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An unsymmetrized multifrontal LU factorization �

Patrick R. Amestoyy and Chiara Puglisiz

July 18, 2000

Abstract

A well-known approach to compute the LU factorization of a general unsymmetric

matrix A is to build the elimination tree associated with the pattern of the symmetric

matrix A + A
T and use it as a computational graph to drive the numerical factorization.

This approach, although very eÆcient on a large range of unsymmetric matrices, does not

capture the unsymmetric structure of the matrices. We introduce a new algorithm which

detects and exploits the structural unsymmetry of the submatrices involved during the

process of the elimination tree. We show that with the new algorithm signi�cant gains both

in memory and in time to perform the factorization can be obtained.

Key words. sparse linear equations, unsymmetric matrices, Gaussian elimination, multifrontal
methods, elimination tree

AMS subject classi�cation. 65F05, 65F50

1 Introduction

We consider the direct solution of sparse linear equations based on a multifrontal approach.
The systems are of the form Ax = b where A is an n � n unsymmetric sparse matrix. The
multifrontal method has been developed by Du� and Reid [11, 12] for computing the solution
of inde�nite sparse symmetric linear equations using Gaussian elimination and then has been
extended to solve more general unsymmetric matrices by Du� and Reid [13].

The multifrontal method belongs to the class of methods that separate the factorization into
an analysis phase and a numerical factorization. The analysis phase involves a reordering
step, which will reduce the �ll-in during numerical factorization and a symbolic phase that
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builds the computational tree, so called elimination tree [9, 18, 20], whose structure gives the
dependency graph of the multifrontal approach. The analysis phase is generally not concerned
with numerical values and is only based on the sparsity pattern of the matrix.

As far as the analysis phase is concerned, the approaches introduced by Du� and Reid
for both symmetric and unsymmetric matrices are almost identical. When the matrix is
unsymmetric, the structurally symmetric matrix M = A + AT, where the summation is
performed symbolically, is used in place of the original matrix A. The elimination tree of
the unsymmetric LU factorization is thus identical to that of the Cholesky factorization of the
symmetrized matrix M.

To control the growth of the factors during LU factorization, partial threshold pivoting is
used during the numerical factorization phase. The pivot order, used during the analysis to
build the elimination tree might not be respected. Numerical pivoting can then result in an
increase in the estimated size of the factors and in the number of operations. To improve the
numerical behaviour of the multifrontal approach it is common to involve a step of preprocessing
based on the numerical values. In fact if the matrix is not well-scaled, which means that the
entries in the original matrix do not have the same order of magnitude, a good prescaling
of the matrix can have a signi�cant impact on the accuracy and performance of the sparse
solver. In some cases it is also very bene�cial to precede the ordering by performing an
unsymmetric permutation to place large entries on the diagonal. Du� and Koster [10] have
designed algorithms to permute large entries onto the diagonal and have shown that it can very
signi�cantly improve the behaviour of multifrontal solvers.

The multifrontal approach by Du� and Reid [13] is used in the Harwell Subroutine Library code
ma41 [2, 3] and in the distributed memory code MUMPS developed in the context of the PARASOL
project (EU ESPRIT IV LTR project 20160) [4, 5]. Another way to represent the symbolic LU
factorization of a structurally unsymmetric matrix is to use directed acyclic graphs (see for
example [14, 15]). These structures more costly and complicated to handle than a tree, capture
better the asymmetry of the matrix. Davis and Du� [6] implicitly use this structure to drive
their unsymmetric-pattern multifrontal approach.

We explain, in this article, how to use the simple elimination tree structure of the symmetric
matrix M to detect, during the numerical factorization phase, structural asymmetry in the
factors. We show that, with the new factorization phase, we very signi�cantly reduce the
computational time, the size of the LU factors and the total memory requirement with respect
to the standard multifrontal approach [13]. In Section 2, we �rst recall the main properties of
the elimination tree and describe the standard multifrontal factorization algorithm. We then
introduce the new algorithm and use a simple example to show the bene�ts that can be expected
from the new approach. In Section 3, our set of test matrices is introduced. We analyse the
performance gains (in terms of size of the factors, memory requirement and factorization time)
of the new approach with respect to the standard multifrontal code on our set of test matrices.
We add some concluding remarks in Section 4
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2 Description of the multifrontal factorization algorithms

LetA be an unsymmetric matrix and letM denotes the structurally symmetric matrixA+AT.
The elimination tree is de�ned using the structure of the Cholesky factors of M. If the matrix
M is reducible then the tree will be a forest. Liu [18] de�nes the elimination tree as the
transitive reduction of the directed graph of the Cholesky factors of M. The characterization
of the elimination tree and the description of its properties are beyond the scope of this article.
In our context, we are interested in the elimination tree only as the computational graph for
the multifrontal factorization. For a complete description of the elimination tree the reader can
consult [18, 19].

In the multifrontal approaches, we actually use an amalgamated elimination tree, referred to as
the assembly tree [12] which can be obtained from the classical elimination tree. Each node
of the assembly tree corresponds to Gaussian elimination operations on a full submatrix, called
a frontal matrix. The frontal matrix can be partitioned as shown in Figure 1.

fully summed rows -

partly summed rows -

fully summed columns

?

partly summed columns

?"
F11 F12

F21 F22

#

Figure 1: Partitioning of a frontal matrix.

Each frontal matrix factorization involves the computation of a block of columns of L,
termed fully summed columns of the frontal matrix, a block of rows of U, termed fully

summed rows, and the computation of a Schur complement matrix F22�F21F
�1
11 F12, called a

contribution block. The rows (columns) of the F22 block are referred to as partly summed

rows (columns).
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Figure 2: Example of matrix A and M = A+AT.

The unsymmetric matrix A, on the left-hand side of Figure 2, will be used to illustrate the
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main properties of the assembly tree and to introduce the new algorithm. In Figures 2 and 3
an \X" denotes a nonzero position from the original matrix A and a \ iN " corresponds to a
new entry introduced during symmetrization. In Figure 3, we indicate the structure of the �lled
matrix MF = L+ LT where L is the matrix of the Cholesky factor of M. Entries with an \F"
corresponds to �ll-in entries in the L factor.
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M  =

Figure 3: Structure of the Cholesky factors of the matrix M.

The matrixMF is used to de�ne the assembly tree (see Figure 4) associated with the multifrontal
LU factorization of the matrixA. From the fact that the factorization is based on the assembly
tree associated with the Cholesky factorization of MF, it results that

Struct(MF) = Struct(L) + Struct(U) and Struct(LT) = Struct(U)

where Struct() denotes the matrix pattern. Let us denote by structural zero a numerical
zero that does not result from numerical cancellation. Typically, due to the symmetrization,
the matrix M might contain many structural zeros that will propagate during the numerical
factorization phase. What has motivated our work is the following question. Is it possible,
during the processing of the assembly tree to eÆciently detect and remove structural zeros that
appear in matrix MF and that are direct or indirect consequence of the symmetrization of
matrix A ? Although it is not so clear from the structure of the matrix MF, we will show that
blocks of structural zeros can be identi�ed during the processing of the assembly tree.

In the following, we �rst describe how the assembly tree is exploited during the standard
multifrontal algorithm. We then report and analyse the sparsity structure of the frontal matrices
involved in the processing of the assembly tree associated with our example matrix. Based on
these observations, we will introduce the new factorization algorithm.

The assembly tree is rooted (a node of the tree called the root is chosen to give an orientation
to the tree) and is processed from the leaf nodes to the root node. If two nodes are adjacent
in the tree, then the one nearer the root is the parent node, and the other is termed its
child. Each edge of the assembly tree indicates a data dependency between parent and child.
It involves sending a contribution block from the child to the parent. A parent node process
will start when the processes associated with all of its children are completed.
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Figure 4: Assembly tree of assembly tree associated with our test matrix.

For example, in Figure 4, node (3) must wait for the completion of nodes (1) and (2) before
starting its computations. The subset of variables which can be used as pivots (boldface
variables in Figure 4) are the fully summed variables of node (k). The contribution blocks
of the children and the entries from the original matrix corresponding to the fully summed
variables of node (k) are used to build the frontal matrix of the node. This will be referred
to as the assembly process. During the assembly process of a frontal matrix, we need for
each fully summed variable j, to access the nonzero elements in the original matrix that are in
rows/columns of indices greater than j. A way to eÆciently access the original matrix is to store
it in arrowheads according to the reordered matrix. For example during the assembly process
of node (3) the arrowheads of variables 3 and 4 from matrix A together with the contribution
blocks of nodes (1) and (2) are used to assemble the frontal matrix of node (3). One should
note that, by construction, the list of indices in the partly summed rows is identical to that
of the partly summed columns (row and column indices of block F22 in Figure 1). Therefore,
during the assembly process, only the list of row indices of the partly summed rows is built. This
list is obtained by merging all the row and column indices of the arrowheads of the matrix A
with the row indices of the contribution blocks of all the sons. Once the structure of the frontal
matrix is built, the numerical values from both the arrowheads and the contribution blocks can
be assembled at the right place in the frontal matrix. The 
oating point operations involved
during the assembly process will be referred to as assembly operations (only additions)
whereas 
oating-point operations involved during the factorization of the frontal matrices will
be referred to as elimination operations.
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Partial threshold pivoting is used to control the element growth in the factors. Note that
pivots can be chosen only from within the block F11 of the frontal matrix. The LUfactors
corresponding to the fully summed variables are computed and a new contribution block is
produced. When a fully summed variable of node (k) cannot be eliminated during the node
process because of numerical considerations, then the corresponding arrowhead in the frontal
matrix is added to the contribution block and the fully summed variable will be included in the
fully summed variables at the parent of node (k). This process creates additional �ll-in in the
LUfactors.

In a multifrontal algorithm, we have to provide space for the frontal matrices and the
contribution blocks, and to reserve space for storing the factors. We need working space to
store both real and integer information. This will be referred to as the total working space

of the factorization phase. The same integer array can be used to describe a frontal matrix, its
corresponding LUfactors and its contribution block. The management of the integer working
array can thus be done in a simple and eÆcient way. In a uniprocessor environment, it is possible
to determine the order in which the assembly tree will be processed. Furthermore, if we process
the assembly tree with a depth �rst search order, we can use a stack to manage the storage
of the factors and the contribution blocks. This mechanism is eÆcient both in terms of total
memory requirement and amount of data movement (see [12]). A stack mechanism, starting
from the beginning of the real working array, is used to store the LU factors. Another stack
mechanism starting from the end of the real working array is used to store the contribution
blocks. After the assembly phase of a node the working space used by the contribution blocks
of its children can be freed and, because the assembly tree is processed with a depth �rst search
order, the contribution blocks will always be at the top of the stack. In the remainder of this
paper, the maximum stack size of the contribution blocks will be referred to as the maximum

stack size.

The standard and new algorithms for multifrontal factorization

During a multifrontal factorization, each frontal matrix can be viewed as the minimum structure
to perform the elimination of the fully summed variables and to carry the contribution blocks
from all of its sons. In Figure 5, we have a closer look at the frontal matrices involved in the
processing of the assembly tree of Figure 4 to identify the structural zeros.

We report, beside each node, the structure of the factorized frontal matrix assuming that the
pivots are chosen down the diagonal of the fully summed block and in order (i.e. no numerical
pivoting is required). An \X" corresponds to a nonzero entry and a \O" corresponds to a
structural zero.

One can see that, for our example, the frontal matrices have many structural zeros. There
are two kinds of structural zeros: those forming a complete zero column (or row), and more
isolated zero entries in a nonzero column or row (for example entries (4,3) and (4,7) in the
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Figure 5: Processing the assembly tree associated with the matrix A in Figure 2 with the
standard algorithm.

frontal matrix of node (3)). If one knows how to detect a partly summed row (or column)
with only structural zeros then the corresponding row (or column) can be suppressed from the
frontal matrix because this row (or column) will not add any contribution to the father node.

Structural zero rows (or columns) can be detected during the assembly process of a frontal
matrix because of the following property: if a row (or column) index does not appear in the
row (or column) indices both of the arrowheads of the original matrix and of the contribution
blocks of the sons, then this index will correspond to a row (or column) with only structural
zeros. This property is used to deduce the assembly process of the new algorithm. Note that
if the matrix is not structurally de�cient then each fully summed row (or column) must have
at least one nonzero entry. Therefore, we can restrict our search for zero rows (columns) to the
partly summed rows (columns).

In the new assembly algorithm, the list of indices of the partly summed rows of a frontal matrix
is de�ned as the merge of the row indices in the arrowheads of the fully summed variables of the
node with the row indices of the contribution blocks of its sons. The column indices are de�ned
similarly. As it is illustrated in Figure 6, the new assembly process can result in signi�cant
modi�cations in the processing of the assembly tree. For example, on node (1), row 3 and
column 5 are suppressed from the frontal matrix; on node (2), all the partly summed rows are
suppressed; on node (3), row 7 and column 5 are suppressed. As it can be noticed in Figure 6,
frontal matrices naturally become unsymmetric in structure.

We �nally indicate in Figure 7 the structure of the LU factors obtained with the new algorithm.
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This should be compared to the matrix MF in Figure 3 showing the structure of the factors
obtained with the standard algorithm. It can be seen that nonzero entries corresponding to
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new entry in M

Figure 7: Structure of the LUfactors obtained with the new algorithm.

�ll-in (for example (7,4) in MF) or introduced during the symmetrization of M (for example
(4,5) in MF) might be supressed by the new algorithm. On the other hand, the new algorithm
will never suppress structural zeros in a block of fully summed variables (for example (4,3) in
node (3) of Figure 5). On our small example, the total number of entries in the factors reduces
from 31 to 23.

Comparing Figures 5 and 6, one can notice that the new algorithm might also lead to a signi�cant
reduction in both the number of operations involved during the assembly process and the
maximum stack size. The latest combined with a reduction in the size of the factors will result
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in a reduction in the total working space. On our example the number of assembly operations
drops from 30 to 20 (18 entries from A plus 2 from the contribution blocks). The maximum
stack size reduces from 8 to 1 (obtained in both cases after stacking the contribution blocks of
nodes (1) and (2)).

3 Results and performance analysis

We describe in Table 1 the set of test matrices (order, number of nonzero entries, structural
symmetry and origin). We de�ne the structural symmetry as the percentage of the number
of nonzeros matched by nonzeros in symmetric locations over the total number of entries. A
symmetric matrix has a value of 100. Although, our performance analysis will focus on matrices
with a relatively small structural symmetry, all classes of unsymmetric matrices are represented
in this set. The selected matrices come from the forthcoming Rutherford-Boeing Sparse Matrix
Collection [8] 1, Tim Davis collection2, and SPARSEKIT23 .

The Harwell Subroutine Library [16] code ma41 has been used to obtain the results for the
standard multifrontal method. The factorization phase of ma41 has then been modi�ed with the
new algorithm. The ma41 code has a set of parameters to control its eÆciency. We have used the
default values for our target computer. Approximate minimum degree ordering [1] has been used
to reorder the matrix. As we have mentioned in the Introduction, it is often quite bene�cial for
very unsymmetric matrices to precede the ordering by performing an unsymmetric permutation
to place large entries on the diagonal and then scaling the matrix so that the diagonal entries
are all of modulus one and the o�-diagonals have modulus less than or equal to one. We use
the Harwell Subroutine Library code mc64 [10] to perform this preordering and scaling on all
matrices of structural symmetry smaller than 55. When mc64 is not used, our matrices are
always row and column scaled (each row/column is divided by its maximum value). All results
presented in this section, have been obtained on one processor (R10000 MIMPS RISC 64-bit
processor) of the SGI Cray Origin 2000 from Parallab (University of Bergen, Norway). The
processor runs at a frequency of 195 Mhertz and has a peak performance of 400 M
ops per
second.

1Web page http://www.cse.clrc.ac.uk/Activity/SparseMatrices/
2Web page http://www.cise.ufl.edu/ davis/sparse/
3Web page http://iftp.cs.umn.edu/pub/sparse/
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Matrix name Order No. entries StrSym Origin (Discipline)

av4408 4408 95752 0 Vavasis (Partial di�. eqn.) [21]

av41092 41092 1683902 0 Vavasis (Partial di�. eqn.) [21]
bbmat 38744 1771722 54 Rutherford-Boeing (CFD)

cavity15 2597 76367 94 SPARSEKIT2 (CFD)

cavity26 4562 138187 95 SPARSEKIT2 (CFD)
ex11 16614 1096948 100 SPARSEKIT2 (CFD)

fidapm11 22294 623554 100 SPARSEKIT2 (CFD)

goodwin 7320 324784 64 Davis (CFD)
lhr02 2954 37206 1 Davis (Chemical engineering)

lhr14c 14270 307858 1 Davis (Chemical engineering)

lhr17c 17576 381975 0 Davis (Chemical engineering)
lhr34c 35152 764014 0 Davis (Chemical engineering)

lhr71c 70304 1528092 0 Davis (Chemical engineering)

lns 3937 3937 25407 87 Rutherford-Boeing (CFD)
olaf1 16146 1015156 100 Davis (Structural engineering)

onetone1 36057 341088 10 Davis (Circuit simulation)

onetone2 36057 227628 15 Davis (Circuit simulation)
orani678 2529 90158 7 Rutherford-Boeing (Economics)

psmigr 1 3140 543162 48 Rutherford-Boeing (Demography)

raefsky5 6316 168658 4 Davis (Structural engineering)

raefsky6 3402 137845 2 Davis (Structural engineering)

rdist1 4134 94408 6 Rutherford-Boeing (Chemical engineering)

rim 22560 1014951 65 Davis (CFD)

sherman5 3312 20793 78 Rutherford-Boeing (Oil reservoir simul.)

shyy41 4720 20042 77 Davis (CFD)

shyy161 76480 329762 77 Davis (CFD)

twotone 120750 1224224 28 Davis (Circuit simulation)

utm3060 3060 42211 56 SPARSEKIT2

utm5940 5940 83842 56 SPARSEKIT2
wang4 26068 177196 100 Rutherford-Boeing (Semiconductor)

Table 1: Test matrices. StrSym denotes the structural symmetry.

In the following graphs, we report the performance ratios of the new factorization algorithm
over the standard algorithm. Matrices are sorted by increasing structural symmetry of the
matrix to be factored, i.e. after application of the column permutation when mc64 is used. We
use the same matrix order in the graphs and in the complete set of results provided in Tables 2
and 3. In this way, one can easily �nd, given a point in the graph, its corresponding entry in
the tables.

On the complete set of test matrices, we �rst analyse in Figure 8 what is probably of main
concern for the user of a sparse solver, i.e. the time to factor the matrix and the total working
space (as de�ned in the previous section). In Figure 8, we divide the matrices into three
categories: matrices of structural symmetry smaller than 50 for which the time reduction is
between 20% and 80%, matrices whose structural symmetry is between 50 and 80 for which the
time reduction is between 3% and 20% and nearly structurally symmetric matrices for which
there is almost no di�erence between the standard and new version. It is interesting to notice
that even on symmetric matrices the added work to detect asymmetry does not a�ect much the
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Matrix Total Operations in Facto.

(Str.Sym.) Version LU stack space Elimin. Assemb. Time

raefsky6 Stnd 1509016 606458 2017106 4.795E+08 4.348E+06 2.17

(2) New 998064 145575 1119135 2.313E+08 1.049E+06 1.14

raefsky5 Stnd 1757680 378792 2095082 3.746E+08 3.874E+06 1.83

(4) New 1226376 172619 1385099 2.081E+08 1.459E+06 1.02

av41092 Stnd 13947192 3875082 15955575 7.747E+09 4.688E+07 37.20

(8) New 10589987 1872716 11706493 4.328E+09 2.369E+07 20.15

orani678 Stnd 422713 5482454 5803903 9.012E+07 8.122E+06 2.30

(9) New 304199 457312 788170 5.179E+07 7.633E+05 0.46

av4408 Stnd 551354 227787 677254 6.872E+07 1.451E+06 0.46

(15) New 438530 105157 511453 4.670E+07 7.721E+05 0.32

lhr14c Stnd 2167304 415090 2439502 2.092E+08 7.944E+06 1.77

(15) New 1748270 144025 1905487 1.436E+08 3.115E+06 1.19

lhr02 Stnd 235048 137125 345145 1.332E+07 7.683E+05 0.18

(17) New 180065 25268 210778 8.306E+06 2.588E+05 0.10

lhr34c Stnd 5613656 755710 6249187 6.282E+08 2.064E+07 5.24

(19) New 4529304 280891 4926554 4.362E+08 8.321E+06 3.24

lhr17c Stnd 2813418 639172 3204801 3.089E+08 1.085E+07 2.65

(20) New 2277484 189988 2501349 2.177E+08 4.359E+06 1.71

lhr71c Stnd 11615170 729857 12711920 1.402E+09 4.304E+07 13.16

(21) New 9364949 253508 10063754 9.628E+08 1.773E+07 8.00

twotone Stnd 22086166 15899616 34489449 2.933E+10 2.171E+08 183.84

(43) New 17004794 5344194 21782217 1.838E+10 6.993E+07 85.92

onetone1 Stnd 4713485 3348215 6212037 2.282E+09 2.675E+07 14.54

(43) New 3918207 1434965 4792473 1.660E+09 1.198E+07 10.50

psmigr 1 Stnd 6316254 12896617 18554060 9.313E+09 8.326E+07 84.07

(48) New 6075412 8587331 14646034 8.889E+09 5.087E+07 52.05

rdist1 Stnd 258096 53767 279999 8.150E+06 5.054E+05 0.13

(49) New 227436 7865 245576 6.504E+06 3.507E+05 0.10

Table 2: Comparison of the standard (Stnd) and the new algorithms on matrices of structural
symmetry < 50.
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Matrix Total Operations in Facto.

(Str.Sym.) Version LU stack space Elimin. Assemb. Time

bbmat Stnd 44111480 8351266 48035816 3.676E+10 2.283E+08 185.75

(50) New 41081573 6785219 44491215 3.247E+10 1.655E+08 159.68

utm3060 Stnd 324640 78679 806970 2.683E+07 6.973E+05 0.22

(56) New 309700 70390 775115 2.486E+07 6.198E+05 0.20

utm5940 Stnd 701496 131839 2799224 6.640E+07 1.529E+06 0.51

(56) New 675079 124245 2227948 6.264E+07 1.392E+06 0.45

onetone2 Stnd 2253553 898540 385816 5.085E+08 7.628E+06 3.88

(57) New 1858514 495096 366856 3.624E+08 4.070E+06 2.14

goodwin Stnd 1264140 307777 1385604 1.612E+08 2.841E+06 1.05

(64) New 1217726 283920 1326773 1.505E+08 2.504E+06 0.94

rim Stnd 4127204 833290 4371615 5.648E+08 9.194E+06 3.37

(65) New 3973769 780826 4200819 5.221E+08 8.209E+06 3.18

shyy161 Stnd 7437816 377535 290589 9.945E+08 1.178E+07 6.56

(77) New 7204304 355293 277352 9.583E+08 1.083E+07 6.33

shyy41 Stnd 251336 28523 8137032 1.036E+07 6.337E+05 0.14

(77) New 239696 26015 7882722 9.681E+06 5.940E+05 0.14

sherman5 Stnd 167412 61227 217769 1.284E+07 4.414E+05 0.13

(78) New 148176 44670 188168 1.029E+07 3.131E+05 0.10

lns 3937 Stnd 285517 89578 335285 1.920E+07 5.482E+05 0.20

(87) New 284874 89390 335328 1.914E+07 5.463E+05 0.21

cavity15 Stnd 202629 33004 230111 1.033E+07 3.453E+05 0.10

(94) New 197553 31796 223789 9.896E+06 3.320E+05 0.12

cavity26 Stnd 394164 58589 447293 2.433E+07 6.877E+05 0.22

(95) New 386700 57061 438054 2.358E+07 6.670E+05 0.25

ex11 Stnd 11981558 3960507 13614400 6.678E+09 3.836E+07 27.76

(100) New 11981558 3960507 13614943 6.678E+09 3.836E+07 28.65

fidapm11 Stnd 15997220 4863371 19069150 9.599E+09 4.705E+07 39.78

(100) New 15997220 4863371 19071689 9.599E+09 4.705E+07 40.07

olaf1 Stnd 5880174 1506068 6794919 1.965E+09 1.685E+07 8.91

(100) New 5880174 1506068 6795508 1.965E+09 1.685E+07 8.89

wang4 Stnd 11561486 5063375 15900237 1.048E+10 4.087E+07 46.19

(100) New 11561486 5063375 15906325 1.048E+10 4.087E+07 46.25

Table 3: Comparison of the standard (Stnd) and the new algorithms on matrices of structural
symmetry >= 50
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4 Concluding remarks

We have described a modi�cation of the standard multifrontal LUfactorization algorithm that
can lead to a signi�cant reduction in both the computational time and the total working space.
The standard multifrontal algorithm [13] for unsymmetric matrices is based on the assembly
tree of a symmetrized matrix and involves frontal matrices symmetric in structure. Therefore, it
produces LU factors such that the matrix F = L+U is symmetric in structure. This approach
is currently used in the context of two publically available packages (ma41 [2, 3] and MUMPS [5, 4])
and has the advantage, with respect to other unsymmetric factorization algorithm [6, 7, 17],
of having the LU factorization based on the processing of an assembly tree, while the other
approaches explicitly or implicitly use a more complex to handle graph structure.

We have demonstrated that, based on the same assembly tree, one can derive a new multifrontal
algorithm that will introduce asymmetry in the frontal matrices and in the matrix of the factors
F. The detection of the asymmetry is only based on structural information and is not costly to
compute as it has been illustrated on structurally symmetric matrices, for which both algorithms
behave similarly. On a set of unsymmetric matrices, we have shown that the new algorithm will
reduce both the factor size and the number of operations by a signi�cant factor. We have also
observed that the reduction in the number of indirect memory access operations involved during
the assembly process is generally much higher than the reduction in the number of elimination
operations. Finally, we have noticed that the gain in the maximum stack size is also relatively
high and is comparable to the gain in the number of assembly operations.

Space for Operations

LU Stack Total Elim Assemb. Time

0 � Structural symmetry < 50

mean 0.79 0.35 0.69 0.67 0.41 0.59

median 0.80 0.35 0.76 0.68 0.40 0.61

50 � Structural symmetry < 80

mean 0.93 0.85 0.93 0.89 0.82 0.86

median 0.95 0.91 0.95 0.93 0.89 0.90

Table 4: Performance ratios of the new algorithm over the standard algorithm.

To conclude, we report in Table 4 a summary of the results (mean and median) obtained on
the test matrices with structural symmetry smaller than 80. For very unsymmetric matrices
(structural symmetry smaller that 50), we obtain an average reduction of 31% in the total
working space and of 41% in the factorization time. The maximum stack size and the number
of assembly operations are reduced by respectively 65% and 59%. Finally, it is interesting to
observe that, even on fairly symmetric matrices (50 � structural symmetry < 80), it can still
be worth trying to identify and exploit asymmetry during the processing of the assembly tree.
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