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CHAPTER 1

Introduction

In the past 15 years, in vivo studies of the healthy and diseased brain have increasingly fo-

cused on approaches aimed at assessing the spontaneous functional architecture of the brain,

conceived as a network of interacting regions (Raichle et al., 2001). Network analyses have

been successfully employed in many fields, including sociology (Freeman, 1978), computer

sciences (McQuillan, 1977), public health (Luke and Harris, 2007), epidemiology (Lucek and

Ott, 1997) and transportation (Guimera et al., 2005), among others, to capture salient as-

pects of each phenomenon. Indeed, while different fields often employ different approaches

to assessing network properties, they all share the common goal of characterizing important

aspects of complex network function into a limited number of metrics, which can, jointly, cap-

ture both what is unique and what is shared across systems. Network approaches have also

been extensively employed towards understanding specific aspects of cognition (e.g., Cao

et al., 2014), development (Fransson et al., 2010) and aging (Micheloyannis et al., 2009) ,

and, perhaps most frequently, the pathological brain (e.g., Alzheimer’s disease; Sanz-Arigita

et al., 2010, Parkinson disease; Wu et al., 2009, severe brain injury; Pandit et al., 2013).

This approach has also found fruitful application in the study of human consciousness (e.g.,

Monti et al., 2013; Chennu et al., 2014; Crone et al., 2018). Indeed, many of the proposals

of how human consciousness arises from neural function often make reference to aspects of

brain activity as a network of interacting areas, such as the reverberation and spread of

neural activity across fronto-parietal association regions (Baars, 2002; Baars et al., 2003),

the presence of synchronized long-range activity in specific frequency bands (e.g., Engel and

Singer, 2001; Tallon-Baudry, 2009) and specific neural circuits (e.g., cortico-thalamic loops;

Dehaene and Changeux, 2005), the dynamic competition between assemblies of cells (Crick
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and Koch, 2003), or to the degree to which a network possesses certain topological charac-

teristics (e.g., integration and differentiation; Tononi, 2008). These network approaches are

of key interest to discern patients with disorders of consciousness (DOC). DOC are a set of

conditions in which patients survive a severe (traumatic or non-traumatic) brain injury, but

fail to fully recover the two cardinal aspects of consciousness: awareness and wakefulness

(Laureys, 2005). DOC includes coma (i.e., lacks both cardinal elements of consciousness),

vegetative state (VS; or unresponsive awareness syndrome; i.e., wakefulness in the absence

of any behavioral sign of awareness of the self or the environment; Monti et al., 2010), and

minimally conscious state minus (MCS-; i.e., wakefulness with intermittent but reproducible

signs of low-level non-reflexive behaviors, such as orientation to noxious stimuli; Bruno et al.,

2011b), minimally conscious state plus (MCS+; i.e., wakefulness with intermittent but repro-

ducible signs of high-level non-reflexive behaviors, such as response to command, intelligible

verbalization, or gestural or verbal yes/no responses; Bruno et al., 2011b), and an ermerg-

ing from minimally conscious state (EMCS), which involves additional return of cognitive

functions (e.g., return of functional communication or tool use Aubinet et al., 2018).

In the context of consciousness, these network level descriptions often lead to two types

of hypotheses: specific regional connectivity and network topology. On the one hand, re-

searchers use hypotheses based on specific regional connectivity to test patterns of connectiv-

ity based on an objective property of a node (e.g., lobe of the brain, resting state network or

putative anatomical/functional region). For example, the reverberation and spread of neural

activity within fronto-parietal regions reflects specific connectivity patterns between frontal

and parietal regions (Baars, 2002; Baars et al., 2003). On the other hand, network topology

can be used to investigate the amount of integration and/or differentiation (Tononi, 2008)

via path based measures and clustering coefficient (Monti et al., 2013). These hypotheses are

tested as if they are independent of each of other (i.e., either across various studies or using

separate statistical tests), however, this independence does not hold because the interactions

of the generative processes that generate the observed network structure that is measured

by outcome metrics (e.g., degree, clustering coefficient and modularity).

There are four putative generative processes (i.e., sociality, selective mixing, triadic clo-
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sure and clustering) in network analysis (Handcock et al., 2007; Goodreau et al., 2009; Kriv-

itsky et al., 2009), but there are multiple outcome metrics that are used to measure each

generative process. First, sociality is the propensity of a node to generate edges (Goodreau

et al., 2009), and it can be measured using degree (i.e., a node’s number of edges; Rubinov

and Sporns, 2010). This process is specific to the node itself, while other processes involve

multiple nodes (i.e,, selective mixing, triadic closure and clustering).

Second, selective mixing is the propensity to form an edge between two nodes (dyad-

level process; Goodreau et al., 2009) based on an observed attribute of the nodes (e.g., lobe

of the brain, resting state network or putative anatomical/functional region), and it can

be measured by specific counts of edges based on nodal attributes, but in other fields, it

is measured by homophily (i.e., edges between nodes within category) or heterophily (i.e,

edges between nodes between categories) based on an exogenous attribute (Goodreau et al.,

2009; McPherson et al., 2001). For example, if a node is part of default-mode network,

the likelihood of an edge changes depending on the membership of the other node in that

dyad (e.g., default-mode, fronto-parietal or somato-motor networks). The winthin network

connectivity (e.g., default-mode to default-mode network) is homophily and the between

network (e.g., default-mode to fronto-parietal network) is heterophily.

Third, triadic closure is the propensity to form an edge based on the relationship between

three nodes (triad-level process; Goodreau et al., 2009), and it is measured with transitivity

or clustering coefficient (Rubinov and Sporns, 2010). For example, if there are three nodes

(A, B and C), and node A has an edge with node B and node B has an edge with node

C, the likelihood of an edge between node A and C will be higher. Finally, clustering is a

process that involves multiple nodes that form a group that increases the likelihood of edges

between them (Handcock et al., 2007; Krivitsky et al., 2009). For example, if there is a eight

node network (A, B, C, D, E, F, G and H), and nodes (A, B, C and D) form one cluster and

nodes (E, F, G and H) form a second cluster, the nodes within each cluster are more likely

to have edges within each cluster than between the two clusters.

Each outcome metric does not capture the unique aspects of each generative process (i.e.,

there is not a one-to-one relationship between generative processes and outcome metrics, but
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a one-to-many relationship; Goodreau et al., 2009). Thus, each outcome metric quantifies

certain aspects of networks, but it does not isolate the generative process that is responsible;

however, the interpretations of these outcome metrics are linked to a single generative pro-

cesses. For example, clustering coefficient can be described as the level of segregated neural

processing (i.e, the amount of specialized processing that occurs due to groups of nodes;

Rubinov and Sporns, 2010) within a network, but only if triadic closure was responsible for

generating the values produced by clustering coefficient, because triadic closure is a process

that results from triads of nodes influencing each other’s edge formation. The change in

values for clustering coefficient, however, could be due to other generative processes. For

example, if sociality is highly influential in the generation of a given graph, each node will

be more likely to have more edges and this will lead to more triangles to form; thus, this will

increase the clustering coefficient metric and not a result of triadic closure.

In what follows, we propose that it is best to have both seed based and graph theoretic

questions in a single model. In the neuroimaging literature, there are a number of limitations

of current approaches which have hindered the ability to use a single model for combining

seed based and graph theoretic approaches, but there are models that have been developed

by other fields (Holland and Leinhardt, 1981; Hunter, 2007; Hunter et al., 2008; Goodreau

et al., 2009; Handcock et al., 2017).

1.1 Four problems in current network analysis approaches

Current graph theory methods as employed in neuroimaging (Bullmore and Sporns, 2012;

Rubinov and Sporns, 2010) suffer from a number of important shortcomings which are par-

ticularly relevant in the domain of DOC. (We note that the following discussion is in the

context of network analysis as currently implemented for neuroimaging data, and is not

meant to imply that other fields have not found solutions to them. In fact, as we will argue

below, we are advocating for importing into the field of neuroimaging methods that have

successfully been applied in other domains.)
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1.1.1 Problem #1: Arbitrary enforcing of network density

Conventional graph theoretic approaches in neuroimaging require sparse networks. That is

to say, they require networks (i.e., connectivity matrices) to have some connections (i.e.,

edges) with non-zero values (typically integer, in binary networks, or fractional, in weighted

networks) and some with zero values – as opposed, for example, to fully connected networks in

which all edges have non-zero values (i.e., each node is connected to all other nodes with non-

zero edges). Yet, since brain networks are typically derived from pairwise correlations across

time-series of regions of interest, the starting point for network analysis is typically a fully

connected network (in fact, a complex network, which is both fully connected and has positive

and negative edges; Rubinov and Sporns, 2011). It is thus common procedure to make the

connectivity matrices sparse by fixing their density (i.e., the proportion of non-zero edges to

the total number of possible edges), which is done by retaining the strongest d connections

and setting all remaining ones to zero. The resulting network is thus sparse, with density

d
N(N−1)/2

, where N is the number of nodes in the network. On the one hand, this procedure

ensures that any uncovered difference across networks (e.g., patients vs volunteers; time-

point A vs time-point B) reflects some systematic aspect of their topological characteristics

and not, more trivially, the fact that they have different densities. On the other hand,

however, because of the lack of a principled approach to perform this procedure, it is currently

typical to iteratively re-calculate network characteristics at several density levels, from a

lower bound meant to ensure that networks are estimable (such that the average nodal

degree is no smaller than 2 × log(N); Watts and Strogatz, 1998) to an upper bound such

that the mean small-world characteristic of networks is no smaller than 1 or 1.5 (e.g., Monti

et al., 2013). While conventional, the idea of enforcing graphs to have the same density

across groups, time-points, or conditions is in itself problematic, because it is not hard

to imagine that some graphs might be naturally denser than others (see Nielsen et al.,

2013). This is particularly relevant in the context of the typical comparisons of interest

in DOC such as patients versus healthy volunteers, patients in a Vegetative State versus

patients in a Minimally Conscious State (versus patients in a Locked-in Syndrome), or within-

patient changes over time (e.g., acute-to-chronic designs). Of course, similar problems are
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encountered in many other contexts (e.g., adolescents versus older adults) and might even

apply to normal, within-group, variability in the healthy brain. Mandating equal density

across graphs might obscure important differences across conditions of interest, bias results,

and lead to spurious findings.

One solution to the problem of network iterative thresholding is to analyze complex

networks (i.e., fully connected and signed matrices; Rubinov and Sporns, 2011; Fornito et al.,

2013, 2016). Yet, despite this problem having been well documented, as shown in a recent

review focused on the use of graph-theoretic approaches in the clinical context, less than

7% of 106 published papers (up to April 2016) employed complex matrices (Hallquist and

Hillary, 2018). All remaining studies only considered non-negative and/or sparse matrices.

In addition, it is important to note two potentially unwanted limitations of using complex

matrices. First, the use of complex matrices assumes that the probability of connectivity

between two regions is spatially stationary, but it is in fact well known to be inversely

related to distance at both the neuronal and region levels (see Hellwig, 2000; Averbeck and

Seo, 2008; Braitenberg and Schüz, 1998). Second, the use of complex matrices affects the

formulation of some metrics (e.g., modularity; Rubinov and Sporns, 2011; Fornito et al.,

2013) because positive and negative edges are treated as separate sparse networks, an issue

that is further complicated by the frequent use of mean-centering preprocessing strategies

which are known to shift the distribution of positive and negative edges (Murphy et al., 2009;

Saad et al., 2012). Furthermore, the formulation and interpretation of other metrics (e.g.,

path based metrics such as characteristic path length/local efficiency, betweenness centrality,

etc.; Fornito et al., 2013; Wang et al., 2017), are also affected since the weights represent

both the strength and probability of the connections (i.e., density). Thus, analyzing fully

connected signed graphs does avoid the thresholding issue but at the cost of clouding the

interpretation of metrics such as density and path-based graph statistics.
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1.1.2 Problem #2: Network measures are not independent of each-other

A standard network analysis, as currently implemented in the field, typically assesses a

number of different topological measures in parallel, such as characteristic path length, av-

erage clustering, efficiency, and small-world characteristic, among others (c.f., Rubinov and

Sporns, 2011). Many of these characteristics, however, are not independent of each other. In

fact, they are often interrelated and can greatly influence each other (van Wijk et al., 2010;

Braun et al., 2012; Zalesky et al., 2012). Consider two metrics often employed in graph the-

oretic analysis of brain data: clustering coefficient and density. Density, as explained above,

is a measure of the number of existing edges within a network (i.e., connection with non-zero

value), divided by the total number of possible edges. These two network characteristics

are strongly interrelated: It has been shown that there is a clear relationship between a

networks density and its clustering coefficient (Zalesky et al., 2012). Similarly, dependencies

between many other network measures frequently employed in the neuroimaging literature

(e.g., degree, clustering coefficient, characteristic path length, and small world index) have

also been reported (van Wijk et al., 2010; Braun et al., 2012), highlighting the need to control

for these relationships in order to minimize the potential for spurious findings (see Rubi-

nov and Sporns, 2010; van Wijk et al., 2010). Conventionally, this problem is addressed by

arbitrarily fixing network density (see Problem #1). This approach, however, suffers from

two important shortcomings. First, as explained above, different networks might well have

different levels of natural – or stable – density. Second, it is a rather weak control. For

example, it only addresses the dependencies of network measures on density, but ignores the

many other known correlations among features of networks that are often assessed (cf., van

Wijk et al., 2010), which, to date, have gone unaccounted for in virtually all of the extant

literature in the field.
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1.1.3 Problem #3: Failure to account for structural information in shaping

functional networks

In the clinical context of DOC, despite the fact that patients are well known to have hetero-

geneous underlying pathology, which introduces many concerns for proper diagnosis (Bruno

et al., 2011a; Coleman et al., 2009), functional (e.g., Boly et al., 2012; Crone et al., 2018,?;

Ku et al., 2011; Lee et al., 2009; Laureys et al., 2000b; Monti et al., 2013; Rosanova et al.,

2012) and structural connectivity (Fernández-Espejo et al., 2011, 2012; Newcombe et al.,

2010; Wilson, 2010; Tollard et al., 2009; Zheng et al., 2017) are typically investigated sepa-

rately. This narrow approach is very problematic because it has been shown, in the rodent

model (Dı́az-Parra et al., 2017) and in healthy humans (Bettinardi et al., 2017; Mess et al.,

2015), that structural data can predict the functional connectivity as estimated by correla-

tions in the fMRI signal, as well as EEG phase coupling in healthy volunteers (Finger et al.,

2016). Failing to include both structural and functional data will have a similar effect on

the analysis of functional networks as omitting any other graph metric (i.e., problem #2): it

will result in improper estimation of the terms in the model and potentially spurious results.

This issue is particularly important in the clinical context of DOC given their highly het-

erogeneous pathology and the fact that this can change over time, which affects longitudinal

comparison of brain networks over time.

Diffusion weighted imaging (DWI) and blood oxygenation level dependent (BOLD) can

be used in conjunction to estimate connectivity matrices using joint independent component

analysis (jICA; Kessler et al., 2014), Connectivity Independent Component Analysis (con-

nICA; Amico and Goñi, 2017) or partial least squares (PLS; Mii et al., 2016). In general,

all three methods produce multiple group connectivity matrices based on the covariance of

BOLD and DWI data across all participants. Both jICA and connICA produce multiple

components that are maximally spatially independent (for a complete explanation of jICA

see Calhoun et al., 2006, 2009; Sui et al., 2011, and for a complete explanation of connICA

see Amico et al., 2017). PLS produce a linear combination of latent variables that maxi-

mally covary with each other based on weighted structural and functional connections (for a
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complete explanation of PLS see McIntosh and Lobaugh, 2004; Abdi, 2010; Krishnan et al.,

2011; McIntosh and Mii, 2013). These methods incorporate both structural and functional

connectivity in the estimation of the connectivity matrices, but they require researchers to

choose the number of components (in jICA and connICA) or number of latent variables (in

PLS). Changing these parameters influences the results of the connectivity estimation and

the standards for these parameters are still being investigated for both jICA and connICA

(Hyvrinen and Oja, 2000; Calhoun et al., 2009; Abou-Elseoud et al., 2010; Ray et al., 2013).

We thus propose an alternative to these methods that avoids the necessity to estimate the

functional and structural connectivity jointly. In the approach we describe below, the struc-

tural and functional connectivity matrices are estimated separately, and the former is used

as a variable in estimating graph statistics for the latter (see section §2.2 for a complete

description).

1.1.4 Problem #4: Network dynamics – Estimating network change over time

Finally, contrary to the assumption underlying conventional network analysis in neuroimag-

ing, connectivity between areas is unlikely to be stationary processes. Rather, brain activity

might best be viewed as a malleable and variable process over time (Ioannides, 2007). Yet,

even in the few cases where this limitation has been addressed (e.g., Barttfeld et al., 2015),

these types of approaches do not quantify dynamic change of connectivity across time (or

states). Rather, they just dissect a time-series into multiple static networks and compare

them over their respective topological properties. In other words, even these approaches

are static in nature and fail to capture the dynamics of network connectivity over time.

In the context of DOC, for example, this means that longitudinal analysis of brain data

can be employed to reveal differences in topological properties of networks at two different

time-points, but do not allow saying anything of the process of interest, which is the dy-

namics of how one network transitioned into another (e.g., how a network transformed as

consciousness was regained over time). These patients with a DOC are typically investigated

in a cross-sectional analysis by comparing healthy participants with a static network at a

single time point to group of patients with static network at a single time point (e.g., VS to
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healthy controls; Boly et al., 2011; Crone et al., 2011, 2015; Fernández-Espejo et al., 2012;

Kotchoubey et al., 2013; Sitt et al., 2014; Vanhaudenhuyse et al., 2010; Zhou et al., 2011)

or between patient groups (e.g., VS compared to MCS; Casali et al., 2013; Casarotto et al.,

2016; Crone et al., 2011, 2015; Comolatti et al., 2018; Demertzi et al., 2015; Fernández-

Espejo et al., 2011, 2012; Kotchoubey et al., 2013; Laureys et al., 2000a; Rosanova et al.,

2012; Sitt et al., 2014; Vanhaudenhuyse et al., 2010; Zhou et al., 2011). Additionally, there

have been some investigations into the parallel restoration of connectivity for a single patient

(Laureys et al., 2000a) and for a larger cohort (Crone et al., 2018), but these analyses still

investigate the differences between two networks. Together, all of these types of analyses

reveal the differences between the network architecture of patients and healthy controls, or

between patients with different levels of DOC, but does not investigate the recovery process

which involves the reorganization of networks and their topologies. In other words, it will

show the differences between the generative processes of each network, not the generative

processes to get from one network to another. This underlying generative process is the key

for each patient to recover. These processes involve network connectivity forming, networks

maintaining connectivity, or networks reducing connectivity. An extension of ERGM, seper-

able temporal ERGM (STERGM) allows for the modeling of two independent processes: the

formation of new connectivity and the dissolution of connectivity (i.e, both maintaining and

dissolving connectivity, see §2.1).

In this thesis, we addressed the four problems of network analyses with three studies and

a chapter describing the ERGM framework (see §2). The first study (see §3) demonstrated

the interaction of problem #2 and problem #3 on the estimation of functional in patients

with DOC and HCP participants while allowing each patient and HCP to have both their

functional and structural connectivity naturally vary (i.e., problem #1). The second and

third study focused on the importance of network dynamics for DOC (i.e., problem #4).

The second study (see §4) used structural connectivity to investigate the network dynamics

of formation and dissolution of connectivity associated with recovery of consciousness over

complex behavior in patients with DOC. The third study (see §5) used functional connectiv-

ity combined with structural connectivity metrics in a single model to investigate network
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dynamics in a smaller cohort of 12 patients with DOC.
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CHAPTER 2

Exponential Random Graph Models

In response to these four shortcomings of current network analysis, we present and demon-

strate a novel (in the context of DOC, for other contexts within neuroimaging, cf.: Simpson

et al., 2011, 2012, 2013) approach to graph analysis, referred to as Exponential Random

Graph Models (ERGM; Holland and Leinhardt, 1981). The core idea underlying ERGM is

that instead of considering graphs as fixed entities which can be described in terms of topo-

logical properties (e.g., clustering, path length, small world property), it attempts to generate

hypotheses about the (unobserved) stochastic processes that gave rise to an observed net-

work (Robins et al., 2007). Contrary to the prevalent approach in neuroimaging, then, the

presence/absence of an edge within a network is not considered to be a fixed property of

a graph, but rather a random variable generated by a stochastic process. In other words,

rather than assuming the observed network as “given” and fix, and describing its topological

characteristics (e.g., characteristic path length, clustering coefficient), it tries to characterize

the processes that have generated the observed network. One particularly appealing aspect

of this approach is that, so long as the total number of nodes (i.e., ROIs) constituting a

network remains unchanged, it allows for comparing across networks with different density

levels, thereby solving problem #1. The ERGM framework uses the following exponential

model:

Pθ(Y = y) =
exp(θTg(y))

c(θ)
(2.1)

where θ is a parameter vector that is modeled by g(y) (i.e., any statistic of the graph).

The parameter c(θ) is a normalizing constant representing the parameter estimate for all

possible graphs (Hunter et al., 2008). This normalizing constant is not able to be analytically

solved due to the combinatorics of the graph structure. We can nonetheless approximate the
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unknown population mean using c(θs) (i.e., the sample mean):

c(θ)

c(θs)
= Eθs exp(θ − θs)Tg(yi)

c(θ)

c(θs)
≈ 1

M

M∑
i=1

exp(θ − θs)Tg(yi) (2.2)

for derivations (see Hunter et al., 2008). These equations allows for an approximation of the

population mean using sample mean. A bootstrapping method using Markov Chain Monte

Carlo (MCMC) methods is used to sample and estimate the population mean. These methods

assume Markovian principles of independent draws and the ability to reach equilibrium.

Equilibrium is the state in which any edge that is toggled on or off results in an equally

probable graph. The general method is to take the ratio of the probabilities of Yij = 1 (i.e.,

adding a single edge) and Yij = 0 (i.e., no edge) conditioned on Y C
ij = yCij (i.e., all other pair

of nodes in the graph).

P (Yij = 1|Y C
ij = yCij)

P (Yij = 0|Y C
ij = yCij)

= exp θ∗(s(Yij = 1)− s(Yij = 0))

log
P (Yij = 1|Y C

ij = yCij)

P (Yij = 0|Y C
ij = yCij)

= θ∗∆(s(Yij))

LPL(θ) =
∑

log[P (Yij = yij)|(Y C
ij = yCij)] (2.3)

where the LPL(θ) is the log-pseudolikelihood for θ, which is maximized by taking the maxi-

mum pseudolikelihood for θ (Hunter et al., 2008). This estimation process is performed for

the model with all the parameters (i.e., θ). The estimates give the mean and standard error.

These estimates were tested for significance in each functional data set. Due to the MCMC,

a t-statistic can be estimated and is reported in the model output along with a p-value.

For interpretation purposes, equation 2.1 can be represented as follows (the full deriva-

tions can be found in Hunter et al., 2008):

logit(Pθ(Yij = 1|nactors, Y C
ij )) =

K∑
k=1

θkδZk(y) (2.4)

where k is the number of network statistics in the model and θk is the parameter estimate

for each statistic. The δZk(y) is the change in network statistic if a edge were added between
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any node i and j. Thus, the interpretation of the network statistics involve the change

in probability of an adding a edge with certain network statistic. The significance of a

parameter estimate is one compared to the expected parameter estimate in a null model

with the probability of all edges equal to 0.5 (i.e., Erdös and Rényi, 1959).

2.1 Separable Temporal Exponential Random Graph Model

STERGM (Krivitsky and Handcock, 2014) is an extension of the original ERGM. It is used to

assess the dynamics of networks as they change over time . The same underlying methods for

estimating ERGM is used in STERGM. A model with network statistics is used to estimate

the parameter estimates for a network that changes over time. To achieve this, two separate

networks are investigated. A formation network is generated conditional on forming edges,

P (Y + = y+|Y t; θ+) =
exp(θ+g(y+, X))

c(θ+, X, Y +(Y t))
, y+ ∈ Y +(yt) (2.5)

where a formation network Y + is characterized by formation parameters θ+ (Krivitsky and

Handcock, 2014). The formation network statistics are g(y+, X) and the normalizing con-

stant is c(θ+, X, Y +(Y t)). The second network formed is a dissolution network that is condi-

tional on the edges that dissolve. This network is represented by the same variables labeled

with minus instead of a plus,

P (Y − = y−|Y t; θ−) =
exp(θ−g(y−, X))

c(θ−, X, Y −(Y t))
, y− ∈ Y −(yt) (2.6)

where a dissolution network Y− is characterized by dissolution parameters θ− (Krivitsky

and Handcock, 2014). The dissolution network statistics are g(y−, X) and the normalizing

constant is c(θ−, X, Y − (Y t)). These networks can form a new network at time t + 1 by

applying formation and dissolution networks on yt. This can be expressed as:

Y t+1 = Y t ∪ (Y + − Y t)− (Y tY −) (2.7)

The formation and dissolution networks are independent of each other across the t + 1

time points (Krivitsky and Handcock, 2014). STERGM has the unique ability to model
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networks as they transform over time enabling research questions about the dynamics of a

network. The same model in Equation 4.1 was used in both the formation and dissolution

models. The quantifications of these networks are similar to ERGM, but these two models

slightly change the interpretation of the parameter estimates. In the formation model, a

positive parameter estimate indicates a tendency for edges for a network statistic form at

time point t + 1, and a negative parameter estimate indicates a lack of formation of edges

for a particular network statistic at time point t+1. The dissolution model has two separate

interpretations based on the sign of the parameter estimate. A negative parameter estimates

are interpreted as edges are more likely to dissolve and positive parameters indicate edges

are more likely to be preserved. Despite these differences in interpretation, all the same

procedures were used in STERGM as were used in ERGM (PM, FM, quality control using

MCMC diagnostics, and assessing fit using GOF) for both the formation and dissolution

models.

2.2 Graph Statistics

All ERGM models we used to analyze the patient data included the same graph statistics.

The model used for the first and third studies was specified as follows, where Pθ(Y = y):

=

exp(θ1edges + θ2nodecov(degree) + θ3nodecov(efficency) + θ5nodematch(latent)
+ θ5nodecov(cluster) + θ6nodemix(rest) + θ7nodematch(lobe) + θ8gwesp(alpha = λ))

c(θ)
(2.8)

Edges refers to the total number of edges for each functional connectivity graph. This term

allows control for the density of each graph over and above the types edges accounted for by

the rest of the terms in the model.

There are four nodal covariate terms for the diffusion data–three nodal covariates (i.e.,

degree, efficiency and cluster) and the nodemix (latent) term–and two nodal covariate for

the functional connectivity (i.e., nodemix for resting state networks and a nodematch for

the cerebral lobes). Degree is the number of edges for each structural node. Efficiency is

the local efficiency of each node. Cluster is the clustering coefficient of each node. The
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nodecov term estimates the probability of functional connectivity edge as a function of each

distribution of the structural terms (i.e., degree, local efficiency and clustering coefficient).

A positive coefficient indicates an increase in the probability of a functional connectivity

edge as structural term increases in magnitude. On the other hand, a negative coefficient

indicates an increase in probability of a functional connectivity edge as the structural term

decreases.

As shown in equation 4.1, there are two nodemix terms: latent and resting. The nodemix

(latent) is the within and between module connectivity of the structural connectivity. Thus,

this mixing term represents the probability of a functional connectivity edge given the mod-

ular membership based on the structural connectivity. The number of modules and modular

membership of each node is determined by a position latent cluster ERGM (Handcock et al.,

2007; Krivitsky and Handcock, 2008). These models have shown to be able to use a la-

tent space model with an a priori determined number of dimensions using the parameter d

(3 dimensions). The nodes are arranged in a euclidean system with proximity equating to

probability of an edge. The clusters are determined by the parameter G. This parameter

sets the number of Gaussian spherical clusters that are introduced in the latent space. The

estimation of position latent cluster ERGM is a two step Bayesian estimation, but the exact

specification is beyond the scope of this paper (see Handcock et al., 2007).

The nodemix (resting) is our mixing term for determining the inter- and intra-regional

connectivity of the resting state networks and sub-cortical regions of the functional data.

Multiple parameter estimates were produced for this term. Additionally, these mixing terms

used the exogenous node labels for each nodes membership in the seven resting state net-

works (Yeo et al., 2011) and sub-cortical regions. Each node of the brain network was labeled

either: frontoparietal, visual, somato-motor, limbic, dorsal attention, ventral attention, de-

fault, subcortex, basal ganglia, cerebellum, and thalamus. Each combination of the inter-

and intra-regional connectivity produced a mixing term and parameter estimate. For exam-

ple, one inter-regional mixing term would be frontoparietal and thalamic connectivity. This

parameter estimate would give the probability of an edge existing between the frontoparietal

network and thalamus. An example of intra-regional mixing term would be frontoparietal
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to frontroparietal. This term would express the probably of an edge within the frontopari-

etal network. These mixing terms were used to assess the connectivity between the within

the resting state networks, between the resting state networks, within the sub-cortical re-

gions, between the sub-cortical regions, and between resting state networks and sub-cortical

regions. This term incorporates questions that would be addressed using seed based connec-

tivity analyses. The nodematch for lobe term incorporates another another exogenous nodal

labeling of ROIs using their anatomical location within the four cerebral lobes (i.e, frontal,

occipital, parietal, and temporal) and final term for the entire subcortex. This was chosen

to specifically model the intra-lobe functional connectivity.

The geometrically weighted edged shared partners (GWESP) can be expressed by this

equation (Hunter, 2007):

θt = logλt

v(y; θt) = eθt
n−2∑
i=1

[
1− (1− e−θt)i

]
EPi(y) (2.9)

In this equation, v is the GWESP term and θt is the log of the decay parameter that was

fixed in all the data sets. The EPi(y) is the edge shared partners term for the entire graph.

It accounts for the number of each type of edge shared partner. An edged shared partner

is triangle that shares a common base. Edge shared partners is a metric used to quantify

the amount of clustering in the form of transitivity in a network. High positive parameter

estimates indicate that transitivity is present above and beyond all the other statistics in

the model. Transitivity is a higher order relationship present in most graphs which are

the local and/or global communication and the amount of local cohesion. Differences in

transitivity between patients could be a key change that occurs from injury. This would be

a disruption of the clustering found within the patients brain. This type of disruption would

hamper local and/or global communication and additionally it would indicate a lack of local

cohesion within a network.

The analysis was performed using the ERGM package (Hunter et al., 2008) in R. There

are two ERGMs used on the patient data. A FM and used all the terms from equation 4.1.

The FM was fit multiple times to get assess the proper λ (the decay parameter) for the
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GWESP term. The range of λ began at 0.05 and increase by increments of 0.05 up to 2.0.

Each iteration was checked by inspecting the diagnostics of the MCMC. The models that

have the best fit for the parameter estimate GWESP were chosen (i.e., λ = 0.45). A second

model, the PM was fit. The structural terms (i.e., the three nodecov and the nodemix for

latent) were omitted from this model to demonstrate the effects on the rest of the parameter

estimates.

The FM’s graph statistics were chosen based on two reasons: the type of functional

data being analyzed (i.e., resting state data) and the first three problems outlined above

(see section §1.1.1, §1.1.2 and §1.1.3). The nodemix (resting) terms were chosen because

this patient’s functional connectivity matrices were estimated from the BOLD correlations

during the resting state scans. Thus, the intra- and inter- regional connectivity would be

best characterized by putative resting state networks. The number of resting networks were

chosen based on a data driven approach (i.e., Yeo et al., 2011) that estimates a number of

networks based on stability of clusters (for details on the clustering algorithm see Lashkari

et al., 2010) estimated from 1000 subjects’ functional data. A seven network parcellation

was chosen because it minimized the instability (Yeo et al., 2011) and matches what has

been previously discussed in the literature (e.g., Buckner, 2010; Cohen et al., 2008; Fox

et al., 2006; Vincent et al., 2008). Additionally, the thalamus group was added because of its

possible involvement in DOC (e.g., Crone et al., 2014; Laureys et al., 2000b; Vanhaudenhuyse

et al., 2010; Zhou et al., 2011) or anesthesia induced loss of consciousness (e.g., Boveroux

et al., 2010; Martuzzi et al., 2010; Schrouff et al., 2011; Stamatakis et al., 2010). Finally, the

subcortical and cerebellum groups were added to ensure every node fit a grouping label.

The edges term allows for networks with varying density to be modeled and compared

(cf., Problem #1, section §1.1.1). The higher order term (i.e., GWESP) describes the local

and/or global communication which could be an important aspect in the recovery from brain

injury (e.g., Chennu et al., 2014; Crone et al., 2014; Schröter et al., 2012), and because it

alleviates the problem of interrelation among graph theoretic measures (cf., Problem #2,

section §1.1.2) by accounting for the higher order term’s variance and thus avoiding it being

improperly allocated to lower order terms (i.e., edges, node mixing, and structural terms). As
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shown below, failing to include the higher order term can affect the estimation of parameters

in either magnitude or sign. Structural connectivity is important because, as stated in third

problem (cf., section §1.1.3), it can be severely affected by TBI, systematically changing

over time and/or patient cohorts, and because it is interrelated with functional connectivity.

Thus, we chose four terms for the structural connectivity that would capture the number of

connections of each node (i.e., degree), a measure of integration (i.e., local efficiency Rubinov

and Sporns, 2010), and higher order relationships (i.e., clustering and modularity). The two

higher order terms were chosen because they capture two different higher order dynamics:

local grouping of nodes (i.e., clustering coefficient Rubinov and Sporns, 2010) and community

structure (i.e., modularity; Rubinov and Sporns, 2010).
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CHAPTER 3

A Single Model for Structural and Functional

Connectivity: Preventing misinterpretations of

connectivity differences in patients with TBI

3.1 Methods

We apply the powerful and flexible ERGM approach to estimating network statistics for

characterizing (brain) networks to demonstrate that problem #2 and problem #3 cause

false positives (FPs) and false negatives (FNs), but in patients they occur at different rates

depending on the level of consciousness by behavioral assessment and the stage of TBI (i.e.,

different rates between acute and chronic patients). To anticipate the key points that will

follow, ERGM, which has been successfully employed in other contexts (Goodreau et al.,

2009; Holland and Leinhardt, 1981; Hunter, 2007; Hunter et al., 2008), offers a number of

substantial advantages which are particularly important in the clinical context of DOC. First,

it does not require imposing (and assuming) the same level of density across graphs, thus

allowing estimating characteristics of each graph at its natural density level. Second, it allows

for controlling the dependencies between network characteristics. In this sense, in contrast

to the conventional approach, which can be viewed as a series of univariate regressions

(i.e., one per metric) assessing the topological characteristics across groups of graphs (e.g.,

patient groups and controls versus patients), ERGM is making use of a multiple regression

framework (Goodreau et al., 2009), in which all features are considered together, and thus

returns the “unique” contribution of each network measure. Third, the multiple regression

framework extends to graph theoretic measures characterizing the structural connectivity
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of a network, thus accounting and “parceling out” the effect of cross-sectional differences

(e.g., Zheng et al., 2017) and longitudinal changes in structural connectivity (e.g., Voss

et al., 2006; Thengone et al., 2016) across graphs. Finally, we used 12 patients’ functional

connectivity to show the effects on false positives FPs and FNs when the structural terms

or triadic closure term (i.e., GWESP term) are left out of the model. The same analysis was

conducted for 12 age and sex matched HCP participants using their two functional imaging

sessions that were one day apart.

3.1.1 Human Connectome Project Participants

The data for this analysis was taken from the Human Connectome Project (HCP; Van Essen

et al., 2013), which is a public repository of high quality structural and functional MR data

in a large set of healthy volunteers. For the purposes of this study, we selected a subset

of the data (N=12) so to match the characteristics (i.e., age and gender) of the the final

set of patient population to be used in Study #1. These HCP participants (see Table 3.1

were randomly sampled from the S1200 (n=9) release, the Q3 release (n=1), S500 (n=1)

and S900 (n=1) releases to best match the age and gender of the patients at the time of

their injury (see Table 3.2 for the patients that were matched and see Table 4.1 for their

demographics). These HCP participants only had a single DWI imaging session. We will

use that DWI imaging for the structural connectivity for both days of resting state data.

3.1.1.1 HCP Experimental Design

From the HCP dataset, we made use of anatomical (T1-weighted), diffusion (Diffusion Tensor

Imaging; DTI), and functional (T2*-weighted) data. T1-weighted images were acquired with

a 3D MPRAGE sequence (repetition time [TR] = 2400 ms, echo time [TE] = 2.14 ms, flip

angle [FA] = 8 deg). DTI images were acquired with a spin-echo echo planar sequence

(TR = 5520 ms, TE = 89.5 ms, FA = 78 deg / 160 deg, 96 directions). Finally, blood

oxygenation level dependent (BOLD) functional image were acquired with a gradient-echo

echo planar image (TR = 720 ms; TE = 33.1 ms; FA = 52 deg). All the data were downloaded
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Subject Release Acquisition Gender Age Full 3T MR RS fMRI fMRI TR fMRI TE fMRI Slice Thickness DTI TR DTI TE DTI Slice Thickness DTI.B.values

HCP 001 169545 S1200 Q13 M 22-25 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 002 193845 S1200 Q13 M 22-25 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 003 350330 S1200 Q13 F 22-25 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 004 634748 S1200 Q13 F 22-25 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 005 694362 S1200 Q13 F 22-25 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 006 219231 S1200 Q05 M 26-30 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 007 421226 S1200 Q13 M 31-35 true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 008 211417 Q3 Q03 M 36+ true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 009 902242 S1200 Q08 F 36+ true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 010 757764 S1200 Q13 F 36+ true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 011 180937 S500 Q06 M 36+ true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

HCP 012 792867 S900 Q12 M 36+ true 100% 720 ms 33.1 ms 2 mm isotropic, 72 slices 5520 ms 89.5 ms 1.25 mm isotropic, 111 slices 1000 2000 3000

Table 3.1: HCP demographics and MRI imaging parameters. The 12 participants

were age and gender matched to the 12 patients for the first study. The HCP identification

numbers are listed. Additionally, the release date of the data along with the acquisition year

are listed. Finally, the DWI and functional MRI parameters are listed for each participant,

and they were the same for all acquisition times.

preprocessed using the miniminally processed pipeline (Glasser et al., 2013; Van Essen et al.,

2013).

3.1.1.2 Functional Connectivity Patient Cohort

Of the original 31 patients, a subset of 15 patients (P054, P055, P066, P069, P074, P079,

P083, P084, P085, P089, P092, P096, P097, P099, P100) with more than 150 samples (i.e.,

TR count) for functional connectivity analysis were selected for the first and third studies.

An additional 3 patients were excluded due to BOLD artifacts (patient P083), preprocessing

errors (patient P097), or registration errors (patient P100). After these final exclusions there

were 12 patients (see Table 3.2), which seven of these patients were male and five were female.

All of these patients were presented with a post-resuscitation GCS during the acute stage of

TBI which was transformed into an inferred GOS-E (Crone et al., 2018). Additionally, the

GOS-E was assessed at the chronic stage of TBI. Together, the inferred GOS-E and chronic

GOS-E were used to split 7 patients in the U2C group and 5 patients in C2C group.
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3.1.1.3 Patients’ Experimental Design

The 31 patients underwent two imaging sessions over the span of at least 158 days to at

most 238 days. The first session occurred at most 37 days post injury (see Table 4.1), and

the follow-up session took place 238 days post-injury. At each session the patient underwent

(among other clinical and research sequences) anatomical (T1-weighted) and functional (T2∗-

weighted) data protocols. T1-weighted images were acquired with a 3D MPRAGE sequence

(repetition time [TR] = 1900 ms, echo time [TE] = 3.43, 1×1×1 mm). BOLD functional data

were acquired with a gradient-echo echo planar image (for the 12 patients with TR counts

over 150 see Table 3.2 for the slice thickness, TR count, TE, and TR). Diffusion Weighted

data were acquired with an echo planar sequence (for number of gradient directions, TR,

TE, and slice thickness see Table 4.3) using a b-value of 1000 and acquiring an additional B0

image. Acute data were acquired on the in-patient 3 Tesla Siemens TimTrio system at the

Ronald Reagan University Medical Center for patients P003, P005, P007, P014, P018, P021,

P023, P024, P026, P027, P029, P039, and P066, and rest of the patients’ acute data were

acquired on a 3 Tesla Siemens Prisma system. All the chronic data were acquired on the

out-patient 3 Tesla Siemens Prisma system also at the Ronald Reagan Medical Center at the

University of California Los Angeles. The study was approved by the UCLA institutional

review board (IRB). Informed consent was obtained from the legal surrogate, as per state

regulations.
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Acute Chronic Acute Chronic Acute Chronic Acute Chronic

Matched MRI TR Count TR Count Slice Thickness Slice Thickness TR TR TE TE

P054 Yes 200 200 3.4375x3.4375x3 mm, 40 Slices 3.4375x3.4375x3 mm, 40 Slices 3000 ms 3000 ms 25 ms 25 ms

P055 Yes 200 200 3.5 mm isotropic, 52 Slices 3.4375x3.4375x3 mm, 64 Slices 3000 ms 3000 ms 25 ms 25 ms

P066 No 200 200 3.4375x3.4375x3 mm, 64 Slices 3.4375x3.4375x3 mm, 50 Slices 3000 ms 3000 ms 25 ms 25 ms

P069 Yes 200 200 3.4375x3.4375x3 mm, 50 Slices 3.4375x3.4375x3 mm, 52 Slices 3000 ms 3140 ms 25 ms 25 ms

P074 Yes 200 200 3.4375x3.4375x3 mm, 50 Slices 3.4375x3.4375x3 mm, 50 Slices 3000 ms 3000 ms 25 ms 25 ms

P079 Yes 200 200 3.4375x3.4375x3 mm, 50 Slices 3.4375x3.4375x3 mm, 50 Slices 3000 ms 3000 ms 25 ms 25 ms

P084 Yes 200 200 3.4375x3.4375x3 mm, 50 Slices 3.4375x3.4375x4.25 mm, 37 Slices 3000 ms 2006 ms 25 ms 25 ms

P085 Yes 200 200 3.4375x3.4375x3 mm, 40 Slices 3.4375x3.4375x4.25 mm, 37 Slices 3000 ms 2006 ms 25 ms 25 ms

P089 Yes 200 200 3x3x3.99, 33 Slices 3.4375x3.4375x4.25 mm, 37 Slices 2000 ms 2006 ms 30 ms 25 ms

P092 Yes 300 300 3.4375x3.4375x4.25 mm, 37 Slices 3.4375x3.4375x4.25 mm, 37 Slices 2000 ms 2006 ms 25 ms 25 ms

P096 Yes 300 300 3.4375x3.4375x4.25 mm, 37 Slices 3.4375x3.4375x4.25 mm, 37 Slices 2000 ms 2006 ms 25 ms 25 ms

P099 Yes 300 300 3.4375x3.4375x4.25 mm, 37 Slices 3.4375x3.4375x4.25 mm, 37 Slices 2000 ms 2006 ms 25 ms 25 ms

Table 3.2: Patients’ functional MRI parameters.. The functional MRI parameters

are tabulated for each patient. These parameters’ descriptions are the same as the DWI

paramters’s descriptions, except they are for the functional MRI imaging session. An addi-

tional parameter for the number to TRs are tabulated under TR count.
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3.2 Data Preprocessing

3.2.1 BOLD data preprocessing

The functional data underwent a number of conventional preprocessing steps including brain

extraction, slice timing correction, motion correction, band-pass filtering (0.08 ≤ Hz ≤ 0.1),

and removal of linear and quadratic trends. A nuisance regression was employed to parcel

out signals of non-interest including motion parameters, white matter, cerebral spinal fluid,

and full-brain mean signal (which has been shown to alleviate the consequences of in-scanner

motion; Power et al., 2012) within FSL (Jenkinson et al., 2002). Affine registration of the

functional data to the standard template (MNI) was performed using Advanced Normaliza-

tion Tools (ANTs; Avants et al., 2008, 2011). Our processing pipeline for the functional

data are qualitatively similar to the minimally processed pipeline for the HCP data (Glasser

et al., 2013; Van Essen et al., 2013). One important note is that our comparison of connec-

tivity is within patients to within HCP participants. This should control for some of the

differences between the pipelines, but not all of them.

3.2.2 DWI data preprocessing

The patients’ diffusion data were preprocessed using the following pipeline: DWI preprocess-

ing, registrations, probabilistic tractography with tractography thresholding. All of these

processes were run using a bash script in parallel using the GNU Parallel package (Tange,

2011). These step are similar to the HCP pipeline, but as with the functional data there

are differences between the pipelines, which should control for some of the differences found.

However, an full exploration on the effects due to these differences are beyond the scope of

this thesis. One last note, while the diffusion data was downloaded and preprocessed, we

ran the the Bayesian estimation of the diffusion profile and probabilistic tractography for

the patients and HCP participants.

DWI preprocessing. All preprocessing procedures were visually checked for optimal

quality. The T1-weighted data were brain extracted (optiBET; Lutkenhoff et al., 2014) and
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bias field corrected (BrainSuite BFC; Shattuck et al., 2001). The diffusion-weighted data

were prepared for tractography with the following steps: 1) visual quality checking of raw

images; 2) artifact checking/removal and motion correction with vector rotation (DTIprep;

Oguz et al., 2014); 3) eddy current distortion correction followed by tensor fitting (i.e., linear

fitting using weighted least squares) and estimation of diffusivity metrics (BrainSuite’s BDP;

Bhushan et al., 2012; Haldar and Leahy, 2013); 4) brain extraction of the b0 image (BET;

Smith, 2002); and 5) GPU-enhanced Bayesian estimation of the diffusion profile with up to

two principal directions per voxel (i.e., allowing for crossing/kissing streamlines) using FSLs

bedpostx (Behrens et al., 2003b; Hernández et al., 2013).

Registrations. All registrations were visually checked for optimal quality. The following

steps were conducted: 1) linear registration of the native diffusion data (b0 image) to the

native T1-weighted data (ANTs IntermodalityIntrasubject; Avants et al., 2011); 2) nonlinear

registration (ANTs) of the native T1-weighted data to the Montreal Neurological Institute

(MNI) standard space (MNI Avg 152 T1 2x2x2mm standard brain); 3) forward or inverse

transform concatenations (ANTs; Avants et al., 2011) to move between native diffusion,

native T1, and the MNI template.

Probabilistic tractography. GPU-enhanced probabilistic tractography between all

regions of the whole-brain atlas (i.e., iteratively seeding from each region to all other regions

as targets) was conducted with the matrix1 option in FSLs probtrackx2 (Behrens et al.,

2003b, 2007). A minimum distance of 4.8mm (i.e., 2 voxel widths) was set to prevent artificial

streamlines passing through contiguous regions. The output matrix of streamline counts

between all regions was thresholded to remove spurious streamlines with an optimization

procedure that minimizes asymmetries between the seed/target assignments for each ROI-

ROI pair (MANIA; Shadi et al., 2016).

3.3 Brain Network Construction

For each dataset (both the functional and diffusion data), a graph was constructed to pro-

vide a mathematical description of the brain as a functional network. Brain graphs were
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Figure 3.1: Parcellation for structural and functional connectivity. Cortical and

subcortical parcellation of the brain data (Craddock et al., 2012). The imaging sessions’ data

sets were parcellated into 154 ROIs throughout the cortex, sub-cortical nuclei, cerebellum

and brainstem. (Figure from Monti et al., 2013)

constructed in two steps. First, these data sets were parceled into 154 ROIs spanning the

cortex, sub-cortical nuclei, cerebellum and brainstem (see Figure 3.1). This parcellation

scheme, which was defined independently of our data, is made freely available by Craddock

and colleagues (Craddock et al., 2012). Additionally, we used the Oxford thalamic connec-

tivity atlas (Behrens et al., 2003a) to further refine the parcellation of the thalamus from

6 to 14 and we parcellated the basal ganglia into 6 ROIS (caudate, putamen, and globus

pallidus each in the left and right hemispheres) for a total of 154 ROI (i.e., 134 Craddock

ROIs, 6 basal ganglia ROIS and 14 Thalamic ROIs). While other parcellation schemes are

available (e.g., Harvard-Oxford atlas, AAL atlas), the present one has two main advantages

(cf., Monti et al., 2013). First, being functionally defined, it clusters spatially proximal

voxels by the homogeneity of their functional connections as opposed to clustering voxels
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by anatomical position which, as exemplified by the case of the precentral gyrus ROIs in

both the AAL and the Harvard-Oxford atlases, might cluster together functionally distinct

sub-regions. Second, at our chosen level of resolution, the Craddock ROIs have almost 50%

more granularity as either structural atlas (i.e., 154 ROIs versus, 90 and 112 for the AAL

and Harvard-Oxford atlases, respectively). Following parcellation, the average time-course

of all voxel within each ROI were extracted and correlated across each pair of regions.

Functional connectivity was assessed with a partial correlation method using the Markov

Network Toolbox (MoNeT; Narayan et al., 2015) in MATLAB. This approach, referred

to as R3 (as in resampling, random penalization, and random effects), combines a penal-

ized maximum likelihood estimation or graphical lasso procedure with a resampling-based

(bootstrapped) model selection procedure, on whitened BOLD timeseries, to infer fully-data

driven stable functional connectivity estimates at the single-subject (or group) level. Un-

der this approach, each fMRI time series is repeatedly bootstrapped in order to estimate the

within-subject variability and matrices of penalty parameters which reduce selection bias and

variability. This method thus reduces the spurious connections from indirect sources arising

from the high dimensionality of fMRI data often seen when using the conventional Pearsons

r method. Using partial correlations with regularization parameters, the indirect sources are

eliminated and the sparsity of each matrix is determined by the within subject variability.

Thus, each functional data set returns a connectivity matrix that represents connectivity

from direct sources, rather than indirect ones, and that is sparse, as determined on a single-

subject basis through bootstrapping and regulatization. This latter point side-steps entirely

the need for arbitrary and iterative thresholding approaches (Rubinov and Sporns, 2010). It

is important to point out, however, another important difference between the partial corre-

lations approach described above and the standard correlation approach to estimating brain

networks as performed by most previous work (e.g., Boveroux et al., 2010; Monti et al., 2013;

Schrouff et al., 2011). On the one hand, the conventional correlational approach has the ad-

vantage of allowing straightforward interpretation of the elements of adjacency matrices as

strength of the functional connectivity between nodes. On the other hand, the matrices

generated are fully connected and thus requiring application of a non-linear transformation
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(e.g., thresholding) in order to render them sparse a condition necessary for application of

many common graph theory metrics (Rubinov and Sporns, 2010). In contrast, the partial

correlation method employed here returns a sparse matrix. However, it does so at the cost

of losing interpretability of graph weights which can now be seen as the functional connec-

tivity between two nodes i and j after controlling for the correlations with other nodes in

the neighborhood (i.e., connected with) say i. For this reason, matrices obtained with

this novel methodology are typically binarized, thus resulting in a sparse matrix of ones and

zeros indexing the presence/absence of functional connectivity between each pair of nodes

(i.e., ROIs).

3.3.1 Analyses

3.3.1.1 ERGM

For both the HCP participants’ and patients’ datasets, we ran 4 ERGM: complete model (see

§2.2), structural model (i.e., all terms except GWESP), GWESP model (i.e., all terms except

structural terms), and base model (i.e., all terms except GWESP and structural terms). We

compared these 4 ERGMS in three combinations: base model to structural model (i.e.,

GWESP effect), base model to GWESP model (i.e,. structural effect), and GWESP model

to complete model (i.e, interaction effect). The first comparison was to isolate the effects

of leaving out structural terms discussed in problem #3. The second comparison was to

isolate the effects of leaving out a term that accounts for triadic closure (i.e., the GWESP

term) discussed in problem #2. Finally, the third comparison demonstrates the effects of

leaving out the structural terms while still accounting for triadic closure (i.e., a combination

of problem #2 and #3). We labeled on model as the full model and one as the partial model

in each comparison.

To compare the affects of not accounting for specific terms, we tallied the change in PEs

when the terms were omitted. If a PE was significant in the full model (i.e., the model with

more terms for that specific comparison), but not the partial, we label this as a FN. FP

was a PE that was significant in PM, but not the FM. We group the PEs based on whether
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they belonged to the cortical regions or subcortical to see if within cortical connectivity was

affected, within subcortical connectivity, or between cortical to subcortical connectivity.

These tallies of FP and FN were compared for differences between patients grouped

based on their level of consciousness at each imaging session using a behavior assessment

(see Chapter 4 for a complete description of the behavioral assessment used). This was to

assess differences used in many cross sectional analyses for DOC patients (e.g., Boly et al.,

2011; Crone et al., 2011, 2015; Fernández-Espejo et al., 2012; Kotchoubey et al., 2013; Sitt

et al., 2014; Vanhaudenhuyse et al., 2010; Zhou et al., 2011). To mirror this in the HCP

datasets, we compared the first resting state imaging to the second resting state imaging

session.

3.3.1.2 ERGM model fits

Due to the large number of total ERGM conducted (192 in total across patients and HCP

participants), we will only compare for two patients (i.e., P092 in acute stage TBI and P085

in chronic stage TBI) and HCP patients (i.e., HCP002 from the first and HCP008 resting

state imaging sessions) for the complete and GWESP models assessed by using goodness of

fit (GOF) plots (Hunter et al., 2008). After the model was estimated, a thousand simulations

were run from the model statistics. These simulations were compared to the original graphs

probabilities for each graph statistic. This is to ensure that the model represents a graph

similar to the original data that it was modeled from. We will assess the overall model

statistics from equation 4.1, edge shared partner distributions, and degree distributions.

3.3.1.3 Multinomial Regressions

Using the nnet package Venables and Ripley (2013) in R, we used the mlogit function to

multinomial regressions to predict the differences between unconscious patients’ FP and FN

rates for the cortical groupings. The no error for all grouping was the reference group for

the outcome variable and the acute conscious patients were the reference for the predictor

variable. For the cortical group there were 6 possible categories predicted, which were FN
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and FP for each grouping. The same comparisons were conducted for the HCP participants,

but there was only one possible comparison between the first and second resting state scan.

Finally, we transformed all the logits into odds ratios for reporting and interpretations.

3.4 Results

Multinomial Regression: Cortical Nodal Labeling

Comparison: Interaction effect GWESP effect Structural effect

Constant Rest2 Constant Rest2 Constant Rest2

False negatives for Cortical to Subcortical 0.00597∗∗∗ 1.49 0.00614∗∗∗ 1.97

(0.355) (0.458) (0.355) (0.435)

False positives for Cortical to Subcortical 0.0269∗∗∗ 0.716 0.039∗∗∗ 0.681 0.0338∗∗∗ 0.628

(0.169) (0.260) (0.141) (0.220) (0.153) (0.245)

False negatives for Within Cortical 0.0157∗∗∗ 0.614 0.001∗∗∗ 0.984 0.937∗∗∗ 0.797

(0.220) (0.355) (0.708) (1.001) (0.198) (0.296)

False positives for Within Cortical 0.0299∗∗∗ 1.09 0.031∗∗∗ 0.937 0.0515∗∗∗ 0.869

(0.160) (0.222) (0.157) (0.224) (0.125) (0.183)

False negatives for Within Subcortical 0.00448∗∗∗ 0.826 0.002∗∗∗ 0.656 0.00307∗∗∗ 1.73

(0.409) (0.607) (0.578) (0.914) (0.501) (0.628)

False positives for Within Subcortical 0.00149∗∗∗ 0.496 0.002∗∗∗ <0.0001 0.000768∗∗∗ 1.97

(0.708) (1.23) (0.578) (<0.0001) (1.00) (1.23)

Observations 2904 2904 2904

Log Likelihood -1072.262 -1702.825 -1316.831

Akaike Inf. Crit. 2168.524 1722.825 2657.662

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.3: The effect of imaging session day on FPs and FNs. For the cortical nodal

labeling, the FPs and FNs for each type of connectivity pattern were predicted for the first

resting state imaging days. The change in logits and their standard errors in parentheses are

listed for the interaction, GWESP and structural effect comparisons.

Consistent with the argument we made in the introduction (see §1.1.1), as shown in

Table 3.4, the brain network construction using MoNeT resulted in with different estimated

densities. Overall, the density varied between resting state session 1 and session 2 in all

participants (except HCP011) within the range between 0.003 to 0.0175. Across participants,

the densities ranged from 0.1676 to 0.2159. The structural connectivity, on the other hand,

had less variability in the densities of the graphs across subjects from 0.0531 to 0.0632. For

the patients, the density of the functional connectivity differed between resting acute session
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Acute Chronic Rest1 Rest2

P054 HCP001

Functional Density 0.1524 0.1456 Functional Density 0.1799 0.1901

Structural Density 0.0648 0.0554 Structural Density 0.0534 NA

P055 HCP002

Functional Density 0.1491 0.1395 Functional Density 0.1735 0.1854

Structural Density 0.0587 0.053 Structural Density 0.0543 NA

P066 HCP003

Functional Density 0.1356 0.1344 Functional Density 0.1783 0.1702

Structural Density 0.0527 0.0535 Structural Density 0.0632 NA

P069 HCP004

Functional Density 0.1341 0.1387 Functional Density 0.1862 0.1676

Structural Density 0.0637 0.0542 Structural Density 0.0531 NA

P074 HCP005

Functional Density 0.1425 0.1306 Functional Density 0.1812 0.1787

Structural Density 0.056 0.0565 Structural Density 0.0576 NA

P079 HCP006

Functional Density 0.1419 0.1329 Functional Density 0.1781 0.1748

Structural Density 0.0539 0.0546 Structural Density 0.0547 NA

P084 HCP007

Functional Density 0.1511 0.1264 Functional Density 0.1919 0.1854

Structural Density 0.0557 0.0562 Structural Density 0.0538 NA

P085 HCP008

Functional Density 0.1384 0.1274 Functional Density 0.2041 0.1996

Structural Density 0.0546 0.057 Structural Density 0.0556 NA

P089 HCP009

Functional Density 0.1268 0.126 Functional Density 0.1829 0.1852

Structural Density 0.0548 0.0537 Structural Density 0.054 NA

P092 HCP010

Functional Density 0.128 0.1299 Functional Density 0.1829 0.1826

Structural Density 0.0585 0.0598 Structural Density 0.0537 NA

P096 HCP011

Functional Density 0.1039 0.137 Functional Density 0.1991 0.1991

Structural Density 0.057 0.0561 Structural Density 0.0543 NA

P099 HCP012

Functional Density 0.1241 0.1385 Functional Density 0.2159 0.1984

Structural Density 0.0541 0.0535 Structural Density 0.0539 NA

Table 3.4: Densities for the functional and structural connectivity. The functional

connectivity and structural connectivity was allowed to naturally vary based on the thresh-

olding procedure (see §3.2). There is no clear difference within the patients when comparing

acute and chronic stage of TBI for neither the structural or functional density. The HCP

participants also show no clear difference between resting state imaging on day 1 compared

to day 2.
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Complete Model GWESP Model

Observed min M max p-value min M max p-value

HCP001 Rest1

Inter-Frontoparietal Subcortical 11 5 10 19 1 3 8.600 14 0.200

Inter-Default Visual 82 65 78.700 90 0.800 65 77.400 88 0.200

Inter-Default Limbic 69 57 64.800 70 0.200 56 68 80 1

Inter-Subcortical Thalamus 14 13 16.500 20 0.200 3 13 21 1

Inter-Default Ventral Attention 79 75 86.100 100 0.200 62 78.300 86 1

HCP002 Rest1

Edges 2, 044 2, 023 2, 059.600 2, 113 1 1, 901 1, 983.800 2, 064 0.200

Inter-Limbic Thalamus 20 15 20.500 26 1 9 14.900 22 0.200

Within Subcortical 159 144 161.800 173 0.600 112 143.400 169 0.200

Gwesp (Fixed, λ=0.6 3, 634.600 3, 593.262 3, 660.370 3, 756.905 1 3, 367.806 3, 521.756 3, 670.710 0.200

HCP003 Rest1

Inter-Dorsal Attention Dorsa Attention 7 6 8.500 12 0.200 3 6.700 11 1

Inter-Subcortical Visual 10 6 8.300 14 0.200 4 10.300 18 0.800

HCP004 Rest1

Within Thalamus 23 16 25.900 33 0.400 23 32.200 39 0.200

Within Subcortical 138 118 144.300 160 0.400 140 160.600 169 0

HCP005 Rest2

Inter-Frontoparietal Somatomotor 45 29 38.800 45 0.200 30 43.300 50 1

Within Subcortical 174 156 184.100 200 0.200 148 167.400 176 0.600

HCP006 Rest2

Inter-Frontoparietal Somatomotor 45 29 38.800 45 0.200 30 43.300 50 1

Within Subcortical 174 156 184.100 200 0.200 148 167.400 176 0.600

HCP008 Rest2

Inter-Limbic Thalamus 26 19 23 30 0.400 16 20.800 29 0.200

Inter-Somatomotor Thalamus 75 64 73.800 87 0.800 60 67.900 76 0.200

Inter-Limbic Visual 28 15 27.100 37 0.800 18 21.900 27 0

HCP009 Rest1

Inter-Limbic Subcortical 16 14 17.400 21 1 17 19.200 24 0

Inter-Frontoparietal Ventral Attention 46 35 46.700 52 0.800 45 49.900 57 0.200

Inter-Dorsal Attention Visual 28 21 28.200 38 1 20 24.200 34 0.200

HCP010 Rest1

Inter-Basal Ganglia Default 33 24 31.700 44 0.400 25 29.200 32 0

Inter-Default Dorsal Attention 41 29 40.100 53 0.800 36 44.400 47 0.200

HCP010 Rest2

Inter-Basal Ganglia Limbic 13 7 11.100 18 0.200 8 12.900 21 1

Within Temporal lobe 71 62 76 83 0.200 66 70.700 76 1

HCP012 Rest2

Inter-Basal Ganglia Ventral Attention 18 17 20.800 30 0.200 12 16.200 24 0.600

Within Frontal lobe 332 318 339.700 354 0.200 311 336.400 350 0.600

Table 3.5: Goodness of fit differences for the interaction effect comparison for

graph statistics. We are displaying the four worst fit differences for the two models in

the interaction effect comparison. The observed column is the original data’s values for

each graph statistic, while the minimum, mean, maximum, and p-value for the simulated

graphs based on each of the ERGM models are displayed. They are the biggest difference

between the complete model and the GWESP model. Overall, all the patients’ ERGM for the

complete model and GWESP effect fit the data well based on the graph statistics modeled

but the GWESP model had 4 p-values < 0.05.
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Complete Model GWESP Model Complete Model GWESP Model

HCP001 Rest1 HCP001 Rest1 HCP008 Rest2 HCP008 Rest2

Observed min M max p-value min M max p-value Observed min M max p-value min M max p-value

esp0 6 0 0 0 0 0 0.200 1 0 4 0 0 0 0 0 0 0 0

esp1 21 0 3.200 7 0 2 4.700 7 0 12 0 0.400 1 0 0 0.500 1 0

esp2 49 41 49.800 60 0.800 41 49 63 1 22 9 13.200 20 0 8 12 16 0

esp3 107 143 169 196 0 153 165.700 178 0 56 66 82.100 97 0 56 72 86 0.200

esp4 165 278 306.200 341 0 252 286.900 338 0 116 194 220.200 268 0 180 207.500 244 0

esp5 185 336 365.500 387 0 332 360.900 396 0 165 300 335.800 378 0 328 338.400 368 0

esp6 229 308 341.700 392 0 320 347.200 369 0 207 354 393.900 415 0 377 399.200 413 0

esp7 288 243 270.800 304 0.400 274 297.900 350 0.600 212 365 403.800 430 0 387 402.900 442 0

esp8 248 167 200.600 237 0 199 220.700 242 0 228 293 331.900 366 0 306 332.800 365 0

esp9 228 105 128.200 166 0 119 145 164 0 198 211 225.100 248 0 212 245.300 288 0

esp10 160 51 76.300 100 0 73 85.400 111 0 157 107 143.600 196 0.400 128 159.900 180 0.600

esp11 121 22 39.900 74 0 24 45.900 59 0 148 72 88.200 105 0 84 93.600 108 0

esp12 95 10 18.400 27 0 17 27.100 38 0 120 34 53.100 72 0 34 49.500 60 0

esp13 43 3 7.500 15 0 1 13.500 26 0 115 12 24.200 33 0 17 23.100 29 0

esp14 31 2 4.400 10 0 1 5.400 11 0 84 5 13 21 0 7 11.500 20 0

esp15 32 0 1.500 6 0 1 2.600 5 0 82 1 5.900 13 0 2 4.300 8 0

esp16 17 0 0.200 1 0 0 1.300 3 0 66 0 1.800 5 0 0 2.500 5 0

esp17 7 0 0.400 2 0 0 0.100 1 0 48 0 0.700 2 0 0 0.700 3 0

esp18 3 0 0.200 1 0 0 0 0 0 45 0 0 0 0 0 0.300 1 0

esp19 3 0 0 0 0 0 0.100 1 0 40 0 0.200 1 0 0 0.100 1 0

Table 3.6: Goodness of fit differences for the interaction effect comparison for

edge shared partners. We are displaying the two worst fit differences for the two models

in the interaction effect comparison. The observed column is the original data’s values for

each edge shared partner type, while the minimum, mean, maximum, and p-value for the

simulated graphs based on each of the ERGM models are displayed. The edge shared partner

types are based on the number of triangles sharing a common edge (e.g., the esp10 term has

10 triangles all sharing common edge). Overall, all the patients’ ERGM for the complete

model and GWESP effect did not fit the data well based on the graph statistics modeled

because both models had at least than 11 of the 14 p-values < 0.05 for types of edge shared

partner type.
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Complete Model GWESP Model Complete Model GWESP Model

HCP001 Rest1 HCP001 Rest1 HCP008 Rest2 HCP008 Rest2

Observed min M max p-value min M max p-value Observed min M max p-value min M max p-value

9 0 0 0.300 2 1 0 0.100 1 1 0 0 0 0 1 0 0 0 1

10 1 0 0.600 2 1 0 0.400 1 0.800 0 0 0 0 1 0 0 0 1

11 1 0 0.900 3 1 0 0.800 2 1 0 0 0 0 1 0 0 0 1

12 1 0 0.700 2 1 0 1.100 4 1 1 0 0.100 1 0.200 0 0.100 1 0.200

13 1 0 0.700 3 0.800 0 0.900 4 1 0 0 0.100 1 1 0 0 0 1

14 2 0 1.600 4 0.800 0 1.300 2 0.800 1 0 0.200 1 0.400 0 0 0 0

15 1 1 2 4 0.800 1 2.300 5 0.600 1 0 0.300 1 0.600 0 0.100 1 0.200

16 3 0 2.200 6 0.600 0 2.100 4 0.600 0 0 0.200 1 1 0 0.200 1 1

17 1 1 3.100 7 0.200 1 2.800 6 0.600 1 0 0.600 2 0.800 0 0.500 2 0.600

18 2 1 3 6 0.800 0 2.800 5 0.600 1 0 1 2 1 0 1 2 1

19 4 1 4.600 8 0.800 1 4.800 10 1 3 0 1.200 3 0.200 0 1.100 3 0.200

20 4 2 5.200 8 0.600 4 5.800 8 0.600 3 0 2.700 5 1 0 1.600 3 0.200

21 4 2 6.900 14 0.600 4 5.700 8 0.400 6 1 2.700 4 0 1 1.700 4 0

22 11 5 7.900 13 0.400 2 6.600 9 0 7 0 3.700 10 0.400 0 3.100 7 0.200

23 9 5 9.700 18 1 3 8.500 13 1 3 1 4.300 7 1 2 5.800 12 0.400

24 8 5 8.900 16 1 6 10.100 16 0.400 5 4 6.200 9 0.600 5 7.700 12 0.200

25 9 1 8.600 14 1 7 10 14 1 10 5 8.500 14 0.600 3 7.700 13 0.600

26 8 8 10.500 13 0.600 3 7.900 10 1 6 7 9.400 13 0 4 7.100 11 1

27 11 5 10.700 16 1 5 9 15 0.400 6 3 9.500 13 0.400 3 8 14 1

28 11 5 8.700 13 0.800 4 9.200 16 0.600 12 7 10.100 14 0.600 7 10.400 16 0.400

29 10 7 10.500 15 1 3 9.500 16 1 5 6 9.200 13 0 6 9.700 15 0

30 10 1 7.400 10 0.400 6 9 12 0.800 6 6 10.100 15 0.200 7 11.600 20 0

31 10 1 6 8 0 4 6.800 12 0.400 5 7 11.700 16 0 5 10 16 0.200

32 4 3 5.300 8 0.800 4 6.100 9 0.200 7 5 9.200 14 0.800 5 11 17 0.400

33 7 1 5.200 11 0.800 2 6.100 10 1 10 5 8.700 14 0.600 4 10.800 16 1

34 3 1 4.700 8 0.800 3 5.400 8 0.400 5 1 8 13 0.400 6 9.700 14 0

35 5 1 3.700 7 0.800 0 3.700 8 0.600 10 3 5.700 10 0.200 3 6.400 9 0

36 4 1 2.600 5 0.800 1 3.700 8 1 9 3 6.300 9 0.200 2 5.700 11 0.400

37 2 0 2.200 5 1 0 2.400 5 1 5 2 5.800 9 1 3 6 9 0.800

38 0 0 1.900 4 0.200 0 1.600 3 0.200 5 1 4.400 7 1 1 4.400 7 1

39 1 0 1.700 4 0.800 0 1.600 3 0.800 2 2 4.400 7 0.200 0 2.300 5 1

Table 3.7: Goodness of fit differences for the interaction effect comparison for the

degree distribution. We are displaying the two worst fit differences for the two models in

the interaction effect comparison. The observed column is the original data’s values for each

nodal degree, while the minimum, mean, maximum, and p-value for the simulated graphs

based on each of the ERGM models are displayed. Overall, all the patients’ ERGM for the

complete model and GWESP effect fit the data well based on the graph statistics modeled

because there were only 3 to 5 p-values < 0.05.
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ERGM Structural Terms and GWESP term for Functional Connectivity for HCP participants

HCP001 Rest1 HCP001 Rest2 HCP002 Rest1 HCP002 Rest2 HCP003 Rest1 HCP003 Rest2 HCP004 Rest1 HCP004 Rest2 HCP005 Rest1 HCP005 Rest2 HCP006 Rest1 HCP006 Rest2

Degree 0.003 −0.0001 0.006 0.007 0.006 0.006 −0.002 0.007 −0.001 −0.005 0.003 0.00003

(0.002) (0.005) (0.003) (0.004) (0.006) (0.005) (0.003) (0.005) (0.004) (0.004) (0.003) (0.005)

Efficiency −0.031 0.047 0.189 0.114 0.068 0.153 −0.161 0.431∗ −0.199 −0.227 −0.044 −0.073

(0.085) (0.203) (0.144) (0.131) (0.228) (0.210) (0.114) (0.217) (0.163) (0.143) (0.102) (0.104) )

Clustering Coefficient 0.074 −0.020 −0.235 −0.122 −0.151 −0.077 −0.184 −0.298 −0.157 −0.082 −0.132 0.092

(0.101) (0.212) (0.241) (0.134) (0.232) (0.213) (0.138) (0.211) (0.164) (0.181) (0.131) (0.212)

Latent Cluster 1 −0.041 0.158∗∗ 0.113 0.068 −0.003 0.034 0.011 0.039 0.170∗ 0.027 −0.002 0.004

(0.052) (0.053) (0.059) (0.057) (0.077) (0.063) (0.067) (0.107) (0.079) (0.056) (0.052) (0.052) )

Latent Cluster 2 −0.036 0.197∗∗ 0.291∗∗∗ 0.049 0.061 0.054 0.101 0.022 0.052 −0.019 0.038 0.092

(0.072) (0.069) (0.063) (0.072) (0.058) (0.072) (0.061) (0.051) (0.050) (0.082) (0.076) (0.096)

GWESP(fixed, λ = 0.6) 3.549∗∗∗ 4.660∗∗∗ 3.543∗∗∗ 3.707∗∗∗ 3.843∗∗∗ 3.057∗∗∗ 4.222∗∗∗ 2.760∗∗∗ 4.581∗∗∗ 3.205∗∗∗ 3.946∗∗∗ 4.057∗∗∗

(0.279) (0.351) (0.240) (0.299) (0.262) (0.212) (0.327) (0.199) (0.319) (0.266) (0.289) (0.270)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.8: Structural metrics effects on functional connectivity and triadic closure

in functional connectivity for HCP participants. The effects for structural connec-

tivity’s degree, local efficiency, clustering coefficient, and nodematch latent clustering on the

functional connectivity from the complete models. The LATEX code to create this table

was produced by the R package called texreg (Leifeld, 2013).
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ERGM Structural Terms and GWESP term for Functional Connectivity for HCP participants

HCP007 Rest1 HCP007 Rest2 HCP008 Rest1 HCP008 Rest2 HCP009 Rest1 HCP009 Rest2 HCP010 Rest1 HCP010 Rest2 HCP011 Rest1 HCP011 Rest2 HCP012 Rest1 HCP012 Rest2

Degree −0.001 −0.003 0.004 0.004 0.006 −0.001 0.002 0.009∗∗∗ 0.006 0.013∗∗∗ 0.006 0.009∗

(0.003) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.003) (0.004) (0.004) (0.005) (0.005)

Efficiency −0.330∗∗∗ −0.277∗∗ −0.056 −0.007 −0.273 −0.304∗ 0.012 0.116 −0.0005 −0.002 −0.287 0.138

(0.125) (0.126) (0.171) (0.176) (0.189) (0.179) (0.140) (0.139) (0.213) (0.217) (0.239) (0.229)

Clustering Coefficient 0.339 0.232 −0.113 0.272 0.389 0.368∗ −0.370 0.102 −0.158 −0.015 0.169 −0.072

(0.208) (0.209) (0.221) (0.228) (0.237) (0.204) (0.253) (0.246) (0.315) (0.317) (0.274) (0.271)

Latent Cluster 1 0.090∗ −0.008 0.203∗∗∗ 0.121∗ 0.086∗ −0.081 0.013 −0.039 −0.152 0.090 0.005 0.084∗

(0.050) (0.049) (0.057) (0.063) (0.052) (0.318) (0.051) (0.052) (0.151) (0.142) (0.050) (0.050)

Latent Cluster 2 0.076 0.069 0.168∗∗∗ 0.015 −0.114 −0.002 0.001 −0.061 −0.004 −0.001 0.019 0.069

(0.070) (0.074) (0.052) (0.053) (0.079) (0.064) (0.068) (0.069) (0.050) (0.053) (0.071) (0.074)

GWESP(fixed, λ = 0.6) 5.441∗∗∗ 3.791∗∗∗ 7.485∗∗∗ 5.060∗∗∗ 2.786∗∗∗ 2.760∗∗∗ 4.611∗∗∗ 5.454∗∗∗ 5.050∗∗∗ 3.704∗∗∗ 7.656∗∗∗ 4.842∗∗∗

(0.409) (0.302) (0.584) (0.431) (0.252) (0.199) (0.313) (0.343) (0.424) (0.364) (0.687) (0.425)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.9: Structural metrics effects on functional connectivity and triadic closure

in functional connectivity for HCP participants. The effects for structural connec-

tivity’s degree, local efficiency, clustering coefficient, and nodematch latent clustering on the

functional connectivity from the complete models. The LATEX code to create this table

was produced by the R package called texreg (Leifeld, 2013).
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Figure 3.2: HCP participants comparison revealing the interaction effect. Each

graph represents the difference between the complete model and GWESP model. These

parameter estimates are generated from the same connectivity matrix for both the complete

model and GWESP model. The numerical values for each parameter estimate is the differ-

ence between the two models. The FPs are the parameter estimates that were significant

in the GWESP model, but they were not significant in complete. The FNs are the param-

eter estimates that were not significant in the GWESP model, but they were significant in

the complete model. The difference between the two models are the inclusion of structural

connectivity nodal covariates.
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Figure 3.3: HCP participants comparison revealing the interaction effect. Each

graph represents the difference between the complete model and GWESP model. These

parameter estimates are generated from the same connectivity matrix for both the complete

model and GWESP model. The numerical values for each parameter estimate is the differ-

ence between the two models. The FPs are the parameter estimates that were significant

in the GWESP model, but they were not significant in complete. The FNs are the param-

eter estimates that were not significant in the GWESP model, but they were significant in

the complete model. The difference between the two models are the inclusion of structural

connectivity nodal covariates.
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Figure 3.4: HCP participants comparison revealing the interaction effect. Each

graph represents the difference between the complete model and GWESP model. These

parameter estimates are generated from the same connectivity matrix for both the complete

model and GWESP model. The numerical values for each parameter estimate is the differ-

ence between the two models. The FPs are the parameter estimates that were significant

in the GWESP model, but they were not significant in complete. The FNs are the param-

eter estimates that were not significant in the GWESP model, but they were significant in

the complete model. The difference between the two models are the inclusion of structural

connectivity nodal covariates.
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Figure 3.5: HCP participants comparison revealing the interaction effect. Each

graph represents the difference between the complete model and GWESP model. These

parameter estimates are generated from the same connectivity matrix for both the complete

model and GWESP model. The numerical values for each parameter estimate is the differ-

ence between the two models. The FPs are the parameter estimates that were significant

in the GWESP model, but they were not significant in complete. The FNs are the param-

eter estimates that were not significant in the GWESP model, but they were significant in

the complete model. The difference between the two models are the inclusion of structural

connectivity nodal covariates.
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Figure 3.6: HCP participants comparison revealing the interaction effect. Each

graph represents the difference between the complete model and GWESP model. These

parameter estimates are generated from the same connectivity matrix for both the complete

model and GWESP model. The numerical values for each parameter estimate is the differ-

ence between the two models. The FPs are the parameter estimates that were significant

in the GWESP model, but they were not significant in complete. The FNs are the param-

eter estimates that were not significant in the GWESP model, but they were significant in

the complete model. The difference between the two models are the inclusion of structural

connectivity nodal covariates.
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Figure 3.7: HCP participants comparison revealing the interaction effect. Each

graph represents the difference between the complete model and GWESP model. These

parameter estimates are generated from the same connectivity matrix for both the complete

model and GWESP model. The numerical values for each parameter estimate is the differ-

ence between the two models. The FPs are the parameter estimates that were significant

in the GWESP model, but they were not significant in complete. The FNs are the param-

eter estimates that were not significant in the GWESP model, but they were significant in

the complete model. The difference between the two models are the inclusion of structural

connectivity nodal covariates.
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Figure 3.8: HCP participants comparison revealing the interaction effect. This

figure shows the FN and FP effects for a different exogenous nodal labeling of cortical

compared to subcortical regions for each resting state imaging session separated by one day.
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Figure 3.9: HCP participants comparison revealing the interaction effect. These

are individual participants’ FN and FP rates for the selective mixing of the cortical nodal

labeling.
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Figure 3.10: HCP participants comparison revealing the GWESP effect. This figure

shows the FN and FP effects for a different exogenous nodal labeling of cortical compared

to subcortical regions for each resting state imaging session separated by one day.
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Figure 3.11: HCP participants comparison revealing the GWESP effect. These

are individual participants’ FN and FP rates for the selective mixing of the cortical nodal

labeling.
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Figure 3.12: HCP participants comparison revealing the structural effect. This

figure shows the FN and FP effects for a different exogenous nodal labeling of cortical

compared to subcortical regions for each resting state imaging session separated by one day.
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Figure 3.13: HCP participants comparison revealing the structural effect. These

are individual participants’ FN and FP rates for the selective mixing of the cortical nodal

labeling.
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and chronic session in all patients within the range between 0.0019 to 0.0331. Across patients,

the densities ranged from 0.1039 to 0.1524. The structural connectivity, on the other hand,

had less variability across acute and chronic imaging sessions in the densities(i.e., a difference

between 0.005 to 0.0095) and graphs across subjects from 0.0527 to 0.0648.

In both HCP participants and patients,we assessed the functional connectivity types with

ERGM using four models (i.e., base, structural, GWESP, and complete) to reveal the FPs

and FNs that result from the omissions of the structural terms (i.e., the structural effect),

triadic closure term (i.e., the GWESP effect), and both structural and triadic closure (i.e., the

interaction effect). Leaving out the structural terms, the HCP participants all had either FP

or FNs for cortical/subcortical connectivity (see Figure 3.12 and 3.13). Using multinomial

regression we tested for differences in FP and FN rates between their two resting state

imaging, the structural effect, GWESP effect and interaction effect comparisons all revealed

no significant change odds ratios for the resting state imaging session performed on day

2 compared to day 1. Despite these lack of differences in resting state imaging days, all

patients had FP or FN rates for leaving out the triadic closure term (see Figure 3.10 and

3.11), and for the interaction effect of leaving out both the structural and GWESP terms

(see Figure 3.8 and 3.9). Overall, the HCP participants did not have differing rates FP and

FN, but their parameter estimates did change in magnitude (see Figure 3.2, 3.3, 3.4, 3.5,

3.6, and 3.7.

The omission of structural terms generate FPs or FNs for all patients (see Figure 3.24

and 3.25) did produce a 0.401 times decrease in FN for cortico-subcortical connectivity and

a 0.321 times decrease for FP in within cortical connectivity for conscious chronic compared

to conscious acute stage of TBI patients (see column 3, in Table 3.10). A similar pattern

was found for unconscious patients compared to conscious acute patients, where there was a

significant 0.274 times decrease in FN for cortico-subcortical connectivity and a 0.274 times

significant decrease for FP in within cortical connectivity. For the GWESP (see Figure 3.22

and 3.23), only the chronic patients had a significant decrease in FP for within subcortical

connecitivty and significant decrease in FP for within cortical connectivity compared to acute

patients (see column 2, in Table 3.10). Finally, the interaction effect of leaving out GWESP
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and structural terms (see Figure 3.20 and 3.21) produced FPs and FNs significant decreases

in odds ratios of 0.277 times, 0.366 times, 0.259 times, and 0.431 times for FNs in cortico-

subcortical connectivity, FNs and FPs for within cortical, and FP for within subcortical,

respectively. Overall, the patients with DOC did have differing rates FP and FN and their

parameter estimates did change in magnitude (see Figure 3.14, 3.15, 3.16, 3.17, 3.18, and

3.19.

Multinomial Regression: Cortical Nodal Labeling

Comparison: Interaction effect GWESP effect Structural effect

Constant Unconscious Chronic Constant Unconscious Chronic Constant Unconscious Chronic

False negatives for Cortical to Subcortical 0.0272∗∗∗ 0.277∗∗∗ 1.16 NA NA NA 0.0183∗∗∗ 0.274∗ 0.401∗

(0.271) (0.491) (0.317) (NA) (NA) (NA) (0.319) (0.594) (0.450)

False positives for Cortical to Subcortical 0.0350∗∗∗ 0.575 1.14 0.05628∗∗∗ 0.83284 0.94166 0.00733∗∗∗ 0.685 1.00

(0.240) (0.348) (0.281) (0.188) (0.254) (0.225) (0.502) (0.709) (0.594)

False negatives for Within Cortical 0.0447∗∗∗ 0.366∗∗∗ 1.31 0.01313∗∗∗ 0.69403 0.23741∗ 0.0201∗∗∗ 1.31 1.09

(0.213) (0.352) (0.246) (0.380) (0.537) (0.629) (0.305) (0.376) (0.356)

False positives for Within Cortical 0.0485∗∗∗ 0.259∗∗∗ 1.18 0.05816∗∗∗ 0.60447 1.05868 0.0366∗∗∗ 0.274∗∗ 0.321∗∗∗

(0.205) (0.378) (0.239) (0.185) (0.269) (0.218) (0.228) (0.422) (0.339)

False negatives for Within Subcortical 0.0136∗∗∗ 0.370 0.551 NA NA NA 0.0256∗∗∗ 0.636 0.746

(0.381) (0.629) (0.507) (NA) (NA) (NA) (0.271) (0.389) (0.335)

False positives for Within Subcortical 0.00583∗∗∗ 0.431∗ 2.43 0.00750∗∗∗ 0.86763 0.10388∗

(0.579) (0.915) (0.628) (0.502) (0.673) (1.12)

Observations 2904 2904 2904

Log Likelihood -1749.64 -1381.539 -1024.384

Akaike Inf. Crit. 3535.28 2799.077 2078.769

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.10: The effect of level of consciousness and stage of TBI on FPs and FNs.

For the cortical nodal labeling, the FPs and FNs for each type of connectivity pattern were

predicted for unconscious patients compared to all conscious patients. The change in odds

rations and their standard errors in parentheses are listed for the interaction, GWESP and

structural effect comparisons.
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Complete Model GWESP Model

Observed min M max p-value min M max p-value

P054 Acute

Edges 1, 796 1, 702 1, 780.300 1, 839 0.800 1, 793 1, 839.300 1, 886 0.200

Intra-Limbic 19 15 21.300 28 0.400 18 22.100 28 0.200

Inter-Somatomotor-Ventral Attention 56 50 57.700 69 1 54 63.300 74 0.200

GWESP (fixed, λ=0.45) 2, 766.980 2, 614.125 2, 741.347 2, 834.899 0.800 2, 761.997 2, 835.273 2, 908.383 0.200

P084 Acute

Inter-Frontoparietal-Somatomotor 40 28 39 52 1 6 10.400 16 0.200

Inter-Frontoparietal-Thalamus 16 13 18.250 28 0.700 13 18.200 22 0.200

P084 Chronic

Inter-Dorsal Attention-Limbic 9 9 11.300 14 0.200 2 8 12 1

Within Subcortical 153 151 159 172 0.200 127 144.300 161 0.600

P085 Acute

Inter-Dorsal Attention-Ventral Attention 12 6 9.700 15 0.200 10 15 21 0.800

Within Occipital Lobe 65 53 60.900 77 0.200 53 63.200 71 1

Table 3.11: Goodness of fit differences for the interaction effect comparison for

graph statistics. We are displaying the four worst fit differences for the two models in the

interaction effect comparison. The observed column is the original data’s values for each

graph statistic, while the minimum, mean, maximum, and p-value for the simulated graphs

based on each of the ERGM models are displayed. None of these are bad fits, but they are

the biggest difference between the complete model and the GWESP model. Overall, all the

patients’ ERGM for the complete model and GWESP effect fit the data well based on the

graph statistics modeled because neither model produced any p-values < 0.05 for any graph

statistic.
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Complete Model GWESP Model Complete Model GWESP Model

P054 Acute P054 Acute P084 Chronic P084 Chronic

Observed min M max p-value min M max p-value Observed min M max p-value min M max p-value

esp0 4 0 0.100 1 0 0 0 0 0 16 0 0.700 2 0 0 1.600 4 0

esp1 20 1 3.200 6 0 1 3.200 6 0 63 42 56.800 73 0.800 50 58.500 67 0.400

esp2 58 50 65 83 0.600 54 74 89 0.400 140 198 231.700 254 0 182 226.200 258 0

esp3 140 226 245.900 269 0 224 252.800 292 0 243 311 341.300 371 0 326 347.500 391 0

esp4 213 357 385 410 0 326 359.100 383 0 275 311 335.200 365 0 316 332.900 353 0

esp5 255 362 384 406 0 360 380.300 401 0 260 200 237.600 277 0.400 217 240.600 267 0.200

esp6 275 276 311.200 351 0 261 292.500 326 0.600 201 113 142.900 167 0 124 149.600 174 0

esp7 245 176 205 231 0 170 198.300 231 0 143 51 76.700 95 0 67 80.100 94 0

esp8 197 89 116.100 147 0 81 110.600 135 0 72 26 35.600 47 0 20 35.700 46 0

esp9 158 54 64.200 78 0 40 60.900 79 0 40 7 14.600 26 0 11 14.700 25 0

esp10 93 26 34.800 45 0 17 28.500 41 0 17 3 7 15 0 3 5.400 9 0

esp11 68 6 14.600 22 0 9 12.900 22 0 12 0 2.500 6 0 0 1.800 3 0

esp12 28 4 6 9 0 1 4.300 7 0 6 0 1 3 0 0 1.100 4 0

esp13 24 1 2.700 5 0 0 2.200 4 0 1 0 0.500 1 1 0 0.100 1 0.200

esp14 11 0 0.900 3 0 0 0.600 3 0 0 0 0 0 1 0 0 0 1

Table 3.12: Goodness of fit differences for the interaction effect comparison for

edge shared partners. We are displaying the two worst fit differences for the two models

in the interaction effect comparison. The observed column is the original data’s values for

each edge shared partner type, while the minimum, mean, maximum, and p-value for the

simulated graphs based on each of the ERGM models are displayed. The edge shared partner

types are based on the number of triangles sharing a common edge (e.g., the esp10 term has

10 triangles all sharing common edge). Overall, all the patients’ ERGM for the complete

model and GWESP effect did not fit the data well based on the graph statistics modeled

because both models had at least than 11 of the 14 p-values < 0.05 for types of edge shared

partner type.
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Complete Model GWESP Model Complete Model GWESP Model

P054 Acute P054 Acute P084 Chronic P084 Chronic

Observed min M max p-value min M max p-value Observed min M max p-value min M max p-value

0 0 0 0.100 1 1 0 2.600 4 0.200 0 0 0.100 1 1 0 0.200 1 1

1 0 0 0.100 1 1 0 0 0 1 0 0 0 0 1 0 0.100 1 1

2 0 0 0 0 1 0 0 0 1 0 0 0.100 1 1 0 0.200 1 1

3 0 0 0.200 1 1 0 0.100 1 1 0 0 0 0 1 0 0.200 2 1

4 0 0 0 0 1 0 0.200 1 1 0 0 0 0 1 0 0.100 1 1

5 0 0 0.100 1 1 0 0.400 1 1 0 0 0.100 1 1 0 0.600 2 1

6 0 0 0.400 2 1 0 0.300 2 1 0 0 1.100 2 0.600 0 0.500 2 1

7 0 0 0.300 2 1 0 0.200 1 1 0 0 0.900 3 0.800 0 0.900 4 1

8 0 0 0.500 2 1 0 0.500 2 1 0 0 1.600 4 0.400 0 1.800 4 0.600

9 1 0 0.600 2 1 0 0.600 1 1 1 1 3.300 7 0.400 0 2 6 1

10 0 0 0.900 3 1 0 1.100 3 0.600 1 1 2.700 5 0.200 1 3.600 8 0.200

11 0 0 1 5 1 0 1.300 2 0.200 3 0 3.900 8 0.800 1 4 5 0.600

12 1 0 1.900 5 1 0 1.800 3 0.800 3 1 6 10 0.600 3 5.200 7 0.400

13 0 1 3.300 6 0 1 2.900 6 0 5 3 5.900 10 0.800 3 6.800 13 0.600

14 2 0 3 8 1 0 3.600 6 0.600 4 2 6.700 12 0.600 2 5.800 8 0.400

15 2 2 4.200 8 0.400 2 4.600 7 0.400 8 5 9 12 0.600 5 7.400 11 1

16 2 1 4.100 7 0.400 1 5 7 0.200 10 7 10.800 14 0.800 6 8.400 11 0.400

17 6 2 5.600 10 0.800 2 5.300 9 1 13 9 11.100 13 0.400 4 9.400 12 0

18 5 1 5.600 11 1 4 6.500 9 0.400 17 8 10.100 13 0 3 10.500 15 0

19 15 3 7.400 10 0 3 6.900 12 0 13 6 9.200 14 0.200 6 10.800 15 0.400

20 12 4 8.300 15 0.200 2 7.600 11 0 13 7 8.300 11 0 7 9.100 12 0

21 9 5 8.200 12 0.800 4 9 12 0.800 21 6 10.100 15 0 6 10.200 14 0

22 10 6 9.100 12 1 2 8.100 12 0.800 11 5 8.800 14 0.600 6 9.800 15 0.600

23 18 5 8.900 14 0 7 9.400 14 0 9 3 7.600 10 1 4 8 12 1

24 11 6 9.900 17 0.800 2 7.900 11 0.400 5 3 7.100 13 0.600 3 8.700 15 0.600

25 8 3 9.500 15 0.800 5 9.700 14 0.800 8 1 5.800 8 0.400 4 7.700 11 1

26 11 3 8.200 14 0.600 5 10.200 14 1 3 3 6 9 0.200 1 4.400 7 0.600

27 7 4 7.600 12 1 2 7 11 1 3 1 3.600 7 1 2 4.600 8 0.800

28 12 4 8.400 10 0 4 7.400 11 0 1 1 3.400 8 0.400 1 3.300 8 0.400

29 9 1 5.700 10 0.400 3 6.400 12 0.600 2 0 2.500 6 1 0 3.300 6 0.400

Table 3.13: Goodness of fit differences for the interaction effect comparison for the

degree distribution. We are displaying the two worst fit differences for the two models in

the interaction effect comparison. The observed column is the original data’s values for each

nodal degree, while the minimum, mean, maximum, and p-value for the simulated graphs

based on each of the ERGM models are displayed. Overall, all the patients’ ERGM for the

complete model and GWESP effect fit the data well based on the graph statistics modeled

because there were only 3 to 5 p-values < 0.05.
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ERGM Structural Terms and GWESP term for Functional Connectivity for Unconscious Patients in Acute Sessions

P054 Acute P054 Chronic P055 Acute P055 Chronic P066 Acute P066 Chronic P069 Acute P069 Chronic P079 Acute P079 Chronic P084 Acute P084 Chronic P096 Acute P096 Chronic

Degree 0.003 −0.0001 0.006 0.007 0.006 0.006 −0.002 0.007 −0.001 −0.005 0.003 0.00003 0.003 0.002

(0.002) (0.005) (0.003) (0.004) (0.006) (0.005) (0.003) (0.005) (0.004) (0.004) (0.003) (0.005) (0.004) (0.005)

Efficiency −0.031 0.047 0.189 0.114 0.068 0.153 −0.161 0.431∗ −0.199 −0.227 −0.044 −0.073 −0.245 −0.099

(0.085) (0.203) (0.144) (0.131) (0.228) (0.210) (0.114) (0.217) (0.163) (0.143) (0.102) (0.104) (0.171) (0.229)

Clustering Coefficient 0.074 −0.020 −0.235 −0.122 −0.151 −0.077 −0.184 −0.298 −0.157 −0.082 −0.132 0.092 −0.008 0.275

(0.101) (0.212) (0.241) (0.134) (0.232) (0.213) (0.138) (0.211) (0.164) (0.181) (0.131) (0.212) (0.236) (0.288)

Latent Cluster 1 −0.041 0.158∗∗ 0.113 0.068 −0.003 0.034 0.011 0.039 0.170∗ 0.027 −0.002 0.004 0.087 0.062

(0.052) (0.053) (0.059) (0.057) (0.077) (0.063) (0.067) (0.107) (0.079) (0.056) (0.052) (0.052) (0.063) (0.681)

Latent Cluster 2 −0.036 0.197∗∗ 0.291∗∗∗ 0.049 0.061 0.054 0.101 0.022 0.052 −0.019 0.038 0.092 0.125 0.799

(0.072) (0.069) (0.063) (0.072) (0.058) (0.072) (0.061) (0.051) (0.050) (0.082) (0.076) (0.096) (0.076) (0.594)

Latent Cluster 3 0.074

(0.054)

Latent Cluster 4 0.155

(0.084)

(GWESP fixed, λ = 0.45) 6.870∗∗∗ 4.568∗∗∗ 2.589∗∗∗ 3.462∗∗∗ 4.733∗∗∗ 7.490∗∗∗ 2.116∗∗∗ 3.742∗∗∗ 3.254∗∗∗ 2.649∗∗∗ 2.639∗∗∗ 3.196∗∗∗ 2.629∗∗∗ 3.175∗∗∗

(0.382) (0.306) (0.192) (0.229) (0.269) (0.410) (0.133) (0.257) (0.230) (0.189) (0.195) (0.218) (0.176) (0.220)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.14: Structural metrics effects on functional connectivity and triadic closure

in functional connectivity for acute, unconscious patients and chronic conscious

patients. The effects for structural connectivity’s degree, local efficiency, clustering coef-

ficient, and nodematch latent clustering on the functional connectivity from the complete

models. The LATEX code to create this table was produced by the R package called texreg

(Leifeld, 2013).
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ERGM Structural Terms and GWESP term for Functional Connectivity for Conscious Patients in Acute Sessions

P074 Acute P074 Chronic P085 Acute P085 Chronic P089 Acute P089 Chronic P092 Acute P092 Chronic P099 Acute P099 Chronic

Degree 0.014∗∗∗ 0.006 0.005 0.007 0.001 0.005 0.005 0.007∗ 0.004 0.003

(0.004) (0.005) (0.005) (0.005) (0.005) (0.005) (0.004) (0.003) (0.004) (0.007)

Efficiency 0.022 0.097 0.164 0.067 0.030 −0.301 0.206 0.066 −0.143 −0.070

(0.122) (0.136) (0.132) (0.197) (0.221) (0.272) (0.177) (0.130) (0.122) (0.275)

Clustering Coefficient 0.062 0.054 −0.144 0.055 −0.276 0.432 −0.210 0.026 0.261 −0.012

(0.210) (0.235) (0.145) (0.292) (0.285) (0.383) (0.159) (0.239) (0.156) (0.301)

Latent Cluster 1 0.012 −0.012 0.083 0.240∗∗∗ −0.030 0.127∗ −0.067 0.089 0.028 0.037

(0.056) (0.076) (0.055) (0.059) (0.065) (0.058) (0.119) (0.057) (0.070) (0.094)

Latent Cluster 2 0.023 0.013 0.125 0.227∗∗∗ −0.086 0.108 −0.059 0.088 0.039 0.151∗

(0.071) (0.060) (0.070) (0.063) (0.069) (0.074) (0.054) (0.071) (0.064) (0.061)

Latent Cluster 3 0.401∗

(0.196)

Latent Cluster 4 0.659

(0.567)

Latent Cluster 5 11.672

NA

Latent Cluster 6 0.545

(0.342)

(GWESP fixed, λ = 0.45) 5.848∗∗∗ 3.240∗∗∗ 2.503∗∗∗ 2.888∗∗∗ 2.560∗∗∗ 1.912∗∗∗ 2.396∗∗∗ 2.912∗∗∗ 2.574∗∗∗ 2.640∗∗∗

(0.322) (0.222) (0.168) (0.194) (0.169) (0.150) (0.166) (0.185) (0.175) (0.200)

Note: ∗p<0.05; ∗∗p<0.01; ∗∗∗p<0.001

Table 3.15: Structural metrics effects on functional connectivity and triadic closure

in functional connectivity for acute and chronic conscious patients. The effects for

structural connectivity’s degree, local efficiency, clustering coefficient, and nodematch latent

clustering on the functional connectivity from the complete models. The LATEX code to

create this table was produced by the R package called texreg (Leifeld, 2013).
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Figure 3.14: Patient comparison revealing the interaction effect. Each graph rep-

resents the difference between the complete model and GWESP model. These parameter

estimates are generated from the same connectivity matrix for both the complete model and

GWESP model. The numerical values for each parameter estimate is the difference between

the two models. The FPs are the parameter estimates that were significant in the GWESP

model, but they were not significant in complete. The FNs are the parameter estimates that

were not significant in the GWESP model, but they were significant in the complete model.

The difference between the two models are the inclusion of structural connectivity nodal

covariates.
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Figure 3.15: Patient comparison revealing the interaction effect. Each graph rep-

resents the difference between the complete model and GWESP model. These parameter

estimates are generated from the same connectivity matrix for both the complete model and

GWESP model. The numerical values for each parameter estimate is the difference between

the two models. The FPs are the parameter estimates that were significant in the GWESP

model, but they were not significant in complete. The FNs are the parameter estimates that

were not significant in the GWESP model, but they were significant in the complete model.

The difference between the two models are the inclusion of structural connectivity nodal

covariates.
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Figure 3.16: Patient comparison revealing the interaction effect. Each graph rep-

resents the difference between the complete model and GWESP model. These parameter

estimates are generated from the same connectivity matrix for both the complete model and

GWESP model. The numerical values for each parameter estimate is the difference between

the two models. The FPs are the parameter estimates that were significant in the GWESP

model, but they were not significant in complete. The FNs are the parameter estimates that

were not significant in the GWESP model, but they were significant in the complete model.

The difference between the two models are the inclusion of structural connectivity nodal

covariates.
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Figure 3.17: Patient comparison revealing the interaction effect. Each graph rep-

resents the difference between the complete model and GWESP model. These parameter

estimates are generated from the same connectivity matrix for both the complete model and

GWESP model. The numerical values for each parameter estimate is the difference between

the two models. The FPs are the parameter estimates that were significant in the GWESP

model, but they were not significant in complete. The FNs are the parameter estimates that

were not significant in the GWESP model, but they were significant in the complete model.

The difference between the two models are the inclusion of structural connectivity nodal

covariates.
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Figure 3.18: Patient comparison revealing the interaction effect. Each graph rep-

resents the difference between the complete model and GWESP model. These parameter

estimates are generated from the same connectivity matrix for both the complete model and

GWESP model. The numerical values for each parameter estimate is the difference between

the two models. The FPs are the parameter estimates that were significant in the GWESP

model, but they were not significant in complete. The FNs are the parameter estimates that

were not significant in the GWESP model, but they were significant in the complete model.

The difference between the two models are the inclusion of structural connectivity nodal

covariates.
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Figure 3.19: Patient comparison revealing the interaction effect. Each graph rep-

resents the difference between the complete model and GWESP model. These parameter

estimates are generated from the same connectivity matrix for both the complete model and

GWESP model. The numerical values for each parameter estimate is the difference between

the two models. The FPs are the parameter estimates that were significant in the GWESP

model, but they were not significant in complete. The FNs are the parameter estimates that

were not significant in the GWESP model, but they were significant in the complete model.

The difference between the two models are the inclusion of structural connectivity nodal

covariates..
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Figure 3.20: Patients comparison revealing the interaction effect.The differences in

FN and FP effects for an exogenous nodal labeling of cortical compared to subcortical regions

and their selective mixing. The right figure displays the FN and FP for the selective mixing

of the cortical nodal labeling when the patients are divided into their stage of TBI and their

level of consciousness assessed by behavioral metrics (i.e., GOS-E).
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Figure 3.21: Patients comparison revealing the interaction effect. These are individ-

ual patients’ FN and FP rates for the selective mixing of the cortical nodal labeling.
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Figure 3.22: Patients comparison revealing the GWESP effect. The differences in FN

and FP effects for an exogenous nodal labeling of cortical compared to subcortical regions

and their selective mixing. The right figure displays the FN and FP for the selective mixing

of the cortical nodal labeling when the patients are divided into their stage of TBI and their

level of consciousness assessed by behavioral metrics (i.e., GOS-E).
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Figure 3.23: Patients comparison revealing the GWESP effect. These are individual

patients’ FN and FP rates for the selective mixing of the cortical nodal labeling.
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Figure 3.24: Patients comparison revealing the structural effect.The differences in

FN and FP effects for an exogenous nodal labeling of cortical compared to subcortical regions

and their selective mixing. The right figure displays the FN and FP for the selective mixing

of the cortical nodal labeling when the patients are divided into their stage of TBI and their

level of consciousness assessed by behavioral metrics (i.e., GOS-E).
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Figure 3.25: Patients comparison revealing the structural effect. These are individual

patients’ FN and FP rates for the selective mixing of the cortical nodal labeling.
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3.5 Discussion

As our longitudinal data shows, consistent with results from other domains of neuroscience

(see Milham et al., 2012; Nielsen et al., 2013), brain graphs are susceptible to having

different “natural” levels of density at which they are the most stable and which might thus

be ideal to estimate network properties. In the HCP data, the densities ranged from 0.1676

to 0.215. While in patient data, over the progression of 6 months post injury, as the patient

recovered consciousness and cognitive function, the natural brain graphs had differences in

density between 0.0019 to 0.0331. Additionally, the densities varied across subjects between

0.1039 to 0.1524. These density differences were revealed thanks to the use of MoNeT

(Narayan et al., 2015), a tool which combines a penalized maximum likelihood estimation

with a resampling-based (bootstrapped) model selection procedure in order to find the most

stable level of sparse brain graph given a set of time-dependent measurements (e.g., fMRI

data). On the one hand, these differences might well reflect important aspects of network

dynamics in the recovery of consciousness post severe brain injury in patients or natural

variation across participants for the HCP participants. On the other hand, regardless of the

ultimate interpretation of the finding in of itself, had we employed the standard approach

and enforced equal density across brain graphs in order to allow comparability (Rubinov

and Sporns, 2010; van Wijk et al., 2010), these differences would have been obscured and

would have introduced a bias in the direct comparison of topological properties across graphs.

Ultimately, an accurate estimation of the connectivity is necessary to correctly model the

connectivity. ERGM allows for controlling the density without having to fix the density for

all graphs. This allows for data driven approaches to allow the density to vary based on

the stability of the connectivity estimates. This natural variance could reveal differences

in graph statistics that would otherwise be masked by fixing density. Overall, this result

further demonstrates that, when arbitrarily enforcing equal density across graphs, we are

in fact biasing our results towards the graphs with natural density closest to the threshold

employed. While we show this in the context of time, it immediately translates to cross-

sectional analyses that are also typical of the field of DOC (e.g., healthy controls versus
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patients), with the prediction that the more different the natural density across groups, the

greater the bias in the results.

Even if the density is allowed to vary, the other problems of interrelated connectivity

measures (i.e., problem #2) and leaving out structural terms (i.e., problem #3) affect the

analyses. The interpretations of connectivity differences depends on the generative pro-

cesses (Goodreau et al., 2009) involved in generating the observed connectivity. Research

questions involving specific types of cortical and subcortical connectivity (e.g., cortico-cortico

vs thalamo-cortical connectivity; Laureys et al., 2000a,b; Vanhaudenhuyse et al., 2010; Boly

et al., 2009, 2011; Crone et al., 2014; Amico et al., 2017; Crone et al., 2018) are questions

of selective mixing (i.e., specific connectivity patterns differences in patients associated with

within cortical, within subcortical or between cortical and subcortical connectivity). How-

ever, network connectivity is the result of multiple generative processes, which together

produce the structure in the graph being analyzed. If there differences found within the

selective mixing of cortical and subcortical connectivity, but the other generative process are

not accounted for, the attribution to selective mixing is inaccurate. There needs to be an

account for other generative process (e.g., triadic closure) or other covariate (e.g., structural

connectivity differences in patients) which could have affected the selective mixing within

functional connectivity that are theoretically relevant to the research. Otherwise, there is a

risk of misinterpretation of causes for connectivity differences.

Overall, both the patients and HCP participants had non-zero rates for FP and FN, if a

triadic closure, structural term, or both are omitted. We wanted to investigate rate differ-

ences for within patient populations and within healthy volunteers because rate differences

would lead to lead biased conclusions about important types of connectivity differences be-

tween groups of patients. A general trend was that patients and participants all had some

effect of leaving out the terms, but patients had rate differences for unconscious compared

to conscious patients and conscious acute stage TBI compared to conscious, chronic stage

TBI patients. As discussed below, we believe this is due to the difference in the terms

omitted within the patient population specific to DOC and/or their differences in levels of

consciousness, but the HCP participant population does not have these differences.
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Leaving out a known interrelated measures (e.g., GWESP term for triadic closure term;

see column 2 in Table 3.10) increases risks for differences in rates in FN for within corti-

cal connectivity and FP within subcortical connectivity for comparisons between acute and

chronic stage TBI patients. As we discussed in the introduction, triadic closure is one the

key generative processes (Goodreau et al., 2009) present most graphs, but more importantly

these differences in FP an FN rates could be due to the importance of triadic closure to con-

sciousness. Integrated information theory propose that functional specificity and integration

are necessary for producing the necessary connectivity to support consciousness, in which

triadic closure is likely to play a key role. Furthermore, clustering coefficients have been

used to differentiate patients with DOC (using structural connectivity; Tan et al., 2019) and

for differentiating levels of consciousness while undergoing anesthesia (Monti et al., 2013).

Due to the empirical findings of different levels of triadic closure within patient groups and

the theoretical importance of triadic closure to consciousness, the best way to avoid these

FP and FN rate differences is to model the selective mixng and triad closure processes in a

single model.

The effects of omitting the structural terms (see column 3 in Table 3.10) affected the

FP rates differently for the unconscious patients in their acute stage of TBI and the con-

scious patients in the chronic stage of their TBI for both within cortical connectivity and

between subcortical and cortical connectivity. These effects are quite problematic for DOC

research due to the interest in comparing cortico-cortico and thalamo-cortical connectivity

(e.g., Laureys et al., 2000a,b; Vanhaudenhuyse et al., 2010; Boly et al., 2009, 2011; Crone

et al., 2014; Amico et al., 2017; Crone et al., 2018) and its importance to consciousness.

Due to the inherent nature of structural damage affecting the structural connectivity, the

inclusion of structural terms into a model assessing functional connectivity will help to avoid

the FP and FN rate differences between patient in acute and chronic stage of TBI, and the

difference in rates between unconscious and conscious patients.

The effect of leaving out both the structural terms and the GWESP term (see column 1

in Table 3.10) has differing rates in: FNs for cortico-subcortical connectivity, FN and FPs

for within cortical connectivity, and FPs for within subcortical connectivity. Since all these
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effects are for unconscious patients, it affects all of DOC research for all three possible types

of comparisons between cortical and subcortical connectivity. As can be seen in Table 3.10,

the combination of leaving both terms is not just a simple combination of leaving out each

term, but it has specific impacts for unconscious patients. A possible explanation is that for

unconscious patients have structural connectivity alterations from their TBI that affected

the patients’ triadic closure, but these differences are masked by not accounting for patients’

structural connectivity metrics. These types of interactions are key reasons for including

all the generative processes in a graph and other key contributing factors like structural

connectivity metrics for patients. The estimation of the connectivity differences depends

on the structure in the graphs. If there is unaccounted factors, which affect one patient

group more than another, the interpretation of results will be not accurately represent the

generative processes associated with the connectivity differences between the patient groups.

Overall, investigating the network differences in patient populations is plagued by all

three problems that we outlined. We strongly suggest to account for triadic closure and

structural terms when investigating the functional connectivity differences between patient

populations. We did not compare the patients to the HCP data due to the differences in

quality of BOLD imaging and imaging parameters. However, we suspect that there would be

differences similar to comparing the groups of patients because the underlying cause of these

FP and FN is the importance in generating structure in the brain. Patient populations differ

in this structure, which would be reflected by difference in sociality, selective mixing, and

triadic closure. Leaving out one of these generative processes will affect the rest (Goodreau

et al., 2009). Additionally, the structural terms are specifically important to DOC due to

the TBI resulting in structural damage that is part of the recovery process. While there may

be alternatives to solving the three of the four problems we outlined (i.e., problem#1, #2,

and #3), we chose to use ERGM due to the flexibility it provides to model all the generative

processes and other covariates of interest (e.g., size of regions of interest or amount of atrophy

within an region of interest). This flexible framework would allow researchers to generate

models that fit their specific needs and research questions.
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3.5.1 Limitations and Future Studies

While we have demonstrated that all three problems would have affected this analysis, we

did not fit the data well for the specific effects of triadic closure. The GWESP term matched

the overall observed values (see Table 3.11 for patients, and for HCP participants, see Table

3.5), but our fits were sub-optimal for most specific edge shared partners (see Table 3.12

and 3.6 for HCP and patietns, respectively). The edge shared partners are a type of triadic

closure that measures the number of triangles that share an edge. The effect of these poor

fits are not well understood in our field. There is not any work that we are aware of, which

explains specific amounts of triadic closure and their neural mechanisms. There is some work

describing larger scale interpretations of outcome metrics (e.g., local and global clustering

cofficient; Rubinov and Sporns, 2010, 2011) or to characteristic network blocks (i.e., motifs;

Sporns and Ktter, 2004), but these accounts are for general interpretations without linking

them to key neural mechanism. More theoretical work is needed to understand how these

generative processs (i.e., sociality, selective mixing, and triadic closure) arise from neural

mechanisms.

Finally, our structural terms only having a few significant terms for patients and par-

ticipants (see Table 3.14, 3.15, 3.8, and 3.9). Yet, structural connectivity can be used to

predict functional connectivity (Bettinardi et al., 2017; Mess et al., 2015), which we expected

to have additional relationships found between degree, local efficiency, clustering coefficient

and latent clustering of structural connectivity, and the functional connectivity. We only

accounted for the structural terms by using measures of centrality and higher order clus-

tering terms (e.g., clustering coefficient and latent space clusters). This is the equivalent

of parcelling out the effects of structural connectivity on functional connectivity, similar to

using covariates in a regression analysis to control for confounding effects. We have not

truly estimated the effects of structural connectivity on functional connectivity. There are

structural effects which could account for generative processes that we are attributing to

the functional connectivity. For example, if a three nodes have two structural edges, does

the functional close this triad? A process like this would represent a possible structural and
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functional relationship from triad closure from the combination of structural and functional

connectivity. In the future, a method is needed that accounts for the social processes that

generate the complex interactions between structural and functional connectivity.
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CHAPTER 4

The formation and dissolution of structural

connectivity in patients with DOC: Extricating the

return of complex behavior and consciousness

4.1 Methods

This second study uses a larger cohort of 31 patients to assess the dynamic changes of network

properties for structural connectivity occurring over observations (e.g., time, clinical groups).

STERGM was used to assess the differences in recovery from TBI for two groups of patients

with differing levels of consciousness in the acute stage of their TBI whom differ in levels of

consciousness, but both have the return of other complex behavior (Crone et al., 2018).

4.1.1 Structural Connectivity Patient Cohort

There were 31 patients that had at least one MRI session during the first two weeks since

injury and at least one MRI session at least 158 days after injury. This cohort was mostly

male (n=24) with seven female patients. At the time of injury, 14 male patients were

below the age of 35 years old with the remaining ten over the age of 36. There were four

female patients below the age of 25 and the remaining three were over 36 years old. The

acute imaging sessions for 20 of the patients were held before 10 days post-injury with the

remaining 11 between 10 and 37 days post-injury (see Table 4.1). The chronic imaging

sessions were conducted between 158 and 238 days post-injury. During the acute session,

patients were evaluated with a post-resuscitation Glasgow Coma Scale (GCS; Teasdale and

Jennett, 1974). The GCS has three subscales: eyes opening (E), verbal response (V), and
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motor response (M). Crone and colleagues 2018 used the GCS subscales of V and M to

transform the GCS scores into the Glasgow Outcome Scale – Extended (GOS-E; Wilson

et al., 1998). A patient with a GCS V subscale of less than or equal 3 and a GCS M subscale

of less than or equal to 4 were assigned an inferred GOS-E of 2, while a patient with higher

scores for GCS V and M were assigned an inferred GOS-E of 3. While DoC diagnoses are

typically not made at such an acute stage, a patient with a GOS-E of 2 is consistent with

a vegetative state (VS; see Table 4.2 for a description of VS), and patient with a GOS-E of

3 has recovered from VS. This allows organizing patients into two groups (see Table 4.1):

VS at acute stage of TBI with recovering consciousness (U2C) at chronic stage of TBI and

conscious at acute stage of TBI with maintaining consciousness (C2C) at the chronic stage

of TBI. Both groups recovered cognitive functions transitioning from the acute to chronic

stage of TBI, but the U2C group recovered consciousness going from acute to chronic stages

of TBI, while the C2C group maintained consciousness. In total, the U2C group had 16

patients and the C2C group had 15 patients.

4.1.2 Parameter Selection

The selection procedure of parameter estimates is a three step process. First, we chose differ-

ent mixing terms based on another exogenous nodal labeling of ROIs using their anatomical

location within the four cerebral lobes (i.e, frontal, occipital, parietal, and temporal) and

four subcortical divisions (i.e., basal ganglia, cerebellum, subcortex, and thalamus). Our

STERGM model was specified with four terms, where the Pθ(Y = y):

=
exp(θ1edges + θ2nodemix(lobes) + θ2nodematch(laterality) + θ4gwesp(alpha = λ))

c(θ)
(4.1)

The edges and GWESP terms (the decay parameter differs, but the interpretation is the

same) are the same as the previous model (see §2.2). The still represents the intra- and

inter-connectivity of the exogenous nodal labeling, but there are less terms because there

are only 8 nodal labels compared to 11 (see §2.2). The nodematch for laterality term creates
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Acute Chronic Delta Acute Acute Chronic

Gender Cause of Injury Age at Injury TSI TSI TSI GCS GOS-E GOS-E Group

P003 Male Blunt Trauma 31-35 3 238 235 8 (E:2, V:1, M:5) 3 4 C2C

P005 Male Blunt Trauma 18-25 1 200 199 3 (E:1, V:1, M:1) 2 8 U2C

P006 Male Blunt Trauma 36+ 2 176 174 8 (E:2, V:1, M:5) 3 8 C2C

P007 Male Automobile Accident 31-35 4 261 257 7 (E:1, V:1, M:5) 3 4 C2C

P014 Male Fall 36+ 3 194 191 7 (E:1, V:1, M:5) 3 3 C2C

P018 Male Fall 36+ 28 182 154 11 (E:4, V:1, M:6) 3 6 C2C

P021 Male Fall 18-25 10 176 166 8 (E:2, V:1, M:5) 3 4 C2C

P022 Male Fall 31-35 3 186 183 3 (E:1, V:1, M:1) 2 3 U2C

P023 Female Automobile Accident 18-25 1 184 183 10 (E:4, V:1, M:5) 3 5 C2C

P024 Male Bicycle vs Automobile 36+ 24 207 183 8 (E:2, V:1, M:5) 3 5 C2C

P026 Male Automobile Accident 18-25 2 194 192 3 (E:1, V:1, M:1) 2 3 U2C

P027 Male Automobile Accident 18-25 2 196 194 3 (E:1, V:1, M:1) 2 5 U2C

P029 Female Fall 36+ 19 187 168 6 (E:4, V:1, M:1) 2 5 U2C

P039 Male Automobile Accident 18-25 19 180 161 3 (E:1, V:1, M:1) 2 4 U2C

P051 Male Automobile Accident 18-25 8 233 225 5 (E:1, V:1, M:3) 2 8 U2C

P054 Female Fall 36+ 25 186 161 7 (E:2, V:1, M:4) 2 8 U2C

P055 Male Fall 36+ 1 195 194 6 (E:1, V:1, M:4) 2 4 U2C

P066 Male Bicycle vs Automobile 36+ 0 222 222 7 (E:2, V:1, M:4) 2 5 U2C

P069 Male Fall 36+ 1 186 185 7 (E:2, V:1, M:4) 2 8 U2C

P074 Female Automobile Accident 18-25 1 180 179 8 (E:1, V:2, M:5) 3 8 C2C

P079 Female Pedestrian vs Automobile 18-25 2 181 179 7 (E:3, V:3, M:1) 2 7 U2C

P083 Male Pedestrian vs Automobile 18-25 1 180 179 3 (E:1, V:1, M:1) 2 8 U2C

P084 Female Automobile Accident 18-25 5 183 178 3 (E:1, V:1, M:1) 2 3 U2C

P085 Female Fall 36+ 2 177 175 15 (E:4, V:5, M:6) 3 7 C2C

P086 Male Fall 36+ 26 221 195 6 (E:1, V:1, M:4) 3 5 C2C

P089 Male Fall 36+ 17 181 164 10 (E:2, V:1, M:5) 3 3 C2C

P092 Male Automobile Accident 18-25 1 158 157 10 (E:4, V:1, M:5) 2 4 U2C

P096 Male Automobile Accident 26-30 37 176 139 3 (E:1, V:1, M:1) 3 4 C2C

p097 Male NA 18-25 17 170 153 8 (E:2, V:1, M:5) 3 6 C2C

P099 Male Bicycle vs Automobile 18-25 18 184 166 8 (E:2, V:1, M:5) 3 8 C2C

P100 Male NA 36+ 4 173 169 8 (E:2, V:1, M:5) 2 5 U2C

Table 4.1: Patients’ demographics. For the 31 patients, the following demographics for

each patient is tabulated: gender, cause of injury, age at injury, time since injury for the

acute imaging session (Acute TSI), time since injury for the chronic imaging session (Chronic

TSI), and the difference in time between the two imaging sessions (Delta TSI). Additionally

for each patient, the level of consciousness at the acute imaging session (Acute GSC) and

chronic imaging session (Chronic GOS-E) are tabulated. The acute GOS-E is inferred from

the GCS scores after the acute imaging session. Finally, these GOS-E scores are used to group

patients into two different recovery groups: unconscious to conscious (U2C) and conscious to

conscious (C2C) groups. For a full description of the groups and inferred GOS-E see section

§4.1.1.
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Behavior Score Interpretation

Death 1

Vegetative State 2 A condition of unawareness with some reflex functions and spontaneous eye openings.

Lower Severe Disability 3 A patient with mental and/or physical disabilities who needs more than 8 hours of assistance for daily activities.

Upper Severe Disability 4 A patient with mental and/or physical disabilities who needs less than 8 hours of assistance for daily activities.

Lower Moderate Disability 5 A patient with some mental disabilities (e.g., aphasia, epilepsy or memory deficits). They do not need assistance for daily activities, but they are unable to return to work or school.

Upper Moderate Disability 6 A patient with some mental disabilities (e.g., aphasia, epilepsy or memory deficits). They do not need assistance for daily activities, and they are able to return to work or school.

Lower Good Recovery 7 Patient is able to resume work and daily activities, but may have minor mental and physical deficits which affect work and/or daily activities.

Upper Good Recovery 8 Patient is able to resume work and daily activities without being disrupted by mental or physical deficits.

Table 4.2: Glasgow Outcome Scale – Extended (GOS-E) description. The behavior,

score, and interpretation of the GOS-E scores (Wilson et al., 1998).

three parameter estimates based on the laterality of each ROI (i.e., within left hemispher,

within right hemisphere or within medial). The medial term was not estimable for many

subjects, and was omitted from the model. This first step resulted in the STERGMs having

a varying number of terms for the formation (between 29 and 33 terms for each patient) and

dissolution models (between 21 and 29 terms for each patient) because some of the mixing

terms were not able to be estimated due to the low number of tie counts for the intra- and

inter-connectivity which were omitted from each patient’s models.

In the second step, after the estimation of the STERGMs, we eliminated the mixing terms

which were estimatable for the mean parameter estimate, but the standard errors were not

able to be estimated. This was also due to a lack of tie counts for mixing terms. These tie

counts were higher than the other terms omitted, but still not enough to get a true estimate of

the variance of the ties across the MCMCs. This reduced the original 29 to 33 terms for each

patient down to the 13 parameter estimates (i.e., edges, fronto-basal ganglia, within frontal

lobe, fronto-parietal, within parietal lobe, thalamo-basal ganglia, thalamo-frontal, within

Thalamus, within left hemisphere, within right hemisphere, GWESP, parieto-occipital, and

within temporal lobe) for the formation model and 11 parameter estimates (i.e., all of the

formation model’s parameter estimates except fronto-basal ganglia and thalamo-frontal) for

the dissolution models. The exclusion criterion for these parameter estimates was that each

parameter estimate had to have at least 30 patients with estimable standard errors.

The final step of the selection of parameter estimates for the regression models was
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Acute Chronic Acute Chronic Acute Chronic Acute Chronic

Matched MRI Bvec Bvec Slice Thickness Slice Thickness TR TR TE TE

P003 No 31 29 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 90 ms

P005 No 32 27 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8300 ms 8000 ms 95 ms 95 ms

P006 No 32 30 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

p007 No 26 29 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P014 No 30 30 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P018 No 30 29 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 9000 ms 8000 ms 95 ms 95 ms

P021 No 31 32 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P022 Yes 32 27 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P023 No 25 31 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P024 No 32 28 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P026 No 31 28 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P027 No 31 28 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P029 No 31 32 2x2x3 mm, 50 Slices 2x2x3 mm, 50 Slices 8000 ms 8000 ms 95 ms 95 ms

P039 No 29 30 2 mm isotropic, 75 Slices 2 mm isotropic, 75 Slices 9700 ms 9700 ms 90 ms 95 ms

P051 Yes 63 58 2x2x3 mm, 50 Slices 2.125x2.125x2 mm, 75 Slices 9000 ms 9700 ms 90 ms 90 ms

P054 Yes 64 63 2 mm isotropic, 69 Slices 2.125x2.125x2 mm, 69 Slices 9000 ms 9000 ms 90 ms 90 ms

P055 Yes 56 56 2x2x3 mm, 50 Slices 2.125x2.125x2 mm, 81 Slices 8000 ms 9000 ms 96 ms 90 ms

P066 No 41 38 2 mm isotropic, 81 Slices 2 mm isotropic, 69 Slices 9300 ms 9000 ms 90 ms 90 ms

P069 Yes 59 61 2 mm isotropic, 69 Slices 2.125x2.125x2 mm, 77 Slices 9000 ms 9900 ms 90 ms 90 ms

P074 Yes 58 62 2 mm isotropic, 69 Slices 2.125x2.125x2 mm, 69 Slices 9000 ms 9000 ms 90 ms 90 ms

P079 Yes 64 62 2 mm isotropic, 69 Slices 2.125x2.125x2 mm, 69 Slices 9000 ms 9000 ms 93 ms 90 ms

P083 Yes 64 56 2 mm isotropic, 69 Slices 2.125x2.125x2.1 mm, 69 Slices 9000 ms 9000 ms 90 ms 90 ms

P084 Yes 64 62 2 mm isotropic, 69 Slices 2x2x3 mm, 52 Slices 9000 ms 9000 ms 90 ms 90 ms

P085 Yes 54 62 2 mm isotropic, 69 Slices 2x2x3 mm, 52 Slices 10100 ms 9000 ms 90 ms 90 ms

P086 Yes 57 60 2 mm isotropic, 78 Slices 2x2x3 mm, 52 Slices 8100 ms 9000 ms 90 ms 90 ms

P089 Yes 60 62 2x2x3 mm, 50 Slices 2 mm isotropic, 72 Slices 9500 ms 9500 ms 90 ms 90 ms

P092 Yes 61 63 2 mm isotropic, 78 Slices 2 mm isotropic, 75 Slices 10100 ms 9500 ms 90 ms 90 ms

P096 Yes 45 60 2 mm isotropic, 78 Slices 2 mm isotropic, 78 Slices 10100 ms 10100 ms 90 ms 90 ms

P097 Yes 48 59 2 mm isotropic, 73 Slices 2 mm isotropic, 78 Slices 10100 ms 10100 ms 90 ms 90 ms

P099 Yes 62 64 2 mm isotropic, 78 Slices 2 mm isotropic, 78 Slices 10100 ms 10100 ms 90 ms 90 ms

P100 Yes 63 62 2 mm isotropic, 78 Slices 2 mm isotropic, 78 Slices 10100 ms 10100 ms 90 ms 90 ms

Table 4.3: Patients’ DWI parameters.. The following parameters for each DWI imaging

session (i.e., acute and chronic) varied from patient to patient due to clinical requirements:

the number of gradient directions (Bvec), the slice thickness, the repetition time (TR), and

the echo times (TE). Additionally, the matched MRI indicates which patients had the same

MRI system in both the acute and chronic imaging sessions.
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based on compatible hypotheses for the structural connectivity from theories of conscious-

ness (global neuronal workspace theory [GNW]; Dehaene et al. 1998, Dehaene and Changeux

2005, Dehaene and Changeux 2011, Dehaene et al. 2014, higher-order thought theory [HOT];

Lau 2007, Lau 2011, Lau and Rosenthal 2011, and integrated information theory [IIT];

Oizumi et al. 2014, Tononi 2008, Tononi and Koch 2015, Tononi et al. 2016) or recov-

ery of complex behavior (mesocircuit hypothesis; Schiff, 2010). Hypotheses based on the

dynamic competition between assemblies of cells (Crick and Koch, 2003), the presence of

synchronized long-range activity in specific frequency bands (Engel and Singer, 2001; Tallon-

Baudry, 2009), and recurrent connectivity (Lamme and Roelfsema, 2000; Lamme, 2006, 2010)

were exlcuded because DTI data cannot detect dynamic competition between assemblies of

cells, cannot detect specific frequency bands, or discriminate between recurrent connectivity

compared to other types of connectivity (i.e., DTI connectivity is undirected). Importantly,

GNW, HOT, and IIT are theories of consciousness that describe the key physical substrates

for consciousness, not the recovery of consciousness. The mesocircuit hypothesis describes

recovery of complex behavior and the recovery of consciousness. Neither the mesocircuit

hypothesis nor the theories of consciousness (i.e., GNW, HOT, and IIT) provide a full de-

scription of the important physical substrates for the recovery of consciousness, but we will

test their hypotheses based on the important physical substrates of consciousness and com-

plex behavior.

For all theories, we assumed that a loss of consciousness in DOC patients also causes

a lack of consciousness awareness because a patients in a VS or unresponsive awareness

syndrome have wakefulness in the absence of any behavioral sign of awareness of the self or

the environment. If the lack of awareness for the environment is truly absent (i.e., assuming

the behavioral signs are accurate), they also lack consciousness awareness. Next, we assumed

that these theories would suggest that the important physical substrates of consciousness is

also the important physical substrates for recovery of consciousness. Additionally, none of

these theories/hypothesis differentiate between the formation and dissolution/perservance of

connectivity, which we assumed equally important for the parameter estimates chosen for

this model because either the formation, or dissolution/perservance of connectivity could

80



represent a reorganization process in patients with severe TBI. Finally, we described only

some of the predictions for types of connectivity for each theory, which are relevant to the

possible connectivity specified by our STERGM.

GNW builds upon global worskspace theory’s posited role of the reverberation and spread

of neural activity across fronto-parietal association regions (Baars, 1993, 2002; Baars et al.,

2003; Baars, 2005) by additionally proposing the role of specific, recurrent thalamo-cortical

loops. Taken together for GNW, we assert the key physical substrates for supporting a global

workspace would be fronto-parietal, thalamo-frontal, and thalamo-parietal connectivity. Ad-

ditionally, a globabl workspace is integrating multiple regions which would result in changes

in integrative connectivity.

HOT of consciousness posit that consciousness is a higher-order process (i.e., a type of

metacognition) different from first-order perceptual representations (e.g., information pro-

cessing in sensory or ventral-temporal regions; Lau and Rosenthal, 2011). This form of

metacognition determine the reliability of the first-order representation (Lau, 2007), which

is conscious awareness (Ko and Lau, 2012; Maniscalco and Lau, 2016). The higher-order

representations are posited within the frontal lobe (e.g, dorsolateral prefrontal cortex; Lau

and Passingham, 2006; Rounis et al., 2010). Finally, the higher-order representations require

the first-order representation, which would entail connectivity between frontal and temporal

regions. Taken together, the physical substrates of consciousness for HOT is approximated

here by the within frontal lobe connectivity and fronto-temporal connectivity.

IIT posits a mathematical framework specifying that the level consciousness is identical to

the integrated information of system (Φmax), and the contents of consciousness are identical

to a physical systems’ maximal irreducible conceptual structure (MICS; Oizumi et al., 2014;

Tononi and Koch, 2015; Tononi et al., 2016). Due to current computational limitations,

neither the Φmax nor the MICS can be computed for biologically relevant systems (Tegmark,

2016), but the more general properties of integration and differentiation (Tononi, 2008) have

been assessed using path based and clustering metrics (Monti et al., 2013). Typically path

based measures are used to test integration (Monti et al., 2013), but we used the edges term,

which accounts for the overall density of the graph over and above the rest of the terms in our
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model. While the overall density of a graph is not directly related to integration, an increase

in density will increase overall integration, but as posit by IIT (Tononi, 2008), too much

integration reduce the overall level of consciousness. The lack of path based metrics in our

model is due to path based metrics being affected by multiple generative processes, which we

are trying to extricate using STERGM. Additionally, the superior parietal lobule may play an

important role in generating the integrated information as discovered using perturbational

complexity index (PCI Casali et al., 2013; Casarotto et al., 2016; Comolatti et al., 2018)

to discriminate states of consciousness (e.g., sleep, anesthesia, DOC) with unprecedented

accuracy. PCI is not a 1-to-1 translation of the mathematical framework (Sitt et al., 2013;

Nagaraj and Virmani, 2017), but it is “based upon” the core ideas of IIT of integration and

differentiation. As per GNW’s integration test, we will use an edge term, and our clustering

term is the GWESP metric (for a full description, see Chapter 2, §2.2). Finally, the within

parietal lobe connectivity will be included due to the findings using PCI.

According to the mesocircuit hypothesis, there are cortical-striatopallidal thalamocortical

loop systems which are responsible for complex behavior including consciousness (Schiff,

2010). The thalamus and basal ganglia (internal globus pallidus and striatum) are key

subcortical sites that can have larger scale connectivity in cortical regions (e.g., frontal,

parietal, temporal and occipital regions). Given the large number of regions posited, we will

include the within thalamic and basal ganglia connectivity along with the thalamo-frontal

and thalamo-basal ganglia connectivity.

Considering the regions and types of connectivity posited by the theories of consciousness

and mesocircuit hypothesis, we built two regression models with the following 9 parameter

estimates (edges, fronto-basal ganglia, within frontal lobe, fronto-parietal, within parietal

lobe, thalamo-basal ganglia, thalamo-frontal, within Thalamus, and GWESP) for the for-

mation model and 7 parameters (edges, within frontal lobe, fronto-parietal, within parietal

lobe, thalamo-basal ganglia, within Thalamus, and GWESP) for the dissolution model. The

fronto-temporal connectivity and within basal ganglia connectivity were eliminated due to

too few patients with estimable SEs.
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4.1.3 Analyses

Using the 9 and 7 parameter estimates discussed in the previous section as predictor variables,

we took the mean parameter estimates of the STERGM and divided them by the standard

errors to include the variability into the predictor variables. Additionally, we regressed

the average number Bvecs and matched MRI (see Table 4.3 to control for the different

scanning parameters and scanning systems in the acute and chronic imaging sessions. These

residualized predictor variables were used in both the normal and logistic regression analyses.

Next, we ran six additional regressions for both the logistic and normal regression to assess

the need to covary the age, time since injury and gender of patient, but none of the covariates

were significantly related to either outcome variable. Thus, we did not include the covariates

into either logistic or normal regression. We also performed three stepwise procedures (i.e.,

forward selection, backwards elimination, and bidirectional elimination) that were used to

produce the most parsimonious models based on the Akaike information criterion (AIC) for

both the logistic regressions. The penalty multiplier for each degree of freedom (df ) used

in a model for AIC is 2. We also tested these models using Bayesian information criterion

(BIC) which the penalty multiplier for the df s is the log(df ). The BIC and AIC penalty

multipliers converged on the same models, so we only report the AIC. Finally, we ran a

t-tests with equal variances assumed to assess the differences between the delta GOS-E for

both the patients in the dissolution and formation models to test if the patients recovered

at different rates according to the GOS-E. For this test, the null hypothesis is a difference

of -1 (instead of 0) because the U2C recovery group’s acute inferred GOS-E was 2 and the

C2C recovery group was 3.

Using a generalized linear models in R (Chambers et al., 1992; Dobson and Barnett, 2008;

McCullagh, 2018; Venables and Ripley, 2013), we fit two logistic regression analyses (one

for the formation model and one for the dissolution model) to determine which residualized

predictor variables were more associated with the going from C2C (reference group) to U2C

group (see Table 4.1). A positive coefficient can be interpreted as more predictive of the

U2C group and a negative coefficient is more predictive of the C2C group. These group
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differences will be assessed by a follow up analysis of the delta GOS-E to investigate the type

of formation or dissolution driving the change. It is important to note that the coefficients

from this regression all are important for predicting consciousness because they are affected

by each other due to collinearity. Additionally, a lack of significance does not necessarily

mean no group difference, it means that the difference is less likely to be uniquely attributable

to that specific type of connectivity, but it is still important to report and interpret these

coefficients.

Using a generalized linear models in R (Chambers et al., 1992; Dobson and Barnett,

2008; McCullagh, 2018; Venables and Ripley, 2013), the two normal regressions analyses

(one for the formation model and one for the dissolution model) used the interaction be-

tween residualized predictor variables and the patient recovery group variable (i.e., U2C and

C2C groups, see Table 4.1) to predict the delta GOS-E. Only the interaction between the

residualized predictor variables and the recovery groups were included in the model because

the delta GOS-E does not account for different recovery groups which have an important

effect on the interpretation of delta GOS-E. For example, a delta GOS-E of 1 for a patient

in the C2C group indicates a increase in cognitive function (see Table 4.2), but a 1 for a

patient in the U2C group indicates that patient transitioned from VS to a more recovered

state of consciousness and regained some cognitive functions. Thus, the normal regression

models will have two coefficients for each residualized predictor variable which allows for the

association of the residualized predictor variables for each recovery group to be established.

The model’s connectivity PEs were chosen to match the logistic regression because we want

to explore the group differences found in the logistic regression for the type of relationship

with a change in GOS-E.

In the formation model, for the C2C group, a positive coefficient was interpreted as an

increase of formation of connectivity that predicts an increase in cognitive function measured

by a behavioral assessment. While in the dissolution model, for the C2C group, a positive

coefficient was interpreted as the perseverance of connectivity that predicts an increase in

cognitive function. Continuing with the C2C group in the formation model, a negative

coefficient was interpreted as increase in cognitive function as the formation connectivity
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becomes less likely. This is due to delta GOS-E ≥ 0 for all patients and the formation

model only indicates the likelihood of the formation of connectivity (i.e., negative parameter

estimate is a reduced likelihood of formation, see §2.1). In other words, patients in the

C2C group did not decrease in their cognitive function and this is related to the reduced

likelihood of the formation of a specific type of connectivity. While in the dissolution model,

for the C2C group, a negative coefficient was interpreted as an increase in cognitive function

as there is a decrease in connectivity (i.e., a dissolution of connectivity). The U2C group’s

interpretation of coefficients will only add the change in consciousness in combination with

the increase in cognitive function.

The interpretations of both regressions together extricate the return consciousness and

complex behavior. For the U2C group, a significant parameter estimate in both the logistic

and normal regression indicate that connectivity type predicts the return of consciousness

because it predicts the difference between the two recovery groups (i.e., return of conscious-

ness) and it predicts the type of formation (i.e., either a tendency for increased formation

or a tendency for resistance to formation) or dissolution (i.e., either a tendency for persever-

ance or a tendency dissolution of connectivity) that is related to the more likely return of

consciousness. This is because both groups recovered complex behavior, but the U2C group

recovered from an unconscious state, while the C2C group began in a conscious state. For

the C2C group, a significant parameter in both regressions indicate that connectivity type

predicts the return of complex behavior because it is predicts the return of complex behavior

instead of consciousness (i.e., indicative of C2C group in logistic regression) and it predicts

the type of formation or dissolution that is related to the return of complex behavior. If

the logistic regression has a significant coefficient, but the normal regression does not, the

relationship between return of behavior and consciousness for formation or dissolution types

cannot be determined. If the normal regression has a significant coefficient, but the logistic

does not have a significant coefficient, the relationship is between the return of consciousness

and the type of formation is likely, but not as likely as having a significant group difference

between the U2C and C2C groups in the logistic regression.

Finally, t-test with equal variances assumed were preformed on the counts of connectivity
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during the acute stage of TBI for each parameter estimate. On the one hand, if the recovery

groups had larger counts of connectivity in the acute stage of TBI, this could lead to an

increase in dissolution/perseverance of connectivity. On the other hand, if the recovery

group had reduced counts of connectivity in the acute stage of TBI, this could lead to an

increase in formation connectivity. If the recovery groups had equal counts of connectivity

in the acute stage of TBI, the formation and dissolution/perseverance connectivity should

be equally likely. One important note, the edge counts for the edges term were tested by

assessing differences in overall density, and the edge counts for the GWESP were tested using

triangle counts because the edges and GWESP terms are model specific. This would require

an ERGM analysis for each patient, but only STERGM for each patient was conducted.

4.2 Results

In the all the regression models, for the both formation and dissolution models, the stepwise

procedure converged on the same results for the backwards elimination and the bidirectional

elimination, but the forward selection resulted in the full model. Since the backwards elimi-

nation and bidirectional elimination converged on the same model, we chose the model based

on the bidirectional elimination. For the formation model, the bidirectional elimination ex-

cluded the edges term, fronto-basal-ganglia connectivity, and GWESP term (see Table 4.4).

For the dissolution model, the bidirection elimination excluded all terms, except edges and

GWESP terms (see Table 4.4). The t-test with equal variances assumed was not significant

for the patients in the formation model (M U2C = 3.923, M C2C = 2.500, df = 25, t-statistic

= -0.596, CI lB = -2.898, CI UB = 0.052, p-value = 0.56) nor the dissolution model (M U2C =

3.467, M C2C = 2.214 , df = 27, t-statistic = -0.356, CI lB = -2.706, CI UB = 0.201, p-value

=0.724).

The formation model’s logistic regression resulted in a significant negative coefficient

for within frontal lobe connectivity (β = -2.062, df = 20, SE = 0.981, p = 0.0355) and a

significant positive coefficient for within thalamic connectivity (β = 1.459, df = 20, SE =

0.689, p = 0.0342; see Table 4.4, the formation after stepwise column). There were also
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positive coefficients for fronto-parietal connectivity (β = 1.369, df = 20, SE = 0.0775, p =

0.0774), within parietal lobe connectivity (β = 1.512, df = 20, SE = 0.871, p = 0.0825), and

thalamo-frontal connectivity (β = 0.889, df = 20, SE = 0.507, p = 0.0798). Finally, there

was a negative coefficient for thalamo-basal ganglia connectivity (β = -1.202, df = 20, SE

= 0.689, p = 0.0665). The dissolution model’s logistic regression had a positive coefficient

for the GWESP term (β = 1.349, df = 26, SE = 0.653, p = 0.0507) and for the edges term

(β = 0.519, df = 26, SE = 0.313, p = 0.0973; see Table 4.4, the dissolution after stepwise

column).

For the U2C group, the formation model’s normal regression resulted in a significant

negative coefficient for the within frontal lobe connectivity (β = -2.668, df = 15, SE =

0.968, p = 0.019). Additionally, there were a significant positive coefficient for the within

parietal lobe connectivity (β = 3.013, df = 15, SE = 1.148, p = 0.016; see Table 4.4 and

positive coefficients for the fronto-parietal connectivity (β = 2.397, df = 15, SE = 1.235,

p = 0.010), for thalamo-basal ganglia connectivity (β = 0.034, df = 15, SE = 1.026, p =

0.5849), for thalamo-frontal connectivity (β = 0.481, df = 15, SE = 0.880, p = 0.585), and

within thalamic connectivity (β = 1.697, df = 15, SE = 1.037, p = 0.104). For the C2C,

there was negative coefficients for the fronto-parietal connectivity (β = -0.025, df = 15, SE

= 1.074, p = 0.982), for the within parietal lobe connectivity (β = -1.432, df = 15, SE =

1.395, p = 0.321), for the thalamo-basal ganglia connectivity (β = -0.124, df = 15, SE =

0.805, p = 0.2700), for the thalamo-frontal connectivity (β = -0.240, df = 15, SE = 0.879,

p = 0.763), and for the within thalamic connectivity (β = -0.431, df = 15, SE = 0.986, p

= 0.682). Finally, there was a positive coefficient for the within frontal lobe connectivity (β

= 0.696, df = 15, SE = 0.908, p = 0.455).

In the dissolution model for the U2C group, the normal regression resulted in a significant

positive coefficient for the edges term (β = 1.283, df = 24, SE = 0.517, p = 0.02006) and

the GWESP term (β = 4.178, df = 24, SE = 1.288, p = 0.00334). For the C2C group,

there were negative coefficients for the edges term (β = -0.021, df = 24, SE = 0.605, p =

0.97225) and the GWESP term (β = -0.548, df = 24, SE = 1.039, p = 0.60269).

When comparing the acute imaging sessions counts of connectivity for the patients in
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the U2C and C2C, the results of the t-tests with equal variances were not significant for any

parameter estimate in the formation nor the dissolution model (see Table 4.6). For the U2C

in the formation model, there were on average more edge counts within frontal lobe, within

parietal lobe, for fronto-basal ganglia, and for fronto-thalamo. While the C2C group, had on

average more edges within thalamus, for thalamo-basal ganglia, and triangles. For the U2C

group in the dissolution model, there was on average more edge for all the terms except the

thalamo-basal ganglia connectivity.
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Logistic Regression With Group C2C As The Reference Group

Formation Dissolution
(Before Stepwise) (After Stepwise) (Before Stepwise) (After Stepwise)

Edges 0.123 1.216 0.519∗

(0.330) (0.961) (0..313)

Fronto-Basal Ganglia Connectivity −0.491

(0.481)

Within Frontal Lobe Connectivity −2.048∗ −2.062∗∗ 0.430

(1.077) (0.981) (0.682)

Fronto-Parietal Connectivity 1.906∗∗ 1.369∗ 0.475

(0.968) (0.775) (0.699)

Within Parietal Lobe Connectivity 1.000 1.512∗ 0.017

(0.939) (0.871) (0.626)

Thalamo-Basal Ganglia Connectivity −1.335∗ −1.202∗ 0.177

(0.748) (0.655) (0.259)

Thalamo-Frontal Connectivity 0.911 0.889∗

(0.562) (0.507)

Within Thalamus Connectivity 1.554∗∗ 1.459∗∗ −0.379

(0.725) (0.689) (0.482)

GWESP −0.011 2.209 1.276∗

(0.588) (1.381) (0.653)

Constant −0.408 −0.408 −9.887 −6.587∗

(0.568) (0.568) (6.213) (3.429)

Observations 27 27 29 29

Log Likelihood −11.488 −12.467 −16.613 −17.644

Akaike Inf. Crit. 42.975 38.933 49.226 41.288

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.4: Logistic regression with group C2C as the reference group. There were

two logistic regression models fit for each the formation and dissolution models: full model

(before stepwise column) and final model (after stepwise column). The LATEX code to

create this table was produced by the R package called texreg (Leifeld, 2013).
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Normal Regression Using GOS-E Change from Acute to Chronic

Formation Dissolution

Group C2C:Edges −0.021

(0.605)

Group U2C:Edges 1.283∗∗

(0.517)

Group C2C:Within Frontal Lobe Connectivity 0.696

(0.908)

Group U2C:Within Frontal Lobe Connectivity −2.668∗∗

(0.968)

Group C2C:Fronto-Parietal Connectivity −0.025

(1.074)

Group U2C:Fronto-Parietal Connectivity 2.397∗

(1.268)

Group C2C:Within Parietal Lobe Connectivity −1.432

(1.395)

Group U2C:Within Parietal Lobe Connectivity 3.013∗∗

(1.148)

Group C2C:Thalamo-Basal Ganglia Connectivity 1.118

(0.976)

Group U2C:Thalamo-Basal Ganglia Connectivity 0.034

(1.026)

Group C2C:Thalamo-Frontal Connectivity −0.124

(0.805)

Group U2C:Thalamo-Frontal Connectivity 0.481

(0.880)

Group C2C:Within Thalamus Connectivity −0.431

(1.029)

Group U2C:Within Thalamus Connectivity 1.697

(1.037)

Group C2C:GWESP −0.548

(1.039)

Group U2C:GWESP 4.178∗∗∗

(1.288)

Observations 27 29

Log Likelihood −65.329 −77.524

Akaike Inf. Crit. 154.66 163.048

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 4.5: Normal Regression using GOS-E change from acute to chronic as the

dependent variable. There were two normal regression models fit for each the formation

and dissolution models: full model (before stepwise column) and final model (after stepwise

column). The LATEX code to create this table was produced by the R package called texreg

(Leifeld, 2013).
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C2C.Mean U2C Mean df t-Statistic Lower Bound CI Upper Bound CI p-value

Formation Edge Type

Within Frontal Lobe 142.357 142.615 25 −0.064 −8.633 8.116 0.950

Fronto-Basal Ganglia 15.643 17.231 25 −0.682 −6.383 3.207 0.502

Fronto-Parietal 30.929 31.462 25 −0.402 −3.263 2.197 0.691

Within Parietal Lobe 65.714 66.077 25 −0.195 −4.196 3.471 0.847

Thalamo-Basal Ganglia 23.500 22.846 25 0.272 −4.306 5.613 0.788

Fronto-Thalamo 4 4.385 25 −0.164 −5.215 4.446 0.871

Within Thalamus 46.571 44.615 25 0.847 −2.800 6.712 0.405

Density 0.056 0.056 25 −0.317 −0.004 0.003 0.754

Triangles 868.571 864.308 25 0.044 −196.410 204.938 0.965

Dissolution Edge Type

Within Frontal Lobe 140.143 142.333 27 −0.584 −9.881 5.501 0.564

Fronto-Parietal 30.786 31.333 27 −0.424 −3.196 2.101 0.675

Within.Parietal Lobe 66 67.133 27 −0.607 −4.965 2.698 0.549

Thalamo-Basal Ganglia 24.929 24.267 27 0.291 −4.010 5.334 0.774

Within Thalamus 46 46.133 27 −0.054 −5.173 4.907 0.957

Density 0.056 0.057 27 −0.509 −0.004 0.003 0.615

Triangles 881.143 886.400 27 −0.059 −188.453 177.938 0.953

Table 4.6: Group differences of PEs used in the logistic and normal regressions

for acute stage of TBI. For the formation model and dissolution model, none of the PEs

had different average counts for the U2C and C2C recovery groups. The LATEX code to

create this table was produced by the R package called texreg (Leifeld, 2013).
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4.3 Discussion

The main goal of this study was predict the recovery of consciousness while controlling for the

recovery of complex behavior. Using the methods developed by Crone and colleagues 2018,

we identified two groups of patients, which were unconscious at the acute time point with

recovering consciousness in the chronic time point (U2C) and conscious at both time points

(C2C). We used two types of regression to predict the connectivity types associated with

recovery of consciousness (i.e., connectivity predicting the U2C group) or complex behavior

(i.e., connectivity predicting the C2C group) using logistic regression. The normal regression

was used a follow up analysis to discern the the type of formation (i.e., a positive coefficient

indicating tendency for increased formation and tendency for a negative coefficient indicating

resistance to formation) or dissolution (i.e., i.e., tendency for a positive coefficient indicating

perseverance of connectivity and tendency for a negative coefficient indicating a dissolution

of connectivity) of connectivity associated with the group differences found in the logistic

regression. We tested for group differences recovery rates of consciousness and complex

behavior assessed via delta GOS-E, neither of the tests were significant for the formation

model nor the dissolution model, and the mean delta GOS-E were by 1.253 higher in the

U2C group for the formation model and 1.253 higher in the U2C group for the dissolution

model, which indicates that the difference between the U2C and C2C recovery groups initial

acute GOS-E is the driving change in the differences of the mean delta GOS-E for these two

groups.

The recovery of consciousness was predicted by formation of within thalamic connectivity

(see Table 4.4), but the type of formation (i.e., increased formation or resistance) was not

dissociable using delta GOS-E (see Table 4.5). The level of overall thalamic damage in

patients are a key marker of VS (Adams et al., 2000; Lutkenhoff et al., 2013, 2015), and

in increase for formation could indicate a recovery process of the thalamus for patients

recovering consciousness because an increase of thalamic atrophy is associate with a worse

recovery of complex behavior and consciousness (Lutkenhoff et al., 2013, 2015). Additionally,

an tendency for an increase in formation could result in an increase in overall white matter
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tract integrity within the thalamus, which is consistent with previous findings Fernández-

Espejo et al. (2011). Finally, an increase in formation for within thalamic connectivity

would affect the economy of cortical-striatopallidal thalamocortical loop system resulting in

a change specific to recovery of consciousness compared to an overall change in complex

behavior predicted by the mesocircuit hypothesis (Schiff, 2010).

The increased formation of within parietal lobe connectivity is likely to predict the re-

turn of consciousness. This increase in formation would change the underlying structural

architecture which could be a factor in the difference of complexity found in discriminating

DOC patients using PCI (Casali et al., 2013; Casarotto et al., 2016; Comolatti et al., 2018).

The formation of fronto-parietal and thalamo-frontal connectivity are likely to predict the

return of consciousness, but the type of formation underlying this change is unclear. For-

mation in both the fronto-parietal and thalamo-frontal connectivity are part of the larger

thalamo-cortical recurrent loop predicted by GNW, which are necessary for establishing a

global workspace. The link between thalamo-frontal connectivity and recovery of conscious-

ness is consistent with previous findings that the degree of intact thalamo-frontal anatomical

connectivity is related to recovery of consciousness assessed by behavioral measures (Zheng

et al., 2017). Finally, the change in formation for thalamo-frontal connectivity is part of the

cortical-striatopallidal thalamocortical loop system (Schiff, 2010), which is another change

specific to recovery of consciousness.

The perseverance of overall density predicting the return of consciousness could be linked

to a protective factor for patients recovering consciousness against forming too edges, which

could result in too much integration and an overall loss of integrated information (Tononi,

2008). The perseverance of triadic closure (i.e., the GWESP term) is likely to predict patients

recovering consciousness is inconsistent with a recent finding that decrease in transitivity

(a type of triadic closure) has been associated with a patient transitioning from VS to

MCS, and an increase has been associated in a second patient whom remained in VS (Tan

et al., 2019). Our GWESP term accounts for the triadic closure over and above all the

other types of generative processes (i.e., sociality and selective mixing) involved producing

networks because it is modeled with terms that control for sociality (i.e., the edges term) and
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selective mixing (e.g., the nodemix terms for lobes), while Tan and colleagues 2019 choice

of transitivity was tested independently, which does not control for the other generative

processes of sociality and selective mixing that could affect the an increase in transitivity

(see §1.1.2 for a detailed description). This perseverance of triadic closure could be linked to

an increase in differentiation (Tononi, 2008), which would increase the amount of integrated

information in the main complex responsible for consciousness (Oizumi et al., 2014; Tononi

and Koch, 2015; Tononi et al., 2016).

The return of complex behavior was predicted the formation of within frontal lobe connec-

tivity, and this group difference was due to the U2C group having a tendency for resistance

to formation, while the C2C group did not have any dissociable type of formation assessed

via delta GOS-E (see Table 4.5). The resistance to formation in the U2C recovery group

could be indicative of a interaction between the recovery of consciousness and recovery of

complex behavior. There could be a resistance to formation for recovering from a VS to an-

other state of DOC. This could be driving the resistance to formation for the U2C recovery

group, but the C2C recovery group did not have this factor. However, there is not enough

evidence to fully support this possibility because the C2C group did not have a discernible

type of within lobe frontal connectivity. Finally, the formation of thalamo-basal connectivity

is likely to predict the return of complex behavior(the mesocircuit hypothesis; Schrouff et al.,

2011), but the type of formation is underlying this change is unclear.

These findings should not be interpreted as testing the theories of consciousness or meso-

circuit hypothesis, rather we used the theories and mesocircuit hypothesis to form a feature

set of possible connectivity types associated with both recovery of consciousness and complex

behavior. First, we assumed that GNW, HOT, and IIT would describe the same physical

substrates to the recovery of consciousness as the physical substrates for consciousness; how-

ever, additional hypotheses specific to the recovery of conscious with regard to the formation

and dissolution are needed to establish the role of formation and dissolution for higher-order

representations, a global workspace, and integrated information. Second, we only extracted

a few hypotheses from each theory that were testable in our model. GNW predicts that

thalamo-cortical recurrent loops are necessary for the establishing the globabl workspace,
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but our connectivity based on DTI cannot discern feedfordward, feedback, or recurrent loops.

Furthermore, we did not test for overall thalamo-cortical connectivity because we only had

thalamo-frontal and fronto-parietal connectivity in our model. For HOT, we were only able

to test the within frontal regions, and we were not able to test fronto-temporal regions due

to too many subjects had non-estimable SEs for that particular connectivity. Additionally,

within frontal lobe connectivity contains dorsolateral prefrontal cortex, but it also contains

all other regions within the frontal lobe, which might important for complex behavior, while

the dorsolateral prefrontal cortex alone may be important for conscious awareness. For IIT,

we only tested the general properties of differentiation via triadic closure (i.e., the GWESP

term). While triadic closure could play a role in differentiation, it is not likely to fully ex-

plain the brains ability to different multiple states. Given all these caveats, it would be too

speculative to assess the theories of consciousness.

4.3.1 Limitations and Future Studies

One limitation in this study is the number of subjects compared to the number of terms in

our logistic and normal regression. We had 29 observations for our dissolution model and

27 observations for our formation model for either the logistic regression, which estimated

seven and three coefficients respectively, for our formation and dissolution models. We were

limited to the number of observations due to excluding patients for multiple factors (e.g.,

failed quality control checks and lack of a chronic DWI imaging session). Finally, we only

estimated the transition from acute stage to chronic stage of TBI using a single network

from each stage. This is a coarse grained resolution of time for the recovery of consciousness.

The formation and dissolution of connectivity occurred throughout the approximately 180

days between each imaging session. These processes were not captured and could change the

original STERGM PEs. Finally, we only assessed these 31 patients for their structural con-

nectivity, but a joint analysis of the functional and structural connectivity is needed to gain

a deeper understanding of the overall connectivity involved in the recovery of consciousness

(see Chapter 5).
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These analyses need to be run with a larger cohort of patients to discover whether or

not the group differences between the recovery groups for fronto-parietal, within parietal

lobe, thalamo-frontal, and thalamo-basal ganglia are still present. Additionally, collecting

multiple DWI imaging sessions in acute and chronic stage of TBI will allow for a more fine

grained estimation of the formation and dissolution of connectivity. Furthermore, having

multiple time points for each stage of TBI would allow for comparisons between acute stage

of TBI recovery and chronic stage of TBI recovery, which could differ.
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CHAPTER 5

Increased formation of functional connectivity within

thalamic and basal ganglia in patients recovering

consciousness

5.1 Methods

This study included 12 patient (i.e., the same cohort in study #1, see Chapter 3) subset

of the 31 patients which had sufficient quality of functional imaging sessions to assess the

dynamic changes of network properties for functional connectivity using STERGM. The

other 19 patients had either had too few data points during the functional imaging session

for a reliable assessment of their functional connectivity or their functional imaging session

failed at one or more steps in BOLD preprocessing (see §3.2) or network construction (see

§3.3). Of the 12 patients, 7 were in the U2C recovery group and 5 were in the C2C recovery

group. The connectivity matrices from each patient’s acute and chronic time points were

analyzed for their network dynamics using the STERGM graph statistics (see Chapter 2,

§2.2).

Since there were only 12 patients, we were unable to perform statistical tests for group

differences between the U2C and C2C recovery groups using logistic normal (see Chapter

4, §4.1.3). Instead, we leveraged the ability ERGM and STERGM assess single graphs (for

ERGM) or single group of graphs (STERGM). Additionally, we coded the significance of the

combination of PE across the formation and dissolution models because STERGM identifies

these as independent processes, but together they are describing a single process of recovery

from severe TBI that forms a group of restructuring. This group of restructuring (i.e, coded
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significance) has 8 different possible types based on the sign and significance parameter

estimates for both the formation and dissolution.

The first two types of restructuring involve the formation of edges. A strong formation

(SF) have significant positive PEs that includes both the formation and dissolution models,

and a weak formation (WF) that has only a significant positive PE in the formation model.

SF is a type of restructuring characterized by a higher tendency to form edges and still

maintain the original edges from the acute stage of TBI, which differs from weak formation

(WF) because there is purely formation of edges without perseverance or dissolution of

edges. Another type of restructuring involves both the dissolution and formation of edges

(i.e., significant positive PE for formation and significant negative PE for dissolution), which

is an overall reorganization of connectivity (RC). Next, there is resistance for formation (RF)

that only has significant negative PE, which is characterized by networks forming less edges

than at chance levels (i.e., 50 % chance).

The next two types of restructuring involve the dissolution of edges. Strong dissolution

(SD) occurs when there is a significant negative PE for both formation and dissolution mod-

els, and weak dissolution (WD) occurs when there is only a significant PE in the dissolution

model. The key difference between these two types of restructuring is that the WD still has

edges forming at chance, while the SD has a resistance to edge formation in combination with

the dissolution of edges. Finally, the last two types of restructuring involve the perseverance

of edges. Strong perseverance (SP) has a significant positive PE for the dissolution model

and a significant negative PE for the formation model, and weak perseverance (WP) only

contains a significant positive PE for the dissolution model.

We summarized the results based on the percentage of patients from each recovery group

which has the 8 types of restructuring of connectivity discussed. We focused on the 9

PEs (within frontal lobe connectivity, within parietal lobe connectivity, within basal gan-

glia, within thalamic connectivity, fronto-parietal connectivity, thalamo-fronto connectivity,

thalamo-basal ganglia connectivity, the edges term, and the GWESP term) from the theories

of consciousness (i.e., GNW, HOT, and IIT) and mesocircuit hypothesis.
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5.2 Results

For the U2C recovery group, 57.14% of the patients had SF (see Figure 5.1) within the

basal ganglia connectivity, and 42.86% had WF (see Figure 5.2) for a total of 100 % with

increased formation of connectivity. Also, 100% of the patients had SF for within thalamic

connectivity. There were also 42.86% patients that had WF and 28.57% had WP for the

within frontoparietal network. For the thalamo-basal ganglia connectivity, 28.57% of the

patients had WF (see Figure 5.2), and 14.29% had WP. For the within frontal lobe, 71.43%

of the patients with SF and 14.29% had WP. The same 71.43% of the patients had SF for

with parietal lobe and the same 14.29% had WP, but another 14.29% had WF for a total of

85.72% with significant formation (see Table 5.1). Finally, 71.43% of the patients had RF

and 28.57% had SD for the edges term, and 100% of the patients had SF for the GWESP

term.

For the C2C recovery group, 60% of the patients had WP for the within basal ganglia

connectivity, and 20% had SF (see Figure 5.3). For the within thalamic connectivity, 40%

of the patients had SF and anther 40% had WP, while 20% had WF for a total of 60% with

increased formation. For the within frontoparietal network, 60% of the patients had SF, 20%

had WP, and 20% had WF (see Figure 5.4) for a total of 80% with increased formation. The

thalamo-frontoparietal connectivity had RF in 20% of the patients. In 40% of the patients,

there was SF for the within frontal lobe connectivity and 20% had WP (see Table 5.1). In

he within parietal lobe connectivity, 40% of the patients had SF, 20% had WP, and 20% had

WF for a total of 60% with increased formation. Finally, there were 100% of the patients

with RF for the edges, and SF for the GWESP term.
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STERGM Edges, Lobes and GWESP terms

Formation and dissolution models

P054 P055 P066 P069 P079 P084 P096

Edges RF RF SD RF RF SD RF

Within Frontal Connectivity SF SF WP SF SF SF NS

Within Occipital Connectivity NS SF WP NS NS NS NS

Within Parietal Connectivity SF SF WP SF SF SF WF

Within Subcortical Connectivity WP SF NS NS WF NS NS

Within Temporal Connectivity SF SF SF WP WF SF SF

GWESP SF SF SF SF SF SF SF

Table 5.1: Patients in U2C recovery group’s coded significance for the edges,

within lobes, and GWESP terms. These are the coded significance for the significant

positive or negative PEs for the edges term, nodematch lobe terms, and the GWESP term

across both formation and dissolution models. For the edges term, five patients had RF and

two patients had SD. There were five patients with SF for the within frontal connectivity

and for the within parietal connectivity, and one patient had WF for the within parietal

connectivity. Also, one patient had WP for both the within frontal and the within parietal

connectivity. All 7 patients had SF for the GWESP term. The LATEX code to create this

table was produced by the R package called texreg (Leifeld, 2013).
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STERGM Edges, Lobes and GWESP terms

Formation and dissolution models

P074 P085 P089 P092 P099

Edges RF RF RF RF RF

Within Frontal Connectivity SF SF NS NS WP

Within Occipital Connectivity NS NS NS NS SF

Within Parietal Connectivity SF WP WF NS SF

Within Subcortical Connectivity NS NS NS NS WF

Within Temporal Connectivity SF WP SF WP WP

GWESP SF SF SF SF SF

Table 5.2: Patients in C2C recovery group’s coded significance for the edges,

within lobes, and GWESP terms. These are the coded significance for the significant

positive or negative PEs for the edges term, nodematch lobe terms, and the GWESP term

across both formation and dissolution models. For the edges term, all five patients had RF.

There were three patients with SF for the within frontal connectivity and one patient with

WP. For the within parietal connectivity, and two patients had SF, one patient had WF,

and one patient had WP. All five patients had SF for the GWESP term. The LATEX code

to create this table was produced by the R package called texreg (Leifeld, 2013).
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Figure 5.1: Coded significance for four patients in the U2C recovery group. All

four patients had SF for the within basal ganglia connectivity, and for the within thalamic

connectivity. For the within frontoparietal network, two patients had WF and the other two

patients WP. One patient had WP for frontoparieto-basal ganglia connectivity.
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Figure 5.2: Coded significance for three patients in the U2C recovery group. All

three patients had WF for the within basal ganglia connectivity, and they had SF for the

within thalamic connectivity. For the within frontoparietal network, one patient had WF

and one patient WP. Two patients had RF for frontoparieto-basal ganglia connectivity. For

the thalamo-basal ganglia connectivity, two patients had WF.
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Figure 5.3: Coded significance for four patients in the C2C recovery group. For

the within basal ganglia connectivity, three patients had WP and one patient had SF. For

the within thalamic connectivity. two patients had WF, one had SF, and one had WP. For

the within frontoparietal network, three patients had SF and one patient WP.
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Figure 5.4: Coded significance for one patient in the C2C recovery group. This pa-

tient had WF for the within frontoparietal network, WP for the within thalamic connectivity,

and RF for the thalamo-frontoparietal connectivity.

105



5.3 Discussion

For the 12 patients, we ran 12 STERGMs to investigate the patterns of functional connec-

tivity while accounting for structural connectivity metrics (i.e., nodal degree, local efficiency,

clustering coefficient, and latent clustering) associated with the recovery of consciousness

compared to the recovery of complex behavior. Leveraging the ability of STERGM to assess

a single group of graphs’ formation and dissolution of connectivity we identified 8 types of

coded significance (i.e., types of network restructuring) to assess the patterns of differences

between our patient recovery groups. Using behavioral assessments to split our patients into

two groups (Crone et al., 2018), we were able to identify patients who were VS in the acute

stage of TBI and during the chronic stage of TBI recovery (i.e., U2C recovery group with

7 patients), while a second group was conscious during the acute stage of TBI and they

remained conscious in the chronic stage of TBI (i.e., C2C recovery group with 5 patients).

Both groups of patients recovered complex behavior, but the U2C recovery group had a large

recovery of consciousness. Due to the limited number of patients, we did not run statistical

analyses for group level effects, instead we summarized the results based on percentages of

patients that had formation and dissolution of connectivity for each recovery group.

In the U2C recovery group, there was 100% of patients with formation of basal ganglia

connectivity, while the C2C group only had 20% of patients with formation of within basal

ganglia connectivity possibly indicating that the formation of within basal ganglia connectiv-

ity is a key difference for the recovery of consciousness. Typically, the basal ganglia has been

found to play a key roles in arousal for sleep-wake cycles (Lazarus et al., 2012; Qiu et al.,

2010) and during anesthesia (Mhuircheartaigh et al., 2010), but there is some evidence that

atrophy within the basal ganglia is associated with recovery consciousness (Lutkenhoff et al.,

2015). Finally, increased formation of connectivity withing basal ganglia associated with re-

covery of consciousness can be linked via circuit level effects within cortical-striatopallidal

thalamocortical loop systems (Schiff, 2010).

Also in the U2C recovery group, there were 100% of the patients with SF of within

thalamic connectivity, while in the C2C group, the patients were split between SF (i.e.,

106



40%), WF (i.e., 20%), and WP (i.e., 40%). The biggest difference between these groups is

in the formation of connectivity (i.e., all patients in the U2C group and only 60% in the

C2C group). Previous findings for the level of overall thalamic damage in patients are a

key marker of VS (Adams et al., 2000; Lutkenhoff et al., 2013, 2015), and in increase for

formation should reduce the overall atrophy, which there is an inverse relationship between

thalamic atrophy recovery of complex behavior and consciousness (Lutkenhoff et al., 2013,

2015). This increased formation of within thalamic connectivity also is consistent with the

circuit level effects of the cortical-striatopallidal thalamocortical loop systems (Schiff, 2010)

on recovery consciousness.

For the C2C recovery group, 80% of the patients had significant formation of connectiv-

ity compared to the 42.86% of patients in the U2C recovery group indicating that within

the formation frontoparietal network connectivity is more associated with complex behav-

ior. Typically, the frontoparietal network is associated with executive control and adaptive

behavior (Cole et al., 2013, 2014; Dixon and Christoff, 2012; Dosenbach et al., 2006; Dun-

can, 2010; Spreng et al., 2010; Stokes et al., 2013), while there are some findings of reduced

functional connectivity in frontroparietal network during anesthesia (Boveroux et al., 2010).

Anesthesia induced loss of consciousness has one key difference to disorder of conscious-

ness, there are structural damage in patients with DOC, whereas anesthesia does not have

structural damage. These different mechanisms likely result in different routes for losing

consciousness.

The within parietal lobe and within frontal lobe connectivity had relatively equal per-

centage of patients for both the U2C and C2C recovery groups. Although, the U2C patients

all had the same pattern for type of connectivity formation and dissolution (i.e., the same

patients with SF and WP in both within lobes), while the C2C recovery group did not

have this pattern. This synchronized pattern of formation and dissolution was not due to

the frontoparietal resting state network having the same synchronized patterns in the types

of formation and dissolution, it was specific to the within lobe connectivity. This is likely

due to the non-overlapping regions between the frontoparietal network and the frontal and

parietal lobes, but could be part of a more general return of intra-lobe connectivity be-
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tween the frontal and parietal lobes. The inter-lobe connectivity was not included in our

STERGM because of the inclusion of the nodemix for resting state networks. These inter-

lobe connectivity in conjunction with the nodemix for resting state connectivity networks was

initially attempted, but the models would not converge for any patient, which is likely due to

excessive collinearity between the inter-lobe terms and the intra-resting state/inter-resting

connectivity and to general degenerancy in the estimated models (Handcock, 2003).

There are two additional explanations based on a general return of metacognitive function

or an explanation of circuit level effects described in the mesocircuit hypotheses. First, there

is evidence that metacognition is involved in both perceptual processing and memory (Baird

et al., 2013; Fleck et al., 2005; Hilgenstock et al., 2014; Morales et al., 2018; Yokoyama et al.,

2010). Morales and colleagues 2018 demonstrated that there are domain-general regions

for metacognition (e.g., dorsal anterior cingulate cortex, pre-supplementary motor area, and

precuneus), and domain-specific regions for perceptual processing (e.g., anterior prefrontal

cortex) and memory (e.g., inferior middle and frontal gyri). The synchronized formation

and dissolution of within frontal and parietal lobe connectivity could indicate that both

the domain-specific and domain-general regions underwent a dynamic reorganization for

the support a general return of higher-order representations understood as metacognition.

This could be a more general explanation for recovery of consciousness rather for conscious

awareness of perceptual processing (Ko and Lau, 2012; Maniscalco and Lau, 2016). These

patients are not only regaining metacognition of their perceptual processes, but many other

cognitive functions are returning, which would entail metacognitive functions returning for

across domain-specific and domain-general regions. These returning metacognitive functions

are a possible explanation of the synchronized patterns found in the patients within the U2C

recovery group.

A second explanation is that these synchronized patterns are part of a circuit level ef-

fect from the formation within thalamic and within basal ganglia associated with recovery

of consciousness via the cortical-striatopallidal thalamocortical loop systems (Schiff, 2010).

Unfortunately, we did not model the specific thalamo-frontal, thalamo-parietal, fronto-basal

ganglia, and parieto-basal ganglia connectivity in our STERGM because we opted to in-
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clude the resting state networks with the thalamus and basal ganglia connectivity because

the functional connectivity was assessed during a resting state paradigm. If we included

those regions in the nodematch term for lobes, it would have not converged due to the same

thalamic and basal ganglia regions being modeled in both the nodal covariates.

Overall, both the increased formation for within basal ganglia and thalamic connectiv-

ity were consistent with the patients whom recovery differed more for consciousness than

complex behavior. For the patients with recovery more associated with complex behavior,

the increased formation of frontopaerietal network was the most consistent factor. Taken

together, all these findings are evidence of the circuit level descriptions of the recovery of

consciousness from the mesocircuit hypothesis (Schiff, 2010). Finally, an overall return of

metacognitive functions or the cortical-striatopallidal thalamocortical loop systems could

play a key factor in the interesting synchronized patterns of increased formation and dissolu-

tion within the parietal and frontal lobes associated with patients recovery differences where

more in consciousness than other complex behaviors, but additional investigation is needed

to discern between the possible explanations.

5.3.1 Limitations and Future Studies

The limited number of subjects prevent any group level analysis. Additionally, these subjects

had their imaging parameters not perfectly matched across subjects nor within subjects. We

were not able to account difference imaging parameters using regression (see Chapter 4).

The same limitations from study #2 regarding the coarse grained time resolution of the

recovery of consciousness apply to this study (see §4.3.1). Also, the limitations on including

the structural connectivity metrics from study #1 apply to this study (see §3.5.1).

We will continue to process the data for new patients as they become available. The

total number of subjects will need to be at least the size of study #2 before we can attempt

the same analysis procedure. The group effects for recovery of consciousness is a necessary

component to analyzing the functional data due to the complex interactions of network

effects found that could explain the recovery consciousness and complex behavior. Once
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group effects are found and replicated, the ability to assess single patients using ERGM and

STERGM will be a useful tool to aid in clinical diagnosis without the need of having multiple

patients. Furthermore, discovering the formation and dissolution of functional connectivity

could be an invaluable tool for guiding future intervention paradigms using neurostimulation

procedures because STERGM is used to describe they dynamics of recovery of consciousness.
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CHAPTER 6

General Discussions and Concluding Remarks

We have introduced a powerful method in STERGM for discovering the dynamics of net-

work connectivity, which is especially well suited to discover the underlying formation and

dissolution of connectivity during recovery of consciousness. Until now, cross-sectional anal-

yses comparing patients to healthy controls (Boly et al., 2011; Crone et al., 2011, 2015;

Fernández-Espejo et al., 2012; Kotchoubey et al., 2013; Sitt et al., 2014; Vanhaudenhuyse

et al., 2010; Zhou et al., 2011) or between patient groups (e.g., VS compared to MCS;

Casali et al., 2013; Casarotto et al., 2016; Crone et al., 2011, 2015; Comolatti et al., 2018;

Demertzi et al., 2015; Fernández-Espejo et al., 2011, 2012; Kotchoubey et al., 2013; Laureys

et al., 2000a; Rosanova et al., 2012; Sitt et al., 2014; Vanhaudenhuyse et al., 2010; Zhou

et al., 2011) have been the methods used to study the types of connectivity associated with

recovery of consciousness. Yet, they do not reveal the recovery process of these patients,

they are the beginning and end points in a dynamic process. STERGM allows the testing

specific hypotheses about the formations and dissolution of edges involved in the network

dynamics of recovering consciousness and complex behavior. We found that the formation

of both functional and structural connectivity within the thalamus were associated with the

recovery of consciousness. These new structural connectivity formations should increase the

overall white matter tract integrity (Fernández-Espejo et al., 2011) and the increases in both

functional and structural connectivity would produce less overall thalamic atrophy, which

is associated with recovery of consciousness (Lutkenhoff et al., 2015). This converging evi-

dence of structural and functional connectivity bolsters the previous findings of the critical

role of thalamus in consciousness (Alkire et al., 2000; Guimera et al., 2005; Laureys et al.,

2000a; Xie et al., 2011; Zhou et al., 2011). In addition to the thalamus, the SF of functional
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connectivity within the basal ganglia was reliably related to the recovered consciousness.

Together, these regions are part the mesocircuit (Schiff, 2010) that posits the central thala-

mus and basal ganglia as possible regions believed to have circuit level effects on both the

frontal and parietal lobes. However, we did not find as strong evidence for formation of

thalamo-cortical functional and only marginal effects were found for the formation of struc-

tural thalamo-frontal connectivity. One possibility is that the formation or perservance of

thalamo-cortical connectivity was not necessary to drive these changes (cf., Crone et al.,

2018). Instead, structural and functional within the thalamus and basal had restored the

overall function of existing connections within the cortical-striatopallidal thalamocortical

loop systems. These could result in the synchronized SF of functional connectivity within

the frontal and parietal lobes. Another possibility is that there were unobserved mesolevel

effects between the structural and functional connectivity. Since we model the generative

processes for structural connectivity without accounting for the functional connectivity, we

do not know the effect that the functional connectivity had on the structural connectivity.

Finally, even in the functional connectivity analysis we do not know the specific effects of

the formation of structural connections within the thalamus on the functional connections.

These mesolevel effects are an extension of problem#3 in which the effects of structural

connectivity that we accounted for were only achieved through parcelling out the effects of

the structural connectivity on the functional connectivity; however, these problems were not

fully solved. Structural and functional connectivity are part of a multi-level problem (i.e.,

there is a structural layer, functional layer within the brain and finally an interaction between

these layers). By this, I mean that each have their own generative processes that govern their

structure and there are interactions between the levels that drive the brain dynamics. Multi-

level ERGMs (Lazega and Snijders, 2016; Wang et al., 2013, 2016) have been developing to

capture the the nested structure of networks. A concrete example is collaborative research

(Lazega et al., 2008), in which, researchers have advice networks for their research problems

and the laboratories have collaboration networks. The researchers advice network would be

the micro-level network because they are nested within the laboratories (i.e., macro-level).

Each of these levels have their own generative processes associated with the structure, but
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there is a third layer (i.e., the meso-level) that affects both levels. In the collaborative re-

search example, the researchers’ affiliation with laboratories are the meso-level. This example

could be extended to the structural and functional layers of the brain. The functional layer

is the micro-level because it is nested within the macro-level structural layer. The meso-level

could be the locations of the functional layer within the structural layer or an estimation of

joint functional structural connectivity could be the meso-level (e.g., hybrid connICA; Amico

et al., 2017). These multi-level ERGMs would allow for a more complete solution to the four

problems posed in this thesis because all the levels of functional and structural connectivity

could be jointly estimated and properly modeled. This would be a large step in the direction

of unraveling the complex interactions between structural and functional connectivity that

generate the ability for our complex behavior.
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