UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
The Right Concept at the Right Time How Concepts Emerge as Relevant in Response to
Context-Dependent Pressures

Permalink

bttgs:géescholarshiQ.orggucéitem48t04d69§

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 12(0)

Authors

Mitchell, Melanie
Hofstadter, Douglas R.

Publication Date
1990

Peer reviewed

eScholarship.org Powered by the California Diqgital Library

University of California

https://escholarship.org/uc/item/8t04d6g3
https://escholarship.org
http://www.cdlib.org/

The Right Concept at the Right Time: How Concepts Emerge as Relevant
in Response to Context-Dependent Pressures

Melanie Mitchell and Douglas R. Hofstadter
Center for Research on Concepts and Cognition
Indiana University

Abstract

A central question about cognition is how, faced with a situation, one explores possible ways of
understanding and responding to it. In particular, how do concepts initially considered irrelevant, or not
even considered at all, become relevant in response to pressures evoked by the understanding process itself?
We describe a model of concepts and high-level Pcrceptjon in which concepts consist of a central region
surrounded by a dynamic nondeterministic “halo” of potential associations, in which relevance and degree
of association change as processing proceeds. As the representation of a situation is built, associations arise
and are considered in a probabilistic fashion according to a parallel terraced scan, in which many routes
toward understanding the situation are tested in parallel, each at a rate and to a depth reflecting ongoing
evaluations of its promise. We describe a computer program that implements this model in the context of
analogy-making, and illustrate, using screen dumps from a run, how the program’s ability to flexibly
bring in appropriate concepts for a given situation emerges from the mechanisms we are proposing.

Suppose you invite your friend Greg to dinner, and he doesn’t show up on time. What do you do?
At first, simple, standard explanations and actions come to mind: he was briefly delayed; he ran
into traffic; he had trouble parking. But as half an hour passes, then an hour, then two, the
explanations and actions you think of become more and more out of the ordinary. The following
might come to mind: call his office (no answer); call his apartment (no answer); check your
calendar to make sure the dinner date is tonight (it is); rack your brains trying to remember if he
warned you he might be late (no such memory); call friends of his to see if they know where he is
(they don’t); call his parents in Philadelphia (haven’t heard from him in weeks); call the police
(they suggest checking the hospital); call the hospital (not there); go to his apartment (not there);
ask his neighbors if they've seen him lately (last saw him this morning); drive along routes he
would likely have taken (he’s nowhere to be seen); buy a megaphone and call out his name as you
drive along; call several airlines to see if he’s on a plane leaving town tonight; turn on the TV to
see if you can spot him sitting in the audience of his favorite talkshow; and so on. Though the last
few are outlandish, most of these thoughts did occur to the authors when they were in such a
situation. The point is: as time goes by and pressure builds up, one’s thoughts go farther and farther
out on a limb. One considers things one never would have considered initially, letting seemingly
unquestionable aspects of the situation “slip” under mounting pressure (e.g., Did I dream I invited
him? Did we have a falling-out I forgot about? Did he leave town and not tell me?).

This example illustrates some critical issues in cognition: Faced with a situation, how does one
explore possible ways of understanding it, explaining it, or acting in response to it? How do
concepts initially considered irrelevant, or not even considered at all, become relevant in response to
pressure? How does one let go of notions that looked relevant but turn out not to be of help after all?

We are studying these issues by developing a model of concepts and high-level perception in
which a concept consists of a central region surrounded by a dynamic, probabilistic “halo” of
potential associations (Hofstadter, 1988). In its halo, “driving” has such concepts as “parking”,
“getting stuck in traffic”, “having an accident”, etc., each with a degree of association that changes
in response to context (a phenomenon often discussed by psychologists, e.g., Tversky, 1977; Barsalou,
1989). The halo has no fixed boundary; it cannot be said absolutely that a given concept is or is not
associated with “driving”. Instead, different degrees of association reflect probabilities that once a
concept is seen as relevant, various associated concepts will also become relevant. The dynamic
nature of relevance and conceptual distance imbues human concepts with flexibility and adaptability.

Not only are certain concepts explicitly present in one’s mental representation of a situation (you
consciously believe Greg is dniving); there are also implicit associations with those concepts, most of
which stay well below the level of awareness. Given Greg'’s lateness, the thought that he’s driving
might easily evoke an image of his having trouble parking (a strong association). However, it is
less likely that, early on, you will imagine him in a car accident. This weaker association is
potentially there, but will not be brought into the picture without pressure (he is quite late, it is dark
outside, etc.) This illustrates a general point: far-out ideas (or even ideas slightly past one’s defaults)
cannot continually occur to people for no good reason; a person to whom this happens is classified as
crazy or crackpot. Time and cognitive resources being limited, it is vital to resist nonstandard ways
of looking at situations without strong pressure to do so. As an extreme example, had the
Michelson-Morley experiment come out the other way (i.e., it had proved there is an “ether”) and

174

had Einstein still proposed special relativity, with all its deeply counterintuitive notions, it would
have been seen as just a fascinating crackpot theory, not a great scientific advance. Not only is
pressure needed for one to bring in previously uninvolved concepts in trying to make sense of a
situation, but the concepts brought in are related to the source of the pressure; they are a function of
the pressure. (These ideas overlap with Kahneman & Miller’s 1986 treatment of counterfactuals.)

One aim in our model is to avoid two opposite strategies, both psychologically implausible, for
searching through concepts to be used in understanding a given situation: (1) All concepts are
explicitly and equally available from the start (e.g., you have a preconstructed list of concepts relevant
to “late-dinner-guest” situations — you may not need to try them all out, since Number 4 on the list
might fill the bill, but they are spelled out nonetheless. An equally implausible variant of this
would be that the possibilities are not spelled out explicitly, but it is easy to generate the next one on
the list if a given entry fails); and (2) Certain concepts are definitively excluded from the start, and
can never be brought in as relevant. A premise of our model is that in humans, the presence or
absence of a concept in a situation is not black-and-white; rather, all one’s concepts should have the
polential to become relevant in any situation, but due to the necessity for cognitive economy, they can’t
all be made available all the time or to the same degree. People resist even generating less standard
views, not to mention exploring them; the less standard a view, the more it is resisted.

In our model, every concept possessed by the system has some probability of becoming relevant in
every context, but different concepts have vastly different probabilities, and these vary with context.
There are many possible explanations (you could have written down the wrong date or given Greg
the wrong address; your street’s name could even have been secretly changed), so it is important not
to absolutely exclude any particular pathway ahead of time. All must be potentially open, but there is
not enough time to explore all equally, or even to generate all. Allocation of cognitive resources to
different pathways must be a dynamic function of context-dependent pressures, because those pressures
might change as exploration proceeds (when you try to call Greg, you find your phone is out of
order and no one can call in; this will tend to make the “car accident” pathway less plausible). Our
model proposes that many potential pathways are being tested out all the time, but at different
speeds and to different levels of depth: due to context-dependent pressures, not all pathways are
tested equally. Some may not be considered at all, but that’s the luck of the (biased) draw; the point
is that they are potentially open for exploration. We term this non-egalitarian style of exploration a
parallel terraced scan: many different pathways are explored in parallel, but not equally; each pathway
is explored at a rate and to a depth proportional to moment-to-moment estimates of its promise.

Our model thus has two interrelated aspects: The first is the existence of a probabilistic halo of
potential associations around the central region of each concept. Like an electron orbit in an atom, a
concept is blurry and distributed in “semantic space”, with various probabilities that it will “be” at a
given spot. For concepts, as for electrons, the probability distribution changes in a context-dependent
way. The seond aspect is the notion of a parallel terraced scan. These ideas are implemented in
Copycat, a computer model of concepts and high-level perception in analogy-making.

To isolate many issues of general psychological import, we use an idealized microworld in
which these issues emerge very clearly. Our methodology resembles that of physics, where
problems are idealized in order to isolate what is interesting about them and to allow them to be
studied more precisely. In this spirit, Copycat operates in a “frictionless” world consisting of
analogy problems involving letter strings; despite their apparent simplicity, these problems capture
many of the broad issues we are investigating. Four sample problems in Copycat’s microworld are:

1. abc = abd; ik =?
2. abc = abd; iijjkk = ?
3. abc = abd; kji=?
4. abc = abd; xyz = ?

Solving such problems requires many abilities necessary for high-level perception and analogy-
making in general: mentally building a coherently structured whole from initially unconnected
parts; describing objects, relations, and events at an “appropriate” level of abstraction; paying
attention to relevant aspects and ignoring irrelevant and superficial aspects of situations; deciding
which elements of a situation to chunk and which to view individually; deciding which
descriptions to take literally and which to let slip when perceiving correspondences between aspects
of two situations; and allowing competition among various ways of interpreting and mapping the
situations. Discussions of how problems 1-4 require these abilities and how Copycat solves 1-4 are
given in Hofstadter & Mitchell (1988) and Mitchell & Hofstadter (1990). Our goal is not to study the
domain-specific mechanisms people use in solving letter-string analogies, but to develop a computer
model of human flexibility and insight in general; we use this microworld because it cleanly
isolates many of the abilities we are investigating.

175

The central issue of this paper — how dormant concepts “bubble up” in response to pressure and

become relevant — arises somewhat in problems 1-4, but is manifested most clearly in this one:

5. abc = abd; mrrjjj = ?

This problem has a seemingly reasonable, straightforward solution: mrrkkk. Most people give this
answer, reasoning that since abc’s rightmost letter was replaced by its successor, and since mrrjjj’s
rightmost “letter” is actually a group of ‘j’s, one should replace all the ‘j’s by ‘k’s. Another possibility
is to take “rightmost letter” literally, thus to replace only the rightmost ‘j’ by ‘k’, giving mrrjjk.
However, neither answer is very satisfying, since neither takes into account the salient fact that abc
is an alphabetically increasing sequence. This internal “fabric” of abe is a very appealing and
seemingly explanatory aspect of the string, so you want to use it in making the analogy, but how? No
such fabric seems to weave mrrjjj together. So either (like most people) you settle for mrrkkk (or
possibly mrrjjk), or you look more deeply. But where to look when there are so many possibilities?

The interest of this problem is that there happens to be an aspect of mrrjjj lurking beneath the
surface that, once recognized, yields what many people fcel is a more satisfying answer. If you
ignore the letters in mrrjjj and look instead at group lengths, the desired successorship fabric is found:
the lengths of groups increase as “1-2-3”. Once this hidden connection between abc and mrrjjj is
discovered, the rule describing abc = abd can be adapted to mrrjjj as “Replace the length of the
rightmost group by its successor”, yielding “1-2-4” at the abstract level, or, more concretely, mrrjjjj.
Thus this problem demonstrates how a previously irrelevant, unnoticed aspect of a situation emerges
as relevant in response to pressures (e.g., the unsatisfied desire for a common fabric, among others).

How can the notion of group length, which in most problems remains essentially dormant,
come to be seen as relevant by Copycat? Length is certainly in the halo of the concept group, as are
concepts such as letter-category (e.g., ‘j’ for the group ‘|jj’), string-position (e.g., rightmost), and group-
fabric (e.g., sameness between lelters). Some are more closely associated with group than others; in the
absence of pressure, the notion of length tends to be fairly far away in conceptual space. Thus in
perceiving a group such as ‘rr’, one is virtually certain to notice the letter-category (‘r’), but not very
likely to notice, or at least attach importance to, the length. However, since length is in group’s halo,
there is some possibility that lengths will be noticed and used in trying to make sense of the
problem. One might consciously notice a group’s length at some point, but if this doesn’t turn out to
be useful, length’s relevance diminishes after a while. (For example, this might happen in the
variant problem abc = abd, mrrrrjj = ?.) This dynamic aspect of relevance is very important: even if
a new concept is at some point brought in as relevant, it is counterproductive to continue spending
much of one’s time exploring avenues involving that concept if none seems promising.

Since Copycat is nondeterministic, it follows different paths on different runs; thus not only
does it come up with a variety of answers, but it can reach each answer in myriad ways. Indeed,
Copycat’s flexibility depends on the fact that all pathways involving any of its concepts are potentially
open; despite this, the program generally manages to avoid exploring unpromising pathways,
except fleetingly. Below is a chart showing the results of running Copycat some 650 times on
problem 5. Its answers, ordered by frequency, range from the superficially alluring mrrkkk to the
downright bizarre mrrjkk (in which the two rightmost ‘j’s were perceived as a chunk), nrrjjj (in

which abc’s rnightmost letter was equated with mrrjjj’s lefimost letter), mrrjjj (using the rule “Replace
all ‘c’s by ‘d’s”), and drrjjj.

291
267 Summary of 650 runs on the problem “abc= abd; mrjjj=2?". Shoun
above each answer is ils frequency, and below it, the average final
lemperature associated with it. Nole the especially low temperature
associated with the answer “mrrjjjj ”, indicating that the program is
particularly satisfied with it. Also note that although the program has
the potential to produce some very peculiar answers, roules that lead to
such answers are very infrequently followed.
53
17
10
- S —] 2 J

mrrkkk mrrjjk mrrjjjj mrrjkk nrrjj mrrjjd mrrjjj mrrddd drrjjj
Temp =42° 52° 14° 49° 40° 56° 65° 54° 56°

176

Although there are only nine distinct answers, cach run was unique on a fine-grained level.
Under each answer is the final temperature averaged over all runs yielding that answer. Temperature
is explained later; for the time being, think of a run’s final temperature as a measure of Copycat’s
“happiness” with the answer produced, with high temperature corresponding to low happiness and
vice versa. Thus Copycat is by far the happiest with mrrjjjj. Note the lack of correlation of frequency
with final temperature — meaning, roughly, that obviousness and elegance are independent.

The frequencies shown in the chart are not meant to be strictly compared with the frequencies
of various answers given by people to this problem, since, as we said earlier, the program is not
meant to model the domain-specific mechanisms people use in solving these letter-string problems.
Rather, what is interesting here is that the program does have the potential to arrive at very strange
answers (such as mrrjkk and drrjjj), yet manages to steer clear of them almost all the time; most
always, it gets answers that people find reasonable and, sometimes, even insightful.

In a complex world (even one with the limited complexity of Copycat’s microworld), one never
knows in advance what concepts may turn out relevant in a given situation. It is thus imperative not
only to avoid dogmatically open-minded search strategies, which entertain all possibilities equally
seriously, but also to avoid dogmatically closed-minded search strategies, which in an ironclad way
rule out certain possibilities a priori. Copycat opts for a middle way, which of course leaves open the
potential for disaster — and indeed, disaster occurs once in a while. This is the price that must be
paid for flexibility. People, too, occasionally explore and even favor peculiar routes. Our program,
like us, has to have the potential to concoct far-out solutions in order to be able to discover subtle and
elegant ones like mrrjjjj. (In fact, Copycat still lacks important mechanisms that would allow it to
pursue yet stranger pathways!) To rigidly close off any routes a priori would necessarily remove
critical aspects of Copycat’s flexibility. On the other hand, the fact that Copycat so rarely produces
weird answers demonstrates that its mechanisms manage to strike a pretty effective balance
between open-mindedness and closed-mindedness, imbuing it with both flexibility and robustness.

We now sketch one way Copycat arrives at mrrjjjj (more details given below). The input consists
of three “raw” strings (here, abc, abd, mrrjjj) with no preattached relations or preformed groups; it
is thus left entirely to the program to build up perceptual structures constituting its understanding of
the problem in terms of concepts it deems relevant. On most runs, the groups ‘rr’ and ‘jjj’ are
constructed (the program is able to perceive copy-groups — groups consisting of repeated copies of a
given letter — quite readily). Each group’s letter-category (‘r’ and ‘j’ respectively) is explicitly noted,
since letter-category is relevant by default. There is some probability for lengths to be noticed at the
time the groups are made, but it is low, since length is not strongly associated with group. Once ‘rr’
and ‘jjj’ are made, copy-group becomes very relevant. This creates top-down pressure for the system to
describe other objects — especially in the same string — as copy-groups if possible. The only way to
do this here is to describe the ‘m’ as a copy-group with just one letter. This is strongly resisted by an
opposing pressure: a single-letter group is an intrinsically weak and far-fetched construct. However,
the existence of two other copy-groups in the string, coupled with the system’s “unhappiness” at its
failure to incorporate the lone ‘m’ into any large, coherent structure, pushes against this resistance.

These opposing pressures fight; the outcome is decided probabilistically. If the ‘m’ is perceived as
a single-letter group, its length will very likely be noticed (single-letter groups are noteworthy
precisely because of their abnormal length), making length more relevant in general, and thus
increasing the probability of noticing the other two groups’ lengths. Moreover, length, once brought
into the picture, has a good chance of staying relevant, since descriptions based on it turn out to be
useful. (Note that had the string been mrrrrjj, length might be brought in, but it would not turn out
useful, so it would likely fade back into obscurity.) In mrrjjj, once lengths are noticed, the successor
relations among them are quickly constructed by relation-detectors continually seeking new
relations. There is also an independent top-down pressure to see successor relations in mrrjjj,
coming from the already-seen successor relations in abc. As this satisfying new view of mrrjjj
begins to emerge, the importance of the groups’ letter-categories fades and length becomes their most
salient aspect. Thus the crux of discovering this solution lies in the triggering of the concept length.

In summary, Copycat’s solution of abc = abd, mrrjjj = mrrjjjj requires the interaction of:

* concepts consisting of a central region surrounded by a halo of potential associations;
a mechanism for probabilistically bringing in new associations related to the current situation;
a mechanism by which concepts’ activations decay over lime, unless reinforced;
agents that continually seek new relations, groups, and correspondences;
mechanisms for applying top-down pressures from concepls already brought in;
mechanisms allowing competition among pressures;
the parallel terraced scan, allowing rival views lo develop at different speeds.

177

We now describe and illustrate how these mechanisms are implemented. (For more details,
see Mitchell & Hofstadter, 1990.) Copycat’s concepts reside in a nctwork of nodes and links called
the Slipnet. A concept’s central region is a node, and its associative halo corresponds to other nodes
linked to the central node. A node (such as copy-group or successor) becomes activated when instances
of it are perceived (by codelets, as described below), and loses activation unless its instances remain
salient. A node spreads activation to nearby nodes as a function of their proximity. Activation levels
are not binary, but can vary continuously. The probability a node will be brought in or be considered
further at any given time as a possible organizing concept is a function of the node’s current
activation level. Thus there is no black-and-white answer to the question of whether a given concept
is “present” at a given time; continuous activation levels and probabilities allow different concepts to
be present to different degrees. All concepts have the potential to be brought in and used; which
ones become relevant and to what degree depends on the situation the program is facing, as will be
seen below.

In addition to the Slipnet, where long-term concepts reside, Copycat has a working area in
which perceptual structures (e.g., descriptions, relations, groups, and correspondences) are built
hierarchically on top of the “raw” input (the three letter-strings). This building process is carried
out by large numbers of simple agents called codelets. A codelet is a small piece of code that carries
out some small, local task that is part of the process of building a structure (e.g., one codelet might
notice that the two ‘r’s in mrrjjj are the same letter; another codelet might estimate how well that
proposed relation fits in with already-existing relations; another codelet might build the relation).
Bottom-up codelets work toward building structures based on whatever they happen to find, without
being prompted to look for instances of specific concepts; top-down codelets look for instances of
particular active nodes, such as successor or copy-group. The probability at a given time that a node in
the Slipnet will add a top-down codelet to the current codelet population is a function of the node’s
activation level. Any structure is built by a series of codelets running in turn, each deciding
probabilistically on the basis of its estimation of some aspect of the structure’s strength whether to
continue, by generating one or more follow-up codelets, or to abandon the effort at that point. If the
decision is made to continue, the running codelet assigns an urgency value (based on its estimate of
the structure’s promise) to each follow-up codelet. This value helps to determine how long each
follow-up codelet will have to wait before it can run and continue the evaluation of that particular
structure.

Any run starts with a standard initial population of bottom-up codelets with preset urgencies; at
each time step, one codelet is chosen to run and is removed from the current codelet population. The
choice is probabilistic, based on relative urgencies in the current population. As the run proceeds,
new codelets are added to the population either as follow-ups to previously-run codelets, or as top-
down scouts for active nodes. A new codelet’s urgency is assigned by its creator as a function of the
estimated promise of the task it is to work on. Thus the codelet population changes as the run
proceeds, in response to the system’s needs as judged by previously-run codelets and by activation
patterns in the Slipnet, which themselves depend on what structures are built. There is no top-level
executive directing the system’s activity; all processing is carried out by codelets.

The fine-grained breakup of structure-building processes serves two purposes: (1) it allows many
such processes to be carried out in parallel, by having their components interleaved; and (2) it
allows the computational resources allocated to each such process to be dynamically regulated by
moment-to-moment estimates of the promise of the pathway being followed. A process is not a
predetermined macroscopic act that is then broken up into convenient chunks; rather, any sequence
of codelets that amounts to a coherent macroscopic act can a posteriori be labeled a process — thus
processes are emergent. The speed of any process emerges dynamically from the urgencies of its
component codelets. The upshot is a parallel terraced scan — more promising views tend to be
explored faster than less promising ones.

A final mechanism, lemperature, both measures the degree of perceptual disorganization in the
system (its value at any moment is a function of the amount and quality of structure built so far), and
controls the degree of randomness used in making decisions (e.g., which codelet should run next,
which structure should win a competition, etc.). Higher temperatures reflect the fact that there is
little information on which to base decisions; lower temperatures reflect the fact that there is
greater certainty about the basis for decisions. Temperature in Copycat is described in detail in
Mitchell & Hofstadter (1990). All these mechanisms are illustrated in the set of screen dumps from
a run of the program, given below.

178

jL1]

--> a b d

W EE g g] ==

Number of codelets run so far: 0

BT e e
nrridfy -

Numher of codelets run so far: 30

100 100 100

lefimost | waddle |raghtwest] farst last lett right
100
[predecess [successor| copy
tame |predecess |ruccersor| gro rouj group letter
100 100
letter ftring alpha relation | qremp
category | length [posituion |position |darection|category [category |

1. The problem is presented. Temperature, shown on a
“thermometer” (left), is at its maximum of 100 (no structures yet
built}. At the bottom, some Slipnet nodes are displayed (links
not shown). (Due to limited space, many nodes are not shown,
e.g., those for ‘@’, ‘b’, etc.) A black square represents a node’s
current activation level (the actual value, from 0 to 100, is shown
above). Nodes here displayed include string-positions of objects
(leftmost, middle, and rightmost); alphabeticpositions of letters (first,
filled by ‘a’, and last, by ‘z'); directions for relations and groups
(left and right); identity and opposite (some of the possible relations
between concepts); relation-calegories for relations between letters
and groups (same, predecessor, and successor), group-calegories
(predecessor-group, successor-group, and copy-group); object-calegories
(letter and group); and in row 3, nodes representing these various
categories of descriptions, including length. Every letter has some
preattached descriptions: letter-category (e.g., ‘'m’), object-category
(letter, as opposed to group) and string-position (leftmost, middle,
rightmost, or none — e.g., the fourth letter in mrrjjj has no string-
position description). These nodes start out highly activated.

ri 12 12

farst Last 1eidt right |identity |oppesale

1 2

lettar group
4

.
alpha relation | groop object
ositson (direction]category |category |catege

2. The 30 codelets so far run have begun exploring many
possible structures. Dashed lines and arcs are structures in
various stages of consideration; solid ones are structures actually
built, which can thus influence temperature, and the building of
other structures. Relations and correspondences between letters
are being considered (the ‘a’-j’ potential mapping is based on
the weak leftmost-rightmost Slipnet link; being implausible, it
won't be pursued much further). The abc/abd correspondences
and the rightmost ‘j’~‘j’ sameness relation have been built by
bouom-up codelets; this activated same, resulting in Lop-down
pressure (new codelets) to seek sameness elsewhere. Some nodes
have become lightly activated via spreading activation (e.g., the
node first, from ‘a’ [not shown]). Length’s activation comes from
its weak association with letter-category (letters and numbers are
increasing sequences and thus similar; numbers are associated
with length). Temperature has fallen in response to structures so
far built. Many non-displayed fleeting explorations are occurring
(e.g., “Any relation between the ‘m’ and its neighbor 'r'?”).

Lnderru Tuccessor| copy
groug graup group

§
m rj I'r i_:{\j{\%i -=>

rmost->rmost

Number of codelets run so far: 96

“ 1] 100 6 19 i 100 100
S NN BRI BN |
leftmost | widdle |rightwost| first Last Left right adentaty |opposate
100 35 100 20 100 100
|| - N | - A N
fpredecess [successor Copy |
Sams redecessruccegsor] group group group letter roup
100 29 100 100 100 100 100 16
N BN BN BN RN RS
letter rtring alpha relation group object
cateqory | length |porstuon [porition [direction|category [categury [categary
. —

3. The successorship fabric of abc has been seen, and two
mutually competing groups based on it are being considered:
‘bc’ and ‘abc’. The latter is much stronger than the former, thus
has a much higher chance. Exploration of the diagonal ‘a'-j’
correspondence was aborted. A 'c’-'j’ correspondence has been
built (jagged vertical line); its reason for existence (both letters
are rightmost) is given beneath it. A 'jjj' group is being strongly
considered. Since successor and sameness relations have been built,
these nodes are highly active; they in turn have spread activation
to successor-group and copy-group, which creates top-down pressure
to look for such groups. Also, since first was active, alphabetic-
posiion became highly active (a probabilistic event), making
alphabetic-position descriptions likely to be considered.

179

[Repla“ latier-category of rmozt letter by successor]

B s b 8

i

J

mfﬂrij j 8

L -

-—>

most->rmost

Number of codelets run so far: I9S'

L] 60 100 15 1 48 100 73
= = B - N B
leftwogt | widdle |rightwest| darst last Leit right identity | oppesile
100 39 100 13 100 100 L] 100
" - H|- B N |
fpredecess (ruccersor| copy
| _tam |yredecess fsuccessor| group roup | group | letter | growp
1o 2 100 a1 100 100 100 100

lerter strung relstion | qroup obyject

= (1 N NN
di

catego 051t10n catego category |category

4. Groups ‘abc' and ‘jjj' have been built (relations between
letters are no longer being displayed). An ‘rr' group is being
considered (the group ‘jjj’ strongly supports it, so its construction
is accelerated). Meanwhile, a rule (at top) has been constructed
to describe how abc changed. The current version of Copycat
assumes the example change involves replacing exactly one
letter, so rule-building codelets fill in the template “Replace __
by ", choosing probabilistically from descriptions the
program has given to the changed leuter and its replacement,
with a default bias toward more abstract descriptions (e.g.,
usually preferring “rightmost letter” 1o ‘c’). Nodes first and
alphabetic-position didn't turn out useful and thus have faded.
Also, length received additional activation from group but is still
not very activated, so noticing lengths is still unlikely.

Replace letter cn(.qnl‘y of rmost lellor Ii-,- n I
E T T
— — Tl:
|I '
4
58 [}
R2 J '
'
m|r rl[3 3 3| =——>
let »group
rmos->rmost
Mumher of codelets run so far: 225

10 ‘{ 100 100 5 1 % 50 100

le 3t | widdle |rightwost] first last lett right | identsty |o
100 19 60 L] 100 100 y S0
L L e |® |« B H|f-|®

redecesssuccesger| copy
5 am- redecess [fuccessor| group group | group | | group

letter Firung relation qroup obyect
cate length a1l 1on p:u:an direction|category [category |category |

_,-— ___—-—-—-.__ _'__:-—4:_“_ ———

La 8‘"' tT-'-;“‘a Ty “‘\d

C
| 4
52 » J !
’ R = '1
m(r)3 33
let)qronp T let-)let
mid-ymid rmost prmost
Nuwl-n_l:_ul codelets run wo far: 480
44 100 100 2 1 19 100 100
« W N = | 0| N
|leftmopt | widdle [rightwest] first Last lett right |adent:ity |opposite
100 4l 100 19 100 100 o 100

predecess [succriser| copy

5 - redecessroccesgor]| group | group [group | letter greup
100 1 100 2 100 100 100 100
I .| H B B

letter flrung alpha relation | group shject
caregory | length |pesation |position [direciion|category |category |category

5. Now, 225 codelets into the run, the letter-to-latter ‘c'-'j’
correspondence was defeated by a stronger letter-to-group ‘c'-J’
correspondence, though the former possibility still lurks in the
background. Meanwhile, an ‘rr’ group was built whose length
was noticed (a probabilistic event) and is displayed at the top of
the group. Length is now fully active.

A new rule, “Replace the leter<category of the rightmost
letter by ‘D'", appears at the top of the screen; although it is
weaker than the old rule, fights are decided probabilistically, and
it won. However, its weakness caused temperature to go up. If
the program were to stop now (unlikely, as temperature is still
fairly high; the program decides probabilistically when to stop,
based on temperature), the rule would be adapted for mrjj as
“Replace the letter—category of the rightmost group by ‘D' (the
c'~]" correspondence establishes that the role of letter in abc is
played by group in mrrjjj), yielding mrrddd (and Copycat does
get this answer on occasion).

6. The previous, stronger rule has been restored (again the
result of a fight having a probabilistic outcome), but the ‘c’-J
correspondence has been defeated by a ‘c’-'j’ correspondence.
The activation of length has decayed a good deal, since the
length description given to ‘rr' hasn't been found to be useful.
(This is graphically indicated by the fact that the ‘2" is no longer
in boldface.) The temperature is still fairly high, since the
program is having a hard time making a single, coherent
structure out of mrrjjj, as it did with abc. That fact, combined
with strong top-down pressure from the two copy-groups in
mrrjjj, makes it somewhat plausible for the system to flirt with
the idea of a single-letter group (dashed rectangle around the
‘m’).

rl.placl lclllr—cal-qary of rmost letter by l'\.lti:el'i\?r—l

e e
& e
ler-[:]—:l—— e

let-»qroup

let-)grvnp 1
Imogt-3lmost et-3qroup
midoomid s t-)rmast

Numher of codelets rm so far: 615

[Kepl.u:- letter-category of rmost letter by -uc:uwr

La '\ = r|/——> a\:\d
‘,.r‘l Js

T | s

MM‘J | ==

let->qroup .4 >
IR Jet-)
Imost-dlmost ., o r-:st :::::‘

Nuwher of codelets run so far: 840

M| 100 50 w [1 3% 100 n

« H | s | s S N
'_.]t-ll: uiddle |righteost first lagt Left raght identaty |opposite
100 100 100 17 100 100 0 50

" B B = @ N - |-=

| Fedecess|ruccersor topy

¥ am. redecers [Feccesser o group reup letter group |

100 100 100 2 100 100 100 100

letter gtrung alpha relatuon | grovp sbyect
setegory | length [posation [position |Sirecfion]category jcotegory |cateyory |

100 LL] 100 1 1 16 26 100
" = BN : - n

leftmost | widdle [rightwost] faryt last leit right [identity |cpposite
100 35 100 100 100 100 100 100

redecess (succerSor| copy
2 ame redecess jroccagger| group group group latter group

2 100 100 2 100 100 100 100

letter Btruwng alpha relatasn qroup abyect
categery | length jpesation |pesatien |direclaon|category [category | category |

7. As a result of these pressures, the a prion extremely unlikely
single-letter copygroup ‘'m’ has been built, and its length of 1,
being very noteworthy, has been attached as a description. The
relation between the 1 and the 2 has been built; all of this is

helping length to stay active. A complete set of letter = group
correspondences has now been made, and as a result of these
promising new structures, the temperature has fallen to 36,
which in return helps to lock in this emerging view.

8. As a result of length's continued activity, length descriptions
have been attached to the other two groups in the problem ('jjj'
and ‘abc’), and a relation between the 2 and the 3 (for which
there is much top-down pressure coming from both abc and the
emerging view of mrtjjj) is being considered. Lettercategory has
decayed, indicating that it hasn’t lately been of use in building
structures.

180

[lophu latter-category of rmoxt letter by mtc.l-nrw

— —

let-dgrouwp 4.4 Sorgup let-3let
most->lmost .‘m-;.“p rmost-)rmost

Number of codelets run =o far: 855

€0 100 1 1 16 100 100
LR - | N
rightwost] furst last ekt right |identity Jopposite

100 100 100 100 100 100
. -pn!eu m:!ﬁor t0.D\' . .
T roup group | letter grewp

100 100 2 100 100 100 100

relation
catege L3

9. The 2-3 relation was built and a successor-group was built out
of the group-lengths in mrrjjj (large rectangle surrounding the
three copy-groups). Also, a correspondence (dashed vertical line
to the right of the two strings) is being considered between abc
and mrrjjj in their entireties.

D-plun lettar-category of rmest latter by succ-llnr]

g e
Bt T~ B =
| a B- 7 &--> a b d
e = e yvhels
sqroup-)sgraup
£ maes
->
‘T h—tfa‘_'}_'::;::?:lut:ﬁ'

sl o5 5) s s s

lat-yqroup o . . =
. llﬂlt-)lnlt I:Iafg::? let-)group
L

rmost->rmost

unphc. length of rwost group by .u:.lnrl
Number of codelets run so far: 890
100 1 1 EH 40 100

15 74

leftmost Atret lagt 1sit right |ideatity |opposite
100 100 100 100 100 0 50
| HE B N « | =

predecass (guccersor| copy
r| group greup greup lettar groag
2 100 100 100 100

ztriag alpha relation
Fition n|catego

10. A correspondence has been built between the two strings as
wholes, and its concept-mappings (e.g., letter-category = length)
are listed to its right. The original rule has been translated, using
these concept-mappings; the translated rule appears just above
the Slipnet, and the answer mrrijjjj at the right. The low

temperature reflects the program’s satisfaction with this answer.

In summary, Copycat is 2 model of concepts and perceptual mechanisms flexible enough to deal
with a range of problems in its microdomain, reflecting many central psychological issues. It
differs from other computer approaches to analogy-making in that it models not only how
situations are mapped onto each other, but also the mechanisms by which initially uninterpreted
situations are mentally structured. Models such as SME (Falkenhainer et al., 1986), and ACME
(Holyoak & Thagard, 1989), are concerned with just the mapping process; all relations and other
perceptual structures are precoded into predicate-logic representations that serve as input. A detailed
comparison of Copycat with these models is given in Mitchell (1988). Copycat starts on any problem
from a standard initial state; however, it quickly senses unique aspects of the problem, bringing out
certain associations while downplaying others, allowing it (usually) to home in on a suitable set of
relevant concepts and avenues of approach. Copycat achieves, through mechanisms we believe are
psychologically plausible, a delicate balance between being too open-minded (exploring every
avenue indiscriminately, thus grossly wasting computational resources) and being too closed-
minded (rigidly cutting out certain avenues a priorz, thus preventing many creative pathways from
ever being looked at). Walking this fine line imbues Copycat with its robustness and flexibility.

Acknowledgments
We thank Robert French for contributions to the Copycat Project, and Liane Gabora for writing the statistics-
gathering program. Thanks also to David Chalmers and David Moser for helpful comments on this paper, and to
Greg Huber for a “late” inspiration. This research has been supported by grants from Indiana University, the
University of Michigan, and Apple Computer, Inc., as well as a grant from Mitchell Kapor, Ellen Poss, and the
Lotus Development Corporation, and grant DCR 8410409 from the National Science Foundation.

References

(1] Barsalou, L. W. (1989). Intraconcept similarity and its implications for interconcept similarity. In Vosniadou, S.
and A, Ortony, Similarity and analogical reasoning, 76-121. Cambridge, England: Cambridge University Press.

[2] Falkenhainer, B., K. D. Forbus, and D. Gentner (1986). The Structure-Mapping Engine. In Proceedings of the
Amenican Association for Artificial Intelligence, AAAI-86. Los Altos, CA: Morgan Kaufmann.

[3] Hofstadter, D. R. (1988). Common sense and conceptual halos. Behavioral and Brain Sciences, 11 (1), 35-37.

(4] Hofstadter, D. R. and M. Mitchell (1988). Conceptual slippage and analogy-making: A report on the Copycat
project. Proceedings, Tenth Annual Cognitive Science Society Conference. Hillsdale, NJ: Lawrence Erlbaum Associates.

(5] Hos]_yosag(, K. and P. Thagard (1989). Analogical mapping by constraint satisfacion. Cognitive Science, 13 (3),
295-355,

(6] Kahneman, D. and D. T. Miller (1986). Norm theory: Comparing reality to its alternatives. Psychological Review,
93 (2),136-153.

(7] Mitchell, M. (1988). A computer model of analogical thought. Unpublished thesis proposal. University of
Michigan, Ann Arbor, MI.

(8] Mitchell, M. and D. R. Hofstadter (1990). The emergence of understanding in a computer model of concepts
and analogy-making. Physica D, in press.

[9] Tversky, A. (1977). Features of similarity. Psychological Review, 84, 327-352.

181

	cogsci_1990_174-181

