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Abstract: Correlation coefficients and linear regression values computed from group averages can differ from
correlation coefficients and linear regression values computed using individual scores. This observation known
as the ecological fallacy often assumes that all the individual scores are available from a population. In many
situations, onemust use a sample from the larger population. In such cases, the computed correlation coefficient
and linear regression values will depend on the sample that is chosen and the underlying sampling distri-
bution. The sampling distribution of correlation coefficients and linear regression values for group averages
will be identical to the sampling distribution for individuals for normally distributed variables for random
samples drawn from infinitely large continuous distributions. However, data that is acquired in practice is often
acquiredwhen samplingwithout replacement from a finite population. Our objective is to demonstrate through
Monte Carlo simulations that the sampling distributions for correlation and linear regressionwill also be similar
for individuals and group averages when sampling without replacement from normally distributed variables.
These simulations suggest that when a random sample from a population is selected, the correlation coefficients
and linear regression values computed from individual scoreswill not bemore accurate in estimating the entire
population values compared to samples when group averages are used as long as the sample size is the same.

Keywords: Ecological fallacy, sampling distributions, Pearson R, Monte Carlo simulation, linear regression,
multiple regression

MSC 2020: 62J05, 62H10, 62P25

1 Introduction

Linear regression coefficients, the Pearson R correlation, and the coefficient of determination R2 have long
been used to quantify the relationship between dependent and independent variables. The “ecological fallacy”
has shown that linear regression and correlation coefficients based on group averages cannot be used to esti-
mate linear regression and correlation coefficients based on individual scores [14]. Shih, Bradley and Yabroff
acknowledge the ecological fallacy inhealth disparities research [16]. A census-based approachwas evaluatedby
Geronimus and Bound [6]. Many have proposed methods to infer individual-level relationships from aggregate
data [1, 7, 9]. Aggregate bias was removed by properly specifying the regression equations [8]. A combination
of aggregate and individual data has been used [18] to predict associations between particulate matter and
COVID-19 mortality.

A mathematical analysis of the ecological fallacy [13] assumes a fixed set of scores that generate different
linear regression coefficients or correlation values depending on whether the individual scores are used or
whether they are averaged first. However, the scores may not necessarily represent an entire population. In
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many situations, the individual scores are themselves a sample. In such situations, the computed values of the
correlation and regression coefficients of the sample of individuals are estimates of the population coefficients.
The accuracy of the estimates depends on the underlying sampling distribution. Analytical sampling distribu-
tions have been derived for the Pearson R coefficient [2], coefficient of determination R2 (see [4]), and simple
regression slope b (see [15]) when individual scores are sampled from bivariate and multivariate normal dis-
tributions. The same sampling distributions also describe group averages for normally distributed variables
[5, 17]. Thus when sampling is performed from infinitely large normally distributed populations, the population
estimate of R, R2, and b based on a random sample of individual scores will be nomore accurate than a random
sample of group averages if the sample size (n) is the same. The disadvantage of using group averages is that n
can be greater if the individual scores had not been first averaged since the sampling distributions do become
narrower and the variances smallerwhen n increases. The advantage of using group averages is that if the group
size m is large m ≥ 30, the central limit theorem does not require the variables to be normally distributed.

Less is known when sampling without replacement from finite populations which is the way data is ac-
quired in many practical situations. This article employs Monte Carlo simulations to suggest that the R, R2, and
slope distributions are also similar for samples selected without replacement for both individual and group
averaged data for equal sample sizes. Our observations afford another interpretation of the ecological fallacy
and suggest that for samples drawn from finite populations, the correlation coefficients and linear regression
values will be selected from approximately the same sampling distribution regardless of the group size that
is used.

The paper is organized as follows. Section 2 introduces the notation used in the paper and describes the
analytical sampling distributions of R, R2, and slope b. Section 3 creates distributions by sampling without
replacement from a population of size N using Monte Carlo simulations and compares them with analytical
distributions for both simple regression (Section 3.1) and multiple regression (Section 3.2) using a small (0.5%)
and large (25%) sample percent of the population (Sn = 100 n

N ). Section 4 explores the parameter space of ρ (the
population correlation coefficient), N ,m, and n further. Section 4.1 considers simple regression correlation, Sec-
tion 4.2 discusses Fisher’s approximation, and Section 4.3 considers the linear regression slope. Mixed groups
are simulated in Section 4.4 and non-normal distributions are simulated in Section 4.5. Section 4.6 considers
a limited set of multiple regression examples. We conclude and discuss our observations in Section 5.

2 Nomenclature and analytical sampling distributions

We refer the reader to Table 1 which lists the symbols and their descriptions that are used in the manuscript.
Muirhead [12] notes that samples {(xi , yi) : 1 ≤ i ≤ n} selected from a bivariate distribution,

B(x, y; ρ, μx , μy , σx , σy) =
exp{− 1

2(1−ρ2) [(
x−μx
σx )

2 + ( y−μyσy )
2 − 2ρ (x−μx)(y−μy)σxσy ]}

2πσxσy(1 − ρ2)
1
2

(2.1)

with ρ the continuous population correlation, means μx , μy , and standard deviations σx and σy generate the
Pearson R distribution

f(R) = (n − 2)Γ(n − 1)
√2πΓ(n − 1

2 )
(1 − ρ2)

n−1
2 (1 − ρR)−n+

3
2 (1 − R2)

n
2 −22F1(

1
2 ,

1
2 ; n −

1
2 ;

1
2 (1 + ρR)) (|R| < 1), (2.2)

where Γ is the gamma function, 2F1 is the generalized hypergeometric function. This result was originally
derived by Fisher [2]. Fisher [3] also devised a transformation

Rz =
1
2 ln(

1 + R
1 − R) (2.3)

whose distribution approaches a normal distribution

Z(Rz) =
1

σz√2π
exp(−12(

Rz − μz
σz
)
2
)
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N Size of the population
n Sample size

Sn = 100 n
N Sample percent of population
m Group size

ntotal Total number of scores used in sample = nm
k Number of independent variables
R Sample correlation coefficient
R2 Sample coefficient of determination
b Sample regression slope

E(R), E(R2), E(b) Expectation of analytical sampling distributions
Var(R), Var(R2), Var(b) Variance of analytical sampling distributions
E(Rsim), E(R2sim), E(bsim) Expectation of simulation sampling distributions

Var(Rsim), Var(R2sim), Var(bsim) Variance of simulation sampling distributions
ρ Correlation of continuous distribution
ρ2 Coefficient of determination of continuous distribution

μx , μy Means from bivariate distribution
σx , σy Standard deviation from bivariate distribution

B Bivariate distribution
B Beta function

2F1 Generalized hypergeometric function
DR Percent relative difference in Pearson R variance, 100(Var(Rsim) − Var(R))/Var(R)
D2R Percent relative difference in R2 variance, 100(Var(R2sim) − Var(R2))/Var(R2)
Db Percent relative difference in slope b variance, 100(Var(bsim) − Var(b))/Var(b)
Dz Percent relative difference in Fisher variance, 100(Var(Rsimz ) − σ2z )/σ2z

Table 1: Nomenclature used in manuscript.

as n →∞, where
μz =

1
2 ln(

1 + ρ
1 − ρ), σ2z =

1
n − 3 . (2.4)

Gatignon [5] notes that averages (x̄k , ȳk) of size m

x̄k =
1
m

m
∑
i=1

x(k)i , ȳk =
1
m

m
∑
i=1

y(k)i , 1 ≤ k ≤ n,

follow the distribution
B(x̄k , ȳk ; ρ, μx , μy ,

σx
√m

,
σy
√m
), (2.5)

where x(k)i and y(k)i refer to the i’th member of the k’th group which are drawn from a bivariate distributionB,
see (2.1).While the standarddeviations are different in the arguments of (2.1) and (2.5), the Pearson R distribution
(2.2) does not depend on the standard deviations. Therefore the distribution (2.2) also applies to averages (x̄k , ȳk)
(see [17]).

The expectation E(R) and variation Var(R) of f(R) are (see [12])

E(R) = 2ρ
n − 1

Γ( n2 )
Γ( 12 (n − 1))

2F1(
1
2 ,

1
2 ;

1
2 (n + 1); ρ

2), (2.6)

Var(R) = 1 − n − 2
n − 1 (1 − ρ

2)2F1(1, 1;
1
2 (n + 1); ρ

2) − E(R)2 . (2.7)

The Var(R) decreases by approximately 1
n−1 as n increases (see [12])

Var(R) = (1 − ρ
2)2

n − 1 + O(n
−2). (2.8)

In regards to the simple regression slope b, samples of size n drawn from a bivariate distribution generate
the distribution h(b) (see [15])

h(b) = (1 − ρ
2)

n−1
2

√π
Γ( n2 )
Γ( n−12 )

σx
σy
[1 − ρ2 + (ρ − σx

σy
b)

2
]
− n2
. (2.9)
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If group averages are used, both σx and σy will be reduced by the square root of the group size √m, but the
ratio σx

σy will remain the same. Thus the distribution h(b) also applies to group averages for equal group sizes.
The expectation E(b) and variance Var(b) are (see [15])

E(b) = ρ(
σy
σx
), (2.10)

Var(b) =
σ2y
σ2x
(
1 − ρ2
n − 3 ). (2.11)

If we let

t =
( σxσy b − ρ)√ν

√1 − ρ2
, ν = n − 1,

the distribution (2.9) becomes a t-distributionwith ν degrees of freedomwhich canbe approximated by anormal
distribution for large n.

Whenmore than one independent variable is used, the distribution of samples of size n drawn fromamulti-
variate normal distribution generate the coefficient of determination g(R2) distribution as derived by Fisher [4]

g(R2) = (1 − ρ
2)

n−1
2

B( k2 ,
n−k−1

2 )
2F1(

n − 1
2 , n − 12 ; k2 ; ρ

2R2)(R2)
k−2
2 (1 − R2)

n−k−3
2 , (2.12)

where B is the beta function, ρ2 is the coefficient of determination for the entire population, and k represents
the number of independent variables. Again we note that the distribution does not depend on the standard
deviations of themultivariate normal distribution. Thus the sampling distribution of group averages will be the
same as individual scores. The expectation and variance of g(R2) are provided by Muirhead [12],

E(R2) = 1 − (n − k − 1
n − 1 )(1 − ρ

2)2F1(1, 1;
n + 1
2 ; ρ2), (2.13)

Var(R2) = [ (n − k − 1)(n − k + 1)
(n − 1)(n + 1) ](1 − ρ

2)22F1(2, 2;
n + 3
2 ; ρ2)

− [(
n − k − 1
n − 1 )(1 − ρ

2)2F1(1, 1;
n + 1
2 ; ρ2)]

2
. (2.14)

3 Method: Monte Carlo simulations

3.1 Comparing simple linear regression distributions

We begin our investigation by generating a population of scores {(xi , yi) : i = 1, N} of size N , where each pair
(xi , yi) is generated by sampling from a bivariate distribution (2.1). We generate each pair (xi , yi) by sampling
x∗i and y

∗
i independently from a standard normal distribution and correlating them using

xi = σxx∗i + μx , yi = σy(ρx∗i + √1 − ρ2y
∗
i ) + μy , i = 1, N, (3.1)

where (μx , μy) represent the means and (σx , σy) represent the standard deviations in the bivariate distribu-
tion (2.1). The use of (3.1) does not guarantee that {(xi , yi) : i = 1, N} will be correlated at exactly the value ρ
so multiple iterations are performed until they are correlated at the value of ρ to within 1 × 10−4. We use the
computed value of ρ in equations (2.6)–(2.14) when making comparisons.

Subsequently, we randomly select n groups of scores of size m. Since the sampling is done without replace-
ment, we require that ntotal = nm ≤ N since the elements within each group will be unique and no element
within the population will be used more than once in any of the groups. We also ensure that each sample is
unique so that even if the same group of nm elements are chosen, the group arrangement will be different in
each sample. Group averages are formed from them scores and the Pearson R coefficient and linear regression
slope are computed using the n averages. This type of sampling is used to model practical situations in which
data is acquired.
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Figure 1 shows the results of theMonte Carlo simulations of the Pearson R correlation coefficient and linear
regression slope using a population of N = 10,000 scores, a sample size of n = 50, and three different values of
ρ = −0.5, −0.1, 0.3 each with their respective group size m = 4, m = 3, and m = 2. The population of N = 10,000
scores was generated with (μx , μy) = (0, 0) and (σx , σy) = (1, 1.2) using equations (3.1). The analytical distri-
butions for the Pearson R distribution (2.2) and the linear regression slope (2.9) are shown with solid lines
and the simulations are shown using black dots. Each of the three simulations used a million randomly cho-
sen samples to create the distribution. The Monte Carlo simulations visually match the analytical distributions
well. However, we note that in these simulations, the sample size n = 50 is small compared to the population
size N = 10,000. A sample size of 50 constitutes only an Sn = 100 n

N = 0.5% sample percent of the population.
Figure 2 shows the results of theMonte Carlo simulations of the Pearson R correlation coefficient and linear

regression slope conducted under the same conditions as Figure 1 except that a population of N = 400 scores
and a sample size of n = 100 are used. The analytical distributions for the Pearson R distribution (2.2) and the
linear regression slope (2.9) are shown with solid lines and the simulations are shown using black dots and
lines. While the expectation values of the Monte Carlo simulations E(Rsim) and E(bsim) seem to visibly match
the expectation values E(R) and E(b) of the analytical distributions, the variances Var(Rsim) and Var(bsim) of the
simulations are visibly smaller than the analytical variances Var(R) and Var(b). Note that in these simulations,
the sample size n = 100 represents Sn = 100 n

N = 25% of the population of N = 400.
Table 2 shows the differences in the simulated and analytical expected value of R, E(Rsim) − E(R), the slope b,

E(bsim) − E(b), and the percent relative differences in the variances

DR = 100(
Var(Rsim) − Var(R)

Var(R) ), Db = 100(
Var(bsim) − Var(b)

Var(b) )

for Figures 1 and 2. Table 2 shows that the differences in the expectation are small for both figures. However
the percent relative differences in the variance of R and b are large in Figure 2 (ranging between −24.6 %

Figure 1: Comparison of the Monte Carlo simulation distributions (black dots) of Pearson R and linear regression slope using n = 50 and
N = 10,000 with analytical distributions (2.2) in green, blue, and magenta and (2.9) in red, cyan, and yellow for ρ = −0.5, −0.1, and 0.3
with respective group sizes m = 4, m = 3, and m = 2.
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Figure 2: Comparison of Monte Carlo simulation distributions (black dots and lines) of Pearson R and linear regression slope using
n = 100 and N = 400 with analytical distributions (2.2) in green, blue, and magenta and (2.9) in red, cyan, and yellow for ρ = −0.5, −0.1,
and 0.3 with respective group sizes m = 4, m = 3, and m = 2.

Figure 1: Sample size n = 50, Population size N = 10,000

ρ E(Rsim) − E(R) Percent relative difference in Var(R) E(bsim) − E(b) Percent relative difference in Var(b)

−0.5 −5.9 × 10−5 −0.26 −1.4 × 10−4 −0.56
−0.1 −2.4 × 10−4 −0.01 −3.2 × 10−4 −0.04
0.3 1.7 × 10−4 −1.45 2.8 × 10−4 −1.11

Figure 2: Sample size n = 100, Population size N = 400

ρ E(Rsim) − E(R) Percent relative difference in Var(R) E(bsim) − E(b) Percent relative difference in Var(b)

−0.5 4.1 × 10−4 −24.4 7.6 × 10−5 −24.6
−0.1 5.8 × 10−5 −23.4 −3.5 × 10−4 −24.0
0.3 7.1 × 10−5 −22.3 −3.9 × 10−4 −23.2

Table 2: Differences when comparing the analytical and simulation distribution expectation and variance in Figures 1 and 2.

and−22.3%).We also note that these percent relative differences are similar inmagnitude to the sample percent
of the population 25% in Figure 2.

3.2 Comparing multiple regression distributions

For multiple regression simulations, we use the Cholesky decomposition [11] to correlate the variables. If C
represents the (k + 1) × (k + 1) positive-definite symmetric correlation matrix, a lower triangular matrix L is
found such thatC = LTL. A vector z⃗ of k + 1 variables sampled froma standard normal distribution ismultiplied
by Lz⃗ to form the correlated variables. In our simulations, one dependent variable z and two independent
variables (x and y) are used (k = 2).
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Figure 3 shows the results of the Monte Carlo simulation that generates the distribution of the coefficient of
determination R2 and the linear regression slope between z and x for a population of N = 10,000 scores and a
sample size of n = 50. In the first simulation, the group size ism = 2 and ρ2 = 0.26. If Rzx , Rzy and Rxy refer to the
Pearson R correlation coefficient between z and x, z and y, and x and y respectively, the correlationmatrixC has
the following off-diagonal elements: Rzx = C1,2 = C2,1 = −0.5, Rzy = C1,3 = C3,1 = 0.1, Rxy = C2,3 = C3,2 = −0.055.
In the second simulation, the group size is m = 10, ρ2 = 0.73, and the correlation matrix has the following off-
diagonal elements: Rzx = C1,2 = C2,1 = 0.7, Rzy = C1,3 = C3,1 = 0.8, and Rxy = C2,3 = C3,2 = 0.56. Each simulation
shown with black dots used a million randomly chosen samples. The analytical distributions for R2 (2.12) are
shown using the green and blue solid lines. The solid red and cyan line for the linear regression slope between z
and x is generated by samplingwith replacement and is used as a proxy for the analytical distribution. This was
done since an analytical distribution for multiple regression slopes could not be found in our literature search.
The simulations visiblymatch the analytical distributions. Note that the sample size of n = 50 is small compared
to the population size N = 10,000 and constitutes only an Sn = 100 n

N = 0.5% sample percent of the population.
Figure 4 shows the results of the Monte Carlo simulations of the coefficient of determination R2 and the

linear regression slope between z and x for a population of N = 600 scores and a sample size of n = 150. In the
first simulation, the group size is m = 2 and ρ2 = 0.25. The correlation matrix has the following off-diagonal
elements: Rzx = C1,2 = C2,1 = −0.5, Rzy = C1,3 = C3,1 = 0.1, Rxy = C2,3 = C3,2 = −0.12. In the second simulation,
the group size is m = 10, ρ2 = 0.71, and the correlation matrix has the following off-diagonal elements: Rzx =
C1,2 = C2,1 = 0.7, Rzy = C1,3 = C3,1 = 0.8, Rxy = C2,3 = C3,2 = 0.60. Each simulation shown with black lines and
dots used a million randomly chosen samples. The analytical distributions for R2 (2.12) are shown using the
green and blue solid lines. The solid red and cyan line for slope between z and x is generated by sampling
with replacement and is used as a proxy for the analytical distribution. While the expectation values of the
Monte Carlo simulations E(R2sim) and E(bsim) seem to visibly match the expectation values E(R2) and E(b) of
the analytical distributions, the variances Var(R2sim) and Var(bsim) of the simulations are visibly smaller than

Figure 3: Comparison of Monte Carlo simulations (black dots) and analytical distributions of Pearson R2 (solid green and blue) and
linear regression slope between z and x (solid red and cyan) using a sample size of n = 50 and group sizes of m = 2, 10 in a population
of N = 10,000.
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Figure 4: Comparison of Monte Carlo simulations (black lines and dots) and analytical distributions of Pearson R2 (solid green and blue)
and linear regression slope between z and x (solid red and cyan) using a sample size of n = 150 and group sizes of m = 2, 10 in
a population of N = 600.

Figure 3: Sample size n = 50, Population size N = 10000

ρ2 E(R2sim) − E(R
2) Percent relative differences in Var(R2) E(bsim) − E(b) Percent relative differences in Var(b)

0.26 −2.1 × 10−4 1.1 × 10−2 −5.6 × 10−5 −5.3 × 10−3

0.73 −7.1 × 10−5 −7.6 × 10−3 −2.8 × 10−5 −5.2 × 10−3

Figure 4: Sample size n = 150, Population size N = 600

ρ2 E(R2sim) − E(R
2) Percent relative differences in Var(R2) E(bsim) − E(b) Percent relative differences in Var(b)

0.25 −1.7 × 10−3 −23.0 −1.8 × 10−4 −24.3
0.71 −3.5 × 10−4 −24.7 4.2 × 10−7 −23.5

Table 3: Differences when comparing the analytical and simulation distributions for Figures 3 and 4.

the analytical variances Var(R2) and Var(b). Note that in these simulations, the sample size n = 150 represents
Sn = 100 n

N = 25% of the population of N = 600.
Table 3 shows the differences in the simulated and analytical expected value of R2, E(R2sim) − E(R

2), the
linear regression slope b between z and x, E(bsim) − E(b), and the percent relative difference in the variances

D2
R = 100(

Var(R2sim) − Var(R
2)

Var(R2)
), Db = 100(

Var(bsim) − Var(b)
Var(b) )

for Figures 3 and 4. Table 3 shows that the differences in the expectation are small for both figures. However
the percent relative difference in the variance of R2 and b are large in Figure 4 (ranging between −24.7% and
−23.0%). We also note that these percent relative differences are similar in magnitude to the sample percent of
the population Sn = 25% in Figure 4.

These first examples suggest that when sampling without replacement from normal distributions, the
expectation differences between the analytical and simulated distributions are small regardless of the group
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size m. Differences arise between the variance of the analytical and simulated distributions when the sample
size n is a significant percent of the population size N regardless of the group size m. In the next section, we
explore parameter space further to determine if the differences in the analytical and simulated expectations
in R, R2 and the linear regression slope remain small. We also investigate if the differences in variances are a
function of the sample percent of the population Sn = 100 n

N .

4 Results: Exploring parameter space

Our objective in Section 4 is to continue to explore the parameter space of ρ,m, n, and N further to determine if
andwhere differences exist between the analytical distributions and the sampling distributions createdwithout
replacement. The parallel Fortran code is available at: https://github.com/davytorres/MonteCarloEcological.git.
In our preliminary analysis in Section 3, only one population was chosen for the simulations. We increase the
number of populations to 112 (chosenbecause it is divisible by 8 and 14which are the number of processors avail-
able on our computers for parallel runs) to determine if the population selection affects the observed trends.
In all the simulations in Section 4, a million randomly chosen samples are used to create each distribution. The
most important parameter we identified in Section 3 was the sample percent of the total population Sn = 100 n

N
which affects the variances of the distributions. Other parameters such as the group size and the Pearson ρ
value did not seem to have a significant impact when comparing the analytical and simulated distributions. We
also explore mixed groups sizes and non-normal distributions.

4.1 Simple regression – Pearson R

Figure 5 plots the difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bivariate dis-
tribution with ρ = 0.7, (μx , μy) = (0, 0), and (σx , σy) = (1, 1); E(R) is computed using equation (2.6); E(Rsim) is
generated with Monte Carlo simulations that use different sample sizes n (displayed along the horizontal axis
using the sample percent of the population Sn = 100 n

N ) and different group sizes m = 1, 2, 5, 10. The symbol on
the plot (square, circle, diamond, or triangle) shows the average difference and the error bars show the max-
imum and minimum differences from 112 different populations with size N = 10,000. Due to the number of
computations required, simulations were run in parallel on fourteen processors on a laptop or eight processors
on a desktop using MPI Fortran. Note that the sample percent of the population is limited according to the equa-
tion nm ≤ N . For example, a group size ofm = 2 can only use 50% of the population. For this reason, the values
we use for Sn along the horizontal axis for each group size vary according to Sn = 10 i

m , i = 1, 10. The exception
ism = 1. Wemodify the largest value of Sn whenm = 1 and i = 10 to be 95 since only one sample can be chosen
when m = 1 and all the elements of the population are used.

Figure 5 shows that the difference in (E(Rsim) − E(R)) is small (< 2 × 10−4) confirming that the expectation
values can be approximated using (2.6) regardless of the sample size n and group sizem for normally distributed
variables and ρ = 0.7. There is a small positive offset in the average difference. Simulations (figure not shown to
save space) identical to Figure 5 were also conducted except that a small population N = 400 was used. In these
simulations, all the absolute average differences were small (< 5 × 10−4) but larger than the average differences
shown in Figure 5.

We also note that the range of the error bars in Figure 5 increases as the sample percent of the population
decreases. Define the range LR of the error bars using (4.1),

LR = Max{E(Rsim) − E(R)} −Min{E(Rsim) − E(R)}. (4.1)

If the Log10(LR) is plotted against Log10(Sn), a linear regression line can be fit through the data as shown in
Figure 6 for m = 1 and m = 10. To avoid an overly cluttered plot, the plots for m = 2 and m = 5 are not shown.
Additional points for small values of Sn are included in the plot {Sn = i

m : i = 1, 10} in addition to the points
{Sn = 10 i

m : i = 1, 10} included in Figure 5. Based on the slope of linear regression fit, the range of the error

https://github.com/davytorres/MonteCarloEcological.git
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Figure 5: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bivariate distribution with ρ = 0.7
plotted against the sample percent of the population Sn = 100 n

N . The plot symbol shows the average difference and the error bars show
the maximum and minimum differences using 112 different populations of size N = 10,000.

Figure 6: Plot of Log10(LR) vs Log10(Sn) using a population size N = 10,000 sampled from a bivariate distribution with ρ = 0.7 for m = 1
and m = 10. The slopes of the linear regression lines are: −0.94 (m = 1), −0.71 (m = 2), −0.61 (m = 5), −0.57 (m = 10). The plots for
m = 2 and m = 5 are not shown to avoid a cluttered plot.
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bars LR varies according to Sαn , where α = −0.94 (m = 1), α = −0.71 (m = 2), α = −0.61 (m = 5), and α = −0.57
(m = 10) in their respective ranges of Sn .

Figure 7 plots the difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bivari-
ate distribution with different values of ρ = {−0.9, −0.6, −0.3, 0.0, 0.2, 0.5, 0.7} and group size m = 2. Figure 8
shows the results form = 10. Except for the value of ρ, the Monte Carlo simulation is conducted under the same
conditions described in Figure 5. The plot symbol shows the average difference and the error bars show the
maximum and minimum differences using 112 different populations. The differences remain small regardless
of the value of ρ used. The expectation E(Rsim) is slightly larger than E(R) for ρ > 0, and E(Rsim) is slightly less
than E(R) for ρ < 0.

Figure 9 plots the percent relative difference DR = 100(Var(Rsim)−Var(R)Var(R) ) using a population size N = 10,000
sampled from a bivariate distribution with ρ = 0.7. The plot symbol (square, circle, diamond, or triangle) shows
the average difference and the error bars show themaximumandminimumdifferences using 112 different pop-
ulations. The variance Var(R) is computed using (2.7) and Var(Rsim) is generated using aMonte Carlo simulation
in which a million samples were selected without replacement using different sample sizes n (displayed along
the horizontal axis using the sample percent of the population Sn = 100 n

N ).
The average percent relative differences can be closely approximated by the linear plot

DR = −Sn (4.2)

which is not a function of the group size m. The size of the error bars increases as the sample percent of the
population decreases which was also observed in the Pearson R expectation plot (Figure 5).

It is well known if all samples are considered, the variance of the sampling distribution σ2m is reduced by
the group size m when sampling with replacement

σ2m =
σ2

m
.

When computing the variance when sampling without replacement (σ2m)wr , there is an additional finite popu-
lation correction N−m

N−1 ,

(σ2m)wr =
σ2

m
(
N − m
N − 1 ).

The percent relative difference between the two variances is

100((σ
2
m)wr − σ2m
σ2m

) = −100(m − 1
N − 1) (4.3)

which is similar to the approximation (4.2) DR = −100 n
N = −Sn (when n is substituted for m − 1 and N − 1

replaced with N). However, (4.3) does not apply to the Pearson R coefficient and linear regression slope since
the variance is computed from the Pearson R coefficient and slope after they are calculated from each sample
composed of n groups each of size m.

Figure 10 plots the error (from Figure 9) when approximating the plot of DR versus Sn with the line
DR = −Sn . The error plotted is DR + Sn . All absolute errors are less than 0.5%. We note that the absolute error
increases when the group size decreases and the sample percent of the population Sn decreases.

Simulations (not shown) identical to Figure 10 were conducted except that a small population N = 400 was
used. In these simulations, all the absolute average errors were small (< 1.2%) but larger than the average
errors shown in Figure 10.

To further test the validity of (4.2), we fit a linear regression line through the plot of DR versus Sn shown
in Figure 9 for different group sizes m = 1, 2, 5, 10 and different values of ρ = −0.9, −0.6, −0.3, 0.0, 0.2, 0.5, and
0.7. The linear regression line fit through all values of m and all values of ρ has a Pearson R value in the range
−1 ≤ R < −1 + (2 × 10−5), a slope b in the range −1 − (1 × 10−3) < b < −1 + (7 × 10−3), and a y-intercept yint in
the range −6 × 10−3 < yint < 1 × 10−3 which shows that (4.2) is a good approximation to the plot of DR vs Sn .

The ecological fallacy can be viewed from the following perspective for normally distributed variables and
random sampling. Note that the total number of scores ntotal used for each Sn is mn since n groups of m scores
are averaged before the Pearson R coefficient is computed. For a fixed ntotal, smaller group sizes (m) have the
advantage of allowing larger sample sizes as n = ntotal

m . The variance of the sampling distribution decreases as the
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Figure 7: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bivariate distribution with different
values of ρ with group size m = 2 plotted against the sample percent of the population Sn = 100 n

N . The plot symbol shows the average
difference and the error bars show the maximum and minimum differences using 112 different populations of size N = 10,000.

Figure 8: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bivariate distribution with different
values of ρ with group size m = 10 plotted against the sample percent of the population Sn = 100 n

N . The plot symbol shows the average
difference and the error bars show the maximum and minimum differences using 112 different populations of size N = 10,000.
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Figure 9: Plot of percent relative difference DR = 100( Var(Rsim)−Var(R)Var(R) ) using a population size N = 10,000 sampled from a bivariate
distribution with ρ = 0.7 plotted against the sample percent of the population Sn = 100 n

N . The plot symbol shows the average difference
and the error bars show the maximum and minimum differences using 112 different populations. The percent relative difference can be
described by the linear equation DR = −Sn . The range of the error bars increases as the sample percent of the population decreases and
the group size decreases.

Figure 10: Plot of error DR + Sn (from Figure 9) when approximating the plot of DR versus Sn with the line DR = −Sn . The average value of
the DR from the 112 populations is used in the plot. The absolute error increases when the group size decreases and the sample percent
of the population Sn decreases.
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sample size (n) increases for two reasons. First Var(R) scales as 1
n−1 according to (2.8). Secondly, when sampling

without replacement, the variance is further reduced according to the DR = −Sn from Figure 9. Thus for a fixed
set of available scores ntotal, smaller group sizes translate into larger sample sizes and smaller variances in the
sampling distributions. Smaller variances mean the sample correlation has a higher probability of being close
to the population correlation.

4.2 Testing Fisher’s approximation

Since the distribution of R is not symmetric about the mean, we investigated properties of the Fisher trans-
formed (2.3) values of R as the transformed distribution is approximately normal and is useful in building
confidence intervals. Recall from (2.4) that as n →∞, the Fisher transformed variables Rz = 1

2 ln(
1+R
1−R ) approach

a normal distribution with mean

μz =
1
2 ln(

1 + ρ
1 − ρ)

and variance

σ2z =
1

n − 3 .

Figures 11–13 use the same data and parameters from the simulations described in Figures 5–10.
Figure 11 plots the average difference (E(Rsimz ) − μz) over the 112 populations where E(Rsimz ) is the expec-

tation of the distribution formed by the transformed

Rz =
1
2 ln(

1 + R
1 − R)

variables created by Monte Carlo simulations with ρ = 0.7. We note that the difference is small but increases
as Sn decreases. A plot of Log10(E(Rsimz ) − μz) vs Log10(Sn) is linear and the least squares slope of the line is
−1.1 with a Pearson R value of −0.997, from which one can conclude that (E(Rsimz ) − μz) decreases as Sαn , where
α = −1.1 for the ranges of Sn considered.

Figure 12 plots the average percent relative difference in the variance

Dz = 100(
Var(Rsimz ) − σ2z

σ2z
)

= 100(n − 3)(Var(Rsimz ) −
1

n − 3),

where Var(Rsimz ) is the variance of the distribution formed by the Monte Carlo simulation after applying the
Fisher transformation. Note that Dz can be approximatedwith the line Dz = −Sn . The absolute errors in approx-
imating the plot of Dz vs Sn with the line Dz = −Sn are all less than 0.5 percent. As with DR , the absolute error
increases when the group size decreases and the sample percent of the population Sn decreases.

We have compared the expectation and variances of the Pearson R distribution. To compare the simulated
and analytical distribution functions, we use the Fisher transformed variables. Figure 13 plots the average error

Earea =
3.5

∫
−3.5

|fsim(Rz) − Z(Rz)| dz,

where
Z(Rz) =

1
σ√2π

exp(−12(
Rz − μ
σ
)
2
)

and fsim(Rz) is the distribution formed by the Monte Carlo simulation. Since the variance decreases with Sn
when sampling without replacement, the mean μ and standard deviation σ were selected to be the mean and
standard deviation of the simulated distribution so Figure 13 is essentially a test of normality; Earea is small
(< 5.5 × 10−3) for the tested range of Sn for all group sizes m.
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Figure 11: Plot of difference (E(Rsimz ) − μz), where ρ = 0.7, μz = 1
2 ln(

1+ρ
1−ρ ), and E(R

sim
z ) is the expectation of the distribution formed

by the Monte Carlo simulation after applying the transformation Rz = 1
2 ln(

1+R
1−R ).

Figure 12: Plot of percent relative difference 100(n − 3)(Var(Rz) − 1
n−3 ), where Var(R

sim
z ) is the variance of the distribution formed

by the Monte Carlo simulation after applying the transformation Rz = 1
2 ln(

1+R
1−R ) with ρ = 0.7.
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Figure 13: Plot of error Earea = ∫
3.5
−3.5 |fsim(Rz) − Z(Rz)| dz, where Z(Rz) =

1
σ√2π

exp(− 12 (
Rz−μ
σ )

2) and fsim(Rz) is the distribution
formed by the Monte Carlo simulation after applying the transformation Rz = 1

2 ln(
1+R
1−R ).

4.3 Simple regression – Slope

Figures 14–18 use the same data from the simulations described in Figures 5–10. Figure 14 plots the difference
(E(bsim) − E(b)). The difference (E(bsim) − E(b)) is small confirming that the expectation values can be approx-
imated using (2.10) regardless of the sample size n and group size m for normally distributed variables and
ρ = 0.7. Simulations identical to Figure 14were also conducted except that a small populationN = 400was used.
In these simulations, all the absolute average differences were small (< 2 × 10−4) but larger than the average
differences shown in Figure 14.

Similar to Figure 5, the range of the error bars in Figure 14 increases as the sample percent of the population
decreases. Define the range Lb of the error bars using (4.4),

Lb = Max{E(bsim) − E(b)} −Min{E(bsim) − E(b)}. (4.4)

If the Log10(Lb) is plotted against Log10(Sn), a linear regression line can be fit through the data. Additional points
for small values of Sn are included in the plot {Sn = i

m : i = 1, 10} in addition to the points {Sn = 10 i
m : i = 1, 10}.

Based on the slope of linear regression fit, the range of the error bars Lb varies according to Sαn , where α = −0.92
(m = 1), α = −0.72 (m = 2), α = −0.60 (m = 5), α = −0.58 (m = 10) for their respective ranges of Sn .

Figure 15 plots the difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivari-
ate distribution with different values of ρ = {−0.9, −0.6, −0.3, 0.0, 0.2, 0.5, 0.7} and group size m = 2. Figure 16
shows the results for m = 10. The differences remain small regardless of the value of ρ used.

Figure 17 plots the percent relative difference

Db = 100(
Var(bsim) − Var(b)

Var(b) )

using a population size N = 10,000 sampled from a bivariate distribution with ρ = 0.7. Var(b) is computed
using (2.11) and Var(bsim) is generated using a Monte Carlo simulation in which a million samples were selected
without replacement. The average percent relative difference can be described by the linear plot

Db = −Sn , (4.5)
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Figure 14: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivariate distribution with ρ = 0.7.
The plot symbol shows the average difference and the error bars show the maximum and minimum differences using 112 different
populations.

Figure 15: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivariate distribution with different
values of ρ with group size m = 2 plotted against the sample percent of the population Sn .
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Figure 16: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivariate distribution with different
values of ρ with group size m = 10 plotted against the sample percent of the population Sn .

Figure 17: Plot of percent relative difference Db = 100( Var(bsim)−Var(b)Var(b) ) using a population size N = 10,000 sampled from a bivariate
distribution with ρ = 0.7. The percent relative difference can be described by the linear plot Db = −Sn . The size of the error bars
increases as the sample percent of the population decreases and the group size decreases.
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Figure 18: Plot of error Db + Sn (from Figure 17) when approximating the plot of Db versus Sn with the line Db = −Sn . The absolute value
of the error increases when the group size decreases and the sample percent of the population Sn decreases (for m = 1 and m = 2).

where Sn = 100 n
N which is not a function of the group size m. However, the size of the error bars increases

as the sample percent of the population decreases and the group size decreases. Figure 18 plots the error (from
Figure 17) when approximating the plot of Db versus Sn with the line Db = −Sn . The error plotted is Db + Sn . All
absolute average errors are less than 0.14%. We note that the absolute value of the error increases when the
group size decreases and the sample percent of the population Sn decreases (for m = 1 and m = 2).

Simulations (not shown) identical to Figure 18 were conducted except that a small population N = 400 was
used. In these simulations, all the absolute average errors were small (0.6%) but larger than the average errors
shown in Figure 18.

To test the validity of (4.5), we fit a linear regression line through the plot of Db versus Sn shown in Fig-
ure 17 for different group sizes m = 1, 2, 5, 10 and different values of ρ = −0.9, −0.6, −0.3, 0.0, 0.2, 0.5, and 0.7.
The linear regression line fit through all values of m and all values of ρ has a Pearson R value in the range
−1 ≤ R < −1 + (1.8 × 10−5), a slope b in the range −1 + (−4 × 10−3) < b < −1 + (4 × 10−3), and a y-intercept yint
in the range −3 × 10−3 < yint < 3 × 10−3 which shows that (4.5) is a good approximation to the plot of Db vs Sn .

4.4 Groups of mixed size

In Figures 19–22, we study the behavior of groups of mixed size. In all the figures, the population size is N =
10,000 and the samples are generated from a bivariate distribution with ρ = 0.7, (μx , μy) = (0, 0), and (σx , σy) =
(1, 1). Figures 19 and 20 plot the difference (E(Rsim) − E(R)) and (E(bsim) − E(b)) respectively for three types of
mixed groups:
(1) m = 2 and m = 8,
(2) m = 2 and m = 18,
(3) m = 3, m = 7, and m = 10.
There are equal amounts of each group size in each sample. The plot symbol shows the average difference and
the error bars show the maximum and minimum errors using 112 different populations. The differences in the
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Figure 19: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bivariate distribution with ρ = 0.7
plotted against the sample percent of the population Sn = 100 n

N using groups of mixed size.

Figure 20: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivariate distribution with ρ = 0.7
plotted against the sample percent of the population Sn using groups of mixed size.
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Figure 21: Plot of percent relative difference DR = 100( Var(Rsim)−Var(R)Var(R) ) using a population size N = 10,000 sampled from a bivariate
distribution with ρ = 0.7 plotted against the sample percent of the population Sn using groups of mixed size. The percent relative
difference is closely approximated with the linear equation DR = −Sn .

Figure 22: Plot of percent relative difference Db = 100( Var(bsim)−Var(b)Var(b) ) using a population size N = 10,000 sampled from a bivariate
distribution with ρ = 0.7 plotted against the sample percent of the population Sn using groups of mixed size. The percent relative
difference can be described by the linear equation Db = −Sn .
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expectation values remain small. However, the size of the error bars increases as the sample percent of the
population Sn decreases.

Figure 21 and Figure 22 plotDR = 100(Var(Rsim)−Var(R)Var(R) ) andDb = 100(Var(bsim)−Var(b)Var(b) ) respectively for themixed
groups. We observe again that DR = −Sn and Db = −Sn are good approximations to the plots of DR versus Sn
and Db versus Sn . The absolute errors in approximating the plot of DR vs Sn with the line DR = −Sn and Db vs
Sn with the line Db = −Sn are all less than 0.05%.

4.5 Non-normal populations

In this subsection, we consider random samples drawn from non-normal distributions. In all Figures 23–35, the
population size is N = 10,000 and ρ = 0.7. Figure 23, Figure 24, and Figure 25 plot the difference (E(Rsim) − E(R))
sampled from a uniform (f(x) = f(y) = 1, 0 ≤ x, y ≤ 1), an exponential

f(x) = e−x , f(y) = e−y , 0 ≤ x, y < ∞,

and a bimodal distribution

f(x) = e
−(x+1)2 + e−(x−1)2

2√2π
, f(y) = e

− y
2
2

√2π
respectively. The plot symbol shows the average difference and the error bars show themaximumandminimum
differences using 112 different populations. The average differences are small but their absolute values increase
as the sample percent of the population Sn decreases.

Figure 26, Figure 27, and Figure 28 plot DR = 100(Var(Rsim)−Var(R)Var(R) ) sampled from a uniform, exponential, and
bimodal distribution respectively. The magenta line DR = −Sn is included as a reference (as it served as a good
approximation when sampling from normal distributions). The plots of DR vs Sn appear linear. However, unlike

Figure 23: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a uniform distribution with ρ = 0.7
plotted against the sample percent of the population Sn = 100 n

N . The plot symbol shows the average difference and the error bars show
the maximum and minimum differences using 112 different populations of size N = 10,000.
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Figure 24: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from an exponential distribution with ρ = 0.7
plotted against the sample percent of the population Sn .

Figure 25: Plot of difference (E(Rsim) − E(R)) using a population size N = 10,000 sampled from a bimodal distribution with ρ = 0.7
plotted against the sample percent of the population Sn .
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Figure 26: Plot of percent relative difference DR = 100( Var(Rsim)−Var(R)Var(R) ) using a population size N = 10,000 sampled from a uniform
distribution with ρ = 0.7 plotted against the sample percent of the population Sn .

Figure 27: Plot of percent relative difference DR = 100( Var(Rsim)−Var(R)Var(R) ) using a population size N = 10,000 sampled from an exponential
distribution with ρ = 0.7 plotted against the sample percent of the population Sn .
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Figure 28: Plot of percent relative difference DR = 100( Var(Rsim)−Var(R)Var(R) ) using a population size N = 10,000 sampled from a bimodal
distribution with ρ = 0.7 plotted against the sample percent of the population Sn .

Figure 29: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a uniform distribution with ρ = 0.7
plotted against the sample percent of the population Sn .
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Figure 30: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from an exponential distribution with ρ = 0.7
plotted against the sample percent of the population Sn .

Figure 31: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bimodal distribution with ρ = 0.7
plotted against the sample percent of the population Sn .
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Figure 32: Plot of percent relative difference Db = 100( Var(bsim)−Var(b)Var(b) ) using a population size N = 10,000 sampled from a uniform
distribution with ρ = 0.7 plotted against the sample percent of the population Sn . The absolute errors in approximating the plot of Db vs
Sn with the line Db = −Sn are all less than 0.18%.

Figure 33: Plot of percent relative difference Db = 100( Var(bsim)−Var(b)Var(b) ) using a population size N = 10,000 sampled from an exponential
distribution with ρ = 0.7 plotted against the sample percent of the population Sn . The absolute errors in approximating the plot of Db vs
Sn with the line Db = −Sn are all less than 1.2%.
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Figure 34: Plot of percent relative difference Db = 100( Var(bsim)−Var(b)Var(b) ) using a population size N = 10,000 sampled from a bimodal
distribution with ρ = 0.7 plotted against the sample percent of the population Sn . The absolute errors in approximating the plot of Db vs
Sn with the line Db = −Sn are all less than 0.35%.

Figure 35: Plot of difference ∫ |hsim(b) − h(b)| db, where hsim(b) is the distribution formed by the Monte Carlo simulation, h(b) is the
slope distribution (2.9), and {(x i , y i)} are sampled from normal, uniform, exponential, and bimodal distributions.
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samples from normal distributions, DR is a function of both the sample percent of the population Sn and the
group sizem. The line form = 10 does seem to match the DR = −Sn line better compared to smaller values ofm
due to the central limit theorem. Interestingly, we note that form > 1 the plots intersect the line DR = −Sn when
mSn = 100. We also tried generating Var(R) by samplingwithout replacement for each non-normal population
and found that DR still could not be approximated with DR = −Sn .

Figure 29, Figure 30, and Figure 31 plot the difference (E(bsim) − E(b)) sampled from a uniform, exponen-
tial, and bimodal distribution respectively. Since the difference is small, E(b) computed from (2.10) is a good
approximation for the expectation of the sampling distribution.

Figure 32, Figure 33, and Figure 34 plot Db = 100(Var(bsim)−Var(b)Var(b) ) sampled from a uniform, exponential, and
bimodal distribution respectively; Var(b) is computed using (2.11). The magenta line Db = −Sn is included as
a reference. Remarkably, Db is only a function of Sn and does not appear to depend on the group size m
(unlike DR). We note that Goodman’s [7] method relies on the premise that regression coefficients are less easily
affected by aggregation than correlation [10].

Figure 35 plots the area difference ∫ |hsim(b) − h(b)| db, where hsim(b) is the distribution formed by the
Monte Carlo simulation, h(b) is the slope distribution (2.9), and {(xi , yi)} are sampled without replacement from
normal, uniform, exponential, and bimodal distributions. The variance of h(b) is modified by adjusting the
value of n in order to match the variance of the line Db = −Sn . The largest area difference is generated with the
exponential distribution, but all differences are less than 0.026. Figure 35 shows that the simulated distributions
can be approximated with h(b) for these populations types.

4.6 Multiple regression results

Wemove now to multiple regression simulations. Figure 36 plots the difference (E(R2sim) − E(R
2)) using a popu-

lation size N = 10,000 sampled from a normal distribution and correlated using Cholesky decomposition with
ρ2 = 0.25 ρ2 = 0.73, and ρ2 = 0.72. For ρ2 = 0.25 and m = 5, the correlation matrix C has the following off-
diagonal elements: Rzx = C1,2 = C2,1 = −0.5, Rzy = C1,3 = C3,1 = 0.1, Rxy = C2,3 = C3,2 = −0.055.We sample from
both a normal and uniform distribution when ρ2 = 0.25. For ρ = 0.73 and m = 5, the correlation matrix has
the following off-diagonal elements: Rzx = C1,2 = C2,1 = 0.7, Rzy = C1,3 = C3,1 = 0.8, Rxy = C2,3 = C3,2 = 0.56. For
ρ = 0.72 and m = 3, the correlation matrix has the following off-diagonal elements: Rzx = C1,2 = C2,1 = −0.3,
Rzy = C1,3 = C3,1 = 0.7, Rxy = C2,3 = C3,2 = −0.2. The symbol shows the average difference and the error bars
show the maximum and minimum differences using 112 different populations. The expectation E(R2) is com-
puted using (2.13) and E(R2sim) is generated using a Monte Carlo simulation in which a million samples are
randomly selected without replacement. The differences (E(R2sim) − E(R

2)) are small but the size of the error
bars increase as Sn decreases.

Figure 37 plots the percent relative difference D2
R = 100(

Var(R2sim)−Var(R
2)

Var(R2) ) using a population size N = 10,000
sampled from a bivariate distribution under the same conditions as Figure 36. The symbol shows the average
difference and the error bars show the maximum and minimum differences using 112 different populations.
The variance Var(R2) is generated using (2.14) and Var(R2sim) is generated using a Monte Carlo simulation in
which a million samples are randomly selected without replacement. The percent relative difference can be
approximated with the line D2

R = −Sn .
Figure 38 plots the difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivariate

distribution with ρ2 = 0.25, ρ2 = 0.73, and ρ = 0.72 using the slope b between z and x. We also include a plot of
ρ2 = 0.25 which was created by sampling from a uniform distribution. The expectation E(b) is generated using
a Monte Carlo simulation in which a million samples are selected with replacement and E(bsim) is generated
using a Monte Carlo simulation in which a million samples are selected without replacement. The differences
(E(bsim) − E(b)) are small.

Figure 39 plots the percent relative difference Db = 100(Var(bsim)−Var(b)Var(b) ) under the same conditions as Fig-
ure 38 using the slope b between z and x. We also include a plot of ρ2 = 0.25 which was created by sampling
from a uniform distribution. The variance Var(b) is generated using a Monte Carlo simulation in which a mil-
lion samples are selectedwith replacement and Var(bsim) is generated using a Monte Carlo simulation in which
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Figure 36: Plot of difference (E(R2sim) − E(R2)) using a population size N = 10,000 sampled from a bivariate distribution with ρ2 = .25
and m = 5, ρ2 = 0.73 and m = 5, and ρ2 = 0.72 and m = 3. A plot of ρ2 = 0.25 and m = 5 is also included which was sampled from
a uniform distribution. The symbol shows the average difference and the error bars show the maximum and minimum differences using
112 different populations. The expectation E(R2) is computed using (2.13) and E(R2sim) is generated using a Monte Carlo simulation in
which a million samples are selected without replacement using different sample sizes n (displayed along the horizontal axis using the
sample percent of the population Sn = 100 n

N ).

a million samples are selected without replacement. The percent relative difference can be approximated with
the line Db = −Sn even for the case where samples were drawn from a uniform distribution.

5 Discussion and conclusion

In this article, we perform Monte Carlo simulations to select samples without replacement from finite popu-
lations to generate distributions of Pearson R, slope b, and the coefficient of determination R2 in simple and
multiple regression contexts. Our Monte Carlo simulations suggest that the expectations of the R, b, and R2 dis-
tributions are similar to the expectations of the analytical sampling distributions for normally distributed data
for both individual and group averaged data as long as the sample sizes n are the same. This observation is also
true for groups of mixed sizes and for the three non-normal distributions we tested using simple regression
simulations.

However the variances of the R, b, and R2 distributions createdwithout replacement are reduced compared
to the variances of the analytical distributions. Our simulations show that the percent relative differences DR ,
Db , and D2

R in the variances can be approximated with the linear equations DR = −Sn , Db = −Sn , and D2
R = −Sn ,

where Sn is the sample percent of the population Sn = 100 n
N . The group size that is used when selecting the

samples does not affect the variances for normally distributed variables. We observe the same results when
considering groups of mixed size.

The distribution of the Fisher transformed value of R denoted by Rz can also be approximated by a normal
distribution as the sample size n increases when sampling without replacement for both individual and group
averaged data. Similar to the other percent relative differences, Dz can be approximatedwith the line Dz = −Sn .
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Figure 37: Plot of percent relative difference D2R = 100(
Var(R2sim)−Var(R

2)
Var(R2) ) using a population size N = 10,000 sampled from a bivariate

distribution with ρ2 = 0.25 and m = 5, ρ2 = 0.73 and m = 5, and ρ2 = 0.72 and m = 3. The symbol shows the average difference and the
error bars show the maximum and minimum differences using 112 different populations. The variance Var(R2) is computed using (2.14)
and Var(R2sim) is generated using a Monte Carlo simulation in which a million samples are selected without replacement.

Figure 38: Plot of difference (E(bsim) − E(b)) using a population size N = 10,000 sampled from a bivariate distribution with ρ2 = 0.25
and m = 5, ρ2 = 0.73 and m = 5, and ρ2 = 0.72 and m = 3. A plot of ρ2 = 0.25 and m = 5 is also included which was sampled from
a uniform distribution. The symbol shows the average difference and the error bars show the maximum and minimum differences using
112 different populations. The expectation E(b) is generated using a Monte Carlo simulation in which a million samples are selectedwith
replacement and E(bsim) is generated using a Monte Carlo simulation in which a million samples are selected without replacement.
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Figure 39: Plot of percent relative difference Db = 100( Var(bsim)−Var(b)Var(b) ) using a population size N = 10,000 sampled from a bivariate
distribution with ρ2 = 0.25 and m = 5, ρ2 = 0.73 and m = 5, and ρ2 = 0.72 and m = 3. A plot of ρ2 = 0.25 and m = 5 is also included
which was sampled from a uniform distribution. The symbol shows the average difference and the error bars show the maximum and
minimum differences using 112 different populations. The variance Var(b) is generated using a Monte Carlo simulation in which a million
samples were selectedwith replacement and Var(bsim) is generated using a Monte Carlo simulation in which million samples are
selected without replacement.

We also observed that for non-normal distributions, the percent relative differences in the correlation
variances DR depend on the sample size and the group size and cannot be approximated with a simple line.
Interestingly, in contrast, the percent relative differences in slope variances Db can be approximated by the
line Db = −Sn for the non-normal distributions we considered.

Our observations afford another interpretation of the ecological fallacy and suggest that for random
samples drawn without replacement from normally distributed finite populations, the correlation coefficients
and linear regression slopes will be selected from approximately the same sampling distribution regardless of
the group size m as long as the sample size n is the same.

A Appendix: Fortran code

The parallel Fortran code we use to run the Monte Carlo simulations evenly divides the 112 populations among
the processors. Each processor then develops the Pearson R and slope distributions using its share of the popu-
lations for different values of group size m and different sample percents of the population Sn .

Each processor finds the maximum, minimum, and average difference of the expectation and variance of
each distribution from the analytical value for its share of the populations. Then the maximum, minimum, and
average difference of the expectation and variance are shared among all the processors, to find the maximum,
minimum, and average difference for all populations which is stored on the first processor.

We have developed two versions of the code: an MPI version and a Coarray Fortran version. MPI uses the
MPI_REDUCE calls for communication and the Coarray Fortran uses the co_sum, co_max, and co_min calls for
communication.
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