 2). Outside this region (i.e., σ > 0.02τ−1), at the regions marked by the large labels (red,
in colour) vortices evolve quickly from their initial state with the labels showing symmetries of each region’s
most unstable eigenmode. The fastest growing eigenmodes in the region labeled A are anti-symmetric in z
and have azimuthal wave numbers of 1, 2, 3 or 4. Tables 3.1 to 3.5 show initial-value calculations for the
regions’ sample points. Panel (b): The labels show the Gaussian vortices and the groups their final equilibria
belong to. For group 1 and group 2 vortices shown using symbols ‘1’ (red, in colour) and ‘2’ (blue, in colour),
the difference between the initial and final equilibria has A1 and S2 dominant symmetry. The cases shown
with symbols ‘1’ in hollow circles (red, in colour) have dominant symmetry and fastest growing eigenmode of
A1 and S2, and the case shown with symbol ‘2’ in a hollow circle (blue, in colour) has dominant symmetry
and fastest growing eigenmode of S2 and A1. For groups 3a and 3b the difference between the initial and
final equilibria has no dominant symmetry. On the other hand, for the point R̃o = 0.2, B̃u = 0.1 shown
with the ‘4’, there is splitting. The cases with N2

c < 0 are shown with the ‘5’s.
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table 3.2’s first case, and shown with symbol ‘2’ in a hollow circle in figure 3.17(b)’s upper
left corner. Figure 3.18 shows the basins of attraction for the final equilibria in this study.
The basins are drawn for the final equilibria using boxes, that are to “guide the eye”. Groups
1 and 2 have attracting basins, that are very close to their initial states (consistent with the
above arguments), and for groups 3a, 3b, and 4, the attracting basins shown (which do not
include the cases, where imposition of perturbations caused the vortex to split) are clearly
far from their initial equilibrium. For the cases in figure 3.18(b), that is for groups 2, 3a, 3b,
and 4, Ro generally increases in the final equilibria, relative to initial equilibria. For larger
R̃o, the attracting basins become significantly larger for all vortices, and analogously for B̃u
more different than Bu = 1. For group 1 vortices, Ro evolves towards Ro = 0. For all cases
Bu evolves towards unity.

For a group 3b vortex with initial conditions that are purely symmetric, the values of the
symmetric and anti-symmetric enstrophies are shown in figure 3.19. The initially-minuscule
anti-symmetric enstrophy grows with an exponential rate, saturating at constant values
thereafter. Note that the flow symmetric and anti-symmetric enstrophies clearly remain
constant (see figure 3.19(b)) with comparable magnitudes, but with the symmetric flow hav-
ing enstrophies (EN/ẼN ∼ 0.1) one tenth smaller than the anti-symmetric part’s enstrophy
values (EN/ẼN ∼ 1).

For most cases in tables 3.1 to 3.5, we have used two sets of initial conditions. To show
that the final equilibria within different groups and their attracting basins are independent
of our choice for the number of the initial condition sets, we have further examined cases
with more than two sets of initial conditions, that is e.g., for the case R̃o = 0.4, B̃u = 1.4
with 5 initial condition sets, or the case R̃o = 0.2, B̃u = 1.3 with 3 initial condition sets.
Our calculations show that the sizes of the attracting basins for these cases remain consistent
with the other cases in the same vortex group (i.e., see figure 3.18, where these two vortices’
attracting basins have similar attributes as the other vortices’ attracting basins in the same
vortex group). The number of total simulation turnaround times tf for the cases for different
vortex group are in tables 1 to 5’s captions. Furthermore, our calculations show that EN ′∞,j
values are approximately-steady for groups 1, 2, 3a, 3b, and 5. Different vortex groups in
this study and the properties are in table 3.7. For groups 1 and 2, it is shown that the initial
and final equilibria remain similar, and are nearly axisymmetric. Only groups 3a, 3b, and 4
have final equilibria not similar to their initial equilibrium. Also for the anticyclones in group
5, the initial and final equilibria remain similar within their cores, and shields. However we
note that their core splits vertically into two radially-aligned cores.

Figure 3.20 shows the vorticity profile of the initial equilibrium ω̃(z) and the average final
equilibrium ω̂(z) for a group 5 case (i.e., that is the equilibrium vortex in figure 3.16) on r = 0.
Note that the profiles are vertically symmetric, with hardly-detectable anti-symmetric parts.
The final equilibrium’s profile shows two cores (where the profiles have maximum values)
and at other z values, the initial and final equilibria remain similar to each other. Note also
that we have not examined further group 5 cases with smaller Ro or Bu values, because of
their very fast growth rates, which require using much smaller time step sizes and therefore
can be computationally very expensive.
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Figure 3.18: (Colour online) Basins of attraction for all the vortices in this study. Panel (a): The close up
of the right side (Bu & 1) of figure 3.17(b), showing the basins of attraction for the vortices of group 1.
For each case, the initial equilibrium is denoted by a label ‘1’ (red, in colour), and the attracting basins by
the rectangles (red, in colour). The arrows denote the connection between the attracting basins, and the
corresponding initial equilibria. For the four cases with no arrows the initial and final equilibria are very
close. Panel (b): The close up of the left side (Bu . 1) of figure 3.17(b), showing the basins of attraction
for the vortices of group 2; and groups 3a, 3b and 4 (which do not include the cases, where imposition of
perturbations caused the vortex to split), where the initial equilibria are, respectively, denoted using labels
‘2’ (blue, in colour); and black labels ‘3a’, ‘3b’ and ‘4’. The basins of attraction in these cases are shown by
the rectangles (group 2’s cases blue, in colour) (the boxes are to “guide the eye” and are calculated for the
final equilibria, by the ∆Ro, ∆Bu, δRoj , and δBuj values shown in tables 3.1 to 3.4 for groups 1 to 4). For
the seven panel (b) cases with no arrows the initial and final equilibria are very close. For cases in panel (b),
Ro generally increases in final equilibria, relative to initial equilibria (i.e., all the arrows point upwards). In
both panels, for larger R̃o, the attracting basins become significantly larger, and analogously for B̃u more
different than Bu = 1. For cases in panel (a), Ro evolves towards Ro = 0 [i.e., for R̃o > 0 (R̃o < 0) cases,
the attracting basins’ Ro values are smaller (larger) than initial unperturbed equilibrium’s Ro]. For all cases
Bu evolves towards unity [i.e., for B̃u > 1 (B̃u < 1) cases, the attractions basins’ Bu values are smaller
(larger) than initial unperturbed equilibrium’s Bu, and do not pass Bu = 1].
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Figure 3.19: Symmetric and anti-symmetric enstrophies for a group 3b vortex with initial
conditions that are purely symmetric shown, respectively, with the black solid and dashed
lines. The example vortex equilibrium has R̃o = 0.45, B̃u = 0.3, and f/N̄ = 0.1, and
the perturbation amplitude is AIC,S2 = 10−3.5 (we note that the vortex equilibrium and
the perturbation are purely-symmetric). Panel (a) is in logarithmic scale and shows that
the anti-symmetric enstrophy that is initially-minuscule grows with an exponential rate from
round-off, which afterwards, saturates at a constant value (i.e., for t & 80τ). Panel (b) shows
that at later times, the symmetric and anti-symmetric enstrophies are in fact constant, with
comparable magnitudes (but with the symmetric part having magnitudes one tenth smaller
than the anti-symmetric enstrophy).
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Figure 3.20: Vorticity profile for the initial equilibrium ω̃(z) and the average final equilibrium
ω̂(z) of the case in figure 3.16, on the line where r = 0. The dashed and solid curves show
the initial and final equilibria, respectively. Note that, the profiles are vertically symmetric,
and the maximum values for the final profile are at the position of the cores. At the other z
values, the initial and final equilibria remain similar to each other.

Group
Similar? Gaussian?

Symm Description
core shield core shield vortex

1 X X X X G-L A1 −
2 X I X I G-L S2 −
3a − − X − N-G-L − two midplane satellites
3b − − X − N-G-L − z = ± constant satellites
4 − − − − N-G-L − the vortex can split
5 X X X X G-L S4 N2

c < 0

Table 3.7: Different vortex groups in this study and their properties, where ‘Similar?’ shows
if the core and shield of the initial and final equilibria remain similar, ‘Gaussian?’ shows
if the core and shield of the initial and final equilibria remain Gaussian-like ‘G-L’, or are
Non-Gaussian-like ‘N-G-L’. ‘I’ is for the vortex families that have intermediate Ds . 0.4
(see the text describing these equilibria). ‘Symmetry’ shows the dominant symmetries of the
difference flows for different vortex groups.
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3.4 A simplified flow representation, and the Landau

equation

Despite the fact that nonlinear vortex evolution is in most cases arduous to describe throughly,
quantitative measures are often used to outline vortex evolution, as no analytical solution
exist in such cases to describe the vortex evolution. For the vortices here, we utilize the
enstrophy measures dj, Dc, Ds, Fc, Fs, and the symmetry enstrophy measures, to identify
the final equilibrium for each examined initial state, and show that there are six different
vortex groups with different characteristics.

For the vortex groups with a dominant symmetry, here it is shown that the vortex evo-
lution as well as the characteristics of the flow are represented entirely by the unperturbed
equilibrium, its dominant symmetry eigenmode, and a complex coefficient A(t) that is cal-
culated numerically by minimizing the remainder’s L2 norm; and analytically by the Landau
equation, where the latter can provide closed-form solutions. For the cases for which the
above representation holds, we demonstrate that the remainders’ L2 norm decrease substan-
tially (or remain small), as the numerical A(t) values increase, and plateau for the flows that
have reached their quasi-steady equilibrium state. We also show here that the A(t) values
calculated numerically and analytically have close values, as do the flow representations.
Furthermore, it is illustrated that the cases that have small values of |A(t)| – are the same as
the group 1, and group 2 cases identified above, so that almost all vortices in the parameter
space have similar final and unperturbed Gaussian equilibria.

Our previous description of the flow dynamics, given by (3.15) is simplified here, for the
vortices of the groups that have dominant symmetry difference flows as

g(x, t) = g̃(r, z) +
1

2

[
geig(x)A(t) + g†eig(x)A†(t)

]
+ R′(x, t), (3.21)

where g̃(r, z) shows the real unperturbed equilibrium, geig(x) represents the complex domi-
nant symmetry eigenfunction, A(t) is a complex valued coefficient, the superscript † denotes
complex conjugate (note that g†eig(x) is an eigenfunction also), and R′(x, t) denotes the
remainder here (i.e., different than R(x, t) in (3.15)). For (3.21), the vertical vorticity rep-
resentation is

ω(x, t) = ω̃(r, z) +
1

2

[
ωeig(x)A(t) + ω†eig(x)A†(t)

]
+ ωR′(x, t). (3.22)

The way ωR′ and A are found, is by first calculating ω − ω̃, and then finding value of A
that minimizes ωR′ ’s L2 norm. This process is carried out for each time instance to find
A(t) values. Furthermore, for an analytical solution AL(t), we can use the Landau equation
[Landau 1944]

∂AL(t)

∂t
= λAL(t)− ΛAL(t)|AL(t)|2, (3.23)

where λ ≡ σ−imc shows the dominant symmetry eigenvalue (σ is the real growth rate, and c
is the real azimuthal phase speed), and Λ shows the complex Landau coefficient. Multiplying



80

(3.23) by A†L(t), and (3.23)’s complex conjugate by AL(t), adding the resulting equations,
and dividing by 2|AL(t)|, we obtain here for |AL(t)|, the equation

∂|AL(t)|
∂t

= σ|AL(t)| − <[Λ]|AL(t)|3, (3.24)

where <[Λ] denotes the Landau coefficient Λ’s real part. It can easily be shown that (3.24)’s
solution is

|AL(t)| = AIC,L√
<[Λ]
σ
|AIC,L|2 +

(
1− <[Λ]

σ
|AIC,L|2

)
exp [−2σt]

, (3.25)

where AIC,L ≡ |AL(t = 0)| is the initial AL’s amplitude. AIC,L is calculated by finding |A(t)|
and |AL(t)|’s difference during linear growth stage (i.e., times when the differences between
|A(t)| and a linear fit are smaller than 10 percent), and minimizing its values. The Landau
coefficient’s real part <[Λ] is calculated, after flow reaches quasi-steady state, by assuming
|AL(t→∞)| = 〈|A(t)|〉 and using <[Λ] = σ/|AL(t→∞)|2. The equation

ω(x, t) = ω̃(r, z) +
1

2

[
ωeig(x)A(t) + ω†eig(x)A†(t)

]
, (3.26)

where ωeig shows the fastest growing dominant symmetry eigenmode’s vertical vorticity,
presents the simplified representation discussed above, and we show here that it is a good
representation for the vortices of group 1 (i.e., for which ωeig is the vortex’s fastest growing
eigenmode with A1 symmetry). Figure 3.21 shows that for an example group 1 vortex (the
group 1 case shown in figure 3.2’s panel (b)), the ω̂−ω̃ and 〈A〉ωeig representations of the flow
are very close to each other, and therefore (3.26) presents an almost self-contained solution.
For the case above, figure 3.22’s top and bottom panels show, respectively, the remainder
norms and |A(t)| values. The remainder ωR′s’ norms decrease, or remain small, and |A(t)|
values increase, such that at later times the remainder norms obtain small values, and |A(t)|
values plateau. The thick gray line in figure 3.22’s bottom panel shows the |AL(t)|. At the
late times, the values of |A| and |AL| are close, showing that the Landau equation holds in
this case. The same results as above hold for the vortices of group 2 (i.e., with ωeig here
being the vortex’s fastest growing eigenmode with S2 symmetry). Figure 3.23 shows that
for an example group 2 vortex (the group 2 case presented in figure 3.5’s panel (b)), the
two representations of the flow are again very close and again (3.26) is almost self-contained.
The remainder norms, |A(t)|, and |AL(t)| for this case are shown in figure 3.24, where the
remainder norms decrease, or remain small, and the numerically computed A’s absolute
values increase, and again at quasi-steady state the norms obtain small values, and |A(t)|
values plateau. The figure’s bottom panel shows that the Landau equation holds in this
case. For vortices of groups 3a, 3b, 4, and 5, a (3.26) representation clearly does not hold
(i.e., the remainder norm, we find, is clearly large in such cases).
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Figure 3.21: (Colour online) Vertical vorticity difference ω̂ − ω̃ (for the group 1 case shown in
figure 3.2’s panel (b)), and 〈A〉 ωeig, normalized (i.e., via dividing by |ω̂ − ω̃|’s maximum), so the
maximum value of the |ω̂ − ω̃| is 1. The representations are very close to each other, showing that
ω = ω̃ + ωeigA is an almost self-contained solution in this case (the remainder norm and |A(t)| for
this case are shown in figure 3.22). The broken lines denote the boundaries of the core and shield
of the unperturbed Gaussian equilibrium, i.e., ω̃. The left two panels show ω̂− ω̃ and the right two
show 〈A〉 ωeig. The first and third panels of the figure show the flow in the x-y plane, that has a
fixed-z (i.e., the z, where |ω̂ − ω̃| obtains its maximum value). The second and fourth panels show
each of the representations in the r-z plane for a fixed azimuthal angle φ. In all cases, φ is chosen
so that it is the angle at which ω̂ − ω̃ of the flow obtains its maximum value.

Assuming that the flow goes to quasi-steady state, the Landau equation (3.24)’s steady
state solution is given by

|AL(t→∞)| =
√

σ

<[Λ]
, (3.27)

where <[Λ] denotes the Landau coefficient Λ’s real part. For the vortices for which (3.26),
and the Landau equation hold, the final and unperturbed Gaussian equilibria are similar,
only in the cases that the <[Λ]/σ is large, and otherwise, they can be different. We found,
to our surprise, that the cases with large <[Λ]/σ are the same as group 1, and group 2 cases
examined here (i.e., 110 . <[Λ]/σ for group 1 cases, and 21 . <[Λ]/σ . 100 for group 2
cases). Therefore, almost all vortices have similar final and unperturbed Gaussian equilibria.
This is in agreement with group 1, and group 2 having Gaussian-like final equilibria (see §3.3).
It should be noted here that we could not calculate the Landau coefficient Λ a priori. A
Landau coefficient can be calculated, only after flow reaches quasi-steady state.

3.5 Discussion and summary

The 3D Gaussian vortices, and their evolution, along with their finite-amplitude stability
have been examined here; with the vortex parameters including the Rossby number, Ro, and
Burger number, Bu, over a relevant set of values that are found by examining observations
(−0.5 < Ro < 0.5 and 0.07 < Bu < 2). For each (Ro,Bu), and its different perturbations,
the evolution of the unstable flow is examined numerically using an initial-value solver.

The results of the stability analysis are summarized in the Ro − Bu parameter map
(figure 2.8). The results of chapter 2 show that the cyclonic neutrally-stable vortices are in
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Figure 3.22: (Colour online) The remainder norm ‖ωR′‖2/‖ω−ω̃‖2 and the |A(t)| for the case shown
in figure 3.21. The remainder norms decrease towards smaller values, and plateau (or remain small),
as |A(t)| values increase, and plateau. At quasi-steady state, the flow has remainder norms that
are small, i.e. ‖ωR′‖2/‖ω − ω̃‖2 . 0.1. Different line styles (and colours, in colour version) are for
different perturbations, as shown in figure 3.1’s caption (i.e., that is the perturbation amplitude(s)
for the black long-dashed lines is AIC,A1 = 10−2; for the short-dashed lines (red, in colour) are
AIC,A1 = 10−2, and AIC,N = 10−2.5; and for the solid lines (blue, in colour) are AIC,S2 = 10−2,
and AIC,N = 10−2.5) (the top panel’s black long-dashed line, and short-dashed line (red, in colour)
are very close, due to having very close values). For a case starting with the initial conditions
of the Gaussian equilibrium and dominant symmetry eigenmode only (i.e., the black long-dashed
line here); initially ‖ωR′‖2(t = 0) = 0. The thin lines in the bottom panel demonstrate the |A(t)|,
and the thick gray lines are for the |AL(t)|, given by (3.25). At the late times, the values of |A|
and |AL| are close, showing that the Landau equation holds in this case (the bottom panel’s black
long-dashed line, short-dashed line (red, in colour), and their corresponding Landau solutions are
very close, due to having very close values).
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Figure 3.23: (Colour online) As in figure 3.21, but for the group 2 case shown in figure 3.5’s
panel (b). For the x-y planes here the fixed-z is z = 0.

a small parameter space region where Ro ∼ 0.02 − 0.05 and Bu ∼ 0.85 − 0.95. It is easy
to show for these vortices that the final and initial unperturbed equilibria remain close, due
to having σ = 0. Furthermore, it was shown in chapter 2 that over a large region of the
Ro−Bu parameter space (mainly Ro < 0 and 0.5 < Bu < 1.3), the maximum growth rates
of the vortices (mostly anticyclones) are smaller than 50 turnaround time (τ) of the vortex,
showing that these vortices as well remain close to their initial unperturbed equilibrium
(i.e., over times that are less than or equal to 50 vortex turnaround time). The unlabeled
region within figure 2.8 shows where these vortices exist. Here our results are discussed in
terms of six different vortex groups and their final equilibria (that are obtained using initial-
value calculations). For group 1 vortices, the most unstable eigenmodes’ growth rates are
fast (i.e. σ > 0.02 τ−1). These vortices have Bu & 1, and their difference flow is almost
anti-symmetric, with respect to the z = 0 plane and has m = 1 azimuthal wave number
(denoted as A1 mode). Our initial-value calculations here show that any perturbations
added to the initial vortex state, quickly saturate at small amplitudes, and the initial and
final equilibria remain similar to each other. For group 2 vortices (Bu . 1), the most
unstable eigenmodes have large growth rates (σ > 0.02 τ−1) again, and the final and initial
unperturbed equilibria remain close to each other again. After being perturbed, the flow
evolves such that in these cases, the difference flow from the initial state can be demonstrated
to be almost symmetric, with respect to the z = 0 plane and have m = 2 azimuthal wave
number (S2 mode). Again our initial-value calculations here show that, any perturbations
added to the initial vortex state quickly saturate at small amplitudes (and the initial and
final equilibria remain similar to each other). For smaller Bu groups 3a and 3b have final
equilibria where neither their core nor their shield remain similar to the core and shield of
the unperturbed Gaussian equilibrium. It can be shown that the core of the final equilibrium
is near a Gaussian state (but also that the initial shield breaks into multiple smaller satellite
vortices, on, or above/below vortex’s midplane, showing that the final equilibria are in fact
non-Gaussian-like). The final equilibria of these vortices show no dominant symmetries.
Furthermore, group 3a shows the anticyclones with two cyclonic satellite vortices that reside
on the vortex’s midplane (z = 0); and group 3b is to demonstrate initial cyclones which
have one or two satellite vortices that are above vortex’s midplane, and one or two that are
below it. Group 4 shows the cases for which vortex can split. For group 5 vortices, the
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Figure 3.24: (Colour online) As in figure 3.22, but for the case shown in figure 3.23. Different
line styles (and colours, in colour version) are for different perturbations, shown in figure
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is AIC,N = 10−2.5; and for the solid lines (blue, in colour) are AIC,S2 = 10−2, and AIC,N =
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interior of the vortex is statically unstable. The growth rates of the most unstable mode for
these anticyclones are much larger (by factors up to several thousand or more) compared to
those of the anticyclones outside this region. Group 5’s final equilibria have two radially-
aligned cores, and the final equilibrium is statically unstable. Due to the large growth rates
of these vortices, the perturbations quickly grow and quickly saturate, but the difference
flow is confined to the vicinity of the initial vortex’s core, and in the shield the flow remains
unchanged from the initial equilibrium.

Our quantitative description above of the equilibria in this study is carried out mostly
with the enstrophy measures (that is using equilibria’s vertical vorticity). The nonlinear
flow evolution, however, sometimes can be difficult to describe, specifically in the cases that
an analytical closed-form solution does not exist. Focusing on the vortices that have close
final and initial unperturbed equilibria, and are statically stable (N2

c ≥ 0), we show that the
flow is representable by the Gaussian equilibrium and its dominant symmetry eigenmode
(see (3.26)), with any time dependence demonstrated entirely by a complex coefficient A(t)
(A(t) is calculated numerically by minimizing the remainder’s norm). Numerically computed
A(t) values then increase, as remainder norm values decrease, or remain small, such that
deviations from the above representation become (or remain) small at quasi-steady state.
Furthermore, the numerically calculated |A(t)| values are shown to follow the Landau equa-
tion (see equation (3.24)), which can provide a closed-form analytical solution, i.e., |AL(t)|
(see equation (3.25)). Note that this solution can not be calculated a priori, given that the
Landau coefficient Λ is calculable only after flow reaches quasi-steady state and remains at
quasi-steady state.

Our study above can have further implications with regards to the fact that observations
of oceanic vortices show that cyclones remain robust for long periods of time (see §3.1).
Here we find that despite having fast growth rates, cyclones remain almost unchanged after
flow reaches quasi-steady state. Although a fast instability growth rate can destroy a vortex
via nonlinear, finite-amplitude instabilities, it also is possible that the perturbations quickly
saturate, such that the initial and final equilibria remain close to each other. Our goal here
has been to demonstrate the latter, with our results showing that over large regions of our
parameter space vortices remain close to their initial unperturbed equilibrium. Nonetheless,
it should be noted here that, our explanation for the equilibria’s robustness does not require
a direct forcing mechanism; it only involves damping of velocity and density far from the
initial conditions’ position (i.e., see Appendix B).
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Appendix A

Definitions of shield, satellites and
core

The qualitative definitions for core, shield and satellites were in §2.2, and §3.2. To avoid
having the definitions for the above-mentioned regions, from including “large-r” areas (i.e.,
that is where there is possibly weak vorticity, vorticity filaments, and/or inertia-gravity
waves with the boundary damping acting over) that are faraway form the vortex itself, we
have to pick “cut-off” values, for the sake of excluding regions which have such “large” radii.
For a cyclone, we define the core as the contiguous cyclonic region that includes the vortex
center where ω is greater than a cut-off value of 0.01Ωmax, where Ωmax is the maximum
vorticity of the vortex. The shield is defined as the contiguous region where ω < 0 and
|ω| > 0.01|Ωmin|, where Ωmin is the minimum value of ω in the vortex. The satellites have
a similar definition to shield, but rather than being contiguous, have multiple regions. Our
choice of 0.01 in these cut-off values is arbitrary, but the conclusions about the vortices’
attraction basins, and the computed values of the enstrophies Score, Sshield, Ds, Dc, Fs, and
Fc are insensitive to the exact choice of cut-off value because the ω of the vortices, and the
integrands in the definitions (2.27), (2.28), (3.8), (3.9), (3.12), and (3.13) are, by definition
and our demonstrations above, very small in regions where ω is near the cut-off value.
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Appendix B

Numerical sponge layer, and the
energy calculations

To compute unbounded flows in a triply-periodic computational domain, we added an arti-
ficial “sponge layer” far from the vortices that were initially centered at the origin. This is
accomplished by adding Rayleigh drag and Newtonian cooling terms in the form of −fbdv
and −fbdb to the right sides of the momentum and buoyancy equations in (2.1), respectively,
where fbd is a function that smoothly varies from zero inside a cylindrical surface to a value
of one outside of the cylinder, i.e.,

fbd = [1− T (z, Lz,bd, sz)T (r, Lr,bd, sr)] /τbd, (B.1)

where Lr,bd is the cylinder diameter, Lz,bd is the height, sr and sz are the steepness in r and
z, τbd is the damping time scale, r = (x2 + y2)1/2, and

T (γ, w, s) ≡ 1/2 (tanh [(γ + w)/s]− tanh [(γ − w)/s]) , (B.2)

is top hat function. T smoothly drops from a value of 1 to 0 for |γ| > w/2 over a distance
s. We use τbd = 20∆t, sr,bd = 0.01(L2

x + L2
y)

1/2, Lr,bd = 0.85(L2
x + L2

y)
1/2, sz,bd = 0.01Lz, and

Lz,bd = 0.85Lz for the numerical calculations that are carried out here.
For the nonlinear evolution processes that we studied above (i.e., as discussed in chapter

3), energy calculations for the initial conditions, unperturbed initial equilibria (N2
c > 0),

and the differences between the initial and final equilibria for a few representative cases
are given in table B.1 of the appendix. These results show that the differences between
the initial and final equilibria’s energies are due to the kinetic energy KE and potential
energy PE damping, before, during, and after vortex evolution, by boundary damping and
hyperdissipation. The potential energy damping ∆PEbd,j is positive for groups 2 and 3,
and negative for group 1. As the table indicates, the ∆PEbd,j has the largest magnitude
by far, with the KE hyperviscosity damping (i.e., ∆KEhv,j) also having values that are
intermediate. Finally, we note that the kinetic energy boundary damping ∆KEbd,j and
potential energy hyperdiffusivity damping ∆PEhd,j have the relatively smallest values.
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Ẽ

∆
K

E
b
d
,j

Ẽ
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Ẽ

(1
0
−

9
)

(1
0
−

5
)

(1
0
−

5
)

(1
0
−

5
)

(1
0
−

8
)

(1
0
−

1
1
)

(1
0
−

6
)

1
+

0
.2

1
.3

0
.0

3
8
−

1
.0

3
8

A
1

−
2

-
-

3
8
0
0

−
1
3

1
0

−
2
.4

−
2
1

3
.6

−
9
.6

A
1

−
2

N
−

2
.5

4
0
0
0

−
1
3

1
0

−
2
.4

−
1
8

2
.2

−
8
.3

S
2

−
2

N
−

2
.5

4
2
0
0

−
1
4

1
0

−
3
.4

−
1
9

−
1
.9

−
8
.4

+
0
.1

1
.6

0
.0

1
8
−

1
.0

1
8

N
−

2
.5

-
-

1
1
0

−
6
.9

5
.1

−
1
.4

−
3
.7

7
.3

−
3
.6

A
1

−
2

N
−

2
.5

2
1
0
0

−
7
.2

5
.4

−
1
.6

−
6
.3

−
5
.1

−
3
.7

2
+

0
.2

0
.7

5
0
.0

3
8
−

1
.0

3
8

N
−

2
.5

-
-

5
0
0

8
6

−
5
3

3
7

−
1
6
0

−
2
.7

−
4
2

S
2

−
2

N
−

2
.5

4
2
0
0

8
8

−
5
6

3
5

−
2
0
0

−
1
0

−
3
2

+
0
.1

0
.6

0
.0

1
8
−

1
.0

1
8

N
−

2
.5

-
-

1
4
0

4
4

−
8
.9

3
8

−
2
1

4
.8

−
3
2

S
2

−
2

N
−

2
.5

2
1
0
0

4
5

−
1
0

3
7

−
4
7

−
2
.4

−
2
0

3a
−

0
.0

5
0
.1

5
0
.0

0
8
6

0
.9

9
1
4

N
−

2
.5

-
-

5
4

6
0
0

−
1
4
0

5
1
0

−
6
2
0

8
9

−
5
0
0

S
2

−
3

N
−

3
.5

1
2

6
1
0

−
1
7
0

4
9
0

−
7
1
0

−
5
2

−
5
3
0

3b

+
0
.4

5
0
.3

0
.0

9
1
−

1
.0

9
1

A
2

−
3
.5

-
-

9
.2

5
9
0
0

−
5
0
0
0

1
4
0
0

−
1
4
0
0
0

−
9
0
0

−
4
9
0
0

A
3

−
3
.5

-
-

9
.1

5
5
0
0

−
4
8
0
0

1
1
0
0

−
8
8
0
0

−
3
.8

−
3
9
0
0

A
4

−
3
.5

-
-

9
.1

5
4
0
0

−
4
6
0
0

1
3
0
0

−
8
2
0
0

7
2
0
0

−
4
8
0
0

S
2

−
3
.5

-
-

9
.1

5
8
0
0

−
5
0
0
0

1
3
0
0

−
1
1
0
0
0

1
.9

−
4
6
0
0

S
3

−
3
.5

-
-

1
2

5
6
0
0

−
4
9
0
0

1
1
0
0

−
5
6
0
0

−
7
4
0
0

−
4
2
0
0

S
4

−
3
.5

-
-

9
.4

5
4
0
0

−
4
7
0
0

1
1
0
0

−
7
0
0
0

1
7
0
0
0

−
3
9
0
0

N
−

3
.5

-
-

3
4

5
9
0
0

−
5
1
0
0

1
2
0
0

−
5
7
0
0
−

3
8
0
0
0
−

3
7
0
0

+
0
.4

0
.4

5
0
.0

8
0
−

1
.0

8
0

A
1

−
2

N
−

2
.5

8
6
0
0

1
5
0
0

−
1
2
0
0

4
0
0

−
1
5
0
0

−
1
.3

−
6
8
0

S
1

−
2

N
−

2
.5

9
5
0
0

1
5
0
0

−
1
2
0
0

4
0
0

−
1
4
0
0

1
8
0

−
7
2
0

S
2

−
2

N
−

2
.5

8
8
0
0

1
6
0
0

−
1
3
0
0

4
2
0

−
2
8
0
0

−
3
2

−
7
8
0

T
ab

le
B

.1
:

E
n

er
gy

ca
lc

u
la

ti
on

s
fo

r
se

ve
ra

l
re

p
re

se
n
ta

ti
ve

ca
se

s
(o

f
n

o
n

li
n

ea
r

ev
o
lu

ti
o
n

):
fo

r
in

it
ia

l
co

n
d

it
io

n
s,

u
n

p
er

tu
rb

ed
in

it
ia

l
eq

u
il

ib
ri

a
(N

2 c
>

0)
,

an
d

th
e

d
iff

er
en

ce
s

b
et

w
ee

n
th

e
in

it
ia

l
a
n

d
fi

n
a
l

eq
u

il
ib

ri
a
,

w
h

ic
h

a
re

d
u

e
to

th
e

k
in

et
ic

en
er

g
y
K
E

an
d

p
ot

en
ti

al
en

er
gy

P
E

d
am

p
in

g,
b

ef
o
re

,
d

u
ri

n
g
,

a
n

d
a
ft

er
vo

rt
ex

ev
o
lu

ti
o
n

b
y

b
o
u

n
d

a
ry

d
a
m

p
in

g
a
n

d
h
y
p

er
d

is
si

p
a
ti

o
n

.
F

or
ea

ch
gr

ou
p

,
on

e
or

tw
o

ca
se

s
ar

e
in

d
ic

a
te

d
,

w
it

h
th

e
en

er
g
y

ca
lc

u
la

ti
o
n

s
fo

r
ea

ch
ca

se
g
iv

en
a
ft

er
w

a
rd

s.
F

o
r

o
th

er
v
o
rt

ic
es

si
m

il
ar

re
su

lt
s

(n
ot

sh
ow

n
h
er

e)
ar

e
fo

u
n

d
.

T
h

e
va

lu
es

o
f
K
E

a
n

d
P
E

a
re

n
o
rm

a
li

ze
d

,
b
y

d
iv

id
in

g
b
y

th
e

m
a
g
n

it
u

d
e

o
f

th
e

en
er

gy
Ẽ
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Appendix C

Eigenmode solver and symmetrizer

We calculate the fastest-growing eigenmodes of the vortices by modifying our initial-value
code into a “power method” analogous to the iterative method used for finding the eigen-
vector of a matrix whose eigenvalue has the greatest absolute value [Press et al. 2007], but
we do not use the pre-conditioners developed by Tuckerman & Barkley [1988] to speed-up
convergence. Rather, we use a spatial symmetrizer to speed up convergence. The rate of
convergence of the power method to the fastest-growing eigenmode depends on the difference
between the growth rate of the fastest-growing eigenmode and the growth rate of the second
fastest-growing eigenmode. By examining only one spatial symmetry class at a time, we
generally increase the difference between the growth rates of the fastest-growing and second
fastest-growing eigenmodes, and thereby obtain faster convergence.

The easiest way to limit the solutions of the eigenmode solver to modes that are symmetric
or anti-symmetric in z is to limit the initial-value solver used in the power method to those
symmetries. Using our spatially triply periodic code, the z-dependence of the solutions are
represented here with Fourier modes ei2πkz/Lz , where −Lz/2 ≤ z < Lz/2, and where k is an
integer. Therefore, it is easy to compute “z-symmetric” solutions, where vx, vy, and p are
symmetric about z = 0 and ρ, b, and vz are anti-symmetric about z = 0 by restricting the
former three variables to a cosine series cos(2πkz/Lz) and the latter three variables to a sine
series sin(2πkz/Lz). For “z-anti-symmetric” solutions we swap sines with cosines.

When computing solutions in a cylindrical coordinate system (r, φ, z) with a spectral
code, it is trivial to restrict solutions to have only one value of azimuthal wave number
M along with its harmonics. With a spectral method, the velocity, pressure, buoyancy,
and density are each represented with a truncated series of basis functions in which the φ
dependence is expressed in terms of Fourier modes eimφ, and the r dependence is expressed
in terms of the eigenmodes of a Sturm-Liouville equation chosen such that the truncated
series converges exponentially and such that all of the basis functions are analytic at the
origin (see, for example, the spectral expansions used by Matsushima & Marcus [1995] and
by Matsushima & Marcus [1997]). Solutions can be forced to be M -fold symmetric in φ
about the z-axis by restricting the basis functions eimφ in the spectral expansion to wave
numbers m that are divisible by M .
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However, because we plan to add Cartesian shear to our future calculations, say, for
example to represent the Great Red Spot of Jupiter embedded in a shearing zonal flow, we
chose here to compute in Cartesian, rather than cylindrical, coordinates. None the less, it is
still possible to force solutions to have only azimuthal wave numbers that are odd, or that
are even and divisible by 4, or that are even and not divisible by 4. We can do this efficiently
when the grid of collocation points of the Fourier modes in the horizontal direction is made
of square cells and the horizontal computational domain is square. In this case, the grid
of collocation points is invariant under rotations of 90◦ around the z-axis. To restrict the
solution to azimuthal wave numbers that are even and divisible by 4 – without interpolation
(which causes errors), and without dividing or multiplying by r (which is problematic near
the origin), we do the following operations after each time step of an initial value code:

1. Compute vr and vφ at each grid point from the values of vx and vy at the grid point.

2. Compute a new value vNEWφ at each grid point (x, y, z) by “averaging” such that

vNEWφ (x, y, z) ≡ [vφ(x, y, z) + vφ(−y, x, z) + vφ(−x,−y, z) + vφ(y,−x, z)]/4. (C.1)

3. Do the same type of averaging to create new values vNEWr , vNEWz , ρNEW , bNEW , and
pNEW .

4. Compute vNEWx and vNEWy at each grid point from vNEWr and vNEWφ at the grid point.

5. Compute the flow at the next time using the initial-value solver using the NEW values
of all of the variables.

To restrict the solution to azimuthal wave numbers that are even and not divisible by 4,
we carry out the same procedure as above, but we replace the averaging in (C.1) with

vNEWφ (x, y, z) ≡ [vφ(x, y, z)− vφ(−y, x, z) + vφ(−x,−y, z)− vφ(y,−x, z)]/4. (C.2)

To restrict the solution to azimuthal wave numbers that are odd, we carry out the same
procedure as above, but we replace the averaging in (C.1) with

vNEWφ (x, y, z) ≡ [vφ(x, y, z)− vφ(−x,−y, z)]/2. (C.3)
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Appendix D

Initial-value solver and symmetry
calculations

We calculate the dynamics of the vortices using an initial-value solver that is analogous to
Barranco & Marcus [2006]’s semi-analytic method for rotating stratified flows. Our initial-
value calculations show that all but one of the vortices evolve towards well-defined attracting
basins. In order to efficiently describe the remainder (the difference between the flow at any
time t and the axisymmetric equilibrium) and its evolution, we define symmetry classes, such
that different dominant symmetries indicate different vortex groups. For different pertur-
bations, our calculations show that the vortex attains the same final dominant symmetry,
regardless of the initial conditions implemented and therefore, is within the same vortex
group (this argument is also valid for the vortices that have different fastest growing eigen-
mode and dominant symmetries).

Generally, it is easy to separate solutions into parts that are symmetric or anti-symmetric
in z (for more details, see Appendix C). Also when computing solutions in cylindrical coor-
dinates (r, φ, z) with a spectral code, it is trivial to separate solutions into parts that have
only one value of azimuthal wave number M along with its harmonics (see Appendix C).

Note however that to avoid the difficulties of e.g., division by declining r at the origin
(r = 0), we choose here to compute in Cartesian, rather than cylindrical, coordinates. None
the less, it is still possible to decompose solutions to parts having only azimuthal wave
numbers that are odd, or that are even and divisible by 4, or that are even and not divisible
by 4 (i.e., the possible symmetry groups in this study). We can do this efficiently when
the grid of collocation points (i.e., see §3.2’s text) of the Fourier modes in the horizontal
direction is made of square cells and the horizontal computational domain is square. In this
case, the grid of collocation points is invariant under rotations of 90◦ about the z-axis. To
separate the solution to azimuthal wave numbers, that are odd, and those that are even, we
carry out the following operations for a solution obtained from an initial value code:

(i) Compute vr and vφ at each grid point from the values of vx and vy at the grid point.
(ii) Compute the odd part vφodd and the even part vφeven at each grid point (x, y, z) from
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vφ and vφ at 180◦ such that

vφodd ≡ [vφ(x, y, z)− vφ(−x,−y, z)]/2, (D.1)

vφeven ≡ [vφ(x, y, z) + vφ(−x,−y, z)]/2, (D.2)

where we note that vφ = vφodd + vφeven.
(iii) Repeat the same sort of calculation to find vrodd, vreven, vzodd, vzeven, ρodd, ρeven, bodd,

beven, podd, and peven.
(iv) Compute vxodd and vyodd at each grid point from vrodd and vφodd at the grid point;

and vxeven and vyeven from vreven and vφeven.
(v) Do steps (i) to (iv) as required for each solution, and/or time t of the initial-value

solver.
To separate the even solution to the azimuthal wave numbers that are not divisible by 4

and those that are divisible by 4, we carry out the same procedure as above, but instead of
vφ at 180◦ we use vφ at 90◦ and replace the calculations in (D.1) and (D.2) with

vφeven,nd4 ≡ [vφeven(x, y, z)− vφeven(−y, x, z)]/2, (D.3)

vφeven,d4 ≡ [vφeven(x, y, z) + vφeven(−y, x, z)]/2, (D.4)

where we note that vφeven = vφeven,nd4 + vφeven,d4.
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Appendix E

Growth rate and symmetry of
selected vortex eigenmodes

The growth rate σ and symmetry of the fastest-growing eigenmode of vortices with σ > 0.02
(τ−1) and N2

c > 0 shown by symbols in figure 2.8(a) are presented in Table E.1.
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Ro Bu Symmetry σ Ro Bu Symmetry σ

+0.5 0.65 A1 0.26 +0.1 2.0 A1 0.081
+0.5 0.75 S2 0.21 +0.1 2.3 A1 0.091
+0.5 1.0 S2 0.20 +0.05 0.05 A1 1.0
+0.5 1.4 S2 0.18 +0.05 0.1 A1 0.44
+0.5 1.6 S2 0.17 +0.05 0.125 A1 0.28
+0.5 2.0 S2 0.16 +0.05 0.15 A1 0.16
+0.5 2.3 A1 0.16 +0.05 0.25 S2 0.072
+0.45 0.3 A3 1.5 +0.05 0.3 S2 0.067
+0.45 2.3 A1 0.15 +0.05 0.4 S2 0.054
+0.4 0.45 A1 0.4 +0.05 0.6 S2 0.028
+0.4 0.55 A1 0.24 +0.05 1.4 A1 0.040
+0.4 0.65 S2 0.18 +0.05 1.6 A1 0.054
+0.4 0.75 S2 0.17 +0.02 0.02 A1 1.21
+0.4 1.2 S2 0.14 +0.02 0.05 A1 0.58
+0.4 1.4 S2 0.13 +0.02 0.5 S2 0.029
+0.4 1.6 A1 0.13 +0.02 1.3 A1 0.025
+0.35 0.65 S2 0.16 +0.02 1.4 A1 0.034
+0.3 0.25 A1 0.77 +0.02 1.6 A1 0.049
+0.3 0.65 S2 0.13 −0.02 0.05 S2 0.065
+0.25 0.65 S2 0.11 −0.02 0.4 S2 0.029
+0.25 1.4 A1 0.082 −0.02 1.4 A1 0.028
+0.25 1.6 A1 0.092 −0.02 1.6 A1 0.043
+0.2 0.1 A4 2.9 −0.05 0.15 S2 0.053
+0.2 0.15 A2 1.1 −0.05 0.25 S2 0.041
+0.2 0.18 A1 0.76 −0.05 0.3 S2 0.032
+0.2 0.225 A1 0.54 −0.05 1.4 A1 0.024
+0.2 0.26 A1 0.41 −0.1 0.1 S2 0.048
+0.2 0.3 A1 0.29 −0.1 0.15 S2 0.041
+0.2 0.45 S2 0.11 −0.1 1.6 A1 0.032
+0.2 0.55 S2 0.099 −0.15 0.2 S2 0.023
+0.2 0.65 S2 0.089 −0.18 0.15 S2 0.024
+0.2 0.75 S2 0.079 −0.2 1.6 A1 0.023
+0.2 0.85 S2 0.070 −0.2 2.0 A1 0.042
+0.2 1.0 S2 0.058 −0.2 2.3 A1 0.051
+0.2 1.2 A1 0.054 −0.3 1.7 A1 0.021
+0.2 1.4 A1 0.070 −0.35 1.75 A1 0.021
+0.2 1.6 A1 0.081 −0.4 1.8 A1 0.021
+0.2 2.0 A1 0.097 −0.4 2.0 A1 0.028
+0.15 1.0 S2 0.033 −0.4 2.3 A1 0.035
+0.13 1.06 A1 0.02 −0.495 1.5 A1 0.020
+0.1 0.6 S2 0.049 −0.495 1.7 A1 0.029
+0.1 0.8 S2 0.027 −0.495 1.9 A1 0.036
+0.1 1.6 A1 0.062

Table E.1: The growth rate σ (in units of τ−1) and symmetry of the fastest-growing eigen-
mode of vortices with σ > 0.02 τ−1 and N2

c > 0 shown by symbols in figure 2.8(a).
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