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Abstract

Essays on the Economics of Behavioral and Environmental Changes

by

Sébastien Annan-Phan

Doctor of Philosophy in Agricultural and Resource Economics

University of California, Berkeley

Professor Solomon Hsiang, Co-chair

Professor Maximilian Auffhammer, Co-chair

Climate change is set to have a significant economic impact, affecting our behavior and
changing the ways we produce and consume. This dissertation illustrates different channels
through which environmental change has already been impacting our economy and highlights
potential measures and market designs to mitigate future costs. The first two chapters
of this dissertation leverage historical weather data to assess the market and behavioral
responses to extreme temperature shocks. Chapter 1 utilizes European electricity markets
data to assess the non-linear relationship between weather and energy cost. The analysis
of spot market electricity prices reveals that estimates of the energy cost due to climate
change which rely solely on consumption are significantly biased downward. In addition, the
creation of a “unified” European market through regional market integration has contributed
to drastically lower the impact of extreme temperatures on electricity price. Chapter 2
demonstrates that warm temperatures are associated with a rise in violent crime in the US.
I further investigated the effect of extreme weather on police officer behavior using original
and novel crowd-sourced data on civilian deaths involving police. The results indicate that
fatal shootings increase proportionately to the growing number of violent crimes during
warmer days. Taser use and physical restraints — two controversial uses of force — increase
significantly on such days regardless of the threat level, indicating a need to reevaluate
their usage. Finally, chapter 3 explores the distribution of human attention to moments in
time using Google search data. Attention is a key parameter in the field of environmental
economics as public policies enacted today are a direct function of how much people value the
past, current, and future states of the economy. The results suggest strong common patterns
of thought with respect to time, however recent trends and regional variations indicate that
some non-biological factors can alter these patterns slightly.
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Overview

“Ce sont les différents besoins dans les différents climats qui ont formé les différentes manières
de vivre; et ces différentes manières de vivre ont formé les diverses sortes de lois”

“Different needs in different climates formed different ways of living, and from these different
ways of living originate different kind of laws.”

— De l’esprit des lois (Baron de Montesquieu, 1872)

Climate is changing and so should our laws and institutions, but also the way our markets
operate. As soon as we introduce an externality1 — such as climate change — Adam Smith’s
famous “invisible hand” begins to fail, and it is no longer socially optimal to leave markets on
their own. The increase in frequency and magnitude of extreme weather events is known to
have severe impact on many aspects of the economy, including health (Carleton et al., 2018),
labor productivity (Graff Zivin and Neidell, 2014), and agricultural production (Schlenker
and Roberts, 2009). These costs, as well as potential benefits, need to be precisely estimated
in order to be internalized by the markets through public policy (e.g. carbon tax). Being able
to quantify these impacts is a key to building today’s policies and to promoting an efficient
path to adaptation, which requires both planning and timely investments. Decades of vari-
ation in weather patterns at the regional level provide valuable information for establishing
our systems’ best responses to environmental change. We cannot perfectly predict the future
state of the economy nor the kind of technology available, but we can leverage data from
the past to estimate the effect that extreme weather has on the economy and thus identify
efficient ways to mitigate future impacts associated with climate change. This dissertation
mobilizes and combines datasets from various fields including economics and social sciences
(e.g. wholesale price, population density) as well as physical science (e.g. weather forecasts).
It also utilizes publicly available data from private entities and crowd-sourced information.
Taken together, the essays in this dissertation illustrate different ways of combining these
original datasets with insights and methodologies from the economic science to advance our
knowledge of the economics of climate change.

1A perturbation not taken into account by the market.
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Chapter 1 explores the impact of extreme weather events on wholesale electricity mar-
kets. Studies on the impact of climate change on the energy sector have been focusing on
the quantity effect, namely the fact that extreme weather is associated with higher energy
consumption (Deschenes and Greenstone, 2011b; Auffhammer et al., 2017). Chapter 1 goes
beyond the quantity effect and analyzes the price response to changes in temperature. My
findings indicate that failure to take into account the price effect has led previous studies
to significantly underestimate the impact of extreme weather on energy cost. The results
presented in this first chapter indicates that extreme weather not only increases energy con-
sumption but is also associated with significantly higher wholesale prices. Using a “natural
experiment” in Central Europe, I also estimated the potential of using market integration as
a means of mitigating the effect of extreme weather events. It appears that market integra-
tion of the national wholesale markets in Belgium, France, Germany, and the Netherlands
drastically mitigated the effect of weather shocks, reducing the marginal effect of a day at
25oC by 14 to 28 percentage points (relative to a day at 15oC). Enlarging regional markets
through regulation or private initiative is both efficient and considerably less expensive than
a physical extension of the grid.

Chapter 2, co-authored with Bocar Ba, studies the non-linear impact of outdoor temper-
ature on the behavior of police officers. Using FBI data combined with crowd sourced data
on officers involved in civilian deaths in the US from 2000 to 2016, we demonstrate that both
violent crimes and the number of officers assaulted or killed increase on warmer days (days
with average daily temperature above 17oC). We take this result as an indicator of greater
personal danger on such days. Consistent with higher threat levels, we found suggestive
evidence that fatal shootings also increase during warmer days. However, when accounting
for a surge in officer-civilian interaction, we found no additional effect of high temperatures
on fatal shootings, indicating a lack of behavioral or physiological response from the officers.
When investigating other causes of death, we found that during “extremely warm” days
(average daily temperature above 20oC), the number of casualties associated with Taser use
and physical restraint was significantly higher independent of increased interaction between
officers and civilians. The results suggest a need to reevaluate the use of Tasers and physical
restraint techniques — two controversial uses of force — to prevent unintended deaths.

Chapter 3, co-authored with Léopold Biardeau and Solomon Hsiang, investigates the
distribution of human attention toward different moments in time. It is unknown how much
individuals naturally think about the past, present, and future. This chapter provides the
first evidence of a coherent probability distribution governing attention across moments in
time by deconvolving how billions of individuals query the Google Search engine. We have
discovered consistent and generalizable structure to the distribution of attention across time;
regardless of individuals’ language or country. We estimate that the present captures roughly
25% of time-related attention, while all the past and future moments combined capture
roughly 39% and 36% of attention, respectively. Almost no attention is detected more than
200 days beyond the present moment. Despite consistency in the shape of the distribution
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of attention around the world, we were able to identify regional patterns. In addition, it
appears that during the period 2008–2018. the share of attention dedicated to “the present”
increased gradually at the expense of attention to the past. Together, these results suggest
strong common patterns of thought with respect to time, however recent trends and regional
variations indicate that some non-biological factors can alter these patterns slightly.
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Chapter 1

Adaptation through Market
Integration: Mitigating the Impact of
Climate Shocks on Electricity
Expenditure

1.1 Introduction

The literature documenting the impact of climate change on the economy has grown consider-
ably in the past decades. The effect of extreme temperatures on various sectors has been well
established, in particular on health (Deschenes and Greenstone, 2011b), agricultural yield
(Schlenker and Roberts, 2009), labor productivity (Graff Zivin and Neidell, 2014), crime level
and conflict (Ranson, 2014b; Hsiang et al., 2013), but also energy consumption (Deschenes
and Greenstone, 2011b; Wenz et al., 2017). The electricity sector is a particular one. On the
one hand, it is the main source of green house gas emissions1, meaning it generates a strong
feed back effect. On the other hand, it is associated with considerable benefits and is tightly
connected to other sectors because of the defensive property of air conditioning (AC). For
instance, with regard to health effects, Barreca et al. (2016) demonstrated that people can
adapt to climate change and significantly mitigate the effect of hot days on mortality by
using AC (see Carleton et al. (2018) for a global assessment of adaptation). AC also lowers
the effect of weather variation on labor productivity as demonstrated by Graff Zivin and Nei-
dell (2014) in relation to indoor vs outdoor substitution. Thus, as electricity becomes more
needed in a warmer world it is crucial to analyze precisely the associated changes in cost,
as well as possible mitigating mechanisms. In this chapter, I analyze how weather shocks
not only impact electricity consumption but also increase the marginal cost of provision.
Using detailed European market data, I estimated the causal effect of market integration on
weather shocks mitigation using an “interacted” difference-in-differences approach. I found

1Based on US numbers for the period 1990-2017 (EPA, 2019)
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that relative to a “normal day” at 15oC, market integration mitigated the effect of a 25oC
day on the price of electricity by roughly 20 percentage points. The results also suggest
that limiting the scope of the analysis to consumption would underestimate the expected
damages of climate change on energy expenditure.

Going beyond the sole effect of rising temperatures on aggregate consumption is nec-
essary to document the increase in energy provision cost. The cost of provision matters
for calibrating future climate policies, for instance distinguishing the effect of temperature
within a day provides insights on the type of investment needed. If temperature only affects
consumption during a limited period of the day, one might prioritize the development of
energy storage capacity over the construction of new units to take advantage of the existing
float of power plants. Limiting the focus on quantity would thus mask the heterogeneous
effect of temperature on marginal cost at different times of the day. Auffhammer et al.
(2017) found that peak hours are more responsive to extreme temperatures, meaning that
one might underestimate the energy cost of climate shock by ignoring the shift in marginal
cost. Similarly, one might want to go beyond the quantity effect when estimating the effect of
weather shocks at the international level. Different countries have heterogeneous responses
to weather shocks. For example, French consumers are mostly using electric heating while
Germany relies more on gas, the same demand shock would thus lead to very different in-
crease in marginal cost in the two countries if they were in autarky. Estimating international
heterogeneity in response to temperature changes would enlighten the discussion on market
integration: the more connected the grids, the more efficient the generation allocation in
reaction to temperature shocks.

The effect of extreme temperatures on the energy sector has been widely studied, but
existing studies tend to focus on the effect of temperature on electricity consumption. Desch-
enes and Greenstone (2011b) were the first to document using long time-series how energy
consumption changes with temperature, accounting for temporal and geographical unobserv-
ables. Using semi parametric regression, they estimated the non-linear effect of temperature
on residential energy consumption, the so-called dose-response function. They found that
for each additional day above 90oF, the annual energy consumption increases by roughly
0.4% compared to a day in the range 50o − 60o. The dose-response function is usually U-
shaped and reflects that both cold and hot days are associated with an increase in electricity
consumption2. The U-shape form is explained by the use of electric heating and AC on
cold and hot days, respectively. However, these studies only looked at the demand part
of the problem neglecting the supply side of the market. The estimates are all expressed
in MW/h (i.e. in quantity) whereas one might also be interested in prices and the overall
economic cost. There is no reason to assume that (1) the marginal cost is constant (i.e.
that a 1% increase in consumption is equivalent to a 1% increase in expenditure), and (2)
the cost function itself is not affected by change in temperature. Fewer papers have in-
vestigated the effect of extreme temperature on power generation cost. Thermal efficiency

2Deschenes and Greenstone found a consistent U-shaped relationship — in particular a day below 10oF
would increase annual consumption by 0.32%
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is a direct function of ambient temperature, so one would expect the efficiency of power
plants to decrease when temperatures rise. In addition, cooling systems depend heavily on
nearby streams, which are subject to regulation limiting the maximum temperature of the
water. Linnerud et al. (2011) estimated using time series analysis that nuclear generation
decreases by 0.5–2% for each additional degree rise in temperature; however, this study and
other studies in the engineering literature are limited by a small number of locations due
to data access restrictions for reasons of national security. McDermott and Nilsen (2014)
investigated water scarcity to estimate a more global impact on the electricity market. Their
results suggest that an additional degree in stream temperature above 25oC would increase
wholesale prices by roughly 2.5%, but they did not separately identify the effect of temper-
ature on energy demand and supply. This distinction is at the core of this chapter since it
is necessary to analyze both sides of the market to estimate changes in cost. In their survey
on the measurement of climatic impact on energy demand, Auffhammer and Mansur (2014)
focused on the distinction between the intensive and the extensive margin (AC adoption).
Interestingly, energy consumption and energy expenditure are used interchangeably in the
article although little is actually said about the cost and the change in prices. Mideksa and
Kallbekken (2010) specifically reviewed the impact of climate change on electricity markets
and, highlighted that existing studies seem to adress only the demand or the supply effect.
With regard to market integration, the authors highlighted that price differences will emerge
between Northern and Southern Europe, increasing the need for interconnection capacities,
which has motivated this study.

This chapter contributes to the literature by focusing on the effect of temperature on
electricity prices. Going beyond the average effect of temperature, I propose two distinct
methods to estimate the causal effect of market integration on the price temperature rela-
tionship. First, I used a simple reduced form estimation of the effect of temperature on
electricity prices. This method still lacks the tractability to identify whether price changes
are due to movements in supply or demand. Unless I assume that demand is purely inelas-
tic, moreover it does not allow for an accurate estimate of change in consumer expenditure.
However, the simplicity of the reduced form model and the granularity of the price data
add some flexibility to the analysis. In particular, I used the reduced form to estimate the
causal effect of a market integration policy on the temperature-price relationship. I applied
an augmented difference-in-differences estimator to identify the causal effect of such a policy
on the magnitude of the marginal impact of temperature. To assess the benefit of releasing
the physical congestion constraint (intensive margin), I estimated the reduced form model
on counterfactual equilibrium prices accounting for grid expansion.

The remainder of this chapter is structured as follows: section 1.2 provides some back-
ground information about electricity markets and presents a theoretical model to evaluate
trade in the context of weather shocks. Section 1.3 describes the data and section 1.4 fo-
cuses on the identification strategy. Section 1.5 and 1.6 present and discuss the results,
respectively.
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1.2 Background

Electricity markets in Europe operate according to the zonal pricing rule. Italy, Sweden, and
Denmark use zonal prices but have multiple bidding zones3. Zonal pricing means that price
will be the same at every nodes of the grid within the bidding zone, which for most European
countries is the entire national territory (eg. France, Belgium, Poland). Some bidding zones
are sometimes cross-countries, that is the case for both the German-Austrian-Luxembourg
market and the Iberian market4. Zonal pricing is to be differentiated from nodal pricing
where each node can have a different price based on grid congestion. In the zonal pricing,
the grid operator internalizes the grid congestion and unsure a uniform price over the bidding
zone. Congestion costs are centralized by the grid operator and are included in an annual
fee only varying in the mid-long run. The use of zonal pricing in Europe instead of nodal
pricing matters in term of climate change impacts. With a zonal pricing system, an exogenous
shock on demand (eg. heat wave) will be smoothed out at the country level whereas the
same shock in a nodal system would significantly increase the price in the sub-region leaving
the neighboring regions roughly unaffected. Nodal pricing is beneficial in the long run as it
provides the right incentive to invest in new transmission lines. On the opposite, one could
argue that such infrastructure might be oversized if those shocks are rare events. If that were
the case, it might be more efficient to smooth at the national level those events to keep the
burden on the consumers at a minimum level. One other advantage of zonal pricing is that
it limits market power. By definition nodal pricing is splitting the market into much smaller
sub markets, reducing the cost of transaction associated with collusion and increasing the
market power of large utilities (see Wolak (2011) for more details).

Electricity supply needs to equal the demand at all time and at each node for the grid
to remain safe, which necessitates distinct electricity markets for different time periods.
From long-term to short term, actors are involved in OTC transactions, Future market,
Day-ahead and Intraday market (spot markets), and finally the balancing market sometimes
called ”real-time”. Day-ahead (DA) markets are by far the most used and I focus on this
one for this study. DA are operated every day at 11:00 am and define hourly price and
quantity for the next 24 hours. Actors must submit their book order before the market close
(11:00 am) to the unique market operator that is in charge of clearing the market using
auction rules. The detail of the auction rule is described further in the book order section.
Since weather predictions for the next day are reliable and easily accessible, day-ahead prices
are expected to react to daily change in temperature. Trade between zonal markets exist
but are limited by (1) the physical capacity of the interconnection lines and (2) the auction
system itself. If market operators are not coordinated the market is said to be not coupled,
meaning that each actor has to bid on a separate market to book a specific amount of the
interconnection capacity. The amount of available transfer capacity (ATC) depends on long
term contracts and safety measures related to grid overload. When markets coordinate their

3Four in Sweden, 2 in Denmark and 5 in Italy
4Composed of Spain and Portugal
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operations and auction rules, they are ”coupled”. I will use market coupling as a proxy for
market integration in the difference in differences estimation. I now derive a simple model
to describe how trade matters when estimating the cost of climate change on electricity
provision.

Modeling the cost of climate change on an interconnected grid

Electricity is a textbook example of microeconomics theory applied to trade, it is perfectly
homogeneous and has a marginal transport cost close to zero. For the purpose of this study
I focus on the electricity sector of two neighboring countries, which are both in perfect
competition and are described by representative firms with linear marginal cost such that
MC1(q) = αMC2(q) and MCi(0) = 0. I assume for now that firms in both countries have the
same marginal cost (α = 1) and demand is fully inelastic5 in both countries (D1 = D2 = E).
Markets are clearing at the marginal cost so prices are equals in both market to P ∗:

P ∗ = MCi(E) (1.1)

Since equilibrium prices are equals, there is no need for trade and the value of the intercon-
nection line is zero. I can introduce variation in temperature as a demand shifter, whenever
there is either a need for electric heating (ambient temperature below 5oC) or air conditioning
(temperature above 20oC) the demand is increased by a fixed parameter ω:

Di = E + ω 1{Ti 6 5}+ ω 1{Ti > 20} (1.2)

For a sufficiently big shock in temperature δ in country 1, if markets are in Autarky the
prices at the equilibrium will be different:{

PA
1 = MC(E + ω)

PA
2 = MC(E)

⇒ PA
1 > PA

2 (1.3)

Figure 1.1 panel A illustrates the additional cost due to δ in the shocked country in the
Autarky case. It is a direct function of MC and ω, and is given by:∫ E+ω

E

MC1(q)dq = ωMC1(E)︸ ︷︷ ︸
A

+
ωMC1(ω)

2︸ ︷︷ ︸
B

(1.4)

The additional cost can be divided in two areas A and B. The former denotes the increase in
cost due to a change in the quantity supplied, whereas the later is coming from the necessity
to fire up new power plants that are more costly to operate (if marginal cost were constant
B would be null). By definition, area A does not depend on the marginal cost of new units,

5Electricity demand is often represented as purely inelastic at least in the short run, here it does not
change the results of the model and greatly simplified the graphical representation.
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therefore it cannot benefit from trade since at the equilibrium we already have MC1 = MC2.
One then needs to focus on area B to describe how trade reduces the cost induced by δ. In
this framework, country 1 has to feed the grid with an extra quantity of electricity ω and
could either face it alone and bear the whole cost, or import electricity up to the point where
the marginal costs are equals. The additional cost can then be rewritten as:∫ E+ω

E

MC1(q)dq = A+Ba +Bt (1.5)

Where B is now split between the inevitable cost that would still occurs in free trade (Ba)
and the dead weight loss due to absence of trade (Bt). The dead weight loss Bt can also
be seen as the shadow value of the interconnection line. Figure 1.1 panel B illustrates the
described model with trade when the marginal cost in country 2 is lower6 than in country 1
(ie. α > 1), however as we can intuitively guess graphically, we would still have gain from
trade even if the two marginal costs where equals (α = 1). More formally, in the linear case
and if we add a management constraint (θ 6 17) on the interconnection capacity we obtain:

Bt =
MC1(ω) +MC1(1− γ)−MC2(γ)

2
γ (1.6)

with γ = θω
α

α + 1
(1.7)

Rearranging the right hand side gives

Bt = ω
MC1(ω)

2
[θα(1− 2

θα

(α + 1)2
)] (1.8)

and partial derivatives

∂Bt
∂ω > 0 ,

∂Bt
∂θ > 0 ,

∂Bt
∂α > 0 ,

∂Bt
∂MC1(ω) > 0

Which gives us four main intuitive results: the value of the interconnection increases with (1)
the quadratic of the demand shift8 and (2) a better interconnection management. (3) The
higher the marginal cost in the shocked country, the more it benefits from trade, and (4) this
effect is amplified by the relative difference in marginal cost between countries (parameterized
with α).

6Precisely MC2(q) = αMC1(q) only for q > E. Before the temperature shock δ the two markets had
similar prices and marginal costs (MC1(E) = MC2(E))

7For example if θ = 0.8 we can only effectively import 80% of the optimal traded quantity at the
equilibrium. In the linear case, we know that if MC1 = αMC2 then country 2 should provide α

α+1 of the
total electricity ω needed (eg. if the marginal cost in country 1 is twice the marginal cost in country 2, then
country 1 imports 2/3 of the extra electricity needed)

8In the linear case MC1(ω) = aω + b, so Bt is a funtion of ω2
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Figure 1.1: Additional cost in (A) Autarky and (B) free trade

A. Autarky

Quantity

Price

S1

D1 D′1

PA
1

E + ω

ω

P ∗

E

A

B

B. Free-trade

MC1

E
P ∗

E + ω

MC2

S2

Ba

Bt
P T

1 |θ

Transfer Capacity

θω α
α+1

PA
1

P T
1

As a result of trade, cost is minimized and price drops from PA
1 to P T

1 |θ. The simple
model above highlighted that trade has a separate and identified value when a country faces
an exogenous shock in temperature that shifts the demand. This result is true even when
marginal cost are equals, only the magnitude of the effect is lowered9. One could argue that
MC1, MC2, and the interconnection capacity itself might be varying with temperature shock
δ, however regardless of the aggregated effect, an increase in the interconnection management
θ is expected to lower the price of the shocked country. the identification strategy and the
proxy variable for the parameter θ will be detailed in section 1.4.

Ultimately, if one cares about climate change impact on welfare, it is necessary to model
both the demand and the supply as a function of δ. Marginal cost of country i is now:

MCi = f(q) + φ1{Ti > τ} (1.9)

where φ is a fixed damage associated with loss in thermal efficiency when temperature T
goes above a given threshold τ . The extra cost associated with a large enough temperature
shock δ is now affecting every unit of electricity produced. The gain from trade are increasing
since MC1 is now larger, but there is also a much bigger share of the additional cost that
cannot be reduced as shown by A′ in figure 1.2. However, it does not change the direction

of a marginal change in θ on price. For a given effect of temperature shock on price (∂P∂δ ),
price change is a sufficient statistic to estimate the mitigation impact of trade (∆θ). Future
research projects will focus on analyzing the nonlinear effect of temperature on supply and
demand, which means estimating ω and φ. With those parameters, one could perform cost

9In fact the result holds even if MC1 < MC2, as long as α is such that MC2 < MC1(E + ω)
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and welfare analysis for counterfactual weather on the training sample to better understand
the impact of climate change.

Figure 1.2: The total impact of temperature on cost when both sides of the market are impacted
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Market coupling

As described in the theoretical model, the level of interconnection management θ is expected
to lower the impact of temperature on electricity market prices. I use a change in market op-
erators coordination level to estimate how market integration mitigates the marginal impact
of temperature shocks on prices. Market coupling is the name given to the “merger” between
regional operators. National markets often have slightly different operating rules (timing of
the bids, minimum and maximum price etc.) which makes difficult for the agents to both bid
on the foreign spot market and book capacity rights at the interconnection. With market
coupling, markets operators are simultaneously and cooperatively clearing the market, there
is no need for parallel interconnection capacity booking as the operators clear both markets
at the same time. Figure 1.3 summarizes the direction of international flows between France
and Spain before and after the market coupling on May 13th, 2014. Each point reports in-
terconnection usage in percentage of the available capacity, points in quadrants I and III are
“counter intuitive” flows where the exporting (importing) country has the lowest (highest)
price. Even within quadrants II and IV, all points should be on the -100/100% lines as it is
not efficient to leave some capacity unused if the price spread is different than zero (away
from the vertical dash line). It appears clearly from figure 1.3 that post market coupling
the interconnection is used in a much more efficient way (equivalent to an increase in θ),
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which makes it an ideal candidate for a difference-in-differences estimation. In particular,
market coupling had a overnight and sharp impact on the interconnection usage. Figure A.3
presents the time series of counter intuitive flows and overall border usage, it appears clearly
that market coupling had an instantaneous and lasting effect. For a more detailed discussion
on market coupling, see (Keppler et al., 2016).

Figure 1.3: Directions of commercial flows before and after market coupling

Several market coupling happened in Europe since the early 2000’, this chapter focuses
on the main one in Central Western Europe (CWE) in November 2010 between Austria,
Belgium, France, Germany, Luxembourg, and the Netherlands. The introduction of market
coupling is not random, the four countries were already trading with each others although
market coupling is only ensuring that existing interconnector are properly used. Several
reasons lead us to think that market coupling adoption process is not a threat to the identi-
fication strategy. First, it is possible to test for the parallel trend assumption since I observe
long time series before and after the adoption of market coupling. Even if treated countries
were more inclined to benefit from trade and had a higher sensitivity to temperature varia-
tion, it is not a threat to identification as long as the difference in baseline with the control
group remained constant before the adoption. Second, weather variation is only predictable
on the short run and there is no reasons to believe that treated countries implemented the
coupling to prevent the adverse effect of future shocks. Finally, one could argue that market
coupling adoption and temperature are both correlated with the significant renewable devel-
opment in Germany. However the wind generation in Germany at that time was comparable
to other neighbors (eg. Spain, and to a lower extent the UK and Denmark) who did not
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take part in the market coupling, figure A.4 in appendix reports no significant differences in
trends.

1.3 Data

In this study I combine wholesale electricity markets data with actual grid measurement.
European national electricity markets were operated by monopolies for over a century until
the European commission started massive deregulation and market integration policies in
the 1990’10. Thanks to the member states’ efforts, most of electricity data in Europe is now
centralized and well accessible. In addition to electricity related data, I collected weather
variables at a refine temporal and spacial level for each bidding zone.

Spot markets

Equilibrium Prices

I collected hourly prices for all the bidding zones providing public access data in Europe.
Figure 1.4 shows the 24 countries (31 bidding zones) in the sample and specify whether
book order data are available (see supra). The analysis is flexible enough such that I can
either pooled the average daily price per bidding zone or to treat the 24 different hours as
different ”individuals” since they are defined simultaneously11. Figure 1.5 plots the monthly
average price in Euro for each bidding zone with the thick dark line being the load weighted
average price. Prices are following similar seasonal patterns but with different magnitudes.
They are also converging through time, although the global price convergence is increasingly
threaten by intermittent renewable development starting in the 2010’. Table 1.1 summarizes
day-ahead prices’ series for each bidding zone. We see that average price is similar in central
Europe and significantly lower than in Italian bidding zones. As discussed in section 1.2,
when markets are not coupled they can have different operation rules, for instance table 1
shows that minimum and maximum legal bidding prices are different. In the Italian markets
actors cannot bid negative prices contrary to the German-Austrian-Luxemburg market (the
minimum price is −56.87 on December 26, 2012). Negatives prices usually arise when it is
cost efficient to stay turned-on due to very high ramping cost, the unit is suffering losses at
t but should still be profitable on aggregate. Finally, data availability is different for each
bidding zone, figure A.1 in annex reports the time coverage by country and whether we have
the detailed book order data. The next section explains what exactly is the aggregated book
order data and the auction system.

10Directive 96/92/EC
11There is no additional information in the price at 1:00 pm with respect to the price at 2:00 pm since

they are determined at the same time, each day at 11am.
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Table 1.1: Price summary statistics per bidding zone

Mean Std. dev. Minimum Maximum

Belgium 46.39 18.45 −40.99 314.27
Czech Republic 43.24 19.87 −24.61 203.38
Estonia 36.22 9.62 6.30 124.77
Finland 34.81 8.99 6.30 94.78
France 45.57 21.37 −40.99 612.77
Germany Austria Luxembourg 42.49 17.46 −56.87 301.54
Hungary 44.98 26.41 −6.71 1 147.96
Latvia 44.10 12.36 15.91 126.32
Lithuania 44.37 12.36 15.91 126.32
Netherlands 47.28 16.25 14.83 277.41
Norway 34.85 14.24 2.07 95.76
Poland 37.46 10.61 16.57 94.53
Portugal 46.83 14.72 0.00 93.35
Romania 41.39 13.32 2.99 91.62
Slovakia 39.05 12.03 −42.72 99.77
Slovenia 45.33 13.72 0.00 137.92
Spain 45.62 13.68 0.00 93.11
Switzerland 49.65 18.44 4.16 179.90
UK 43.29 8.12 12.15 169.65

Sweden
SE1 30.18 9.53 3.51 88.10
SE2 30.18 9.53 3.51 88.10
SE3 38.59 15.65 3.51 231.51
SE4 39.00 15.58 3.51 231.51

Italy
Center South 63.13 17.12 0.00 146.85
Center North 63.18 16.71 0.00 146.85
North 62.26 16.24 0.00 146.85
Sardaigna 68.72 25.07 11.15 273.85
Sicilia 80.51 27.43 0.00 273.64
South 61.75 17.19 0.00 146.85

Denmark
West 38.00 13.88 −38.43 178.20
East 40.53 16.01 −38.38 231.51
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Figure 1.4: Spatial coverage

Book order

Market operators in central western Europe (EPEX), Great-Britain (APX), Scandinavia &
Baltic (Nordpool), Iberian Peninsula (OMIE), and Italy (GME) granted exceptional access
to aggregated curve data. Aggregated supply and demand curves are constructed from the
detailed book orders. Market operators first sum the quantity asked and offer at a given
price, and then clear the market at the point where supply meets demand12. The full book
order by agent is only available for a limited number of markets (eg. Iberian Peninsula) but
most of the operators only communicate the aggregated supply and demand curves. The
sole difference is that it is more complicated to analyze market power if one only observes
the market’s aggregated curves. However, it can be shown that market power is a limited
concern in Europe since electricity is traded through zonal pricing. Market size is then at
the country level and it is more difficult to use internal congestion to artificially increase
market power.

Book order and aggregated curves can be used to analyze market integration. Note

12linear interpolation is sometimes necessary
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Figure 1.5: Monthly price per bidding zone
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that even if national markets are connected by cross-border lines, the two zonal prices will
diverge as soon as the transmission line is congested. One could simulate alternative prices
for interconnection expansion scenarios by shifting the aggregated demand curve of the
exporting country to the right and the supply curve of the importing country by the same
amount. Figure 1.6 illustrates a concrete example for May 5th, 2013 at 10:00pm. At this
specific hour, the German price was higher than the French price (which necessarily means
congestion at the interconnection). I reconstructed prices for an expansion of 500MW by
simultaneously comparing the French theoretical price for a demand 500MW higher with
the German price if the supply was 500MW higher. Note that in this example, increasing
the interconnection capacity by 500MW would not have been enough to reach a full price
convergence but a 1000MW expansion would have been sufficient (and possibly oversized).
The effect of increasing the interconnection capacity is different in the two countries: in this
example it has a small impact in Germany but French prices are affected to a higher extent
(plus 4 euros). This would have generated a surplus gain both for German consumers and
French producers, and would have lowered the transmission system operators ’ congestion
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rent13.
The whole demand and supply curves are needed to precisely estimate the effect of tem-

perature changes on electricity cost. In the theoretical model, I assumed that a temperature
shock δ would affect homogeneously the demand (supply) by a common factor ω (φ). In
reality, temperature will affect heterogeneously the different agents in the market. Hydro
unit and nuclear power that need cooling water will be much more affected than other type
of power plant. As shown in the theoretical model, this could matter as only the units above
the marginal cost at the equilibrium (pre-shock) determine the value of the interconnection.
If base-load14 power plant are affected by temperature but marginal producers are not, then
one should not expect a change in price. To estimate the effect of temperature shocks on the
full curves, it requires to decompose the curves in 1e uniform slices for every zone-hour-day
in order to compare the curves’ shape over time and space. Concretely, I first linearly inter-
polate the multiple bid and ask so that I get smooth demand and supply curves and then
I create time series of comparable quantity offers and demanded for every 1e steps using
hourly data from 2006 to 2016.

Book order data are also useful to compute theoretical counterfactual prices. For instance,
one can find for each hour of the sample the theoretical price that would have cleared the
market if there were no congestion on the grid, ie. the equilibrium price in a pure open
trade framework (θ = 1). The congestion free price is simply given by the intersection of

13Congestion rent is collected equally by the two TSOs and is equal to the price difference multiplied by
the interconnection capacity. Therefore, reducing the price spread by increasing the interconnection capacity
would lower the TSOs’ rent but not necessarily their utility since their main objective is to maximize global
welfare

14Low marginal cost unit such as Nuclear power plants that always produce

Figure 1.6: Interconnection expansion between France and Germany - May 5th, 2013
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the aggregated demand and supply curve of the two (or more) countries, for the example
illustrated by figure 1.6 the congestion-free price is e33.4. As an example, figure A.2 in
appendix illustrates the four steps process for the German demand curve at 5:00 pm on
January 1st, 2006; in particular I had to use linear interpolation when data are not granular
enough.

Grid data

Aggregated Consumption

Since demand and supply have to be equal at all time, I can proxy the equilibrium demand
using the total load on the grid. Total load is by definition a subset of book order data but
it is available for a much larger period of time. I use load data to estimate an equilibrium
quantity dose-response to temperature à la Auffhammer et al. (2017). ENTSO-E is reporting
hourly load data for every European countries but only for the period post 2015. I used data
from market operators and national TSO to cover as many years as possible, but estimating
the electricity consumption response to temperature shock is not the primary interest here as
it has been well estimated in the literature (eg. Deschenes and Greenstone, Auffhammer et
al., Barecca et al.). In the robustness analysis load data is used as a weighting scheme. Note
that load and consumption data are not perfect substitutes, the load is the current amount of
electricity supported by the grid at a specific point in time, it does not disentangle between
consumption, generation, losses, and international trade.

Generation

Temperature and wind patterns are closely related and could threaten the identification
strategy. Intermittent renewables are automatically dispatch to the grid but are still taken
into account in the book order. Solar and wind generation usually bid at zero (or negative)
prices if the market operator allows it.

Wind generation in particular has to be accounted for since it is a complex function of
wind speed, air pressure (temperature) and humidity. The renewable data comes from each
country’s Transmission System Operator (TSO).

Weather

European Centre for Medium-Range Weather Forecasts (ECMWF) Climate variables are
based on reanalysis data from the European Centre for Medium-Range Weather Forecasts
(ERA-Interim), which is based on a climate model combined with observational data. I used
their 0.25 x 0.25 gridded data on daily temperature and precipitation to generate aggregated
daily temperature at the bidding zone level using population weights15. Population weights
ensure to report an average of the temperature for places that matter for this study. Table

15Cross-section Landsat data, 2011
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?? in appendix is reporting summary statistics for temperature and precipitation at the
bidding zone level. Climate variation is roughly similar throughout continental Europe, the
warmest region is southern Italy and the coldest northern Sweden. Temperature shocks are
expected to be correlated over space but using daily level data provides additional variation.

1.4 Identification strategy

Estimating the effect of market integration

The theoretical model predicts that market integration lowers electricity price of the shocked
country regardless of the relative difference in marginal cost. To test this prediction I first
need a credible and varying measure of market integration. I chose to use the market coupling
adoption in a difference-in-differences like design as a proxy for market integration since it is
strongly correlated with trade efficiency (see figure 1.3 and Keppler et al. (2016)). The data
span from 2006 until the end of 2016 and gives us almost five years of pre-treatment data
since market coupling occurred in November 2010. I used temperature and prices moments
of the 31 bidding zones to find the closest control to the treated group composed of Aus-
tria, Belgium, France, Germany, Luxembourg, and the Netherlands. Figure 1.7 shows very
similar temperature and price distribution for the control and the treated group. However
considering the large size of the sample, mean daily price and temperature are statistically
higher in the treated group (e45.24 vs e41.45, and 10.52oC vs 9.34oC).

Figure 1.7: control and group hist
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DiD framework does not require the two groups to have similar level of output, what
matters for identification is the similarity of the trends prior to the intervention. Let consider
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the following price equation:

log(Pz,t) =
3∑

k=1

(βktemp
k) +

2∑
k=1

(θkprecip
k) + ψDOW + αcntry,year + δcntry,month + εzt (1.10)

Where price in a given zone z in day t is a nonlinear function of temperature (3rd order
polynomial) and precipitation. Once I control for non observable at the space (country by
year FE) and time level (day-of-week and month FE), I can estimate the marginal effect of
temperature since weather variation is purely exogenous with respect to prices. To estimate
the mitigating impact of market integration, I do not want to compare a difference-in-
level-differences but the difference in ”marginal effect” differences before and after market
coupling. I am interested in a second order parameter, how the adoption of market coupling
mitigated the marginal effect of temperature on prices. More formally, I interacted the treat
and post dummies with each temperature variable16:

log(Pz,t) = γ11(treatz,t) + γ21(postz,t) + γ31(treatz,t)1(postz,t)

+
3∑

k=1

[tempk(βk + φ1
k1(treatz,t) + φ2

k1(postz,t) + φ3
k1(treatz,t)1(postz,t))]

+
2∑

k=1

(θkprecip
k) + ψDOW + αcountry,year + δcountry,month + εzt

(1.11)

For causal interpretation, it is important to verify that the marginal effect of temperature
on price evolved through time (or not) in a similar pattern for both groups. As mentioned
in the model section, temperature can affects price through multiple channels: a demand
shock, an increase in marginal cost, or even a reduction in transmission line capacity. It
is not a threat to the identification strategy as long as these relationships did not evolve
differently in the control and treated group. To test the parallel assumption, I limited the
sample to the pre-treatment period and regressed electricity prices on temperature variables
interacted with a time trend. More formally:

log(P g
z,t) =

3∑
k=1

[tempk(βgk + ηgkt)]

+
2∑

k=1

(θkprecip
k) + ψgDOW + αgcountry,year + δgcountry,month + εgzt

(1.12)

If the difference in the marginal effect of temperature remains stable through time between
the two groups g, I expect the trend coefficients (ηk) to be equal between groups.17

16the un-interracted treat variable is actually dropped to avoid collineratity when interacting with the
temperature variables

17Precisely it is necessary to verify the parallel stability of the marginal effect all along the temperature
distribution (ie. is the effect of a day at 25oC stable? 28oC? -10oC? etc.)
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Separability of the demand and supply reactions

In most studies about supply and demand estimation, one needs to combine exogenous
shifter with equilibrium price and quantity. In this case, I actually observe the whole curves
but want to estimate the (temperature) shifters. The empirical strategy is very similar to
equation (10), but applied to quantities ask and bid at a given price18 and hour:

∀p, h ∈ {0, 150} × {1, 24}{
log(Askp,hz,t ) =

∑3
k=1(βktemp

k) +
∑2

k=1(θkprecip
k) + γAXz,t + ψDOW + αc,y + δc,m + εzt

log(Bidp,hz,t ) =
∑3

k=1(βktemp
k) +

∑2
k=1(θkprecip

k) + γBYz,t + ψDOW + αc,y + δc,m + εzt
(1.13)

where Xz,t and Yz,t are side-of-market specific covariates. Considering that I can disentangle
the effect of the covariates on supply and demand, I should control in the appropriate
equation for the variables correlated with both temperature and one side of the market only.
For example, wind generation is expected to shift quantity supplied at every price since wind
farms bid at the lowest price possible19, and wind is correlated with temperature. However, I
do not expect quantity demanded to change with wind generation. Other covariates such as
solar radiation should be in both Xz,t and Yz,t, on the one hand it increases supply through
solar farm, and on the other hand it decreases the quantity demanded through personal
photovoltaic. The set of fixed effect is similar to equation (1.10).

1.5 Results

Net effect of temperature on prices

The theoretical model disentangled the multiple channels through which temperature affects
price, in this section I first want to recover the net effect on wholesale price, which is equiv-
alent to estimate equation (1.10). I used the full sample over the period 2006-2016, and the
results suggest that temperature has a non-linear effect on prices - just like on consumption.
Figure 1.8 plots the price dose-response20, ie. the marginal effect of temperature relative to a
”normal” day at 15oC. In order to easily interpret the results and compare the dose-response
with the usual effect of temperature on quantity, I logged the left hand side variable. Results
suggest that - everything remaining constant - prices would be 18-26% higher for a day at
25oC (relatif to a day at 15oC) and 34-51% for a day at −10oC. In comparison, the dashed
line in figure 1.8 represents the response of quantity due to change in temperature, a day
at 25oC would only increase quantity at the equilibrium by 4-8% and a cold day at −10oC

18I limited the study to the points between e0 and e150
19The marginal cost of wind farms is zero.
20Estimated coefficients are not easily readable considering the nonlinear relationship. Table of result are

available for reference in appendix.
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by 19-26%21. First, previous studies showing that consumption react to temperature in a
non-linear u-shaped way are confirmed by these results. Second, it appears that all along the
temperature distribution, prices react in a larger magnitude that quantity. If the demand
only were to change when temperature changes, it would means that the slope of the supply
curve is at least greater than 1. Since I only observe the net effect, I cannot make any claim
about the marginal cost. Still, the result suggest that the existing literature that solely focus
on change in quantity might underestimate the energy cost of climate change.

Figure 1.8: Daily price sensitivity to temperature (pooled model)
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The non linear relationship is robust to the choice of functional form, figure A.5 in
appendix shows similar dose-response when I use other semi-parametric method such as
bins regressions (scatter) and piece-wise linear (dashed). Polynomial allows curvature in the
dose-response and keep the number of parameter to estimate to a much lower level compared
to bins regressions. The last point is critical now that I move to the interacted model.

Adaptation through market integration

I now turn to the estimation of equation (1.11), figure 1.9 reports the dose-response before
(dashed line) and after market coupling in both the control and the treated group. These

21Confidence interval are not reported on the figure for simplicity purpose but the range in the text
correspond to the 95% CI.
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dose-responses are plotted based on sub-sample estimation of equation (1.10), it confirms the
absence of trend in the control group as the dose-responses on the first panel are almost the
exact same before and after market coupling. Quite differently, the second panel confirms the
theoretical model, the adoption of market coupling appears to mitigate the marginal effect
of temperature all along the temperature distribution. To formally estimate the difference-
in-differences, I need to estimate equation (1.11). Results are summarized in table 1.2, the
marginal effect of temperature is predicted at 0oC and 25oC to easily interpret the non-
linear interacted coefficients. As suggested by the plot of the sub-sample dose-response, the
interacted DID coefficients are significant and decrease the magnitude of the temperature
effect. The results suggest that market coupling decreased the effect of a hot (cold) day
by 14-28 (5-11) percentage points. Note that the market coupling also had a pure effect
on the level of prices, reducing on average the wholesale prices by 9.3 percentage point -
regardless of the temperature. It is a result in line with the theory, under the existence of
some heterogeneity in the marginal costs, any increase in trade opportunity is cost efficient.
Quantitatively, the base effect of market integration is comparable with (Cicala, 2017) which
found using market deregulation in the US as a quasi-experiment that trade would decrease
the cost of provision by roughly 20%.

Figure 1.9: Daily price sensitivity to temperature (DID)
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One could qualify the adoption of market coupling as the extensive margin of trade,
in comparison with an increase of the interconnection capacity. An imperfect measure of
the intensive margin can be estimated using book order data. I aggregated the nationals’
supply and demand curves for each member of the treated group and re-estimated equation
(1.10) using the theoretical congestion-free prices22. To facilitate the comparison with the

22This method is actually closer to the extensive margin as it does not look at small change in intercon-
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adoption of market coupling I restrained the sample to the post coupling period only, the
second panel of figure 1.9 has side by side the dose-responses for the real prices (blue) and the
counterfactual (red). The magnitude of the drop in marginal effects are roughly of the same
order. It definitely plays in favor of market coupling considering the prohibitive construction
cost of interconnection lines. In addition, the congestion free scenario is particularly extreme,
it is purely theoretical and would be found way oversized in a cost benefit analysis.

Table 1.2: Difference-in-marginal-effect-differences

Log(Price)
Predicted marginal

effect (ref. point
15oC)

VARIABLES coef se T = 0oC T = 25oC
1{Treat} omitted
1{Post} 0.0623*** (0.0155)
1{Treat} × 1{Post} -0.0927*** (0.0226)
Temp -0.0192*** (0.000859) }
Temp2 -0.000196*** (6.46e-05) [0.20, 0.24] [0.21, 0.27]
Temp3 3.55e-05*** (2.64e-06)
Temp× 1{Treat} -0.0196*** (0.00224) }
Temp2 × 1{Treat} -0.00125*** (0.000264) [0.25, 0.32] [0.15, 0.29]
Temp3 × 1{Treat} 8.12e-05*** (9.60e-06)
Temp× 1{Post} -0.00758*** (0.000870) }
Temp2 × 1{Post} 0.000369*** (8.14e-05) [0.01, 0.05] [−0.05, 0.01]
Temp3 × 1{Post} -9.98e-09 (3.16e-06)
Temp× 1{Treat} × 1{Post} 0.00412* (0.00243) }
Temp2 × 1{Treat} × 1{Post} 0.000961*** (0.000287) [−.11,−.05] [−.28,−.14]
Temp3 × 1{Treat} × 1{Post} -5.97e-05*** (1.03e-05)
Precipitation -0.00972*** (0.000845)
Precipitation2 0.000249*** (4.93e-05)
Fixed effects Day-of-Week, Country-by-Month, Country-by-Year
Observations 45,393
R-squared 0.567

Robust standard errors in parentheses
*** p<0.01, ** p<0.05, * p<0.1

nection capacity - which is possible - but solely at the extreme case.
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Gains from trade

The difference-in-differences approach suggests that market coupling decreased average daily
price by roughly 9% in the treated countries. Using detailed data on book order I can backed
out the potential gains from trade that would have occurred in a congestion-free world. Using
Shephard’s Lemma and assuming no income effect, the change in consumer surplus is roughly
defined as the price difference between the two states times consumption. On the supply side,
assuming perfect competition and applying Hotelling’s Lemma I approximated the change
in profits as the change in price times the production volumes. Table 1.3 reports change in
surplus and net gains for each country. At the exception of Germany, consumers would have
experienced net gains whereas producers would suffer losses. This is directly coming from
the significant flows of intermittent electricity produced in Germany that make Germany
the biggest exporter in the region. One needs to be cautious about the interpretation given
to those numbers as wholesale electricity market prices are not directly charged to the end
users and similarly a decrease in producer surplus can hide long run efficiency gain of the
supply side. Next section discusses more extensively the welfare and policiy implications of
these results, in particular with regards to climate change.

Table 1.3: Gains from trade in a congestion-free state (11/2010-01/2016)

Euros (millions)

∆ Consumer Surplus ∆ Producer Surplus Net Gains
Belgium 704 -664 40
France 1,170 -939 231
Germany - 3,760 3,930 170
Netherlands 1,330 -1,190 140

1.6 Discussion

Interpreting the gains from trade necessitates to understand the challenges faced by energy
actors in each country. Germany has been struggling with a surplus of intermittent electric-
ity depressing wholesale prices toward zero and sometimes even below. More conventional
power plants need to run a certain number of hours to be profitable, which means that
intermittent excessively low prices diminish the incentive to invest in conventional plants
without providing a security of supply during peak hours23. The positive (negative) exter-
nality associated with conventional (intermittent) units is not currently internalize by the
market. However, integrating the different regions by coupling the markets would mitigate
the intermittent excessive price fall and benefit in the long run (a) the consumers through

23In Central Western Europe, peak hour is often between 6pm and 8pm, when solar production is low or
null
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security of supply and (b) the producers that need a stable price signal to invest and remain
profitable. As shown by Annan-Phan and Roques (2018) market integration not only lowers
the global average price but also decreases price volatility in each market.

The change in consumer surplus itself has to be interpreted with caution. Wholesale and
end-user electricity prices are only related in the long run and are certainly not equal on
average. As explained above, near zero day ahead prices affect long run supply and thus
will likely be associated with an increase in end-user prices. Out of the 3.8 billions euros
of change in German consumer surplus, only a fraction would actually be passed on the
end-users. 22.8% of the German consumers’ losses (e716 millions) would come from a price
re-evaluation when prices were excessively low (6 20e/MWh). Considering those factors,
the interpretation of surplus variation is limited and one should focus on the efficiency gains
coming from the global reduction in marginal cost. Comparing the slope of the supply
curves around the equilibrium24 gives the price reaction associated with a small shock in
consumption (eg. climate shock). Assuming linear cost around the equilibrium, I can infer
the increase in marginal cost induced by a given demand shock. Figure 1.10 reports the effect
of a 500 MWh demand shock in each country over time in comparison to the congestion-free
reaction. On average, the shock would increase the price in France by e7, the same shock
in Netherlands or Germany would have increased price by e13 and e4, respectively. In
a congestion-free world, a single shock in any of those country would only increase price -
everywhere - by 50 cents.

Figure 1.10: The price reaction of a 500MW demand shock (2011-2016)
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What are the implication for climate change mitigation? Just like in the model the

24I estimated the slope of the supply curve each day for prices ranging from -25% to +25% around the
equilibrium price
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demand is affected not only by warm days but also during cold shocks. Results indicate that
trade - either through market coupling or grid expansion - would mitigate the provision cost of
such events. It is not clear whether climate change would exacerbate or diminish the need for
market integration. On the one hand, more demand shock are expected during the summer
but on the other hand, the heating demand (which is roughly as sensitive to temperature
as illustrated in figure 1.8) will likely decrease. The shift in temperature distribution is not
necessarily homogeneous and a recent studies suggests that weather variance will increase
(Trenberth et al., 2015) or that cold shocks might arise in Western Europe and Northern
America due to the slowdown of oceanic stream (Rahmstorf et al., 2015). In addition, the
sample of countries used in the gains-from-trade calculation are not very sensitive to hot
temperatures compared to other countries in the world, even in Europe (eg. Greece). The
symmetry of the temperature dose-response suggests that market integration is mitigating
in the same fashion hot and cold days, meaning that gains from trade with respect to climate
change might be much larger for countries only sensitive to hot days.

In this chapter, I presented a new method to study the impact of climate change on
electricity expenditure through the analysis of wholesale prices. I showed that relative to
consumption, prices were reacting in a larger proportion to temperature shocks. Supported
by a theoretical framework, I then estimated the benefit of market integration with regards
to climate damages mitigation. Applying a difference-in-differences like method I estimated
the causal impact of market coupling on the temperature dose-response. Market coupling
adoption reduced the impact of a day at 25oC on prices by 14-28 percentage point. The effect
is statistically and economically significant, in particular if compared to the dose-response
of the congestion-free counterfactual where interconnection are assumed unlimited. Market
coupling effect has roughly half the magnitude of the unlimited grid expansion, although
achieving a congestion free world would be prohibitively costly. More research need to be
conducted to disentangle precisely the different channels trough which temperature affects
supply and demand in order to derive welfare conclusions. However, the reduced form
estimation documented the potential efficiency gains of trade, in particular with regards to
climate change.
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Chapter 2

Hot Temperatures, Aggression, and
Death at the Hands of the Police:
Evidence from the U.S.

2.1 Introduction1

For every ten murders in the U.S., one civilian dies as the result of an encounter with the
police.2 Police killings have increasingly captured the attention of the public, with much of
the focus on the racial disparities in police shootings and the role of race in influencing police
action (MacDonald and Fagan (2019); Goncalves and Mello (2020)) and in particular the
use firearm (Ross (2015); Fryer (2018a,b); Edwards et al. (2018); Knox et al. (2019)). The
different types of threats faced by police officers, however, have been left unexplored, as have
the reactions of the police to these threats. One threat in particular, hot weather, is often
associated with an increase in violent behavior (Bell and Baron (1976); Jacob et al. (2007);
Burke et al. (2015)). This chapter explores the risk associated from higher temperatures to
the use of deadly force by the police.

We exploit county and monthly variation in temperatures to estimate the effect of weather
on civilian deaths by firearm, conducted electrical weapons (CEWs, also known as Tasers),
less-than-lethal weapons, and physical restraint. We document that an increase in temper-
ature is associated with a higher level of risk for officers and bystanders. Consistent with
the increase in danger and opportunity, we find suggestive evidence that fatal shootings also
increase with temperature. However, when controlling for the increase in civilian-officer in-
teractions, we find no additional impact of temperature on the number of fatal shootings.
Extremely warm days have an additional impact on other types of force as well: we find
that fatal interactions involving a CEW or physical restraint are significantly higher for any

1The material in this chapter was co-authored with Bocar Ba.
2Authors’ calculation, See fig A.7 in the Appendix.
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additional days above 32oC.3

Our results indicate that officers’ judgment over their use of firearms is not directly im-
pacted by hot temperatures, contrasting with results obtained during in-training experiments
Vrij et al. (1994). In addition, our findings suggest that one should be careful when deploying
CEWs or techniques of physical restraints that could result in asphyxia when temperatures
increase. Further research is needed in order to understand the physiological relationships
between non-lethal tactics and high temperatures that result in an increased likelihood of
death. We do not find evidence that temperature impacts the number of civilian deaths by
other kinds of less-than-lethal weapons.4

Demonstrating these findings requires overcoming two empirical difficulties. First, there
is a lack of readily available public data that records the interactions between civilians and
police that result in the death of civilians (Banks et al. (2016); Ouss and Rappaport (2019)).
Secondly, it is a challenge to disentangle whether these deaths are related to behavior,
either from civilians or police officers, or result from an unintended physiological response to
temperature, which would indicate that certain weapons are more dangerous during warm
days.

This study addressed these challenges in three steps. Firstly, we used novel data from
Fatal Encounters, which has crowd-sourced records on civilian-police interactions resulting in
a civilian casualty in the United States between 2000 and 2016. Secondly, we used temporal
variation in daily temperatures over the different geographical regions in the U.S. to account
for county-level unobservables and seasonal patterns in crime data. Finally, we disentangled
the nonlinear impact of temperature for each type of force in order to evaluate whether to
interpret our results as a behavioral or physiological effect.

We first establish the link between temperature and threat level for police officers and
civilians. We defined incidents as cases in which a suspect poses a serious threat of injury
or death to officers or bystanders. We argue that these incidents, potentially dangerous, are
captured by (1) the number of violent crimes and (2) the number of officers who are assaulted
and/or killed. Variation in situational environment such as darkness (Doleac and Sanders
(2015); Chalfin et al. (2019)) and weather ((Ranson, 2014a)) have been linked to changes in
crime level. We show that temperature has a positive and statistically significant impact on
the number of assaults on both civilians and police officers. This is consistent with previous
studies that suggest that higher temperatures are associated with more aggressive behavior
(Jacob et al. (2007); Burke et al. (2015)). We hypothesized that, in response to an increased
threat level in warmer weather, there should be a corresponding increase in the number of
civilian deaths.

In the second part of our analysis, we explore the effect of temperature on police-related
deaths, controlling for the threat level and taking into consideration the officers’ exposure
to risk. We found suggestive evidence that fatal police shootings is impacted by hot tem-

3For the rest of the chapter, we define ‘warm’to refer to temperatures between 17 and 24oC (i.e. 63 and
75oF ); we use ‘hot’ to refer to temperatures between 24 and 32oC (i.e. 75 and 90oF ); and ‘very hot’ or
‘extremely warm’ indicate to temperatures above 32oC

4See Section 2.2 for a discussion of our categorization of force options.
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peratures. The magnitude of the estimated effect is similar to the increase in threat levels.
Consistent with the fact that higher temperatures are associated with a higher level of threat,
officers are more likely to kill a civilian by firearm when temperature increases. Once we
account for such increase in threat, temperature does not have an additional effect on the
use of firearm. In contrast, our results indicate that the number of civilian deaths caused
by the use of CEWs increases by 5.3% on very hot days, independently of the increase in
opportunity. The effect of CEWs on casualties is null for days that are not extremely warm,
indicating a physiological interaction with temperature only for very hot days. Similarly,
we also document that the number of civilian deaths by physical restraint increases by an
additional 15.1% during extremely hot days. Although physical restraints and CEWs are
not categorized as lethal uses of force, these results suggest that such tactics can have unin-
tended deadly consequences when used in extremely warm weather. The results for incidents
involving other kinds of less-than-lethal forces (see Section 2.2) were too imprecise to draw
any conclusions.5

This chapter contributes to different strands of the literature. First, CEWs are con-
sidered a less-than-lethal weapon. Some police departments have recently expanded their
Taser arsenals, arguing that the increased availability of CEWs will lead to a reduction in
police shootings (Bustamante (2017); Hinkel and Smith Richards (2017)). However, Ba and
Grogger (2018) find no evidence that Tasers reduce firearm usage. Using a randomized con-
trolled trial, Ariel et al. (2019) find that the introduction of Tasers leads to more use-of-force
incidents.6 This chapter provides additional evidence for the potential dangers of Taser use
by demonstrating the possible consequences of using CEWs in hot weather. Second, despite
widespread findings that higher temperatures are related to higher crime rates and more ag-
gressive behavior, we show that higher temperatures have no statistical effect on the number
of casualties from police shootings when controlling for the increase in opportunity.

2.2 Background

Use-of-force options

Most law enforcement agencies in the U.S. have policies that guide their use-of-force. The
International Association of Chiefs of Police have defined use-of-force as the “amount of
effort required by police to compel compliance by an unwilling subject.” Depending on the

5We also found that temperature modestly impacts vehicular accidents, but our results were not statis-
tically significant (See Section A.2 in the Appendix).

6Ba and Grogger (2018) find similar results in Chicago; however, their findings might be sensitive to their
interpretation of the level of severity of Tasers, in the use-of-force model. The authors claim that Tasers
can be used on active resisters; however the Chicago Police Department’s use-of-force model indicates that
Tasers can be used on both active resisters and assailants (CPD (2017)). As a result, the authors lowered the
level of severity of Tasers and might be mischaracterizing the level of danger of Tasers. We later document
that Tasers are the third leading cause of civilian deaths when interacting with the police behind firearms
and vehicular accidents.
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level of danger, the continuum of force includes verbal commands, physical restraint, less-
than-lethal force and lethal force. Less-than-lethal force involves technologies to gain control
of a situation. Deaths by vehicle are not part of the continuum.

Our data is crowdsourced information from public news articles that do not rely on
administrative information from police departments. This explains why causes of death do
not perfectly fit the use-of-force model in our case. Below, we provide definitions of the
causes of death that are part of the use-of-force model in order to provide some context
necessary to interpret our results.

Physical restraint We define physical restraints to be soft and hard techniques such as
grabs, holds, joint locks, punches, or kicks to restrain or subdue the subject. The casual-
ties from physical restraints correspond to “asphyxia/restrained” in the Fatal Encounters’
classification scheme.

Less-than-lethal We define less-than-lethal force as involving intermediate weapons such
as an impact weapon (e.g., baton) or chemical weapons. Although CEWs are considered
a less-than-lethal weapon, we analyze the use of this weapon separately. Our definition
of less-than-lethal corresponds to “Beaten or Bludgeoned with instrument” and “Chemical
agent or Pepper spray” in the Fatal Encounters’ classification. Officers may use less-than-
lethal weapons if the subject is physically aggressive or exhibits assaultive behavior with
an immediate likelihood of injury to self or others (Use of force project (2017)). Non-lethal
force options are used to limit the escalation of conflict where employment of lethal force is
undesirable or prohibited.

CEW CEWs are considered a less-than-lethal force. CEWs discharge a high-voltage and
low-amperage jolt of electricity through a dart. The electrical charge overrides the subject’s
nervous system and should temporarily incapacitate him. The use of CEWs requires training
and periodic recertification.

Firearm Firearms are considered lethal use-of-force. Officers are allowed to use lethal
weapons, i.e., firearms, if they reasonably believe that a suspect poses a serious threat to
the officer or another individual. Many police departments collect data on officer-involved
shootings and systematically investigate them. The use of firearms requires training and
periodic recertification.

CEWs

The most common CEWs used by law enforcement agencies are manufactured by Taser
International (now Axon).7 In addition to selling the device, Axon provides training and

7According to Forbes Taser International holds 95% of market share.

http://useofforceproject.org/#review
https://www.forbes.com/sites/lukeschiefelbein/2018/03/13/why-taser-stock-could-have-shocking-upside/#26ae8b1477d7
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certification to sworn law enforcement officers, military personnel, and licensed professional
security employees.

According to Axon’s training material, CEWs have limited effectiveness on loose or thick
clothing, low nerve or muscle mass, and obese subjects (Axon (2018)). This suggests that
officers might be less likely to use CEWs when the temperature is low, because people tend
to wear thicker clothes in such weather. Axon also recommends against using CEWs on
elderly, pregnant, or low Body Mass Index (BMI) individuals, warning that use on such
subjects could increase the risk of death or serious injury to the subject.

Due to the electrical discharge, CEWs frequently cause subjects to fall, thereby increasing
the risk of bodily trauma, particularly when the fall occurs on a hard surface, such as a
sidewalk. Other potential effects of CEW use that could increase the risk of sudden death
include changes in blood chemistry, blood pressure, respiration, heart rate, adrenaline, and
stress hormones. Last but not least, CEWs are also liable cause to cardiac effects. Additional
factors that increase cardiac risks associated with the use of CEWs are the duration of the
delivered electrical charge and the distance to the heart from where the dart impacts the
body (Axon (2018)).

Axon strongly recommends that officers keep a detailed account of any incident in which
they deploy a CEW. The company suggests the officer note their own actions as well as the
subject’s and document the subject’s medical status. For law enforcement agencies, it is
important to keep this information in case of a lawsuit or for internal investigations.

2.3 Data

Source

Our primary analysis used Fatal Encounters data spanning from January 2000 to December
2016. We supplemented this dataset with combined daily climate data from the European
Centre for Medium-Range Weather Forecasts. Finally, we obtained the FBI’s Uniform Crime
Reporting Data System (UCR) from Kaplan (2018), who constructed a monthly dataset on
a police-department-level basis for index crimes from 1968 to 2016. We merged climate data
and Fatal Encounters data with FBI UCR data by county and month.

Fatal Encounters is a crowdsourced database that relies on publicly available news sources
to track deaths that have occurred as a result of police interaction in the United States since
2000. Every entry is manually checked and properly sourced with an accompanying police
report, when available, or other official statements. The dataset includes key variables such
as the date of the incident, county and cause of death. The data also indicates whether the
subject displayed symptoms of mental illness or substance abuse. However, this information
is reported by the person who submitted the incident to Fatal Encounters and may therefore
be unreliable or subject to reporting bias. Our final sample includes only fatal incidents that
can be tied to police use-of-force or those caused by vehicles.8

8Cases of death by vehicle are included because they represent a large share of the RAW data (19.22%).
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There is no federally managed national dataset on police killings in the United States. The
Bureau of Justice Statistics (BJS) acknowledges their current data-collection methodology
for arrest-related deaths is defective and could be improved by crowdsourcing (Arrest-related
deaths program Assessment, March 2015). In particular, the BJS states that Fatal Encoun-
ters “most closely matched the Arrest-related deaths program scope” (Banks et al. (2016)).
To our knowledge, this is the best source of information on this subject and has yet to be
stringently analyzed.

Summary statistics

Table 2.1 presents the distribution of type of death from 2000 to 2016. Firearms and vehicular
accidents represent the most common cause of death with 73.4% and 21.1% of the final
sample, respectively. Death by CEWs is the third most common fatal use-of-force death and
represents about 3.7% of arrest-related deaths. Meanwhile, less-than-lethal force and physical
restraints correspond to about 1% of the sample. We also disaggregate the distribution
according to age, gender, race, and symptom of mental illness or substance abuse of the
civilian who died during the interaction. About 5-6% of the civilians who died by firearm,
less-than-lethal weapon, and physical restraints are female, while only 2.5% of those who died
by CEW are female. CEWs have the lowest share of juvenile and elderly in the sample, which
is consistent with the safety guidelines provided to police officers by Axon.9 About 31% of
the civilians who die in police shootings are white, which represents the largest proportion
for identified race for this type of death. In contrast, the largest share of civilians who die
as a result of less-than-lethal force or physical restraints are black. CEWs and physical
restraints are also the most common causes of death for subjects who exhibited symptoms
of mental illness or substance abuse.

2.4 Empirical strategy

Figure 2.1 provides the geographical distribution of temperatures across the U.S. We divided
the U.S. into ten climate zones and assigned each county to a climate zone based on its
mean average daily temperature throughout the year. This map shows a high degree of
heterogeneity in temperature across the U.S. The northern parts of the country are more
likely to have lower temperatures (i.e., less than 13oC), whereas the southern areas tend
to have warmer weather (15oC and above). Figure 2.1 shows the average yearly number of
civilian deaths when interacting with police per 100,000 capita for each county in the U.S.
We did not find any obvious relationship between the temperature zones and civilian death
rates.

We ignore the following categories of cause of death: drowned, drug overdose, fell from height, stabbed,
undetermined, burned/smoke inhalation, and others.

9See Taser use guidelines: cga.ct.gov/2007/rpt/2007-R-0068.htm



CHAPTER 2. HOT TEMPERATURES, AGGRESSION, AND DEATH AT THE
HANDS OF THE POLICE: EVIDENCE FROM THE U.S. 34

To identify the causal effect of temperature on civilian death as a result of police in-
teraction, we used the exogenous daily variation in ambient temperatures at the county
level. Daily variation matters if we believe that temperature has a non-linear effect on fa-
tal encounters. Binned regression allows for heterogeneous response at different parts of
the temperature distribution. This method has been successfully used to estimate the non-
linear effect of temperature on mortality (Deschenes and Greenstone (2011a)), the crime rate
(Ranson (2014a)), civil conflict (Hsiang et al. (2011)), and agricultural yield (Schlenker and
Roberts (2009)).

Fatal encounters are relatively rare events at the county level and need to be estimated
using a count model. The Poisson regression approach accounts for the skewed distribution
of fatal encounters. Our data is aggregated by type of death τ for every year y at the month
m and county c level. The number of deaths Yτcym follows a Poisson distribution with a
probability density function and mean λτcym such that:

f(Yτcym|λτcym) =
exp(−λτcym)

Yτcym!
λYτcymτcym (2.1)

To ensure that the mean λτcym is strictly positive, we estimate the following parametric
specification:

λτcym = exp(
5∑
τ

8∑
b

Typeτ · Tempbcymβτb + h(Precipcym)βp

+X ′cymβx + γτcy + δstate + ετcym)

(2.2)

where Typeτ are dummy variables for the distinct types of force (cause of death) which are
Firearm, CEW-related, Vehicle, Physical restraint, and Less-than-lethal weapon. Following
Deschenes and Greenstone (2011a), we capture the full distribution of monthly fluctuations
in weather. The variables Tempbcym denote the number of days where the daily mean temper-
ature is in one of the eight bin variables10 b in county c within a month m and year y. This
method allows us to combine daily variation in temperature with more aggregated variables
such as monthly death count. We omit the bin [12; 17) from the regression and used it as
the reference category for the temperature effect.11 The interaction between type of force
and temperature, Typeτ · Tempbcym, enabled us to recover separate effects of temperature on
the number of civilian deaths for each cause of death. Hence, the parameters of interest are
given by the whole vector βτb.

The term Xcym represents a vector of time-varying explanatory variables that may in-
fluence the probability of afatal interaction between police and civilians. A list of these
variables is provided in the notes to Tables A.1-A.5 in Appendix A.2. These controls include

10The bins are in 5oC increments from 2 to 32oC , including one for temperatures lower and greater than
this range.

11The choice of the reference bin only affects the interpretation.
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the level of precipitation in county c during month m and year y. To ensure that our results
are not biased by using a restrictive form of precipitation, we model it using a polynomial
function (quadratic), h(Precipcym). The term δstate is a state-by-season fixed effect and γτcy
is a vector for each type of use-of-force county-by-year fixed effect, which control for space
and time varying non-observables. As controlling for crime variation was a key component
of our analysis, we performed estimation with multiple types of crime being either directly
included in the vector Xcym or defined as the exposure variable. Setting crimes and arrests
within a month as the exposure variable adjusted our estimate for the amount of “opportu-
nity” officers had to use any kind of force. In other words, we account for crimes and arrests
as risk sets. Because the risk set itself is impacted by temperature, we have the total number
of arrests set as an exposure variable in our preferred specification:

λτcym = exp(
5∑
τ

8∑
b

Typeτ · Tempbcymβτb + h(Precipcym)βp

+X ′cymβx + γτcy + δstate + ετcym) · Arrestscym

(2.3)

The identifying assumption for our analysis was that, after controlling for county-year-
type of death and state-by-season fixed effects, differences in weather and crime between
months within a county represent the true effect -βτb- of weather on the number of civilian
deaths by type of force used. Moreover, this specification allows for a joint estimation of each
type of force which accounts for correlated shocks among type of death. Unless specified, we
clustered standard errors at the year-by-type of death.

2.5 Results

Effect of temperature on the level of threat

We began our analysis by examining the effect of temperature on the level of threat for police
officers and bystanders. Figure 2.2 presents the coefficients from estimating a simplified
version of equation 2.2 on the number of officers assaulted or killed and on the number of
violent crimes12.

These figures indicate that there is a positive and statistically significant impact of tem-
perature on the number of violent crimes and the number of officers assaulted or killed when
the temperature is 17oC or higher. An extra day with a temperature above 17oC leads to
0.2%-0.5% more assaulted or killed officers, and to 0.28%-0.62% more violent crimes13. As
pointed out by Ranson (2014a), these coefficients seem small; however, they represent the

12We do not observe any kind of type of force used for the violent crimes nor assaults on officers, therefore
the equation is simplified and only has binned temperature, spatial and temporal fixed effects.

13As a reference, Chalfin and McCrary (2018) find that a one percent increase in the size police causes
violent crimes to go down by 0.29 to 0.34%.
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effect of a single day of weather per month, and yield important effects in the aggregate. For
instance, in a spring month with ten unusually warm days ([22oC, 27oC)), violent crimes and
assaulted or killed officers would be 4.3 to 4.4% higher than the number of violent crimes
and assaulted or killed officers relative to the reference bin.

The nonlinear impacts of temperature on violent crimes14 and officers assaulted or killed
indicate that the level of threat for both officers and civilians is higher when the temperature
is 17oC or higher. The level of danger for an officer is statistically similar between extremely
hot days and hot days.

This confirms that higher temperatures are associated with more aggressive behavior from
civilians (Burke et al. (2015)). Thus, we deduce from Figure 2.2 that it is more dangerous
for officers to perform their job when the ambient temperature is higher. Because the level
of threat increases above a certain temperature, we expect officers to be more likely to
discharge their weapon during warm days. As a result, we hypothesized that, in response
to an increase in the level of threat during warm days, there should be an increase in the
number of civilian deaths by police shootings (Use of force project (2017)). We test that
hypothesis estimating equation 2.2. Figure AA.8 compares the coefficients for fatal shooting
with the level of threat. Although results are underpowered, we find that point estimates are
consistently increasing in a similar pattern for higher temperature and in particular above
27oC. These results suggest that, if anything, fatal police shootings increase proportionately
to the threat level.

However, the large confidence intervals in figure AA.8 indicate that police officers might
not respond to higher levels of threat by using their firearms. They could, for example, use
de-escalation techniques, such as restraining methods or less-than-lethal weapons. Although
these approaches are not intended to be fatal, there may be some unintended consequences
of using these types of force, e.g., the death of the suspect or a bystander. Restraining
techniques, for example, can result in death by asphyxia.15 For these ‘less-than-lethal’ typse
of force, it is important to disentangle the direct impact of temperature from the mechanical
effect ascribable to the increase in interaction.

Effect of temperature on civilian deaths

Figure 2.3 presents the coefficients from estimating equation 2.3 which accounts for the
different causes of death and the threat level. Allowing for heterogenous effects per causes of
death in addition to controlling for the civilian-officers interactions demonstrates that there
is a precise null impact of temperature on the number of civilian deaths by firearm. In other
words, we found that all coefficients of temperature are close to zero, with small standard
errors. The fact that temperature did not impact the number of civilian deaths by shooting
might indicate that officers do not suffer directly from warmer temperatures.

14Our results are consistent with those found in Ranson (2014a). Our analysis uses the same data source
and extends it to include recent years.

15For e.g., Eric Garner’s 2014 death in New York City, which resulted from a chokehold.

http://useofforceproject.org/#review
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This result is surprising as it contradicts the experimental results from Vrij et al. (1994)
who found that police officers are more likely to fire their weapons at assailants during a
training simulation conducted in hot temperatures. Our results raise some concerns about
the external validity of their findings. On the one hand, it may be very difficult to design a
credible experiment that has such high and potentially real-life stakes for both the officers
and the civilians involved. On the other hand, in our data we only report fatal interactions;
i.e., we do not have data on use-of-force incidents that did not result in the death of a civilian.
Thus, we cannot rule out with certainty some behavioral hypothesis.16

We now discuss our results for other forms of less-than-lethal force in turn. In terms of
the use of less-than-lethal force, we find that there is a significant impact of ‘very hot’ days
on the number of deaths by CEWs and physical restraint, regardless of opportunity (tables
A.1 and A.4). The results for less-than-lethal force are too imprecise to draw any conclusions
(table A.2).

For CEWs, we found that the monthly number of civilian deaths increased by about 5.3%
for every additional very hot day compared to a day in the 12− 17oC range. The results for
very hot days (> 32oC) are highly significant (p<0.001) and unlikely to be a false discovery17.
The incidence ratio is about 1.0 when the temperature is between 2oC and 32oC with small
standard errors; in other words, there is a null impact of temperature on the deaths by
CEWs. When the temperature is lower than 2oC, the number of deaths by CEWs is lower
compared to the reference temperature; however, the results are not statistically significant.
Results in Figure 2.3 also suggest that law enforcement officers are unlikely to substitute
CEWs for their firearms during hot days. Indeed, more than the absence of a positive effect
for gunshot fatalities, weapon substitution during hot days would imply a reduction in the
number of deaths caused by firearms (i.e., a negative coefficient or incidence ratio below 1).

In addition to CEW-related deaths, we found that deaths caused by physical restraints
tended to increase significantly during ‘extremely warm’ days. The incident rate ratio is
about 1.15 when the temperatures are at least 32oC, meaning that the number of civilian
deaths by physical restraints increases by 15.1% on ‘very hot’ days. Due to the low number
of cases, the effect of an additional day at 32oC or above is much less precise for incidents in
which physical restraints was used, barely above the 5% threshold (t-statistic = 1.92). The
effect at 27 − 32oC is much lower at 4.8% but statistically significant (p-val ¡ 0.05). The
physical restraints of an individual during arrest can sometimes leads to fatal hyperthermia
and asphyxiation if the victim is subject to excited delirium or controlled in the wrong
position. Though the number of asphyxiation and restraint-related deaths only accounts
for 1% of all fatal encounters, police officers could nonetheless take simple precautions on
hot days to avoid civilian deaths (e.g., limit the use of handcuffs and other restraints when
possible).

16For instance, it is possible - although unlikely - that police officers do shoot more often and are more
aggressive during warmer days but that it somehow does not impact the number of civilian deaths.

17With a t-statistic of 4.18, the estimate is also statistically significant at the 1% level when adjusting for
multi hypothesis using the very conservative Bonferroni correction ((Rupert Jr et al., 2012)).
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For types of less-than-lethal force, excepting CEWs, we found that the effect of temper-
ature on civilian deaths is non-monotonic, meaning that temperature does not increase (or
decrease) the number of civilian deaths for these types of force. Moreover, we did not find
a statistically significant impact of temperature on civilian deaths for these types of force.
The results have large standard errors.

Robustness Testing

We present alternative specifications in Appendix A.2. High temperatures are associated
with numerous confounding factors, either societal (eg. more crime) or physiological such as
discomfort or lack of accuracy ((Qiu and Zhao, 2019)). Our main results are intact when
accounting for the various measure of crime level (such as number violent crimes, number of
property crimes, and number of assaulted or killed officers).

Appendix A.2 investigates some behavioral mechanism, in particular whether our esti-
mates are mechanically driven by the fact that CEWs usage is strongly correlated with the
time of year. Weather might alter officers’ choice of force: CEWs are less effective when
used on individuals wearing thicker or more layers of clothing. Therefore, it is important to
account for the fact that officers are less likely to use their CEWs when temperatures are
low. In order to address this, we repeat our analysis on counties where the annual average
temperature is at least 19oC. This approach provides an upper bound on civilians’ choice of
clothing and officers’ force options throughout the year with respect to temperature. We con-
firmed that temperature has no effect on civilian deaths due to police shootings for warmer
regions in the U.S. We show that the number of civilian deaths by CEWs increases by about
6.7% during ‘very hot’ days only. Our preferred interpretation of this result is that the use of
CEWs on hot days triggers unknown physiological factor(s) that increase the risk of death.

Finally in an effort to control for variation in the behavior of civilians, appendix A.2
reports the effect of temperature when officers are facing erratic behavior. We explored
the fact that an officer might perceive civilians who exhibit symptoms of mental illness or
substance abuse as less predictable or cooperative. We find similar results for both groups
for the deaths by firearm and CEWs. Temperature did not impact the number of deaths by
firearm, which might indicate that officers exhibit self-control in their decision to use lethal
force when facing less predictable civilians or, alternatively, that officers do not perceive
such civilians as sufficiently threatening to warrant force. For CEWs, we confirmed that
high temperatures increase the odds of a lethal interaction regardless of the mental status
of the civilian.

2.6 Discussion

In contrast to the documented racial differences in police shootings (Ross (2015); Fryer
(2018a,b); Edwards et al. (2018); Knox et al. (2019)), our research focuses on the following
question: how does the level of threat faced by police officers or civilians impact the use
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of deadly force by the police? To answer this question, we first show that police officers
and civilians face a higher level of threat due to higher temperatures. We exploit this result
to test whether the number of police-involved civilian fatalities increases with temperature
and, by extension, test the relationship between the use of deadly force and the level of
threat faced by officers. We focus on two types of force: (1) lethal force (firearms) and (2)
non-lethal force, namely Tasers and forms of physical restraints.

We find suggestive evidence that during hot days the number of civilian deaths from
police discharging their firearms increase due to a higher threat level. Our interpretation
of this result is that, if anything, officers use their force proportionately to the threat level.
However, once accounting for the total number of arrests (“risk set”), we find no additional
effect of temperature, contradicting the existing literature on the link between temperature
and aggressive behavior. When considering that an officer might perceive as less predictable
or cooperative civilians who exhibit symptoms of mental illness or substance abuse, we found
a null impact of temperature on death by firearm for both groups. This indicates that officers
exercise restraint even in situations in which they (1) suffer high temperature and (2) might
reasonably see themselves facing a seemingly increased level of threat from unstable civilians.

These results bear consideration in light of recent high-profile trials for police officers
charged with killing civilians in the U.S. (McWhorter (2016)). The officers on trial cited
self-defense in response to a perceived threat. Given our identification strategy based on
temperature, our results, insofar as they undermine a direct link between the level of threat
and the officer’s decision to use deadly force, indicate that more research is needed to explain
the relationship between threat and police use-of-force. Such research may have important
consequences for future legal and policy decisions regarding officer liability with regard to
officer-involved civilian shootings.

Secondly, the significant number of unintended deaths from CEWs and physical restraints
in hot temperatures may incentivize police departments and policymakers to reevaluate
their guidelines around the use of less-than-lethal types of force. Less-than-lethal types of
force are not, by definition, intended to be deadly, although these deaths may be related
to unknown physiological/biological factors. Guidelines restricting the use of CEWs on
vulnerable members of the population—namely, pregnant women, children, and the elderly—
already recognize this. However, to the best of our knowledge, there is no study that links
CEWs and temperature. Unfortunately, because our study relies on observational data, it
is difficult to identify the potential mechanisms behind our results. We believe that more
research is needed in this matter from medical and biological science experts in particular, in
order to identify the physiological processes that explain the increased probability of dying
from CEWs under these conditions.18

18Potential channels that have been suggested to us from discussions with physicians are that tasers and
high temperatures might have an impact on sweat, humidity, hypertension, or electrolytes. However, we do
not have the expertise or medical knowledge to evaluate these theories.
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Figure 2.1: Yearly average of mean temperature and death rate in U.S. counties

Mean temperature Death rate

Notes: These maps present the mean temperature and death rate (number of
death per 100,000 residents) in U.S. counties from 2000 to 2016.

Conclusion

We provide evidence that the level of risk faced by police officers increases with temperature
and that police officers are thus more likely to shoot and kill civilians under hotter weather.
However, once we account for the opportunity increase we do not find any additional effect
of temperature, indicating that police officers are capable of exercising restraint in difficult
conditions. These results also hold when civilians exhibited symptoms of mental illness
or substance abuse. In addition, although Tasers are considered a less-than-lethal weapon
we demonstrate that the number of deaths by CEWs significantly increases on extremely
warm days. Our results suggest that deaths by CEWs on very hot days are driven by
compounding physiological factors, and not by an increase in Taser usage from officers. In
light of the magnitude of our results, the use of CEWs and physical restraint techniques in
extreme heat should be reconsidered.
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Figure 2.2: Effect of temperature on the level of threat
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Notes: These figures present the estimated effect of temperature on the number of
killed/assaulted officers and violent crimes. The specification controls for precipitation,
state-by-season fixed effect, and county-by-year fixed effect. For interpretation, we report
the incident rate ratio on the y-axis. Standard errors are clustered at the state level. We
report the 95% CI. We report the midpoints for bins with temperature between 2 and 32oC,
with 5 degree increments. Bins −5 and 32+ report temperatures lower and greater than the
2, and 32oC range.



CHAPTER 2. HOT TEMPERATURES, AGGRESSION, AND DEATH AT THE
HANDS OF THE POLICE: EVIDENCE FROM THE U.S. 42

Figure 2.3: Effect of temperature on the number of civilian deaths by type of force
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Notes: These figures present the estimated effect of temperature on the number of civilian
fatalities by type of deaths. Section 2.2 provides details about the different causes of death.
The specification controls for precipitation, state-by-season fixed effect, and county-by-year
fixed effect. For interpretation, we report the incident rate ratio on the y-axis. Standard
errors are clustered at the year-by-type of death. We report the 95% CI. We report the
midpoints for bins with temperature between 2 and 32oC, with 5 degree increments. Bins
−5 and 32+ report temperatures lower and greater than the 2, and 32oC range.
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Figure 2.4: Effect of temperature on the number of civilian deaths by type of force and symptom status
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Notes: These figures present the estimated effect of temperature on the number of civilian
fatalities by type of deaths and symptom status. Section 2.2 provides details about the
different causes of death. The specification controls for precipitation, state-by-season fixed
effect, and county-by-year fixed effect. For interpretation, we report the incident rate ratio
on the y-axis. Standard errors are clustered at the year-by-type of death. We report the
95% CI. We report the midpoints for bins with temperature between 2 and 32oC, with 5
degree increments. Bins −5 and 32+ report temperatures lower and greater than the 2, and
32oC range.
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Table 2.1: Summary statistics from 2000 to 2016

Other Physical
Firearm CEW less-than-lethal restraint Vehicle

Age
<16 1.8% 0.3% 1.9% 1.4% 9.5%

[16;30) 40.0% 26.7% 24.7% 25.4% 44.7%
[30;65) 53.5% 70.8% 70.3% 68.1% 37.4%
65 and more 4.8% 2.2% 3.2% 5.2% 8.4%

Male 94.7% 97.5% 94.3% 94.4% 74.2%
Race

Black 20.3% 29.6% 31.7% 28.2% 15.2%
Hispanic 12.8% 10.8% 14.6% 12.2% 10.1%
White 30.8% 24.9% 21.5% 24.4% 24.5%
Unknown 33.7% 33.3% 27.9% 33.8% 48.4%

Symptom of mental illness
or substance abuse

Without symptom 59.1% 31.5% 39.2% 29.1% 85.4%
With symptoms 18.8% 45.0% 32.3% 42.7% 5.6%

Total 15175 771 158 213 4355
Percent 73.4% 3.7% 0.8% 1.0% 21.1%

Notes: This Table presents the summary statistics of the civilians our sample by cause of
death from 2000 to 2016. Section 2.2 provides details about the different causes of death.
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Chapter 3

A Distribution of Human Attention
to Moments in Time

3.1 Introduction1

In the course of our individual lives, how much do we think about the past, present, and
future? How much conscious attention is focused on events tomorrow compared to the
day after, or a date three years ago? How we as individuals distribute our attention across
moments in time affects numerous aspects of society and is intrinsic to the human experience,
yet we know little about it quantitatively. For example, we do not know answers to simple
questions, such as whether individuals naturally think about the past more often than they
think about the future, or sophisticated questions, such as the rate at which attention to
the future decays. Extensive laboratory-based research has made progress understanding
certain aspects of how humans perceive and navigate the passage of time (Eagleman et al.,
2005; Bueti et al., 2008; Nobre and Coull, 2010), how neurological systems encode time and
orient focus in time(Lewis and Miall, 2003; Olivers and Meeter, 2008; Paton and Buonomano,
2018), or how individuals (McClure et al., 2004; Angeletos et al., 2001) and groups (Gollier,
2013; Millner and Heal, 2018) make choices that tradeoff outcomes that occur at different
moments in time. Furthermore, an expansive computational literature has documented
how the fraction of collective attention dedicated to specific events (Garćıa-Gavilanes et al.,
2016; Fanta et al., 2019), individuals (Roediger and DeSoto, 2014) or cultural products
(Lorenz-Spreen et al., 2019; Candia et al., 2019) (e.g. songs) decays over time as they are
forgotten. Yet, to our knowledge, no study has attempted to measure, either experimentally
or computationally, the natural probability distribution of all attention across all moments
in time, including the future—perhaps because asking a subject whether they pay attention
to something (e.g. “tomorrow”) focuses their attention on that thing, thereby biasing their
response. Thus, while it is understood that there is a limited “budget” of conscious attention
(Kahneman, 1973; Eagleman et al., 2005; Nobre and Coull, 2010; Lorenz-Spreen et al., 2019)

1The material in this chapter was co-authored with Léopold Biardeau and Solomon Hsiang.
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such that an individual cannot pay attention to all moments in time with equal focus, how
this budget is allocated remains an open question.

Here we propose a quantitative model for how a population of individuals distribute their
attention across moments in time and we provide the first measurement of this distribution
under natural conditions. As individuals direct the focus of their attention towards different
objects, ideas, tasks, and events—which we refer to collectively as targets— some will be
unrelated to any particular time, such as a poem or abstract life goal, while others are
associated with a specific moment in time, such as a birthday or project deadline. When
individuals think about these time-associated targets, some fraction of these thoughts will
lead them to execute an internet search that is related to the target, and among these internet
searches, a subset will utilize a query whose text contains information that identifies a time
period associated with the target (e.g. ‘2012’ or ‘Memorial Day’). By studying patterns in
search volume for such time-associated terms, we are able to recover the fraction of attention
a population directs towards targets that occur at fixed moments in time.

In this study, we use publicly available data compiled from Google Search (Google) to
study how populations direct their attention at different targets. This approach allows us
to study a large portion of all humankind, since roughly 1.8B individuals execute a Google
search each day (totaling 63,000 searches per second (ArdorSeo)), and it allows us to observe
natural patterns of attention passively without interfering in normal behavior. Google Search
data clearly do not capture most thoughts or ideas experienced by individuals, as only a
small fraction trigger an internet query. However, because a large number of individuals
utilize Google Search, it has been shown to be a highly sensitive measure of changes in real
world attention, despite the low probability that any individual executes a query at any given
moment. For example, it has been demonstrated that Google Search volume corresponds with
aggregated income levels (Preis et al., 2012; Noguchi et al., 2014), unemployment (Ettredge
et al., 2005) and individual wellbeing (Algan et al., 2019), travel planning and consumer
confidence (Choi and Varian, 2012), attention to movies, video games, and music (Goel
et al., 2010), housing sales and prices (Wu and Brynjolfsson, 2015), the attention of financial
investors (Choi and Varian, 2012; Drake et al., 2012) and stock price movements (Preis et al.,
2013), as well as thoughts and views that individuals might not voluntarily disclose, such as
racial animus (Stephens-Davidowitz, 2014), suicide (Gunn III and Lester, 2013) and sexual
preferences (Stephens-Davidowitz and Pabon, 2017). However, to our knowledge, ours is the
first study to use these data to measure how attention is allocated across all targets based
on their position in time.

Importantly, the application of Google Search data in this analysis does not equate search
queries with attention, nor does it require that queries represent a random sample of all
thoughts or forms of attention. Rather, we study query volumes because they are driven by
underlying patterns of attention through some unobservable process that might not involve
uniform sampling of attention. Our empirical analysis only requires that within each category
of target, such as thoughts about a movie or questions about gardening, changes in attention
over time are reflected in changes in queries associated with that specific category over time
(see methods). This assumption is consistent with prior analyses of Google Search data
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(Ettredge et al., 2005; Algan et al., 2019; Choi and Varian, 2012; Goel et al., 2010; Wu
and Brynjolfsson, 2015; Drake et al., 2012; Preis et al., 2013; Stephens-Davidowitz, 2014;
Gunn III and Lester, 2013; Stephens-Davidowitz and Pabon, 2017) and can be easily verified
for categories of targets not previously analyzed. For example, total queries for “sunscreen”
cycle annually, peaking in the Northern Hemisphere summer, queries for “Donald Trump”
increased abruptly in 2015 when global attention focused on the then presidential candidate,
and queries for “cat” have remained essentially constant for over a decade (ED Figure A.10).

Model: The Kernel of Attention to Time

Our model is described using two parallel timelines: targets are fixed at locations in absolute
time (θ) while a population passes along in experienced time, where they are observed at
each moment (t) only transiently. As the population proceeds through experienced time,
their attention to targets in absolute time evolves as their focus is constantly re-centered
on the moment in time that they inhabit (Figure 3.1a). Attention is then allocated across
all possible targets depending on their position in absolute time relative to the population’s
current position in experienced time, a distance we call relative time (θ − t) (Figure 3.1b).
The situation is analogous to how passengers on a moving train might allocate their attention
to stationary landmarks that they pass. Similar to how the gaze of passengers move across
landmarks depending on how near or far they are in physical distance from the train at a
given moment, the attention of subject populations moves across targets depending on their
distance in time.

Under natural conditions, attention in a subject population is likely to flicker rapidly
across numerous targets located at different times in a seemingly random pattern. For
example, it is theoretically possible that the process governing human attention is uniformly
random, in the sense that this probability is the same for all targets at each moment —
although we do not think this example is realistic. Our hypothesis is that the distribution of
this flickering attention is governed by a stable and measurable function defined over moments
in relative time, which we call the “kernel of attention to time” (KAT) and denote κ(.) (Figure
3.1c). Specifically, we hypothesize that instances of human attention flicker across time-
associated targets as if they are being drawn randomly, such that their position in relative
time follows the marginal probability density function κ(θ − t) (see formulation in methods
and Eq. 3.1). As a population moves forward through experienced time, the distribution of
its attention will shift simultaneously such that the KAT is always anchored to the moment
inhabited by the population — where relative time equals zero (i.e. θ = t). In the moving
train analogy, our model would suggest that while passenger attention across stationary
landmarks may appear random, they actually follow a fixed probability distribution that is
always anchored around the current position of the train.
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Testing and measuring the KAT using Google Search

If the above KAT hypothesis is correct, it generates predictions that can be tested using
Google Search data and which allow us to estimate the shape of the KAT.

As a population travels through experienced time and “passes” a target that is fixed at
a moment in absolute time (Figure 3.1d), attention allocated to the target will trace out the
KAT as the population approaches and then passes the moment of the target (Figure 3.1e).
If these changes in attention are reflected in a changing number of search queries, then a
time-series of search query volume will be a reversed mirror-image of the KAT, when plotted
in experienced time (Figure 3.1f). Note that experienced time is the timeline marking when
each search query is executed. In cases where a target occupies multiple moments in time
(e.g. an event that lasts for a year, Figure 3.1g) then aggregate search volume for that target
will be a summation of KAT functions that are all flipped and shifted, each corresponding to
a different moment that the target occupies (Figure 3.1h). Thus, if the KAT hypothesis is
correct, total search volume for any target (in experienced time) should be the convolution
of the KAT with a time-series of Dirac or indicator-functions that span the absolute time
occupied by the target (see Figure 3.1i, also ED Figure A.11 and methods), scaled by a
constant.

Using this result, we should be able to recover the shape of the KAT by deconvolving
the envelope of Google Search volume time-series (Wiener, 1950; Silvia, 1987; Delaigle et al.,
2008), so long as we know when in absolute time the targets occur (see methods). Knowing
the date of the target is important because we must compute the distance in relative time
between when the search query is executed (t) and when the target occurs (θ). We cannot
assign the target of most search queries to a date, but we can do this for the subset of queries
that contain date-specific strings. Specifically, we estimate the KAT for queries that contain
a year in numerical form (e.g. “2016”), a month (e.g. “August”), or a holiday (e.g. “Cinco
de Mayo”) during the period 2009-2018 (see methods). Prior work has studied basic patterns
in aggregate search queries for years (Preis et al., 2012; Noguchi et al., 2014), but none has
explained nor demonstrated how individual attention and query behavior might generate
these data.

Deconvolution of total search volume into KAT and time series components is essential
to observing the common underlying structure of attention across different target classes
and understanding the origin of these aggregate measures of attention. The envelope of
search volume for year, months, and holiday targets show predictable periodicity within
each of these classes (Figure 3.2, blue lines), but the connection between the raw envelopes
for these classes is neither visually nor quantitatively obvious. For example, the rise in 2014
total search volume for “2015” is nearly exponential, but the run-up in 2014 search volume
for “diwali” preceding to the holiday is not. The existence of a generalizable KAT would
connect these two time-series, which our model predicts diverge due to differing underlying
distributions of targets.

Note also that prior studies (Garćıa-Gavilanes et al., 2016; Fanta et al., 2019; Roediger
and DeSoto, 2014; Lorenz-Spreen et al., 2019; Candia et al., 2019) of “collective memory”
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for specific historical targets (e.g. a specific publication (Candia et al., 2019)) do not recover
a probability distribution of attention nor the KAT. Rather, they can be understood as
measuring the decay of attention to a single target, analogous to a specific circle or square
in Figure 3.1b. While this decay might be governed by the structure of the KAT, the KAT
cannot be mathematically inferred by this decay since the KAT describes the superposition of
attention to all types of targets (see Eq 3.4 in methods) and has a future-oriented component
that cannot be observed by studying collective memory.

3.2 Results

The temporal structure of Google Search volume for holidays, months, and years is well-
predicted by the KAT model for human attention (Figure 3.2). After adjusting for secular
trends in search volume, which generally reflect expansion of the internet, the KAT model
exhibits high predictive accuracy for holidays (R2 = 0.81), months (R2 = 0.84), and years
(R2 = 0.93) in our sample.

Figure 3.3a displays the estimated average distribution of attention to time (the KAT,
using year targets) for all individuals using Google Search, based on trillions of queries.
We estimate that roughly 25% (CI95% = [24.5%, 26.1%]) of attention is directed at the
present period — defined as the shortest contemporaneous interval of time (e.g. day) that
we are able to observe — dramatically dominating any individual moment in the future or
past. For example, we estimate that on average, attention is 5.7 (CI95% = [5.6, 5.8]), 18.7
(CI95% = [18.3, 19.1]), and 28.5 (CI95% = [27.5, 29.4]) times more likely to be directed at
the current day compared to 10 days, 50 days, and 100 days in the future, respectively;
and 6.3 (CI95% = [6.1, 6.4]), 16.0 (CI95% = [15.3, 16.8]) and 22.8 (CI95% = [21.6, 23.9])
times more likely than days of corresponding distance in the past (ED Figure A.12). The
structure of the KAT we estimate is both statistically precise and highly robust to a variety of
different modeling approaches, including statistical models that flexibly account for constant
differences between populations, such as culture, and gradual changes in populations over
time, such as demographic trends and changing access to technology (ED Figure A.13; see
methods).

As targets move further in relative time, the rate (%∆/day) at which attention declines
is not constant. This is true for both the future and the past. Attention to dates in the
immediate future or past 7 days decline roughly 25% and 30% per day, respectively (red
segments, Figure 3.3a). In the more distant future and past, rates of decline fall to 0.6%
per day for both the future and past 56 to 150 days (yellow segments). In between is a
transition region (1-8 weeks) where rates of change in attention evolve quickly (green and
blue segments). For reference, if the KAT were an exponential function, analogous to having
a constant discount factor for attention, this rate of decline would be constant.

Although the present period is the single moment receiving the most attention, the total
attention allocated to all future or past moments is larger than attention allocated to the
present. We compute the total attention allocated to the “future” by summing attention
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across all periods in the future, and compute similar sums for all periods in the past. In the
global average KAT (Figure 3.3a), we estimate that roughly 39% (CI95% = [38%, 39.5%]) of
attention is allocated to the past, while 36% (CI95% = [35.2%, 36.6%]) is allocated to the
future (black marker in Figure 3.3b, see also ED Figure A.12a). It is important to note that
these values reflect attention to specific targets associated with identifiable moments in time,
but they do not capture attention allocated to abstract notions of “the distant Future” or
“the distant Past” that are not associated with specific dates. These abstract concepts are
not associated with specific or measurable intervals of time and so are not represented in the
KAT model nor in our measurements based on search queries.

The structure of the KAT — a sharp peak in the present, slowing rates of decline with
growing temporal distance, and roughly equal mass in the past and future — is broadly
reproducible using search data on annual targets from any region of the world, regardless
of language, region, or culture. Analyzing data from 181 countries separately, we find that
country-specific KATs are tightly clustered around the global average (Figure 3.3b). Figure
3.3c illustrates separate KAT estimates for a diverse selection of twenty different countries.
While differences exist across populations, which we explore below, the overall similarity in
how populations everywhere allocate attention in relative time is notable and might suggest
a common biological origin.

We compare the average KAT we estimate using language-independent numerical annual
targets (e.g. “2012”) to those estimated using month targets (defined in the local language)
or national holidays (see ED Table A.6). We find that the structure of the KAT is similar
regardless of the class of target used (Figure 3.3d-f, see ED Figure A.14 for country-specific
estimates). However, holiday targets produce a KAT that is relatively more future-oriented,
perhaps a result of anticipation specific to holidays, and we have difficulty detecting attention
to targets more than 100 days before or after the present using either holiday or monthly
targets, due in part to different statistical properties of these data. Nonetheless, all three
approaches to estimating the KAT indicate a roughly symmetric structure with consistent
mathematical form (described below) that peaks sharply on the present moment.

In seeking an analytical mathematical form that describes the structure of the KAT,
we find that it is generally well approximated by two functions, one for the future and
one for the past, where each is from the family of rational functions (i.e. the ratio of
two polynomials, green lines in Figure 3.3d-f ; also see methods for analytical forms) which
intersect at θ − t = 0, i.e. the contemporaneous period. Exponential functions, which have
been shown to fit the first year of collective memory for specific targets generally (Candia
et al., 2019), cannot fit the structure of the KAT (red lines); while high-order polynomials
can approximate the data but have the undesirable feature of being non-monotonic (yellow
lines). Following research in behavioral economics and psychology (Laibson, 1997; Findley,
2015),we also attempt to fit “hyperbolic discounting”-like functions ( a

1+b(θ−t)) that are within

the family of rational functions but restrict the numerator to be constant (note that these
are not “hyperbolic functions”). This restriction on the rational function produces visually
comparable, albeit poorer, fit to the KAT (blue lines) but results in substantially biased
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predictions for total search volume of monthly and yearly targets (ED Figure A.15). Only
the unrestricted rational function approximation reliably generalizes across annual, monthly
and daily holiday targets.

Although there is consistency in the overall structure of the KAT around the world, we
also explore how the estimated KAT differs across countries. First, we estimate a KAT
only using search data originating from a single country. We then compute the fraction of
attention allocated to the past, present, and future based on that country-specific KAT. To
summarize these results, we map the ratio of attention to the future relative to the past (Fig
3.4a) and the fraction of attention allocated to the present (Fig 3.4b). We observe systematic
regional patterns2 (ED Figure A.16). For example, much of tropical Latin America, coastal
Africa, and Asia allocates greater attention to the past than the future, while most of North
America, Western Europe, North-Central Africa, and Southern South America allocate more
attention to the future than past, as do Australia, Malaysia, Taiwan, and Japan (regional
outliers). Geographic patterns of attention to the present are less clear. Future work should
seek to understand the origin or consequences of these patterns in attention.

Last, we examine whether the distribution of attention to moments in time has been
recently changing in a coherent way around the world. To do this, we estimate a KAT for
each year separately using each class of target (years, months and holidays) and plot these
trends in Figure 3.4c. Regardless of which class of target is used, we find that between
2009 and 2018, the fraction of attention to the present is rising roughly 0.012 per year
globally (±0.006, p < 0.01), at the expense of the fraction of attention to the past, which is
declining roughly by the same amount (0.012, p < 0.05). The fraction of attention allocated
to the future appears to have been somewhat stable over this decade. It is possible this
trends results from accelerating production of new content that crowds-out attention to
historical content, although the magnitude of trends in prior analyses of that phenomenon
(Candia et al., 2019; Lorenz-Spreen et al., 2019) do not match our finding. The causes for
and consequences of this trend in the distribution of attention is a potentially important
question for future investigation.

3.3 Discussion

Here we have proposed that the distribution of human attention to moments in time main-
tains a coherent probabilistic structure and we recover estimates for this structure, the KAT,
for a population of billions of Google Search users. We discover that the shape of the KAT is
highly consistent around the world, regardless of the measurement procedure, suggesting that
it describes a general pattern of thought fundamental to human minds everywhere. However,
we also document some modest differences around the world and over time in attentiveness
to the past, present, and future — suggesting that social, cultural, environmental, economic,

2We included all the countries for which the data were made available on Google’s API. However, one
should remain aware of the Internet restrictions put in place in several countries (e.g. China, Iran or Syria)
which may impact the accuracy of their estimated KAT.
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or other factors can influence how attention is distributed across moments. We believe that
disentangling the influence of these factors is a potentially important area for future research.

These findings may inform our understanding of questions in social and cognitive sci-
ences. For example, economics research has studied how individuals make tradeoffs over
time (e.g. foregoing present consumption to increase future consumption), captured in mod-
els using “discounting” and “time preference” parameters (Gollier, 2013; Millner and Heal,
2018). Attention to time does not capture economic tradeoffs directly, but the structure of
the future-oriented portion of the KAT could enable better understanding of the origin of
time-based preferences. In another example, political science research has examined how
constituents retrospectively evaluate leaders for their past performance (Nordhaus, 1975;
Findley, 2015), which may depend on the past-oriented portion of the KAT. In a third ex-
ample, psychology research has considered many ways that thoughts about the past or future
influence individuals, such as altering affect (Zimbardo and Boyd, 1999; Boyd and Zimbardo,
2006) or contributing to anxiety (Wohlford, 1966). The methods we present here, perhaps
combined with additional data, might provide insights into these relationships or inform the
development of clinical tools that support mental health.

Our use of Google Search data allows us to measure the KAT in situ for the first time,
however two remaining challenges might be addressed in future research using other data
sources. First, our empirical approach cannot capture attention to abstract notions of “the
distant Future” or “the distant Past” if attention directed towards those topics is not asso-
ciated with specific moments in time that can be queried. For example, the diffuse concept
of future generations living centuries from the present will not be well-captured by our ap-
proach. Nevertheless, the structure of the KAT we recover might be consistent with how
humans think about these distant periods, since finite attention allocated to multi-century
periods would likely indicate that only a very small fraction of attention can be spread across
individual moments spanning those long intervals.

Second, the sample of aggregated and anonymized Google Search queries we use is not
fully representative of the global population. For example, access to the internet, and by
extension to Google, varies from country to country (Internet World StatsInternet World
Stats, 2019) with a higher penetration rate for higher income countries. Google is also used
less frequently by older populations (Weber and Castillo, 2010; Weber and Jaimes, 2011),
and it is not widely used in countries where access is restricted by governments. Thus, it is
possible that some of the differences we observe in aggregated data across locations or over
time is due to differences in the composition and behavior of Google users. Nonetheless, the
overall consistency of the KAT we recover around the world might suggest that unobserved
populations could behave relatively similarly to those we do observe.

It is also possible that Google searches may be executed by individuals based on some
expectation about the availability of online content (Jara-Figueroa et al., 2019), with in-
dividuals searching less for future targets if they believe associated content does not yet
exist. While this behavior may influence our results, it cannot account for our main find-
ings. The increase in attention to the present, relative to attention to the future, is too rapid
to be explained by changing content: a similarly abrupt increase in online content between
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sequential moments would require that total searchable online content grows continuously
at a rate of 25% per week, orders of magnitude faster than actual content growth. Addi-
tionally, a content-driven bias would suggest past-oriented queries should strongly dominate
future-oriented queries, which we do not observe.

We believe that understanding how human attention is distributed across time may in-
form the design of policies, technologies, interventions, or institutions. For example, the
timing of public health reminders (e.g. “use condoms to avoid STD transmission”) or natu-
ral hazard warnings (e.g. “store clean water”) could be designed to maximize their benefits
by accounting for populations’ overall attentiveness to moments in time, especially when
inattention to such messages is costly. In other examples, policies designed to encourage
saving money depend on attentiveness to the future while the design of census question-
naires that require accurate recall might depend on attentiveness to the past.

We close noting that in discussions surrounding long-term planning, such as managing
the global environment, it is sometimes argued that challenges arise because populations do
not think enough about the future (King, 2019). Our results suggest that while some factors
may cause populations to think slightly more or less about the future, the overall general
pattern of thought in humans everywhere is to allocate essentially no attention to moments
in time further than two-hundred days from the present. Thus, these results might suggest
that efforts to directly focus large populations on the distant future are unlikely to succeed.
As an alternative, societies may need to design institutions that systematically evaluate and
address long-term challenges, rather than relying on the attentiveness of individual minds.

3.4 Methods

A Probabilistic Model for Attention to Time

Timelines We assume that targets of attention are associated with fixed positions in time
and human populations move through time. Although both the targets and human popula-
tions exist in the same single timeline in the real world, we find it helpful to conceptualize
two parallel timelines that are indexed separately, but which have a direct correspondence
between one another. Targets of attention exist in a static timeline that we refer to as “ab-
solute time” and which is indexed by θ. Human populations travel along a timeline that we
call “experienced time” and which is indexed by t. Each position in absolute time θ0 has one
and only one corresponding position in experienced time t0. Because the two timelines are
parallel, we define the distance between a moment t and θ0 to be the same as the distance
between t and t0 (or θ and θ0).

Embedding targets of attention in absolute time We discretize time into “moments”
that are finite and equal in length. In principle, time can be sub-divided into arbitrarily
small moments; although, in our data analysis, we consider discrete dates since that is the
resolution of data available to us.
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Let φx be a potential target of attention, and let Φ = {φ1, φ2, · · · } be the countably
infinite set of all possible such targets. Let the subset Φtime ⊆ Φ be those targets associated
with specific moments in absolute time, such that for each target in φx ∈ Φtime there exists
a fixed interval of time Θx associated with the target φx. Specifically, φx is associated with
Θx if φx is associated with some (or all) moments contained in the interval Θx. Let the
interval Θx be composed of a set of M consecutive moments in time Θx = {θx1 ...θxM} and
we consider φx associated with the interval Θx if it is associated with some or all moments
θxm in the interval. Let the notation φx 7→ θxm mean that the target φx are associated with
moment θxm contained in the interval of time Θx (define φx 7→ ∅ if φx /∈ Φtime).

For an example, a birthday party on July 15, 2017 during the time between 10:00 and
12:00 could be a target of attention (φx). In this case, we might consider the two hours of
the party the moment in time directly associated with the target (θxm). This party could
then also be associated with the date “July 15, 2017”, which describes an interval of time
containing that moment (Θx). In our analysis of internet query data, we sometimes study
identifiable periods described by just the month, in which case Θx=“July”, or by just a year,
in which case Θx=“2017”. This framework and notation is important because in search
data, we often cannot identify the precise moment to which individuals are attentive when
they execute a query — e.g. they do not search for “10:00-12:00 on July 15, 2017” — but
we can identify information about a larger interval of time containing that moment (e.g.
“July”). Nonetheless, our aim is to understand attention to narrower moments using the
search query data identifying only longer time intervals, which forces us to consider how
attention is allocated to moments which are themselves nested within intervals. Below, we
omit the x (and xm) subscripts of φx, Θx and θxm for notational parsimony, although there
continues to be mappings from a target φ to moments θ contained within time intervals Θ.

The Kernel of Attention to Time At each instant in time t experienced by humans, a
randomly selected individual j in a subject population focuses their attention Aj on a target.
Let the notation Aj(t) = φ denote the event that at moment t, individual j directs their
attention at target φ. Let Pr[Aj(t) = φ] denote the probability of this event occurring. We
propose that the probability distribution of attention across targets is such that the total
attention allocated to all targets associated with the moment θ depends on the temporal
distance between that moment and the time t inhabited by the subject population. We call
the temporal distance θ− t “relative time” (see Figure 3.1a-c). A positive value for relative
time means an event is in the future of the subject population, a negative value for relative
time means the event is in the population’s past, and a zero value means that the event is
in the population’s present.

Formally, we hypothesize that attention is allocated across targets such that

C ·

 ∑
φ∈Φtime

Pr[Aj(t) = φ | φ 7→ θ]

 = κ(θ − t) (3.1)
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holds (approximately) at each t. Here, κ(.) is a probability density function that integrates
to one, which we call the kernel of attention to time (KAT). Eq. 3.1 states that at time t, the
sum of probabilities that individual j is attentive to any target associated with the specific
moment θ is described by the kernel function κ(.), where the argument is the difference
between the time of the targets (θ) and the time at which j might be attentive to the targets
(t), i.e. relative time (θ − t). C is a scaling factor:

C =
1∑∞

t=−∞
∑

φ∈Φtime Pr[Aj(t) = φ | φ 7→ θ]
(3.2)

that ensures κ(.) integrates to one. The denominator of C is the total expected fraction of
attention that is allocated to all targets associated with θ across all periods, a value that is
much smaller than one since most potential targets will not be associated with the specific
moment θ, possibly because they are not associated with any moment at all (e.g. a poem).
For notational parsimony, here we assume this scaling is constant, but it could be allowed
to change as a function of θ if, for example, there are more targets associated with holidays
than for other dates.

Note that the expression inside the brackets on the left-hand-side of Eq. 3.1 is the a
sum of probabilities that attention is directed at targets associated with the time θ. The
expression sums over all possible time-associated targets (it could alternatively be written
as a sum over all possible targets Φ). The elements of this sum may change as the time
of the subject population (t) moves forward and the expression does not require that the
probability of attention to any single target evolves following the shape of κ(.). Instead,
Eq. 3.1 allows for many possibilities in how the likelihood of attention to individual targets
associated with θ evolve, however it constrains their sum to be proportional to the value of
the KAT at the corresponding relative time θ − t.

Predictions for Internet Search Volume

Eq. 3.1 generates predictions about the time-series structure of time-associated internet
search volume. In each moment, if an individual’s attention is allocated to a target, then
there is some probability that it will lead to them executing an internet search query related
to the target. Of those searches, a fraction will be associated with a specific moment in
time. From this fraction, an even smaller fraction will contain a string that identifies a time
interval containing the associated moment in time. Thus, we can compute the probability
that an individual j allocates attention at time t toward some time-associated target φ and
we observe an internet search query that identifies the time interval Θ associated with that
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target:

Pr[observe j search for φ at time t and identify Θ] =∑
θ∈Θ

(
Pr[Aj(t) = φ|φ 7→ θ, φ ∈ Φtime] · Pr[φ 7→ θ | φ ∈ Φtime]︸ ︷︷ ︸

γ(φ,θ)

·Pr[φ ∈ Φtime]

·Pr[j searches for φ at time t | Aj(t) = φ, ...] · Pr[j′s search query identifies Θ | j searches for φ, ...])︸ ︷︷ ︸
ω(φ)

)
.

(3.3)

Eq. 3.3 decomposes this probability into five (conditional) probabilities for each moment in
time θ, which are multiplied and summed over all moments in the identifiable interval of time
Θ. The first factor is the probability that j allocates attention to the specific target φ at time
t, if the target is associated with the specified moment θ. The second factor is the probability
that the target of attention is associated with the moment θ, which we denote γ(φ, θ) for
clarity below. The third factor is the probability that the target φ is associated with any
moments in time – for a known target this value is either one if the target φ is in the set Φtime

and zero otherwise. The fourth factor is the probability that j executes an internet search
for the target φ at time t, given that they were attentive to it at that moment. The fifth
factor is the probability that the executed search query contains information that identifies
the time interval Θ that contains the moment θ associated with the target. The product
of the last two factors is assumed to be a constant for each potential target (or category
of target) during the period of observation, written as ω(φ) for notational simplicity. In
principle, gradual changes in internet access or slowly changing patterns of behavior might
alter ω(φ) because it changes the likelihood that attention to a topic generates an internet
query, but we find in practice that such trends do not affect our results (see ED Figure A.13).
Note that different targets φ could have different values for ω(φ), indicating that different
types of targets could have different likelihoods of generating a search query (e.g. attention
to gardening and attention to a medical appointment may have a different likelihoods of
producing a time-associated search query).

We compute the expected total volume of searches executed at time t that explicitly
identify time period Θ, denoted SΘ(t), by summing across N individuals in population P
and summing over all possible targets of attention in Φ:

SΘ(t) =
∑
j∈P

∑
φ∈Φ

Pr[observe j search for φ at time t and identify Θ]

=
N

C︸︷︷︸
α

∑
θ∈Θ

 ∑
φ∈Φtime

γ(φ, θ)ω(φ)


︸ ︷︷ ︸

δ̄(θ)

κ(θ − t) (3.4)
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where the second equality follows by substitution of Equations 3.1, 3.2 and 3.3 and rearrang-
ing terms. Eq. 3.4 illustrates one way that the function κ(.) behaves like a kernel function,
hence KAT, since it weights relative search volume for all possible targets based on the dis-
tance in relative time. The scaling factor (N

C
) captures the size of the population (N) and

the likelihood that individuals in that population allocate attention to any time-associated
targets ( 1

C
). For parsimony, we rewrite this scaling factor as α. Eq. 3.4 can be further

simplified by observing that the summation across all targets (φ) of the joint probability
distribution γ(φ, θ) over targets and moments in time is the marginal distribution over mo-
ments in time when targets occur. Multiplication of γ(φ, θ) by ω(φ) in the summation of Eq.
3.4 results in a re-weighting of this marginal distribution based on ω(φ) (i.e. the likelihood
that attention to each type of target results in an internet search query identifying a period
of time). This re-weighted marginal is written δ̄(θ) and describes the fraction of all possible
time-associated targets that are associated with each specific moment in absolute time and
generate a search query identifying that moment in time.

We note that the KAT and the notion of “collective memory” studied elsewhere (Garćıa-
Gavilanes et al., 2016; Fanta et al., 2019; Roediger and DeSoto, 2014; Lorenz-Spreen et al.,
2019; Candia et al., 2019), are fundamentally different concepts. This can be seen in Eq. 3.4,
which shows that the KAT describes the distribution of attention across all θ ∈ (−∞,∞)
at each time t, where mass in the distribution results from summing attention across all
potential targets φ ∈ Φ. Studies of collective memory document how references to a single
topic φx (e.g. a research article or song) decays for moments in time following the time of the
target, i.e. t ≥ θx (Garćıa-Gavilanes et al., 2016; Fanta et al., 2019; Roediger and DeSoto,
2014; Lorenz-Spreen et al., 2019; Candia et al., 2019). Thus, κ(θ− t) cannot be inferred nor
reconstructed from studies of collective memory.

The final expression for predicted search volume at time t identifying time period Θ thus
has the simplified form

SΘ(t) = α
∑
θ∈Θ

δ̄(θ)κ(θ − t). (3.5)

Eq. 3.5 describes how total query volume that identifies a period of time (Θ) across all
targets should evolve as a population moves through time (t), approaching and then passing
the identified moments (θ) that occupy Θ. This query volume is the product of a scaling
factor (α) and a time series (

∑
θ∈Θ δ̄(θ)κ(θ − t)). In estimation, this scaling factor is not

directly observed because the data are normalized by the data provider, but regardless, this
normalization is immaterial because α is a nuisance parameter that can be accounted for
by allowing for flexible multiplicative trends in the data. The structure of the time series
component is the subject of our focus. Eq. 3.5 says that the time series of search volume
is a super-position of reflected (with respect to t), shifted (by θ), and rescaled (by α) KAT
functions, one for each moment θ in the identified period of time Θ. One KAT function is
reflected and shifted so that it is centered at each moment θ (Figure 3.1f). These reflected and
shifted KAT functions are each multiplied by δ̄(θ), the weighted fraction of time-associated
targets corresponding to each moment θ, and summed at each value of t, producing a single
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time-series observable through Google (Figure 3.1g-i).
The time series of search volume SΘ(t) therefore appears as a super-position of impulse-

response functions. The impulses are located at positions in time θ over the interval Θ, with
a magnitude δ̄(θ). Each impulse-response has the shape of the reflected KAT. Thus, Eq. 3.5
is mathematically equivalent to a re-scaled (discrete form) convolution of the KAT with a
function fΘ(t):

SΘ(t) = α
[
fΘ(t) ∗ κ(t)

]
(3.6)

where fΘ(t) traces out the values of δ̄(θ = t) for all moments during the interval Θ and is zero
everywhere else (see ED Figure A.11). Thus fΘ(t) describes the number of time-associated
targets associated with the period Θ at each time t. If δ̄ is a constant for all moments in Θ,
then fΘ(t) is a square wave with nonzero values during t = θ ∈ Θ. This formulation allows us
to recover the form of the KAT impulse-response function using standard signal-processing
techniques for deconvolution (Wiener, 1950; Silvia, 1987; Delaigle et al., 2008) applied to
internet search data (Eq. 3.7 below).

Google Search Data

We obtain data on queries made to the Google Search engine from the Google Trends API.
These data describe changes over time in the number of queries originating from a geographic
region during a discrete time period which contain a specific string. For example, we examine
queries that contain the string “2016”, which aggregates search volume for queries such as
“taxes 2016”, “halloween 2016”, and “2016 presidential election”. Time-series provided by
Google have been rescaled by an unknown factor, but this does not affect our analysis
because search volume is already predicted to be rescaled by an unknown constant (Eq.
3.5) and these are all removed in the deconvolution. We focus on country-level data, which
are available for most countries in the world and use a sample that begins January 1, 2008
to ensure data quality, since earlier data contains numerous irregularities. The temporal
resolution of the available search volume data available depends on the length of the sample,
with daily searches only available when the sample period does not exceed 270 days. This
length of time is sufficient of analysis of monthly and daily targets (e.g. Θ = “July”), but
is insufficient for the study of annual targets. Longer time series are provided using weekly
search volumes, which we use in our analysis of annual targets, adjusting for the alternative
time-step.

Targets corresponding to years We obtain search volume for queries containing the
numerical representation of each year (e.g. “2016”) between 2009 and 2018, inclusive(e.g.
Fig 3.2a). Because these numerical values are language-independent, we obtain data from 181
countries representing 96.7% of the global population. This results in a longitudinal sample
where an observation corresponds to a unique {country, week-of-query, target-year} triplet.
Individual country-weeks appear more than once, because we examine searches for different
target years originating on the same date. The final sample in our main analysis contains



CHAPTER 3. A DISTRIBUTION OF HUMAN ATTENTION 59

246,131 observations. In our main analysis (Fig 3.3), we use data on queries occurring within
the year that is the target period as well as 270 days before and after that year. We note
that search volume for years exhibit irregular outliers where search volume can surge up to
2,700% for just a week, such as during the Olympics Games or the Football World Cup. To
limit the influence of these outliers, pre-processing of raw query data rescales time-series to
match medians in each country-by-target-year sample.

Targets corresponding to months We obtain search for queries containing the name of
each month (e.g. “january”) for each month. We construct samples that include 120 days
before and after the endpoints of each target month (e.g. 270 days in total for a 30 day
month). We focus this analysis on a more limited sample of 20 countries from five continents
that are broadly representative of the global population—selected for breadth of represen-
tation across languages, cultures and religions—and where rates of Google Search usage are
high (Argentina, Australia, Brazil, Chile, Colombia, France, Germany, Hong-Kong, India,
Indonesia, Mexico, Netherlands, New Zealand, Norway, Peru, Singapore, Spain, Sweden, the
United Kingdom, and the United States) and examine queries where the month is described
using the primary language for each country (English, French, German, Spanish, Portuguese,
Bahasa Indonesia, Swedish, Norwegian, or Dutch). The resulting sample contains 712,620
observations, each corresponding to a unique {country, day-of-query, target-month} triplet.

Targets corresponding to specific days We identify searches associated with specific
dates by collecting search volume for searches containing the name of single-day holidays. We
use the same sample of 20 countries used for month-related targets and select three holidays
for each each country (e.g. “Cinco de Mayo” for Mexico, “Waitangi Day” for New-Zealand,
and “National Day” for Singapore, see ED Table A.6 for a complete list). For each holiday,
we examine search queries during a window of 270 days, centered on the holiday, resulting
in a sample of 178,762 observations, each corresponding to a unique {country, day-of-query,
target-holiday} triplet.

Empirical estimation of the KAT

For each class of target (year, month, or holiday), we estimate the KAT using Google search
queries in a two step procedure. First, we non-parametrically deconvolve query volume to
recover the KAT. This flexible approach recovers the KAT without requiring that we impose
any assumptions about its form, however, because we have limited data, there is noise in
these estimates which do not result in a parsimonious analytical expression. To address these
issues, in the second step we fit smoothing functions to the estimates of the KAT obtained
in the first step.

Deconvolution We obtain an estimate for the KAT by deconvolving Eq 3.6, a standard
operation that is the inverse of the convolution (Wiener, 1950; Almon, 1965; Silvia, 1987;
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Delaigle et al., 2008). The approach isolates an impulse-response function from time-series
data when the timing and magnitude of impulses are known. We separately pool all search
data for targets associated with years, months or days to recover an average estimate of the
KAT corresponding to each class of target. For targets associated with years, we deconvolve
these time series by estimating the distributed-lag regression with a weekly time-step:

Syit =
35∑

L=−35

βLfyi,t−L + εyit (3.7)

where observations are indexed by the search target year y (e.g. y = 2016 for queries
containing the string “2016”), country i where queries originate from, and week that queries
are executed t. In the notation of the theoretical framework above, the interval of interest
Θ is equal to the target year y. The variable fyit is equal to one if the date of the search
t is contained in the year y, and zero otherwise. This dummy variable corresponds to the
function f(t) in Eq. 3.6 and appears as a square wave if it is plotted for a single i and y
over time (as in ED Figure A.11). Coefficients βL are estimated for 35 weekly leads and 35
weekly lags of the variable fyit, in addition to its contemporaneous values where L = 0, and
they flexibly recover the impulse-response function without imposing any assumptions on
its form. Because there are a small number of extreme outlier observations, such as when
the Olympics or World Cup is occurring (described above), we estimate coefficients in Eq.
3.7 via the robust regression procedure in ref. [(Li, 1985)] that limits the influence of these
outlier observations. This procedure (Berk, 1990) first estimates coefficients in Eq. 3.7 using
ordinary least-squares, then iteratively re-fits the model by down-weighting observations with
large estimated values for ε̂yit. The resulting estimated coefficient β̂L = κ(−L) corresponds

to our estimate for the the KAT at relative time −L. The β̂L are displayed as black dots in
Figure 3.3c-e. Unexplained variations in search volume correspond to the residuals εyit. We
also estimate a separate version of Eq 3.7 for monthly targets, where year index y is replaced
by month index m and fmit is equal to one if t is in month m and zero otherwise, as well as a
version for holiday targets, where y is replaced by holiday h and fhit is one if t = h and zero
otherwise. In models with month and holiday targets, t indexes daily observations. Results
from these three estimates explain a large amount of variation in search queries for these three
classes of target (years: R2 = 0.93; months: R2 = 0.83; holidays: R2 = 0.81) when convolved
with their respective versions of f(t), displayed in Figure A.15. To examine the robustness of
these results, we also estimate Eq 3.7 including year and/or country-specific constants (fixed
effects) that flexibly adjust for differences in search volume between countries, for example
accounting for differences in internet access or culture, and for nonlinear trends in search
volume over time, for example due to changing usages patterns within countries. We find
that adjusting for these factors in Eq. 3.7 has essentially no effect on the estimated structure
of the KAT (see ED Figure A.13).

Fitting an analytical form We seek a smooth analytical function that approximates the
KAT estimated in Eq. 3.7 by fitting different families of functions, evaluating both their
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goodness-of-fit to the coefficients β̂L and evaluating their ability to accurately predict search
volume when convolved with f(t). For each family of functions, we independently fit pa-
rameters to the future-oriented and past-oriented portions of the KAT, keeping the present
in both samples and forcing the two functions to intersect at the present. We estimate ex-
ponential functions of the form ea(θ−t)+b, motivated by intuition from economic discounting
(Ramsey, 1928; Gollier, 2013) and market interest rates (Fisher, 1930; Von Mises, 2016)
where inter-temporal tradeoffs between sequential future decisions should be self-consistent.
We also estimate 8th order polynomial functions of the form

∑8
p=0(ap(θ − t)p) , motivated

by their potential parsimony and simplicity. We also estimate functions that resemble mod-
els of “hyperbolic discounting” behavior widely documented in psychology and behavioral
economics (McClure et al., 2004; Angeletos et al., 2001; Laibson, 1997; Rubinstein, 2003),
which take the form a

1+b(θ−t) . Note that while exponential and hyperbolic-discounting-like

forms are motivated by prior research studying tradeoffs over time (i.e. “discounting”), there
is not a clear theoretical linkage between the form of the KAT and the tradeoffs we expect
populations to make over time. Additionally, note that neither of these existing research
literature provide any guidance on the form of the past-oriented portion of the KAT. Lastly,

we estimate rational functions of the form a+b(θ−t)+c(θ−t)2
1+d(θ−t)+e(θ−t)2 where the numerator is allowed

to be up to the second order and the denominator is restricted to be second order. The
family of rational functions, broadly defined, technically includes the polynomial forms and
hyperbolic-discounting-like forms that we examine where each has specific restrictions on
the order of the numerator and/or denominator. Comparisons between the fitted functions
within each family are shown as colored lines in Figure 3.3c, and results from their con-
volution with f(t) are shown in ED Figure A.15. Fitted values from the rational family
of functions minimize RMSE and also predict search volume with lowest errors. Using our
sample of annual targets and 181 countries, the average KAT is estimated to have the form:

κ̂(θ − t) =

{
−0.0037(θ−t)2−0.75(θ−t)+25.35
−0.207(θ−t)2−74.41(θ−t)+100

if (θ − t) < 0 (i.e. the past)
−0.001(θ−t)2+0.13(θ−t)+25.30
−0.2(θ−t)2+51.1(θ−t)+100

if (θ − t) > 0 (i.e. the future)
(3.8)

which is displayed in Figure 3.3a.

Uncertainty We compute uncertainty in these results by block-bootstrap resampling of
the original data (blocks corresponding with country-and-target-specific time series) and
repeating estimation of Eq. 3.7 and re-fitting the rational function analytical form for the
KAT each time. Because the range of estimates is extremely narrow, in Figure 3.3a we display
the full range of values (maximum to minimum) recovered at each moment in relative time
(95% confidence intervals, which are standard, are too narrow to see). We also compute the
fraction of attention allocated to the past, present, and future in each resampled estimate,
as well as the relative fraction of attention, both displayed in Figure A.12.

Computing total attention to the future and past To compute attention to the past
or future, we sum total attention to moments in time before or after the present. To do
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this, we sum β̂L = κ(−L) from L = −35 weeks (245 days) to L = −1 for the past and
from L = 1 to +35 for the future. We compare these values to the probability mass at
L = 0, which we interpret as attention to the present. We display these three values in
ED Figure A.16a (Figure 3.3a breaks down attention to the future and past into “distant”
and “near” components by introducing an additional cutoff at 100 days in both directions).
We use block-bootstrap resampling to compute uncertainty in these measures of attention,
estimating Eq. 3.7, fitting an analytical function, and integrating the resulting function
following each resampling of the data. ED Figure A.12a shows the distribution of total
attention allocated to past, present, and future moments using the years targets, and ED
Figure A.12b details the relative fraction of attention from these re-sampled values.

Country specific estimates To compare the allocation of attention over time across
countries, we estimate the KAT only using data from one country at a time. We estimate
Eq 3.7 for each country separately and use the country-specific values for β̂L to fit country-
specific rational functions. Figures 3.3b and ED Figure A.14 show country specific KAT
estimates for our sample of twenty representative countries, the later displaying estimates
using annual, monthly, and daily targets. We integrate these curves using the approach
above to compute total attention to the past, present, and future for each country, using
annual targets. The distribution of values for all 181 countries in our sample are displayed
in Figure 3.3b in three dimensions (also in ED Figure A.16, broken down by region) and in
the maps of Figure 3.4a-b.

Estimating trends in the KAT To compute trends in attention to the past present and
future, we pool query data for targets across our sample of twenty countries shown in Figure
3.3b. We then estimate the KAT for each class of target only using data from a single year.
We integrate the resulting estimated fraction of attention to past/present/future. These
values are plotted in Figure 3.4c using models for each class of target for each of the ten
years in our sample.
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Figure 3.1: A probabilistic model of attention to time and predictions for Google Search queries.
Search volume for time-specific queries captures the distribution of attention to time for a population of users
(also see methods). (a) Users traveling through “experienced time” t conduct search queries for specific
targets (e.g. holidays) that occur at moments in “absolute time” θ = θ1, θ2, etc. Queries where θ < t
indicate attention to past events, θ = t indicates attention to the present, and θ > t indicates attention
to the future. (b) A large number of time-related queries can be organized by their position in “relative
time” (θ − t), i.e. the distance in time between when the target occurs (θ) and the time when the query is
executed (t). (c) We hypothesize that the probability distribution of time-related queries in relative time is
approximately stable for a fixed population. We call this probability distribution the kernel of attention to
time (KAT). (d) Data on search queries is organized around the query targets (e.g. searches for “Diwali”),
not around the individuals who execute the query. As individuals move through time, passing a target that is
fixed in absolute time, attention to the target will evolve as the target is initially in the future, then present,
then past. (e) The quantity of attention to a target at a moment is scaled by the KAT. As a population
approaches and passes a target, attention to the target traces out a KAT distribution that moves through
time, centered on the moment in time inhabited by the population. (f) Search volume data is recorded based
on the time when the search is executed. Thus if search volume scales with the KAT, then a time series
of search volume for a single target at a fixed moment will have the same shape as the KAT, but reversed
(reflected) in time (e.g. before the event occurs, search volume for the target will reflect attention to the
future). (g) When the targets of a common search query spans an interval of time Θ, it may not possible to
identify which specific moment is the target of a given search query (e.g. queries containing “september” or
“2014” could come from targets on any date during those periods). (h) Each target identified by a query for
Θ will have a distribution of search volume associated with it. (i) The resulting search volume associated
with interval Θ is the sum of search volume distributions for all targets in interval Θ. This implies that the
distribution of search volume for interval Θ is the convolution of the KAT, shown in (c), with the time series
of targets in interval Θ, shown in (g).
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Figure 3.3: The Kernel of Attention to Time (KAT). (a) The estimated average probability distribution
for the allocation of attention to different moments in relative time (i.e. the KAT) for countries representing
97% of the global population. Estimate is constructed by deconvolving search queries for year targets
that are language independent. Colored segments indicate approximate day-over-day rates of decay (k) for
each segment as a function of temporal distance from the present. Gray area denotes the range of statistical
uncertainty, bounded by the maximum and minimum values estimated using 10,000 block-resampled versions
of the data. (b) Ternary plot showing the total fraction of attention allocated to the past, present, and future.
The black dot corresponds to the global estimate in (a), the heatmap shows the distribution of estimates from
181 different countries. (c) KATs independently estimated in each of 20 selected countries using the same
year targets. (d)-(f) Estimated KAT computed by deconvolving searches from targets of different lengths:
(d) annual targets (eg. “2016”), (e) monthly targets (eg. “april”), and (f) daily targets (eg. “diwali”, listed
in Extended Data Table A.6). (d)-(f) pool data from 20 countries shown in (c) and show coefficient estimates
recovered via deconvolution (black dots). Four functional forms are fitted to these coefficients: exponential
(red), a “restricted rational” function ( a

1+b(θ−t) ) similar to hyperbolic-discounting models (Laibson, 1997;

Findley, 2015)(blue), eighth-order polynomial (yellow), and general rational functions that are the ratio of
two polynomials (green). See Extended Data Figure A.15 for the performance of each functional form in
reconstructing search query volume, and Extended Data Figure A.14 for individual KAT estimates for each
country and class of target.
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Figure 3.4: Relative attention to past, present, and future around the world and over time.
(a) The estimated ratio of average attention allocated to the future relative to the past in each country. A
ratio greater than one indicates that more attention is allocated to the future, a ratio of one indicates equal
attention, a ratio below one indicates more attention is allocated to the past. (b) The fraction of attention
allocated to the present in each country. All three shares (past, present, future) are shown in ED Figure A.16
for each country and region. (c) The evolution of shares of attention allocated towards the past, present, and
future over the decade 2009-2018. Trends are seperately estimated for each class of search target (grey=day,
orange=month, purple=year). Sample is the set of twenty countries used in Figure 3.3(d)-(f).



67

Bibliography

Yann Algan, Fabrice Murtin, Elizabeth Beasley, Kazuhito Higa, and Claudia Senik. Well-
being through the lens of the internet. PloS one, 14(1), 2019.

Shirley Almon. The distributed lag between capital appropriations and expenditures. Econo-
metrica: Journal of the Econometric Society, pages 178–196, 1965.

George-Marios Angeletos, David Laibson, Andrea Repetto, Jeremy Tobacman, and Stephen
Weinberg. The hyperbolic consumption model: Calibration, simulation, and empirical
evaluation. Journal of Economic perspectives, 15(3):47–68, 2001.
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Appendix A

A.1 Adaptation Through Market Integration

Figure A.1: Time coverage

Countries are grouped by market coupling: Central Western Europe (DE, FR, BE), Southern Western Europe
(PR,ES), 4M (CZ, HU, RO, SK), and Northern Europe (SE,NO,DK,FI,EE,LV,LT)
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Figure A.2: German Demand Curve’ normalization - January 1st 2006 at 5:00 pm
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Figure A.3: Market coupling impact on interconnection usage
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Hourly value aggregated at the weekly level. Panel A plots the percentage of hours with counter-
intuitive flows, ie when the importer (exporter) has a lower (higher) price. Panel B represents
the weekly average usage of the interconnection capacity whenever the price spread is different
than zero. The vertical line is at the market coupling date.

Figure A.4: Monthly wind generation - Central Europe
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country specific National Transmission System operators websites.
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Figure A.5: Multiple dose-response
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Figure A.6: Trends parameter along the dose-response
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A.2 Hot Temperature, Aggression, and Death at the

hands of the Police - Appendix

Data Appendix

European Centre for Medium-Range Weather Forecasts Data Climate variables
are based on reanalysis data from the European Centre for Medium-Range Weather Forecasts
(ERA-Interim), which is based on a climate model combined with observational data. We
used their 0.25 x 0.25 gridded data on daily temperature and precipitation to generate
aggregated daily temperature at the county level using population weights.1 Population
weights ensure to report an average of the temperature for places that matter for our study.

FBI Uniform Crime Reporting Data The crime data are obtained from the FBI Uni-
form Crime Reporting (UCR) data for offenses known and clearances by arrest from 1960
to 2016. The data are available monthly on a police department-level basis for index crimes
(violent and property crimes) and assault on officers. For each county, we compute the
monthly number of violent crimes (aggravated assault, murder, robbery, and rape), property
crimes (burglary, larceny, motor vehicle theft), and officers by assault. We exclude agencies
that report negative crimes in a given year. We also drop agencies than reported fewer than
12 months of data for a given year.

Robustness

Results from warm regions

We revisit our analysis from the previous section using U.S. counties where the annual average
temperature is at least 19oC. We do this for two reasons. First, because CEWs are less
effective when used on individuals wearing thicker clothing (common during cold weather),
it is important to account for the fact that officers are less likely to use their CEWs during
cold weather. After 19oC, people are less likely to wear thicker clothes (Morgan and de Dear
(2003)). The behavior from civilians with respect to temperature is more likely to be held
constant throughout the year. This helps mitigate the problem that officers are less likely
to use CEWs because they anticipate that it would be less effective because subjects are
more likely to wear thick clothing. Secondly, this section is intended to disentangle the effect
of warm days from the effect of ‘very hot’ days. Figure A.9 presents the coefficients from
estimating equation 2.3 on counties with an average annual temperature of at least 19oC.

We found analogous results to the previous section. For warm regions in the U.S., we
confirmed that temperature has no effect on civilian deaths caused by police shooting. The
results remain precise. The number of civilian deaths by CEWs increased by about 6.8%

1For our polynomial precipitation form, it is important to take such nonlinear transformations at the
cell level before spatially aggregating the data at the county level. This transformation preserves the tails
of the distribution within the administrative region and ensure consistent results.
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during extremely warm days, whereas the effect of temperature was close to zero and statis-
tically non-significant for days where the temperature is less than 32oC.

For physical restraints or less-than-lethal force (except CEWs), we found that the effect
of temperature on civilian deaths is non-monotonic and very imprecise. The results for
physical restraints during ‘extremely warm’ days were not robust using this subsample.

Effect of temperature on civilian deaths by symptom of mental illness or
substance abuse

In order to assess the sensitivity of our results to abnormal behavior of civilians in warmer
conditions, we exploited the fact that Fatal Encounters data provides information on whether
the civilian exhibited symptoms of mental illness or substance abuse (drug or alcohol). Intu-
itively, a civilian who exhibits symptoms of a kind associated with mental illness or substance
abuse would present behavior that officers find unpredictable, and therefore more threaten-
ing. One can also argue that officers might perceive individuals with these symptoms as
more combative and/or less cooperative. In this case, substance use becomes an additional
compounding factor, making it difficult to pin down the physiological impact of temperature
on death by CEWs.

Figure 2.4 presents the coefficients from estimating equation 2.2 by symptom status. For
both groups, there was a precise null impact of temperature on the number of deaths by
firearm. This indicates that even if a civilian exhibits less predictable behavior, he or she is
not more likely to die from a police shooting.

For CEWs, we confirmed the results from previous sections and obtained similar point
estimates for the two groups. We show that the monthly number of civilian deaths by CEW
increases by about 7.3% for any additional hot day compared to a day in the 12 − 17oC
range. The impact of temperature on civilian deaths by CEWs is null and non-significant
for days with temperature lower than 32oC. Despite the fact that substances might be an
important factor that affect the number of deaths, it is surprising that both groups have
similar point estimates for high temperatures. We view this finding as suggestive evidence
that use of CEWs in high temperatures increases the odds of unintended death through some
combination of physiological factors.

The significant impact of extremely warm days on the number of deaths by physical
restraints seemed to be driven by civilians who exhibit symptom of mental illness or substance
abuse. However, the confidence interval is fairly wide. For subjects that do not present
symptoms, the temperature is null and not significant for very hot days. However, there
does seem to be a marginally significant positive effect (p<.1) on the number of deaths of
subjects without symptoms for temperatures between 22 and 27oC.

As discussed and documented in previous sections, results for other less-than-lethal uses
of force remain very imprecise. One cannot draw any conclusions about the effect of tem-
perature on the number of civilian deaths for these types of police action.
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Effect of temperature on the number of civilian deaths by vehicle

This section briefly presents the effect of temperature on the number of fatalities by vehicle
when interacting with the police. Results in Table A.5 show that the number of civilian
deaths by vehicle is not statistically influenced by temperature for days with a temperature
of at least 2oC. The coefficients are close to zero when the temperature is between 2 and
32oC. The incident rate ratio is larger for warm days (1.02) but the effect is not statistically
significant. The number of deaths by vehicle seems to be statistically smaller when the
temperature is less than 2oC. The increase during warmest days is consistent with previous
studies on the impact of temperature on fatal traffic accident ((Leard et al., 2015)).

Additional tables and figures

Figure A.7: Police Fatal Encounters vs. Murders in the U.S.
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Notes: This figure presents the number of fatal encounters with the police and murders in
the U.S. from 2000 to 2016. Sections 2.3 and A.2 provide details about the sample selection.
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Figure A.8: Effect of temperature on the number of civilian deaths by firearm and CEWs
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Notes: This figure presents the estimated effect of temperature on the number of civilian
fatalities by CEWs (Taser) and firearm. The specification considers a 4th polynomial of
temperature. The specification controls for precipitation, state-by-season fixed effect, and
county-by-year fixed effect. For interpretation, we report the incident rate ratio on the y-axis.
Standard errors are clustered at the year-by-type of death. We report the 95% CI. We report
the midpoints for bins with temperature between 2 and 32oC, with 5 degree increments.
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Figure A.9: Effect of temperature on CEW and firearm fatal encounters in warm regions
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Notes: This figure presents the estimated effect of temperature on the number of civilian
fatalities by firearm (left panel) and CEWs (right panel). for warm regions (average annual
temperature of at least 19oC). Section 2.2 provides details about the different causes of death.
The specification controls for precipitation, state-by-season fixed effect, and county-by-year
fixed effect. For interpretation, we report the incident rate ratio on the y-axis. Standard
errors are clustered at the year-by-type of death. We report the 95% CI. We report the
midpoints for bins with temperature between 7 and 32oC, with 5 degree increments.

A.3 A distribution of Human Attention - Appendix
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Figure A.10: Google Search volume reflects changes in relative attention over time. Google
Search data records relative changes in the total number of queries that contain a specific target string. (a)
Global queries for the topic “sunscreen” have a cyclical temporal structure that peaks during summer in the
Northern Hemisphere. (b). Global queries for the topic “donald trump” increased abruptly during the 2016
presidential campaign, which began in 2015. (c) Global queries for the topic “cat” are consistently high
with little temporal structure. Raw data are rescaled by the data provider, indicating relative volumes of
queries with a maximum value of 100. In 2019, Google reported receiving roughly 1.8B queries per day.
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Table T1: Weather summary statistics per bidding zone

Temperature Precipitation
Mean Std. dev. Minimum Maximum Mean Std. dev. Maximum

Belgium 10.56 6.33 −8.82 27.06 2.17 3.23 33.29
Czech Rep 8.69 8.07 −16.65 27.51 1.82 2.72 31.49
Estonia 6.40 8.66 −22.36 26.43 1.86 2.64 21.68
Finland 4.96 9.00 −24.93 24.96 1.91 2.48 23.52
France 11.40 6.21 −6.09 27.71 2.13 2.53 18.19
Ger Aus Lux 9.51 7.20 −12.16 27.15 2.17 2.39 22.16
Hungary 11.08 8.79 −13.01 30.89 1.58 2.93 35.30
Latvia 7.11 8.72 −23.70 26.34 1.94 2.76 34.07
Lithuania 7.53 8.76 −23.52 26.84 1.93 2.81 37.51
Netherlands 10.60 6.19 −9.79 26.57 2.21 3.14 27.09
Norway 5.10 6.93 −17.54 20.51 3.22 3.13 24.51
Poland 8.84 8.26 −20.33 27.86 1.79 2.28 26.15
Portugal 14.99 5.12 2.28 29.39 2.11 4.40 55.23
Romania 10.33 8.92 −15.17 28.83 1.84 2.68 26.46
Slovakia 9.15 8.48 −15.30 28.63 1.78 2.91 39.95
Slovenia 9.91 8.07 −12.73 28.27 2.72 5.00 46.55
Spain 14.38 6.24 −0.17 28.55 1.42 2.06 20.74
Switzerland 7.37 7.37 −15.26 24.77 3.25 4.87 48.99
UK 9.88 4.93 −4.70 22.61 2.21 2.71 22.85

Sweden
SE1 2.66 9.14 −27.52 22.95 1.80 2.85 30.78
SE2 4.52 8.13 −21.36 22.94 1.79 2.60 31.51
SE3 7.15 7.54 −15.84 23.01 1.97 2.74 25.63
SE4 8.07 6.95 −13.76 23.90 2.07 3.00 40.83

Italy
Center South 14.60 6.60 −0.86 28.51 2.07 3.74 47.33
Center North 13.66 7.03 −4.10 28.17 2.36 3.98 49.47
North 10.88 7.45 −7.92 26.89 2.61 4.55 46.11
Sardaignia 16.62 5.60 2.88 29.49 1.27 3.00 41.48
Sicilia 17.29 5.69 2.58 31.12 1.39 3.02 43.37
South 16.35 6.27 1.22 31.21 1.79 3.54 51.65

Denmark
East 8.92 6.62 −12.18 24.10 2.00 3.16 38.61
West 9.10 6.20 −8.64 22.75 2.09 3.11 35.15

Temperature is defined as the daily mean surface temperature in Celsius, Precipitation is expressed in daily
total value (millimeter)
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Table A.1: Effect of temperature on the number of civilian deaths by physical restraints

(1) (2) (3) (4) (5) (6)

< 2o 0.00788 0.0156 0.0155 0.0212 0.0329* 0.0329*
(0.0177) (0.0171) (0.0171) (0.0170) (0.0175) (0.0175)

[2o, 7o) 0.0321* 0.0374** 0.0369** 0.0380** 0.0354* 0.0352*
(0.0165) (0.0164) (0.0164) (0.0167) (0.0190) (0.0190)

[7o, 12o) 0.0215 0.0217 0.0215 0.0222 0.0273* 0.0272*
(0.0171) (0.0168) (0.0168) (0.0166) (0.0159) (0.0159)

[17o, 22o) 0.0289 0.0380* 0.0379* 0.0360* 0.0371* 0.0371*
(0.0231) (0.0216) (0.0216) (0.0214) (0.0213) (0.0213)

[22o, 27o) 0.0267* 0.0235 0.0224 0.0206 0.0230 0.0226
(0.0154) (0.0165) (0.0164) (0.0161) (0.0160) (0.0160)

[27o, 32o) 0.0339 0.0484** 0.0473** 0.0460** 0.0472** 0.0469**
(0.0219) (0.0207) (0.0208) (0.0207) (0.0210) (0.0210)

[> 32o 0.156** 0.154** 0.151** 0.153** 0.141* 0.141*
(0.0678) (0.0723) (0.0726) (0.0732) (0.0734) (0.0734)

Precipitation 0.000299 0.000225 0.000235 0.000221 0.000306 0.000315
(0.000331) (0.000366) (0.000363) (0.000364) (0.000362) (0.000363)

Precipitation2 -1.46e-05 -1.48e-05 -1.50e-05 -1.63e-05 -1.72e-05* -1.74e-05*
(8.93e-06) (1.03e-05) (1.02e-05) (1.03e-05) (1.00e-05) (1.01e-05)

Violent Crimes -5.59e-05 -3.55e-05
(4.94e-05) (5.18e-05)

Property Crimes 4.77e-05 -0.000163**
(8.46e-05) (7.90e-05)

No. Officers assulted/killed 0.00536*** 0.00164
(0.000611) (0.00223)

Constant -1.427*** -1.373*** -1.392*** -8.476*** -7.175*** -7.206***
(0.0550) (0.0651) (0.0593) (0.0611) (0.0640) (0.0680)

Exposure - - - total crime total arrest total arrest
Fixed-effects:

Season-State YES YES YES YES YES YES
County-Year-Type of death YES YES YES YES YES YES

Observations 128,808 112,036 112,036 111,286 106,226 106,226

Notes: This Table presents the estimated effect of temperature on the number of civilian fatalities
by physical restraints using equation 2.2. Section 2.2 provides details about the different causes
of death. Standard errors are clustered at the year-by-type of death.
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Table A.2: Effect of temperature on the number of civilian deaths by less-than-lethal force

(1) (2) (3) (4) (5) (6)

< 2o -0.00702 0.00421 0.00401 0.00751 0.00746 0.00737
(0.0168) (0.0159) (0.0159) (0.0154) (0.0176) (0.0176)

[2o, 7o) -0.0145 -0.0120 -0.0126 -0.0154 -0.0104 -0.0106
(0.0231) (0.0272) (0.0273) (0.0281) (0.0264) (0.0264)

[7o, 12o) 0.0472* 0.0591** 0.0584** 0.0565** 0.0605** 0.0602**
(0.0243) (0.0247) (0.0246) (0.0235) (0.0264) (0.0264)

[17o, 22o) 0.0272 0.0447** 0.0446** 0.0407* 0.0481** 0.0480**
(0.0224) (0.0214) (0.0213) (0.0209) (0.0229) (0.0228)

[22o, 27o) 0.0208 0.0241 0.0227 0.0198 0.0236 0.0232
(0.0140) (0.0150) (0.0150) (0.0146) (0.0155) (0.0156)

[27o, 32o) 0.00433 0.0177 0.0163 0.0149 0.0203 0.0200
(0.0225) (0.0219) (0.0221) (0.0221) (0.0229) (0.0229)

[> 32o -0.00486 0.0140 0.0154 0.00972 0.00808 0.00844
(0.0617) (0.0573) (0.0567) (0.0541) (0.0549) (0.0547)

Precipitation 0.000299 0.000225 0.000235 0.000221 0.000306 0.000315
(0.000331) (0.000366) (0.000363) (0.000364) (0.000362) (0.000363)

Precipitation2 -1.46e-05 -1.48e-05 -1.50e-05 -1.63e-05 -1.72e-05* -1.74e-05*
(8.93e-06) (1.03e-05) (1.02e-05) (1.03e-05) (1.00e-05) (1.01e-05)

Violent Crimes -5.59e-05 -3.55e-05
(4.94e-05) (5.18e-05)

Property Crimes 4.77e-05 -0.000163**
(8.46e-05) (7.90e-05)

No. Officers assulted/killed 0.00536*** 0.00164
(0.000611) (0.00223)

Constant -1.427*** -1.373*** -1.392*** -8.476*** -7.175*** -7.206***
(0.0550) (0.0651) (0.0593) (0.0611) (0.0640) (0.0680)

Exposure - - - total crime total arrest total arrest
Fixed-effects:

Season-State YES YES YES YES YES YES
County-Year-Type of death YES YES YES YES YES YES

Observations 128,808 112,036 112,036 111,286 106,226 106,226

Notes: This Table presents the estimated effect of temperature on the number of civilian fatalities
by less-than-lethal force using equation 2.2. Section 2.2 provides details about the different causes
of death. Standard errors are clustered at the year-by-type of death.



APPENDIX A. APPENDIX 88

Table A.3: Effect of temperature on the number of civilian deaths by firearm

(1) (2) (3) (4) (5) (6)

< 2o 0.000390 -0.000189 -0.000334 0.00417 0.00296 0.00288
(0.00295) (0.00313) (0.00313) (0.00312) (0.00336) (0.00338)

[2o, 7o) 0.00231 0.00284 0.00247 0.00217 0.00306 0.00292
(0.00290) (0.00312) (0.00310) (0.00324) (0.00324) (0.00325)

[7o, 12o) 0.00141 0.000664 0.000562 -2.08e-05 -0.000404 -0.000513
(0.00325) (0.00341) (0.00346) (0.00350) (0.00370) (0.00374)

[17o, 22o) 0.00174 0.00151 0.00121 -0.00176 -0.000943 -0.00109
(0.00332) (0.00353) (0.00346) (0.00370) (0.00395) (0.00400)

[22o, 27o) 0.00167 0.00179 0.000985 -0.00215 -0.00192 -0.00215
(0.00180) (0.00198) (0.00201) (0.00194) (0.00193) (0.00190)

[27o, 32o) 0.00275 0.00336 0.00243 0.000496 0.000982 0.000745
(0.00353) (0.00427) (0.00418) (0.00475) (0.00503) (0.00506)

[> 32o 0.00710 0.00571 0.00451 0.00230 0.00181 0.00150
(0.00711) (0.00673) (0.00664) (0.00701) (0.00655) (0.00655)

Precipitation 0.000299 0.000225 0.000235 0.000221 0.000306 0.000315
(0.000331) (0.000366) (0.000363) (0.000364) (0.000362) (0.000363)

Precipitation2 -1.46e-05 -1.48e-05 -1.50e-05 -1.63e-05 -1.72e-05* -1.74e-05*
(8.93e-06) (1.03e-05) (1.02e-05) (1.03e-05) (1.00e-05) (1.01e-05)

Violent Crimes -5.59e-05 -3.55e-05
(4.94e-05) (5.18e-05)

Property Crimes 4.77e-05 -0.000163**
(8.46e-05) (7.90e-05)

No. Officers assulted/killed 0.00536*** 0.00164
(0.000611) (0.00223)

Constant -1.427*** -1.373*** -1.392*** -8.476*** -7.175*** -7.206***
(0.0550) (0.0651) (0.0593) (0.0611) (0.0640) (0.0680)

Exposure - - - total crime total arrest total arrest
Fixed-effects:

Season-State YES YES YES YES YES YES
County-Year-Type of death YES YES YES YES YES YES

Observations 128,808 112,036 112,036 111,286 106,226 106,226

Notes: This Table presents the estimated effect of temperature on the number of civilian fatalities
by firearm using equation 2.2. Section 2.2 provides details about the different causes of death.
Standard errors are clustered at the year-by-type of death.
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Table A.4: Effect of temperature on the number of civilian deaths by CEW

(1) (2) (3) (4) (5) (6)

< 2o -0.0227* -0.0275* -0.0277* -0.0225 -0.0275* -0.0276*
(0.0126) (0.0146) (0.0146) (0.0142) (0.0151) (0.0151)

[2o, 7o) -0.0103 -0.0108 -0.0110 -0.0124 -0.0107 -0.0109
(0.0117) (0.0127) (0.0127) (0.0132) (0.0137) (0.0137)

[7o, 12o) 0.00725 0.00561 0.00531 0.00680 0.00794 0.00777
(0.0151) (0.0153) (0.0153) (0.0151) (0.0150) (0.0150)

[17o, 22o) 0.00183 -0.000188 -0.000488 -0.00350 0.000236 4.05e-05
(0.0129) (0.0140) (0.0139) (0.0142) (0.0141) (0.0141)

[22o, 27o) 0.00963 0.00847 0.00784 0.00560 0.00513 0.00495
(0.00632) (0.00774) (0.00773) (0.00778) (0.00853) (0.00852)

[27o, 32o) 0.00113 0.00593 0.00505 0.00431 0.00532 0.00506
(0.0111) (0.0119) (0.0118) (0.0120) (0.0123) (0.0123)

[> 32o 0.0563*** 0.0529*** 0.0512*** 0.0499*** 0.0517*** 0.0512***
(0.0105) (0.0117) (0.0117) (0.0120) (0.0124) (0.0124)

Precipitation 0.000299 0.000225 0.000235 0.000221 0.000306 0.000315
(0.000331) (0.000366) (0.000363) (0.000364) (0.000362) (0.000363)

Precipitation2 -1.46e-05 -1.48e-05 -1.50e-05 -1.63e-05 -1.72e-05* -1.74e-05*
(8.93e-06) (1.03e-05) (1.02e-05) (1.03e-05) (1.00e-05) (1.01e-05)

Violent Crimes -5.59e-05 -3.55e-05
(4.94e-05) (5.18e-05)

Property Crimes 4.77e-05 -0.000163**
(8.46e-05) (7.90e-05)

No. Officers assulted/killed 0.00536*** 0.00164
(0.000611) (0.00223)

Constant -1.427*** -1.373*** -1.392*** -8.476*** -7.175*** -7.206***
(0.0550) (0.0651) (0.0593) (0.0611) (0.0640) (0.0680)

Exposure - - - total crime total arrest total arrest
Fixed-effects:

Season-State YES YES YES YES YES YES
County-Year-Type of death YES YES YES YES YES YES

Observations 128,808 112,036 112,036 111,286 106,226 106,226

Notes: This Table presents the estimated effect of temperature on the number of civilian fatalities
by CEW using equation 2.2. Section 2.2 provides details about the different causes of death.
Standard errors are clustered at the year-by-type of death.
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Table A.5: Effect of temperature on the number of civilian deaths by vehicle

(1) (2) (3) (4) (5) (6)

< 2o -0.0150*** -0.0165*** -0.0166*** -0.0128** -0.0152*** -0.0153***
(0.00532) (0.00553) (0.00551) (0.00574) (0.00576) (0.00576)

[2o, 7o) 0.0108* 0.0122** 0.0120** 0.00999* 0.0126** 0.0125**
(0.00621) (0.00575) (0.00572) (0.00597) (0.00630) (0.00630)

[7o, 12o) -0.00267 -0.00368 -0.00381 -0.00420 -0.00345 -0.00355
(0.00737) (0.00785) (0.00786) (0.00810) (0.00781) (0.00784)

[17o, 22o) -0.00398 -0.00540 -0.00557 -0.0101 -0.00804 -0.00815
(0.00592) (0.00645) (0.00652) (0.00677) (0.00683) (0.00686)

[22o, 27o) 0.000521 0.00231 0.00164 -0.00124 -0.00111 -0.00130
(0.00455) (0.00446) (0.00445) (0.00430) (0.00457) (0.00456)

[27o, 32o) -0.00764 -0.00834 -0.00911 -0.0124 -0.0104 -0.0106
(0.00854) (0.00913) (0.00915) (0.00967) (0.00921) (0.00922)

[> 32o 0.0313 0.0318 0.0312 0.0287 0.0170 0.0168
(0.0194) (0.0195) (0.0194) (0.0189) (0.0169) (0.0169)

Precipitation 0.000299 0.000225 0.000235 0.000221 0.000306 0.000315
(0.000331) (0.000366) (0.000363) (0.000364) (0.000362) (0.000363)

Precipitation2 -1.46e-05 -1.48e-05 -1.50e-05 -1.63e-05 -1.72e-05* -1.74e-05*
(8.93e-06) (1.03e-05) (1.02e-05) (1.03e-05) (1.00e-05) (1.01e-05)

Violent Crimes -5.59e-05 -3.55e-05
(4.94e-05) (5.18e-05)

Property Crimes 4.77e-05 -0.000163**
(8.46e-05) (7.90e-05)

No. Officers assulted/killed 0.00536*** 0.00164
(0.000611) (0.00223)

Constant -1.427*** -1.373*** -1.392*** -8.476*** -7.175*** -7.206***
(0.0550) (0.0651) (0.0593) (0.0611) (0.0640) (0.0680)

Exposure - - - total crime total arrest total arrest
Fixed-effects:

Season-State YES YES YES YES YES YES
County-Year-Type of death YES YES YES YES YES YES

Observations 128,808 112,036 112,036 111,286 106,226 106,226

Notes: This Table presents the estimated effect of temperature on the number of civilian fatalities
by vehicle using equation 2.2. Section 2.2 provides details about the different causes of death.
Standard errors are clustered at the year-by-type of death.
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Figure A.11: Prediction that Google Search volume reflects a convolution of the KAT with a
square wave. The KAT-based model of attention to time predicts that Google Search volume (SΘ(t), blue)
should reflect the convolution of the KAT (κ(t), orange) with a sequence of impulses (black), where moments
of time (θ) contained within the target interval (Θ) — e.g. days within the target year “2016” — are each
represented by a separate impulse (see Equation 3.6). Because moments in time contained within the target
interval are sequential, the discreet form of the input function describing the sequence of impulses (fΘ(t))
appears as a square wave. Figure 3.1d-i in the main text illustrate how the KAT-based model generates this
result. In this analysis, we observe Google Search volume (SΘ(t)) and construct input functions (fΘ(t)) that
reflect intervals of time described by search query targets. We then implement a deconvolution (the inverse
of the convolution) to recover the estimated KAT (κ̂(t)).
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Figure A.12: Uncertainty in the estimated structure of the KAT. We re-estimate the KAT (using
annual targets) multiple times using 3,000 block-resampled versions of the data (with replacement), blocking
at the query-by-location level. (a) Histograms indicate the distribution of estimates for the fraction of total
attention allocated to the past (blue), present (green) and future (red). (b) The ratio of total attention
allocated to the present vs each day in the relative past (blue curve) and each day in the relative future
(red curve). Attention to one day in the past or future is most similar to attention to the present, so values
are near one. For more distant days in relative time, much more attention is allocated to the present than
to a distant day (e.g. 40-70× more attention). Lines are central estimates for these ratios, bands are 95%
confidence intervals using block-boostrapped estimates.
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Figure A.13: Sensitivity analysis for the estimated KAT using alternative regression model
specifications. The red dashed line in each panel represents a KAT estimated using a different set of fixed-
effects (i.e. intercepts) that account for possible omitted variable bias during estimation of Equation 3.7.
The solid gray line in each panel is the main estimate plotted in Figure 3.3, which is the most parsimonious
model without fixed-effects. In each panel, the dashed red line is an alternative specification presented
for comparison against this benchmark. (a) Including country-level fixed-effects that account for country-
specific characteristics that remain constant over time (e.g. higher average query volume). (b) Including
country-level and year-level fixed-effects to account for country-specific characteristics that remain constant
over time and for flexible non-parametric time trends that affect all countries (e.g. increasing search volume
over time). (c) Including country, year, and query-level fixed effects to account for constant country-specific
unobserved characteristics, time trends, and query-specific unobserved characteristics (e.g. higher search
volume for years associated with the Olympic games). (d) Including country-by-year level fixed effects to
non-parametrically account for unobserved variation at the country level within any given year. None of
these adjustments substantively alter the fit or structure of the results relative to the main model.
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Figure A.14: Generalizability and reproducibility of the KAT. Estimated form of the KAT using
different classes of target for query and different samples. Left, center and right columns show KAT estimates
using annual, monthly, and day targets, respectively. Rows indicate the country used to generate each
estimate. Comparable pooled estimates are shown in Figure 3.3d-f.
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Figure A.15: Predicted search volume for annual, monthly, and day targets using estimated
KATs. Panels show the predicted search volume generated by convolving estimated KAT functions with
corresponding input functions fΘ(t) (the process depicted in Figure 3.1d-i and ED Figure A.11). Panels
reflect yearly (left), monthly (center), and daily (right) targets and utilized smooth KAT estimates shown
in Figure 3.3c-e: exponential (red), hyperbolic-discounting-like ( a

1+b(θ−t) , blue), eighth-order polynomial

(yellow), and rational functions (green). The black dots correspond to the average query volume observed in
actual Google Search data. The RMSE (weighted by target) associated with each functional form is shown
in parentheses.
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Figure A.16: The relative attention to the past, present and future for individual countries.
(a) Example KAT for countries that are either past-oriented (Peru), present-oriented (United States), and
future-oriented (France). Dark shaded areas indicate the portion of the KAT that is integrated to compute
the total fraction of attention allocated each period in relative time. (b) Ternary plot that locates 181
countries in a three-dimensional space based on the fraction of attention it allocates to the past, present,
and future. These fractions sum to one. A country will an equal attentiveness to the past, present, and
future would be located in the center of the triangle. The more focused it is toward a direction in time, the
closer it would be to the corresponding vertex. The three countries from (a) are highlighted using the same
colors. All other countries are gray. Figure 3.1 depicts this distribution using a kernel-density-based heat
map. (c) Same as (b), but highlighting five geographical regions using colored markers. Figure 3.4a-b in the
main text maps these values.
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Table A.6: Country-specific holidays used to estimate the KAT for daily targets.

Country First holiday Second holiday Third holiday

Argentina Day of Remembrance for
Truth and Justice

International Workers’
Day

New Year’s Eve

Australia Australia Day Easter Monday National New Year’s
Eve

Brazil Tiradentes Day Independence Day All Souls’ Day
Chile Valentine’s Day Christmas Day Day New Year’s Eve
Colombia Maundy Thursday Teacher’s Day New Year’s Eve
France Victory in Europe Day Bastille Day New Year’s Eve
Germany International Women’s

Day
German Unity Day New Year’s Eve

Hong-Kong Valentine’s Day Halloween Christmas Day
India Republic Day Independence Day New Year’s Eve
Indonesia Valentine’s Day Independence Day The Prophet Muham-

mad’s Birthday
Mexico Cinco de Mayo Cry of Dolores Columbus Day
Netherlands Valentine’s Day Liberation Day Ascension Day
New-Zealand Waitangi Day Queen’s Birthday Halloween
Norway 17 May Constitution Day Whit Sunday New Year’s Eve
Peru Valentine’s Day International Workers’

Day
New Year’s Eve

Singapore Valentine’s Day Vesak Day National Day
Spain Spanish National Holi-

day
Constitution Day New Year’s Eve

Sweden Valentine’s Day Walpurgis Night National Day
United Kingdom Good Friday Saint Patrick’s Day Boxing Day
United States Valentine’s Day Independence Day Mother’s Day
Note: Holiday names are displayed in English, but data includes queries in local languages.
These values are used to construct KAT estimates using day targets (e.g. Figure 3.3f).
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Table A.7: Shares of attention to the past, present and future for alphabetically
ranked countries 1 to 50 (standard errors in parentheses)

Country Share of attention Share of attention Share of attention
to the past to the present to the future

Afghanistan 0.4 (0.03) 0.25 (0.03) 0.35 (0.03)
Albania 0.5 (0.02) 0.16 (0.02) 0.34 (0.02)
Algeria 0.39 (0.02) 0.24 (0.02) 0.37 (0.02)
Angola 0.44 (0.02) 0.28 (0.03) 0.28 (0.02)
Argentina 0.35 (0.01) 0.23 (0.01) 0.42 (0.01)
Armenia 0.65 (0.02) 0.09 (0.03) 0.27 (0.02)
Aruba 0.34 (0.02) 0.26 (0.03) 0.4 (0.02)
Australia 0.28 (0.01) 0.33 (0.01) 0.39 (0.01)
Austria 0.3 (0.01) 0.2 (0.01) 0.5 (0.01)
Azerbaijan 0.41 (0.02) 0.21 (0.02) 0.38 (0.02)
Bahamas 0.37 (0.02) 0.35 (0.02) 0.28 (0.02)
Bahrain 0.41 (0.01) 0.22 (0.02) 0.37 (0.01)
Bangladesh 0.46 (0.02) 0.28 (0.03) 0.26 (0.02)
Barbados 0.41 (0.02) 0.3 (0.02) 0.29 (0.02)
Belarus 0.5 (0.01) 0.15 (0.02) 0.34 (0.01)
Belgium 0.31 (0.01) 0.22 (0.01) 0.46 (0.01)
Belize 0.42 (0.03) 0.29 (0.03) 0.29 (0.03)
Benin 0.37 (0.03) 0.31 (0.03) 0.32 (0.03)
Bhutan 0.35 (0.05) 0.36 (0.06) 0.29 (0.05)
Bolivia 0.46 (0.01) 0.19 (0.01) 0.35 (0.01)
Bosnia and Herz. 0.46 (0.02) 0.17 (0.02) 0.37 (0.02)
Botswana 0.49 (0.03) 0.23 (0.03) 0.28 (0.03)
Brazil 0.3 (0.01) 0.24 (0.01) 0.46 (0.01)
Brunei 0.43 (0.02) 0.27 (0.02) 0.29 (0.02)
Bulgaria 0.36 (0.01) 0.27 (0.01) 0.36 (0.01)
Burkina Faso 0.38 (0.03) 0.29 (0.03) 0.33 (0.03)
Burundi 0.35 (0.05) 0.28 (0.06) 0.37 (0.05)
Cabo Verde 0.46 (0.03) 0.18 (0.04) 0.36 (0.03)
Cambodia 0.47 (0.03) 0.23 (0.03) 0.3 (0.03)
Cameroon 0.47 (0.02) 0.18 (0.03) 0.35 (0.02)
Canada 0.32 (0.01) 0.35 (0.01) 0.33 (0.01)
Central African Rep. 0.24 (0.09) 0.34 (0.11) 0.42 (0.09)
Chad 0.24 (0.04) 0.45 (0.05) 0.31 (0.04)
Chile 0.29 (0.01) 0.25 (0.02) 0.46 (0.01)
China 0.42 (0.02) 0.19 (0.03) 0.39 (0.02)
Colombia 0.45 (0.01) 0.21 (0.01) 0.34 (0.01)
Comoros 0.38 (0.09) 0.39 (0.11) 0.23 (0.09)
Congo 0.41 (0.04) 0.28 (0.05) 0.31 (0.04)
Costa Rica 0.42 (0.01) 0.21 (0.02) 0.37 (0.01)
Croatia 0.42 (0.01) 0.17 (0.01) 0.41 (0.01)
Cuba 0.45 (0.02) 0.24 (0.02) 0.31 (0.02)
Curaçao 0.37 (0.03) 0.26 (0.03) 0.38 (0.03)
Cyprus 0.48 (0.01) 0.21 (0.02) 0.31 (0.01)
Czechia 0.36 (0.01) 0.23 (0.01) 0.4 (0.01)
Côte d’Ivoire 0.45 (0.02) 0.19 (0.02) 0.36 (0.02)
Dem. Rep. Congo 0.34 (0.03) 0.24 (0.04) 0.42 (0.03)
Denmark 0.34 (0.01) 0.26 (0.02) 0.4 (0.01)
Djibouti 0.43 (0.03) 0.24 (0.04) 0.33 (0.03)
Dominican Rep. 0.57 (0.01) 0.2 (0.01) 0.23 (0.01)
Ecuador 0.44 (0.01) 0.26 (0.01) 0.29 (0.01)
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Table A.8: Shares of attention to the past, present and future for alpha-
betically ranked countries 51 to 100 (standard errors in parentheses)

Country Share of attention Share of attention Share of attention
to the past to the present to the future

Egypt 0.42 (0.02) 0.18 (0.02) 0.4 (0.02)
El Salvador 0.44 (0.02) 0.22 (0.02) 0.34 (0.02)
Eq. Guinea 0.35 (0.05) 0.29 (0.06) 0.36 (0.05)
Estonia 0.41 (0.02) 0.23 (0.02) 0.35 (0.02)
Eswatini 0.26 (0.06) 0.44 (0.07) 0.3 (0.06)
Ethiopia 0.57 (0.06) 0.25 (0.06) 0.18 (0.06)
Fiji 0.47 (0.02) 0.34 (0.02) 0.19 (0.02)
Finland 0.28 (0.01) 0.17 (0.01) 0.56 (0.01)
Fr. Polynesia 0.38 (0.02) 0.22 (0.02) 0.4 (0.02)
France 0.31 (0.01) 0.18 (0.01) 0.51 (0.01)
Gabon 0.51 (0.03) 0.2 (0.03) 0.29 (0.03)
Gambia 0.42 (0.04) 0.25 (0.05) 0.33 (0.04)
Georgia 0.56 (0.02) 0.1 (0.02) 0.34 (0.02)
Germany 0.3 (0.01) 0.24 (0.01) 0.47 (0.01)
Ghana 0.45 (0.02) 0.26 (0.02) 0.29 (0.02)
Greece 0.41 (0.01) 0.18 (0.02) 0.42 (0.01)
Grenada 0.46 (0.05) 0.32 (0.05) 0.22 (0.05)
Guam 0.39 (0.02) 0.24 (0.02) 0.37 (0.02)
Guatemala 0.46 (0.01) 0.27 (0.02) 0.28 (0.01)
Guinea 0.31 (0.06) 0.35 (0.07) 0.34 (0.06)
Guyana 0.39 (0.03) 0.43 (0.03) 0.18 (0.03)
Haiti 0.52 (0.02) 0.14 (0.03) 0.34 (0.03)
Honduras 0.5 (0.02) 0.2 (0.02) 0.3 (0.02)
Hong Kong 0.41 (0.01) 0.23 (0.01) 0.36 (0.01)
Hungary 0.36 (0.01) 0.39 (0.01) 0.26 (0.01)
Iceland 0.44 (0.02) 0.27 (0.02) 0.3 (0.02)
India 0.37 (0.01) 0.29 (0.02) 0.34 (0.01)
Indonesia 0.31 (0.01) 0.42 (0.01) 0.27 (0.01)
Iran 0.46 (0.03) 0.15 (0.03) 0.4 (0.03)
Iraq 0.27 (0.02) 0.21 (0.03) 0.52 (0.02)
Ireland 0.36 (0.01) 0.33 (0.01) 0.31 (0.01)
Israel 0.35 (0.01) 0.25 (0.01) 0.4 (0.01)
Italy 0.32 (0.01) 0.2 (0.01) 0.47 (0.01)
Jamaica 0.44 (0.01) 0.34 (0.02) 0.22 (0.02)
Japan 0.33 (0.01) 0.2 (0.01) 0.47 (0.01)
Jordan 0.53 (0.02) 0.07 (0.02) 0.4 (0.02)
Kazakhstan 0.47 (0.02) 0.23 (0.02) 0.3 (0.02)
Kenya 0.5 (0.02) 0.23 (0.02) 0.27 (0.02)
Kuwait 0.44 (0.01) 0.21 (0.02) 0.35 (0.02)
Kyrgyzstan 0.42 (0.03) 0.28 (0.03) 0.3 (0.03)
Laos 0.43 (0.02) 0.23 (0.03) 0.34 (0.02)
Latvia 0.43 (0.02) 0.18 (0.02) 0.39 (0.02)
Lesotho 0.33 (0.06) 0.38 (0.07) 0.29 (0.06)
Liberia 0.49 (0.05) 0.35 (0.06) 0.17 (0.05)
Libya 0.33 (0.02) 0.18 (0.03) 0.49 (0.02)
Lithuania 0.39 (0.01) 0.16 (0.01) 0.45 (0.01)
Luxembourg 0.29 (0.01) 0.23 (0.01) 0.49 (0.01)
Macao 0.42 (0.02) 0.23 (0.02) 0.35 (0.02)
Macedonia 0.49 (0.02) 0.11 (0.02) 0.41 (0.02)
Madagascar 0.41 (0.02) 0.23 (0.02) 0.36 (0.02)



APPENDIX A. APPENDIX 100

Table A.9: Shares of attention to the past, present and future for alphabetically
ranked countries 101 to 150 (standard errors in parentheses)

Country Share of attention Share of attention Share of attention
to the past to the present to the future

Malawi 0.46 (0.04) 0.31 (0.04) 0.23 (0.04)
Malaysia 0.39 (0.01) 0.18 (0.01) 0.43 (0.01)
Maldives 0.5 (0.03) 0.19 (0.03) 0.31 (0.03)
Mali 0.44 (0.03) 0.21 (0.03) 0.35 (0.03)
Malta 0.38 (0.02) 0.27 (0.02) 0.35 (0.02)
Mauritania 0.49 (0.03) 0.23 (0.03) 0.28 (0.03)
Mauritius 0.47 (0.02) 0.25 (0.02) 0.28 (0.02)
Mexico 0.42 (0.01) 0.26 (0.01) 0.31 (0.01)
Micronesia 0.33 (0.09) 0.41 (0.1) 0.26 (0.09)
Moldova 0.65 (0.02) 0.07 (0.02) 0.28 (0.02)
Mongolia 0.54 (0.03) 0.2 (0.03) 0.26 (0.03)
Montenegro 0.39 (0.02) 0.13 (0.02) 0.47 (0.02)
Morocco 0.47 (0.02) 0.19 (0.02) 0.34 (0.02)
Mozambique 0.4 (0.02) 0.28 (0.03) 0.32 (0.02)
Myanmar 0.51 (0.04) 0.29 (0.05) 0.2 (0.04)
Nepal 0.51 (0.03) 0.31 (0.03) 0.18 (0.03)
Netherlands 0.31 (0.01) 0.34 (0.01) 0.35 (0.01)
New Caledonia 0.39 (0.02) 0.22 (0.03) 0.39 (0.02)
New Zealand 0.38 (0.01) 0.26 (0.01) 0.36 (0.01)
Nicaragua 0.52 (0.02) 0.17 (0.02) 0.31 (0.02)
Niger 0.35 (0.04) 0.37 (0.05) 0.28 (0.04)
Nigeria 0.4 (0.02) 0.27 (0.02) 0.33 (0.02)
Norway 0.31 (0.01) 0.27 (0.01) 0.42 (0.01)
Oman 0.46 (0.02) 0.18 (0.02) 0.36 (0.02)
Pakistan 0.47 (0.01) 0.34 (0.02) 0.19 (0.02)
Palestine 0.46 (0.03) 0.12 (0.03) 0.42 (0.03)
Panama 0.42 (0.01) 0.2 (0.02) 0.37 (0.01)
Papua New Guinea 0.38 (0.05) 0.33 (0.05) 0.29 (0.05)
Paraguay 0.38 (0.02) 0.26 (0.02) 0.36 (0.02)
Peru 0.47 (0.01) 0.22 (0.01) 0.31 (0.01)
Philippines 0.51 (0.01) 0.23 (0.01) 0.26 (0.01)
Poland 0.43 (0.01) 0.24 (0.01) 0.34 (0.01)
Portugal 0.32 (0.01) 0.24 (0.01) 0.45 (0.01)
Puerto Rico 0.4 (0.01) 0.25 (0.01) 0.35 (0.01)
Qatar 0.42 (0.01) 0.24 (0.02) 0.34 (0.01)
Romania 0.43 (0.01) 0.3 (0.01) 0.28 (0.01)
Rwanda 0.43 (0.03) 0.3 (0.04) 0.27 (0.04)
S. Sudan 0.31 (0.04) 0.47 (0.04) 0.22 (0.04)
Saint Lucia 0.33 (0.04) 0.39 (0.04) 0.28 (0.04)
Samoa 0.42 (0.06) 0.35 (0.07) 0.22 (0.06)
Saudi Arabia 0.41 (0.02) 0.19 (0.02) 0.4 (0.02)
Senegal 0.5 (0.02) 0.25 (0.02) 0.25 (0.02)
Serbia 0.35 (0.01) 0.13 (0.01) 0.52 (0.01)
Sierra Leone 0.48 (0.04) 0.26 (0.05) 0.26 (0.05)
Singapore 0.38 (0.01) 0.26 (0.01) 0.36 (0.01)
Slovakia 0.4 (0.01) 0.26 (0.01) 0.34 (0.01)
Slovenia 0.37 (0.01) 0.17 (0.01) 0.47 (0.01)
Somalia 0.35 (0.05) 0.37 (0.06) 0.28 (0.05)
South Africa 0.45 (0.01) 0.27 (0.02) 0.29 (0.01)
South Korea 0.42 (0.02) 0.16 (0.02) 0.42 (0.02)
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Table A.10: Shares of attention to the past, present and future for alphabetically
ranked countries 151 to 181 (standard errors in parentheses)

Country Share of attention Share of attention Share of attention
to the past to the present to the future

Spain 0.44 (0.01) 0.24 (0.01) 0.32 (0.01)
Sri Lanka 0.49 (0.02) 0.22 (0.02) 0.29 (0.02)
St. Vin. and Gren. 0.47 (0.03) 0.27 (0.04) 0.26 (0.03)
Sudan 0.4 (0.02) 0.24 (0.03) 0.36 (0.02)
Suriname 0.44 (0.02) 0.28 (0.03) 0.28 (0.02)
Sweden 0.32 (0.01) 0.33 (0.01) 0.35 (0.01)
Switzerland 0.26 (0.01) 0.27 (0.01) 0.47 (0.01)
Syria 0.35 (0.03) 0.08 (0.03) 0.57 (0.02)
Taiwan 0.4 (0.01) 0.15 (0.01) 0.45 (0.01)
Tajikistan 0.48 (0.03) 0.23 (0.03) 0.29 (0.03)
Tanzania 0.43 (0.03) 0.31 (0.03) 0.26 (0.03)
Thailand 0.45 (0.02) 0.24 (0.02) 0.32 (0.02)
Timor-Leste 0.34 (0.03) 0.44 (0.04) 0.22 (0.03)
Togo 0.38 (0.03) 0.3 (0.04) 0.32 (0.03)
Trinidad and Tobago 0.44 (0.02) 0.25 (0.02) 0.31 (0.02)
Tunisia 0.42 (0.01) 0.22 (0.02) 0.37 (0.01)
Turkey 0.37 (0.01) 0.26 (0.02) 0.38 (0.01)
Turkmenistan 0.38 (0.03) 0.2 (0.03) 0.42 (0.03)
U.S. Virgin Is. 0.27 (0.04) 0.44 (0.05) 0.29 (0.04)
Uganda 0.44 (0.02) 0.28 (0.03) 0.28 (0.02)
United Arab Emirates 0.42 (0.01) 0.22 (0.01) 0.36 (0.01)
United Kingdom 0.33 (0.01) 0.32 (0.01) 0.35 (0.01)
United States of America 0.32 (0.01) 0.35 (0.01) 0.34 (0.01)
Uruguay 0.39 (0.01) 0.19 (0.01) 0.41 (0.01)
Uzbekistan 0.49 (0.03) 0.14 (0.03) 0.37 (0.03)
Vanuatu 0.43 (0.06) 0.26 (0.07) 0.31 (0.06)
Venezuela 0.48 (0.01) 0.25 (0.01) 0.27 (0.01)
Vietnam 0.48 (0.02) 0.15 (0.02) 0.36 (0.02)
Yemen 0.35 (0.03) 0.21 (0.03) 0.43 (0.03)
Zambia 0.37 (0.03) 0.35 (0.04) 0.28 (0.03)
Zimbabwe 0.49 (0.02) 0.3 (0.03) 0.21 (0.02)
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