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Abstract

Background: China’s one-child-per-couple policy, introduced in 1979, led to profound demographic changes for nearly a
quarter of the world’s population. Several decades later, the consequences include decreased fertility rates, population
aging, decreased household sizes, changes in family structure, and imbalanced sex ratios. The epidemiology of
communicable diseases may have been affected by these changes since the transmission dynamics of infectious diseases
depend on demographic characteristics of the population. Of particular interest is influenza because China and Southeast
Asia lie at the center of a global transmission network of influenza. Moreover, changes in household structure may affect
influenza transmission. Is it possible that the pronounced demographic changes that have occurred in China have affected
influenza transmission?

Methods and Findings: To address this question, we developed a continuous-time, stochastic, individual-based simulation
model for influenza transmission. With this model, we simulated 30 years of influenza transmission and compared influenza
transmission rates in populations with and without the one-child policy control. We found that the average annual attack
rate is reduced by 6.08% (SD 2.21%) in the presence of the one-child policy compared to a population in which no
demographic changes occurred. There was no discernible difference in the secondary attack rate, 20.15% (SD 1.85%),
between the populations with and without a one-child policy. We also forecasted influenza transmission over a ten-year
time period in a population with a two-child policy under a hypothesis that a two-child-per-couple policy will be carried out
in 2015, and found a negligible difference in the average annual attack rate compared to the population with the one-child
policy.

Conclusions: This study found that the average annual attack rate is slightly lowered in a population with a one-child policy,
which may have resulted from a decrease in household size and the proportion of children in the population.
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Introduction

The one-child-per-couple policy in China was introduced in

1979 in an effort to raise living standards by slowing population

growth. Subsequently, the policy reduced fertility rates [1,2] and

household sizes, with only one dependent child found in most

households. The total birth rate dropped from 2.90, before the

policy was introduced, to 1.94 among women over 35 years of age,

and to 1.73 among women under 35 years old in 2001. Women’s

preferences for smaller families have changed (35% prefer one

child and 57% prefer two children according to a study in 2001)

[3]. The total fertility rate decreased from 2.9 in 1979 to 1.7 in

2004, with a rate of 1.3 in urban areas and less than 2.0 in rural

areas. This trend has created a distinct demographic pattern for

nearly a quarter of the world’s population, resulting in Chinese

urban families with predominantly one child and rural families

with predominantly two children [4].

The spread of infectious diseases may depend on demographic

characteristics, environmental changes, consumption behaviors

(eating, drinking, culinary culture, etc.), other behaviors (sexual

contacts, drug use, hospital procedures, etc.), and host conditions

(malnutrition, diabetes, immune status, etc.) [5]. While the one

child policy has had economic, demographic, and sociological

ramifications far beyond the scope of infectious disease transmis-

sion, it is important to understand the consequences for influenza

dynamics, in part because China and Southeast Asia lie at the
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center of a global transmission network of influenza [6].

Demographic changes may affect influenza transmission dynamics

because children have an increased susceptibility due to lower

immunity. Moreover, increased viral shedding and longer

infectious periods in children lead to more influenza among

susceptible populations [7]. Demographic characteristics have

been incorporated into many modeling studies [8,9,10] to help

understand the effects on transmission of influenza or the

socioeconomic impact of mitigation strategies [11,12]. Household

composition is an important determinant of the transmission of

respiratory pathogens including influenza [13,14,15,16,17,18,19]

and remains an important feature of recent transmission models

[20,21,22,23,24,25].

This paper presents a study focusing on the indirect effects of

demographic changes on influenza transmission. We developed a

continuous-time, event-driven, individual-based stochastic simula-

tion model for influenza transmission in a dynamic population. We

used this model to simulate transmission while assuming different

demographic control policies: the one-child policy, the absence of

any control policy, and a strict one-child policy. The strict one-

child policy was introduced to compare influenza transmission

rates with a hypothetical one-child policy to rates with an actual

one-child policy, since two or more children are often allowed in

rural areas and for ethnic minorities [4]; the existing census data

do not reflect the effects of truly restricting families to one child.

The model was used to simulate 30 years of influenza transmission

in a dynamic population as follows: (1) we initialized the

population using 1975 demographic data (four years before a

one-child policy was fully launched in China); (2) we calibrated the

population projections by fitting the simulated population with the

one-child policy to the census and compared the simulated

population without the one-child policy with projections from

previous literature [26,27] in which population growth was

predicted under different demographic control policies; (3) we

calibrated the influenza-specific parameters by fitting the annual

attack rate and secondary attack rate from the reported literature

[7,28,29,30,31,32,33]; and (4) we compared the simulated annual

attack rate and secondary attack rate in simulated populations

with and without the one-child policy. In the plenary sessions of

the 2011 Chinese People’s Political Consultative Conference and

the National People’s Congress, a two-child policy was proposed to

start as early as 2015 [34]. Experts suggested that the one-child

policy may threaten China’s economic growth due to the increase

in the number of older people, a decrease in the number of

younger workers, as well as a sex-ratio imbalance [34]. Because a

two-child policy was proposed to start as early as 2015 [34], we

also forecasted influenza transmission over a ten-year period (2015

to 2024) in a population with a two-child policy.

Methods

Our model has three main features: (1) influenza transmission,

(2) population demographics, and (3) dynamic network structure.

We used a susceptible-exposed-infectious-recovered (SEIR) model

which included waning immunity and seasonality of influenza

transmission. We used census data [35,36,37,38,39] (Table 1) from

China, to construct a population with demographic changes under

a one-child policy. A simple dynamic network structure was used

to group people with household links, school links and social links,

allowing influenza to be transmitted along these links in the

network while changing the state of each individual (S, E, I and R).

The model structure is described in the section titled Model Structure

(and in the Text S1 and Figure S1). Influenza transmission

parameters were calibrated using Approximate Bayesian Compu-

tation (ABC) [40,41] as described in the Calibration section (we

Table 1. Demographic parameters.

Descripton Values Age-specific Symbol Distribution

Population Age 0–100 Yes agedistr Age distribution from census
[26,27,35,36,37,38]

Household size 1–10 No hdistr Household size distribution, in census
[26,27,35,36,37,38]

Household age structure 0–100 Yes hsage Distribution by generation in one
household, from census
[26,27,35,36,37,38]

Mortality probability 0–0.33 Yes sv Mortality rate from 1975 to 2009
[26,27,35,36,37,38]

Fertility probability 0–0.30 Yes mf Fertility rate of female from 1975 to 2009
[26,27,35,36,37,38]

Sex ratio 0.48–0.52 Yes sexdistr Sex ratio from 1975 to 2009
[26,27,35,36,37,38]

Age to leave from home as a single household 15–18 Yes agesplit Uniform

Time of leaving home in a specific year 1–365 - tsplit Uniform

One-child policy: apply dynamic fertility rate Bool Yes policy1 Fertility rate of females from 1975 to 2009
[26,27,35,36,37,38]

No one-child policy: apply static fertility rate Bool Yes policy2 Fertility rate of females in 1975 [26,27]

Strict one-child policy: apply dynamic fertility rate, and
in the condition that a female cannot give more
birth if she already has a child

Bool Yes policy3 Fertility rate of females from 1975 to 2009

Two-child policy: increase the fertility rate for the
female who has no child yet, use the static fertility
rate in 2009 as that in the years from 2015 to 2024

Bool Yes policy4 Fertility rate of female in 2009,
multiplying by 2.

doi:10.1371/journal.pone.0084961.t001

Effect of One-Child Policy on Flu Transmission
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chose parameters’ ranges based on both the English and Chinese

literature [42]). The Computation section briefly discusses the

implementation and computations based on calibrated parameters

(Table 2); a more detailed description can be found in the Text S1.

Model Structure
Natural history of influenza. Individuals infected with the

influenza virus first pass through a latent period when they are

asymptomatic and not infectious. We assumed that viral shedding

does not take place during the latent period, and that the mean

duration of the latent period is 1 to 2 days [43,44,45]. For

influenza, the infectious period is assumed to begin about one day

before the symptomatic period [44]. In general, individuals

infected with influenza may be asymptomatic, and yet still shed

the virus. The proportion of transmission by asymptomatic

individuals is assumed to be one-third to one-half that of

influenza-infected symptomatic individuals [46,47,48,49]. The

mean period during which a person may be asymptomatic but

infectious is assumed to be 1 day [50]. Individuals are assumed to

become symptomatic and infectious with an average duration of

1.5 to 3.8 days [43,44,45,51,52].

Mathematically, we represent the course of influenza according

to the diagram shown in Figure 1 (and Figure S2). In this model,

we classified influenza as being mild or not being mild; individuals

in each severity type progress to different stages. Mild cases and

non-mild cases are classified as infected prior to all symptoms and

infectiousness (E
0

1 and E1), infectious but asymptomatic (I
0

1 and I1),

or recovered with strain specific immunity (R). The non-mild cases

may be symptomatic and infectious as well (I2), which occurs after

asymptomatic infectiousness (I1). Table 2 lists the durations

between stages. A recovered individual loses immunity with rate

m, reverting to the uninfected susceptible (S) stage. We assume that

individuals have age-specific death rate d, and a birth rate b; these

dynamic population demographic features which are represented

by the death and birth of each individual, will be described in the

demographic description section given below. For a specific

individual, we assume that the duration time between two stages is

randomly chosen from an exponential distribution with a given

rate.

Immune Escape and Seasonality. To model antigenic

drift, our model is designed such that every individual has a

maximum immunity level immediately following recovery from

infection by a particular strain of influenza, but this immunity

gradually wanes to zero over 3 to 8 years [28,50]. Following

reinfection, the immunity level is restored to the maximum value

and declines at the same rate thereafter.

The underlying causes of influenza seasonality remain unclear

[53,54,55], despite many studies postulating possible causes.

Suggested causes have included changes in human mixing patterns

or fluctuations in human immunity and environmental humidity

[56]. The transmission of seasonal influenza tends to increase

substantially from November to February in the Northern

hemisphere and from May to August in the Southern hemisphere

[57]. To incorporate seasonality of influenza transmission into our

model, we modeled the transmission probability per contact as a

sinusoidal function of time [57] according to

Ptrans(t)~Pbaseze cos(2p(1z t{h
d )), so that the transmission

probability, Ptrans, varies during the course of the epidemic. Here,

Pbase is the baseline transmission probability, t is time, and e (where

we assume 2Pbase,e,Pbase) characterizes the degree of seasonality

(e = 0 corresponds to no seasonal variation at all). We let d denote

the total duration of an epidemic season (for instance, 365 days in

this model) and h (an offset from time 0) is the peak time of an

epidemic season. Our model adopted h as November 15,

corresponding to northern China where influenza peaks in the

winter [58]. In this model, the probability of infection for each

individual depends on the immunity level, seasonality, and the

contact rates (please see the Text S1 for more details).

Table 2. Influenza transmission parameters.

Interpretation Initial Value Lower Upper Symbol Reference

Latent period, day 1 0.5 3 1=c1 ,1=c
0

1
[43,45,50,84]

Asymptomatic infectious
period, day

1 0.5 2 1=c2 ,1=c
0

2
[22,50,85]

Symptomatic infectious
period, day

2 1 5 1=c [43,44,45,50,51,52]

Probability of non-mild
influenza

0.75 0.5 0.8 p [46,47,49]

Immunity, after recovery 1 0.8 1 - [31]

Contact rate per day outside
household

16 - - Contactcasual NOTE: the transmission and contact
parameters are not precisely characterized;
we chose values leading to an approximate
R0 about 1.5 in the first influenza season,
and conducted exploratory analysis to
estimate the effect of the one-child policy
over a very wide range of possible values
for these parameters.

Contact rate per day between
two household members

10 - - Contacthouse

Contact rate per day in school 10 - - Contactschool

Base transmission probability per
contact

0.08 0.0008 0.03 Pbase

Immunity loss per year, fraction 0.1 0.001 0.2 m [31]

doi:10.1371/journal.pone.0084961.t002

Effect of One-Child Policy on Flu Transmission
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China’s Demographic Data. The demographic data were

taken from the Population Statistics Yearbooks for China, and

from five censuses carried out in 1952, 1964, 1982, 1990 and 2000

[35,36,37,38,39]. Some demographic data sources were extracted

from previous articles [26,27,39,59,60] in which the population

growth under different population control policies were predicted.

Key demographic parameters used in our simulation included age,

household size, age-specific death rates, and age-specific fertility

rates, as shown in Table 1. Initially, we stochastically sampled age

and household size from distributions fitted to the demographic

data [26,39,60]. We used dynamic age-specific fertility rates and

death rates from year 1975 to 2009 to simulate the population

growth under conditions of the one-child policy; calibration details

of the age-specific fertility rates can be found in Text. Population

projections without the control of a one-child policy were

implemented by assuming a static age-specific fertility rate (from

1975) and fixing the birth rate to the same value that it was in 1975

(which, of course, corresponds to an unrealistic population

trajectory). We also analyzed the assumption of a very strict one-

child policy that allows one female to have only one child in her

life—this is stricter than the one-child policy as actually

implemented. Finally, we conducted a simple projection of the

population with a proposed two-child policy (from 2015 to 2024),

which allows one female to have two children. It was implemented

by increasing the fertility rate for nulliparous females. To calibrate

the population, we fit the age-specific population number of each

year and the average household size of each year to the census

data, then compared the population projections of our model with

the census data and projections described in other studies

[26,39,60].

Dynamic Network Structure. We simulated the transmis-

sion of influenza using a simple dynamic network structure shown

in Figure 2. Specifically, we assumed that each individual is

located in a household and links to other household members, and

we assumed that each individual has several links to other

individuals outside of his/her household. These links outside the

household represent contacts in the community and an individual

has a lower relative contact rate with outside links than with

household links. For school-aged individuals, we assume that they

are in primary and middle schools, and have school links to all of

their schoolmates. The contact network of this model consists of

each individual’s household contacts, school contacts and casual

contacts, and its dynamic is reflected by updating each individual’s

household, school and casual contacts which will be discussed in

turn.

Household Contacts. Each individual in the model has

household links that are initialized by grouping individuals into

households based on the household size distribution data of China

in 1975, and linking all household members of each household.

During simulation, each individual’s household links are updated

dynamically (1) when the individual leaves his/her household

between his/her age 14 and 18 years as a household with one-

member, (2) when the single individual over 18 years of age has

found (with a partnership searching rate per year) another single

over 18 years of age to live with as a two-member household, (3) at

the time the individual dies (with a dynamic age-dependent

Figure 1. Progression of the model. Given a time t, each individual in the model is in one state of S (susceptible), E
0

1 (mild exposure), E1 (not mild

exposure), I
0

1 (mild asymptomatic infectiousness), I1 (not mild asymptomatic infectiousness), I2 (symptomatic infectiousness) and R (recovered with
immunity), and the population’s inflow and outflow are represented by each individual’s age-specific death rate d and age-specific fertility rate b.
doi:10.1371/journal.pone.0084961.g001

Figure 2. Dynamic Network Structure. The population contact
network of this model consists of every individual’s household, school
(if in school age) and casual links. This small part of the network has 13
individuals in 5 households with different sizes: individual a is in a 1-
member household, individuals l and m are in a 2-member household,
individuals b, c and d, and individuals i, j and k are in two 3-member
households, individuals e, f, g and h are in a 4-member household.
Individuals in each household are linked each other by thick lines. Each
individual has some casual links (linked by thin lines) to other non-
household members. School age individuals b, f, i, j, h and l are in two
different schools and linked by dotted lines (the schoolmate
relationship). Individual b has two household members (c and d), two
visible casual contacts (a and e), and three visible schoolmates (f, i and
j), other social contacts and schoolmates of b are not shown in this
small part of contact network. If b was an index case, the household
contacts would be at highest risk of being infected due to the higher
contact rates among household members than the casual and school
contacts (for the contact rates of different link types, please see Table 2).
doi:10.1371/journal.pone.0084961.g002

Effect of One-Child Policy on Flu Transmission
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mortality rate), or (4) at the time the individual or one of the other

family members gives birth to a baby (with a dynamic age-

dependent fertility rate). The dynamic age-dependent mortality

rate and the dynamic age-dependent fertility rate are from the

population data of China from 1975 to 2009. During the

simulation, an individual’s mortality rate and fertility rate depend

on the current simulated year and the individual’s current age.

The partnership searching rate per year is calibrated to fit to the

observed household size from 1975 to 2009. The dynamic age-

dependent fertility rates under the other three scenarios are

assumed to be zero if the individual already has more than one

child for the strict-one-child-policy, the same as the fertility rates in

1975 for the absence of one-child policy, and doubled from 2015

to 2024 for the two-child-policy.

School Contacts. Each individual whose age is between the

primary-school-age of 6 and 12 years or between the middle-

school-age of 13 and 18 years has school links that are initialized

using the primary and middle schools’ statistical data of Gansu

province in China in 1975, and are updated annually by

reassigning all individuals with school ages into primary or middle

schools according to year-dependent average school size from

1976 to 2009, or are updated at the time the individual dies with

the dynamic age-dependent mortality rate.

Casual Contacts. Each individual may have several random

contacts per day with a daily contact rate contactcasual = 16. Once an

individual becomes infectious, all of his/her casual contacts during

the infectious period are randomly chosen from the population

and their contacting times are predicted and scheduled using an

exponential distribution with the casual contact rate per day,

contactcasual.

Transmission via the Network. Once an individual

becomes infectious, an infectious period will be generated using

an exponential distribution with recovery rate. During the

individual’s infectious period, the contact times between he/she

and each of his/her household members are stochastically

scheduled using an exponential distribution with the contact rate

per household member per day, contacthouse = 10; transmission

between the infectious individual and the susceptible household

contacts will take place at the scheduled contact times. Similarly,

the casual contacts of the infectious individual during the

infectious period are randomly chosen from the entire population,

and the contact times between the infectious individual and his/

her casual contacts are scheduled using an exponential distribution

with a casual contact rate per day, contactcasual = 16. Transmission

between the infectious individuals and the susceptible casual

contacts will be active at the scheduled times. In addition, the

contacts between the infectious individual and his/her school-

mates during his/her infectious period are randomly picked from

the individual’s school links and are scheduled by an exponential

distribution with school contact rate per day, contactschool = 10. The

transmission between the infectious individual and the susceptible

school contacts will be active at the scheduled times. Once a

scheduled transmissible contact takes place between the infectious

individual and one of his/her susceptible household members,

schoolmates, or casual contacts, a successful transmission will be

completed with a transmission opportunity which is a product of

the seasonal transmission probability per contact, Ptrans, and the

chance of immune escape, 1 - Mi(t), where Mi(t) (defined in the

Text S1) is a dynamic immunity level of a susceptible individual i

at time t. The dynamic immunity level of an individual depends on

his/her infection history, the immunity waning rate per year and

the current time.

Model Assumptions
The model is initialized with 10,000 individuals whose ages are

generated from the age distribution of China in 1975. The

household links for each individual are initialized with household

size distribution of China in 1975, and the school links for each

school age individual are initialized with the average school size of

Gansu province in China in 1975. Casual contacts of each

individual are randomly selected from the population with a casual

contact rate per day contactcasual = 16. Five exogenous infectious

cases with the same influenza strain are introduced into the

population on November 15th in 1975 to start influenza

transmissions via the contact networks of all individuals. At the

beginning of the simulation, we assume that all individuals are

completely susceptible. Once an individual recovered from an

infection, he/she will have a 100% immunity level which wanes

with 10% immunity loss rate per year (m = 0.1). The demography-

dependent dynamic network of the population is reflected by

updating household links and school links of each individual as

stated above, which also depends on the scenario of population

control policy for the current simulation. As a base scenario, we

assume that the one-child policy is active, thus the mortality rates

for ages 0 to 120 years and the fertility rates for ages 16 to 50 years

of the population are updated each year with the census data from

1976 to 2009. Similarly, the average sizes of primary and middle

schools are updated each year with the observed school data of

Gansu province in China from 1976 to 2009. Another five

exogenous cases with the same strain are introduced into the

population on November 15th in each year from 1976 to 2009,

and we assume that there are no changes in the influenza natural

history parameters during the course of over 30 years. The first

influenza season in 1975 is used to calibrate the household, school

and casual contact rates as well as the base transmission

Table 3. Sensitivity analysis for the annual attack rate PRCC: Partial Rank Correlation Coefficient.

PRCC with DAR of policy2 and policy1 AR policy2 AR policy3 AR policy1

Transmission probability 0.493 0.777 0.843 0.740

Immunity waning rate 0.477 0.668 0.658 0.593

Immunity after infection 20.138 20.133 20.068 20.085

Latent period 0.143 0.180 0.212 0.131

Asymptomatic infectious period 0.150 0.261 0.320 0.227

Symptomatic infectious period 0.043 0.189 0.222 0.191

Not Mild case probability 0.167 0.135 0.007 0.034

Note: policy1 is absence of intervention, policy2 is one-child policy and policy3 is strict one-child policy.
doi:10.1371/journal.pone.0084961.t003

Effect of One-Child Policy on Flu Transmission
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probability per contact by choosing their values leading to an

approximate R0 around 1.5. The first four-year influenza seasons

from 1975 to 1979 are used to enable the totally susceptible

population in 1975 to have partial immunity in 1979. The

following influenza seasons from 1979 to 2009 are used to

calibrate influenza natural history parameters and transmission

parameters by fitting the simulated average annual attack rate and

average secondary attack rate to the observed data.

Calibration
Existing census data reflect those demographic changes caused

by the one-child policy as actually implemented. In order to assess

what would have occurred in the absence of such a policy or other

demographic changes, we assumed a static fertility rate of that in

1975 for females. However, a strict one-child policy includes the

assumption that there is no chance for a female who already has a

child to give birth to a second child, an assumption that does not

hold in practice. To calibrate the demographic component of our

model, we first fitted the population projection with the available

demographic data, as well as with other population projections

[26,27] in which they predicted population with a one-child policy

and other control measures (see Figure S3(A)). Then, we fitted the

population age distribution of each year to demographic data in

the years from 1975 to 2004, (see Figure S3 (B)). Finally, we

required that the average household size (see Figure S3(C))

corresponded to the census data in 1964, 1982, 1990 and 2000,

which reported average household sizes of 4.43, 4.42, 3.96 and

3.44 in these years, respectively [35].

We calibrated the model using eight influenza transmission

parameters: (1) mean duration of the latent period, (2) mean

duration of the asymptomatic infectious period, (3) mean duration

of the symptomatic infectious period, (4) probability that a case will

be mild, (5) immunity waning rate, (6) the degree of immunity

following infection, (7) transmission probability per contact, and (8)

contact rate between two household members (Table 2). Param-

eters (1), (2), (3) and (4) are age-dependent parameters with 5 age

categories: 0 to 4, 5 to 9, 10 to 25, 26 to 49, and 50+ years. To

calibrate these parameters, we chose parameter sets randomly

from a uniform distribution with given upper and lower bounds

(assuming independence among parameters). The annual attack

rate (averaged over 30 years) and the simulated household

secondary attack rate (averaged over 30 years, and the rate of

each year was averaged over all households with index cases) were

computed from each set of parameters. Simulations yielding

average annual attack rate (AR) within the range (0.1,

0.2)[28,29,30,31], and secondary attack rate (SAR) inside the

range (0.09,0.32)[7,32,33,61,62,63], were considered plausible;

calibration was done by Approximate Bayesian Computation

[40,41]. For details of the AR and SAR we cited, please see Tables

S1 and S2. For each household with an index case, we calculated

the secondary attack rate based on the proportion of household

contacts who were infected by the index case in the household

during the infectious period of the index case [62,64]. The SAR

was averaged by using the secondary attack rates of all households

with index cases. This calculation of the SAR includes partially

immune household contacts [7,32,33,61,62,63]. Simulations were

run for 4000 sets of parameters, resulting in 646 parameter sets

that fit the acceptable AR and SAR ranges stated above. Parameter

sets having higher or lower values of AR or SAR were excluded.

Finally, we used the 646 fitted (non-excluded) parameter sets and

used them in the model to predict and study influenza transmission

in the population under three scenarios: the one-child policy, the

absence of a one-child policy, and the strict one-child policy.

Computation
The individual-based model was implemented and pro-

grammed in C++ [65] and R [66] following our previously

published agent-based transmission models [67,68]. C++ was used

for the main simulation program and R for the analysis of data

generated by the main simulation program. To add scalability for

simulations of large population sizes, we used an agent-based

platform ABM++ [69] which supports parallel and cluster

computing. Simulations were performed on the RTI MIDAS

cluster, a cluster with 36 compute nodes with a total of 400

compute cores and 786 GB of distributed memory, running Linux

distribution of CentOS v5.5. The running time for a single run of

the model varied with input parameters in Tables 1 and 2. Given a

fitted set of parameters with the one-child policy and an initial

population size of 10000, it took about 500 to 800 seconds for a

single run on one compute core with a speed of 2.30 GHz in the

cluster.

Simulations

We simulated 30 years of influenza transmission in a

representative population of initial size 10000 under three different

scenarios: a population with a one-child policy (), a population

without a one-child policy (), and a population with a strict one-

child policy (), (following ‘‘one-child policy’’ represents ). Under

each of the scenarios, we used 646 fitted sets of parameters

(described in the Calibration section) to simulate influenza

transmission. Each scenario was simulated 100 times and the

annual and secondary attack rates were averaged among 100

simulated ARs and SARs. We then computed the partial rank

correlation coefficients (PRCC) [67,70] for each input parameter

and the annual attack rate under the three different policy

scenarios using the 646 sets. When the PRCC is close to zero, the

value of the parameter has little relation to the simulation output

(see the Text S1). The PRCC values of key parameters are listed in

Table 3. Finally, we calculated the annual and secondary attack

rates experienced by the population under the three policy

scenarios.

Results

To explore the influenza transmission factors that are likely

affected by the one-child policy, we estimated the average

differences in the annual attack rate (DAR) and the secondary

attack rates (DSAR) in the populations without and with the one-

child policy control. We found that the population without the

Figure 3. AR and SAR differences between populations without the one-child policy and with the one-child policy. (A) Average
difference in annual attack rate (DAR: 6.08% (SD 2.21%)) between populations without the one-child policy and with the one-child policy, based on
646 calibrated parameter sets which yielded the annual attack rates between 10% and 20%, and secondary attack rates between 9% and 32%. For
each parameter set, we simulated the influenza trajectories under two demographic control policies, and then computed the difference in average
annual attack rates over 30 years between two policies. (B) Difference in secondary attack rates (DSAR: 20.15% (SD 1.85%)) between populations
without one-child policy and with the child-policy, based on 646 calibrated parameter sets which yielded the annual attack rates between 10% and
20%, and the secondary attack rates between 9% and 32%. For each parameter set, we simulated the influenza trajectories under two demographic
control policies, and then computed the difference in average secondary attack rates over 30 years between two policies.
doi:10.1371/journal.pone.0084961.g003
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one-child policy had an average annual attack rate that was

slightly higher than the population with the one-child policy. The

distribution of the difference of annual attack rates with a mean of

6.08% per year (with standard deviation (SD) 2.21%) using 646

fitted sets of parameters, in Figure 3(A), shows that all the values

reflecting the DARs between population without one-child policy

and population with one-child policy are positive for all sets of

parameters. Here, each value of DAR is the difference of the

average annual attack rates over 30 years between two different

policies. This supports the notion that the one-child policy

gradually reduced the annual attack rate. The decrease in annual

attack rates may be caused by the smaller household sizes and the

decreased proportion of children in the population resulting from

the one-child policy. The distribution of DSAR, in Figure 3(B),

shows that the expectation of the DSAR is 20.15% per household

per year (SD 1.85%) and there is no significant difference of

secondary attack rates with the one-child policy introduced.

However, the one-child policy had little to no discernible effect on

the secondary attack rates. A larger population size gave similar

results as stated above.

We performed the same comparisons of the DAR and DSAR,

comparing populations with the existing one-child policy with a

hypothetical two-child policy. We assumed the two-child policy

from 2015 to 2024; the simulations for a 10-year transmission

period (Figure 4) did not show significant differences of DAR and

DSAR (0.22% per year (SD 0.46%) and 20.02% per household

per year (SD 0.81%), respectively).

In addition, we conducted sensitivity analyses by increasing the

contact rate per day within household and the immunity loss rate

per year and varying their values from 12 to 20 for the contact rate

and from 20% to 100% for the immunity loss rate in order to

compare the difference in AR and the difference in SAR between

populations without and with the one-child policy (Figures 5 (A)

and (B)). Changes in household structure and the proportion of

children in the population as a result of the one-child policy could

have more effects on the AR, and the difference in AR could be as

high as 60% under a scenario of very high immunity loss rate per

year (Figures 5(A)). However, the results showed that the difference

in SAR was not very sensitive to the contact rate in the household

and the immunity loss rate (Figures 5(B)).

Discussion

The one-child policy has been applied in China for over 30

years, causing great changes in the demographic composition of

the Chinese population. To address the impact of demographic

changes caused by the one-child policy (or similar changes which

may have arisen for other reasons) on influenza transmission, we

developed a continuous-time individual-based, stochastic, simula-

tion model for influenza transmission in dynamic populations with

the support of available demographic data. After calibrating the

simulated population with available demographic data and

published attack rates, we simulated 30 years of influenza

transmission under three assumptions: a population with a one-

child policy, a population without a one-child policy, and a

population with a strict one-child policy. This study provides some

evidence that demographic changes caused by demographic policy

may slightly affect influenza transmission in populations. Simulat-

ed results from this model show that populations without child-

bearing policies have slightly higher annual attack rates than

populations with a one-child policy. We did not find significant

differences in the secondary attack rates between populations with

a one-child policy and populations without it. We predicted

influenza transmission over 10 years (2015 to 2024) in a

population with a hypothetical two-child policy, and found

negligible differences of the average annual attack rates and

secondary attack rates compared to the population with a one-

child policy.

One limitation of our findings is that it is impossible to know

what would have happened in the absence of the one-child policy.

Because our goal was to highlight the role of household size and

other related demographic changes, we simply assumed an

extrapolation from 1970s trends. In reality, demographic changes

may have occurred for other reasons in the absence of a one-child

policy. Moreover, this model did not distinguish contacts other

than household and school (for example workplace [71,72,73], or

community [74]). Containment measures, such as different

vaccine strategies [75,76] and travel restrictions [77,78], were

not considered in this model, allowing for a focus on the

relationship between child policies and influenza transmission.

We did not distinguish antigenic diversity [79]; because aging

populations have more cross-immunity for similar strains [8]. This

limitation may underestimate an aging effect on influenza

transmission. All parameters used in this model were defined

from existing published literature. We did not assess the differences

between pandemic years versus inter-pandemic years because of

the assumption that there are no changes in influenza natural

history parameters during the course of over 30 years. We did not

use this model to answer an important question that whether or

not the demographic changes affect pathogen emergence in China

because of lacking sufficient data, and this question is beyond the

scope of this paper.

This study found that the average annual attack rate is slightly

lower in a population with a one-child policy, which may result

from a decreased household size (from 4.2 in 1979 to 3.5 in 2004

in the model) and the decreased proportion of children (who are

more vulnerable to infection than adults) in the population

because of the dramatically reduced fertility rates from 2.9 in 1979

to 1.3 in 2004. However there is no discernible difference in the

SAR. A possible reason for the absence of a discernible difference is

that the decrease of average household size (from 4.2 to 3.5) might

not be large and fast enough to obviously reflect the change in the

secondary attack rate. We compared the results of this study with

other recent studies [61,80,81,82,83] about the relation between

household size and SAR, household size and the overall attack rate.

The lower annual attack rate with smaller household size is

consistent with the results from Fraser et al. [61] and Kwok et al.

[83], but Carcione et al. [81] found that individual risk was not

associated with the household size. The absence of a discernible

difference in the SAR observed in this study is similar to the

findings in [80] in which the SAR remained stable as household

size increased, while the SAR increased with larger household size

Figure 4. AR and SAR differences between one-child policy and two-child policy (10 years: 2015 to 2024). (A) DAR (0.22% (SD 0.46%))
between one-child and two-child policies based on 646 calibrated parameter sets which yielded the annual attack rates between 10% and 20% and
the secondary attack rates between 9% and 32%. For each parameter set, we simulated the influenza trajectories under two demographic control
policies, and then computed the difference in average annual attack rates over 10 years (2015 to 2024) between two policies. (B) DSAR (20.02% (SD
0.81%)) between one-child and two-child policies based on 646 calibrated parameter sets which yielded the annual attack rates between 10% and
20% and the secondary attack rates between 9% and 32%. For each parameter set, we simulated the influenza trajectories under two demographic
control policies, and then computed the difference in average secondary attack rates over 10 years (2015 to 2024) between two policies.
doi:10.1371/journal.pone.0084961.g004
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in other studies [61,82,83]. The above comparisons included some

studies in which the SAR was measured empirically, though the

relation between the simulated SAR and household size may be

controlled by the model structure. In this model, the SAR was

estimated by the proportion of household contacts of an index case

who subsequently became infected [62,64], so that the simulated

SAR stands in relation to the simulated epidemic, which is in the

same way the real-world empirical SAR and its relation to the true

unobserved epidemic.

Supporting Information
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trajectory based on dynamic data of sv and mf in 1975, 1982 and

1990. Case 5: population trajectory based on dynamic data of sv

and mf in 1975 and 1982. Case 6: population trajectory based on

dynamic data of sv and mf in 1982, 1990 and 2000. Case 7:
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1990, 2000 and 2009. * The trajectory from Song J, Yu J (1988)

Population system control: Springer. Note: this population

projection did not include influenza transmission. After the

population calibration, the simulations for influenza transmission

only included 10,000 initial population. (B) Age structure. The

solid lines in blue, red, green, orange, and purple are the simulated

proportions in age groups 0 to 4, 5 to 9, 10 to 25, 26 to 49, and

50+, respectively. The dotted lines in the same colors are the

observed proportions of the five age categories from census data.

(C) Average household size. The blue, green and red lines are

simulated average household sizes of each year under three

scenarios: one-child policy, strict one-child policy, and absence of

one-child policy. With a one-child policy (the blue line), the

simulated average household size decreased from 4.2 in 1979 to
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