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Abstract

Antiretroviral therapy (ART) is able to suppress HIV-1 replication indefinitely in individuals who

have access to these medications, are able to tolerate these drugs, and are motivated to take them

daily for life. However, ART is not curative. HIV-1 persists indefinitely during ART as quiescent

integrated DNA within memory CD4+ T cells and perhaps other long-lived cellular reservoirs. In

this review, we discuss the role of the immune system on the establishment and maintenance of

this “latent” HIV-1 reservoir. A detailed understanding of how the host immune system shapes the

size and distribution of the viral reservoir should lead to the development of a new generation of

immune-based therapeutics, which might eventually contribute to a curative intervention.

HIV-1 is a retrovirus that integrates into the host genome, primarily in memory CD4+ T

cells that can harbor latent, replication-competent HIV-1 DNA for years (1–3). This latent

HIV-1 reservoir is thought to be established during acute infection (4–6), although precisely

when, where, and how the reservoir is seeded remains to be determined. The reservoir has a

remarkably long half-life and is resistant to ART, resulting in lifelong infection and viral

rebound in the vast majority of HIV-1-infected individuals when ART is discontinued (6, 7).

Major research efforts are currently underway to understand the biology of the viral

reservoir, the mechanism of viral latency, and the potential of various therapeutic

approaches to target the reservoir (Fig. 1). Recent data indicate that the size of the viral

reservoir may in fact be substantially larger than previously anticipated, suggesting the

profound scope of this challenge (8).

Role of the Immune System in Shaping and Maintaining the Viral Reservoir

HIV-1 infection causes profound and often irreversible changes to the adaptive and innate

immune system. In the absence of ART, CD4+ T cells are progressively depleted, CD8+ T

cells are often expanded, and much of the immune system is chronically activated. Some of

these abnormalities improve during long-term ART, but the immune system rarely returns to

normal, and chronic inflammation persists during ART. This state of heightened

inflammation is driven by multiple factors, including HIV-1 production, irreversible loss of
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the mucosal integrity and exposure to gut microbes, and an excess burden of other pathogens

such as cytomegalovirus (CMV). The implications of this chronic inflammatory state on

overall health and the HIV-1 reservoir are the focus of intense investigation (9).

HIV-1 preferentially infects activated memory CD4+ T cells that express the chemokine

receptor CCR5, although resting CD4+ T cells, naïve CD4+ T cells, and macrophages can

also be infected. The majority of infected and activated CD4+ T cells die quickly (10), but a

small fraction revert to a resting state and persistent indefinitely as the latent reservoir.

Because ART blocks all or nearly all new infection events, the reservoir that exists at the

time ART is initiated becomes the reservoir that persists for the life of the individual. This

viral reservoir is maintained during ART by the long half-life of infected memory T cells,

homeostatic proliferation of these cells (11, 12), and perhaps by low levels of cell-to-cell

virus transfer (“cryptic replication”) (13). Recent studies suggest that the HIV-1 genome is

often found integrated in host genes associated with cell growth (14), indicating that HIV-1

may promote its own persistence in part by promoting the continual expansion of latently

infected cells (15, 16).

The viral reservoir in peripheral blood exists predominantly in memory CD4+ T cells

endowed with regenerative potential, including memory stem cells and central memory cells

(11, 17). The reservoir also persists in potentially shorter-lived CD4+ T effector cell

populations, but whether these cells represent a stable reservoir or one that is constantly

being regenerated via proliferation and differentiation is unknown. The distribution of the

viral reservoir differs in tissues than blood, with the frequency of infection generally higher

on a per cell basis in lymphocyte-rich tissues such as peripheral lymph nodes, the ileum and

perhaps the spleen (18, 19). The higher frequency of target cell infection in these tissues

may reflect cell-to-cell virus spread (20) and/or the presence of other immune cells that

contribute to the maintenance of latency (21).

In the absence of therapy, the frequency of activated T cells is associated with the level of

viremia. During long-term suppressive ART, a similar albeit less consistent association

exists, with the frequency of activated CD4+ T cells expressing HLA-DR, CCR5, and PD-1

correlated with the frequency of cells containing HIV-1 RNA or DNA (22, 23). The

mechanism for this association is not known, but likely to be bidirectional and

multifactorial. Low levels of virus replication and/or production may cause T cell activation.

When stable ART is “intensified” with the addition of a potent HIV-1 integrase inhibitor,

markers of low-level HIV-1 replication and inflammation decline (at least in some

individuals), indicating that replication persists during ART and causes an inflammatory

response (13, 24).

Alternatively, an inflammatory immune environment may contribute to the persistence of

the viral reservoir by a number of mechanisms (25). T cell activation promotes cell-to-cell

virus transfer as activated cells are both more likely to produce virus and more likely to

become infected. TCR engagement by cognate antigen or cytokines (e.g., IL-7) stimulates

CD4+ T cell proliferation and the expansion of the infected cell population (12). CD4+ T

cell proliferation may in fact be the most important mechanism leading to the stability of the

reservoir (11). A chronic inflammatory environment would also be expected to prevent the
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generation of optimal HIV-1-specific immune responses. Chronic inflammation stimulates

potent and sustained immunoregulatory responses, including expansion of T regulatory cells

and the upregulation of PD-1 and other negative regulators on effector cells (11, 26). HIV-1-

associated inflammation also stimulates the deposition of collagen in secondary lymphoid

organs, which in turn causes tissue fibrosis and persistent immunodeficiency and poor host

clearance mechanisms (27).

Understanding the complex virus-host interactions that lead to the establishment and

maintenance of the latent HIV-1 reservoir will require advances in our fundamental

understanding of T cell biology. How are memory CD4+ T cells generated and maintained?

What are the life spans of the various CD4+ T cell subsets? How are the properties of T cells

in the blood different from those in lymphoid tissues? How do the fates of CD4+ T cells

activated via cognate antigen differ from those stimulated to proliferate by homeostatic

mechanisms? How do myeloid cells, including dendritic cells, contribute to the generation

and maintenance of T cell memory and latency? How will inhibitors of the pathways that

regulate T cell survival and function change the life span of individual cell types?

There are also a number of critical unanswered questions related to the immunology of

HIV-1 persistence. Because the size, distribution, and stability of the viral reservoir during

ART is determined in part by the host immune system, factors that influence immune

function, including gender, ethnicity, chronic inflammatory diseases, chronic infectious

diseases, obesity and substance abuse are all likely to have important but unknown effects

on the viral reservoir. The age at which the virus is acquired and ART is initiated are also

likely to be important considerations. ART administered at 30 hours of age in a perinatally

infected infant resulted in sustained remission and a possible cure (28), and the

administration of ART in the first three months of life was associated with a sustained decay

in the reservoir (29). Given that the development of memory CD4+ T cell responses

generally occurs after birth, perhaps limited by immunoregulatory responses (30), it is

possible that the establishment of a latent viral reservoir may be less efficient in infants (31).

This remains a largely unexplored area of HIV-1 cure research.

The Berlin and Boston Patients

Much of the enthusiasm for HIV-1 cure research is derived from the case of the “Berlin

Patient” (32). In 2007, an HIV-1-infected adult living in Berlin developed acute

myelogenous leukemia and received an allogeneic hematopoietic stem cell transplant from a

donor that carried a homozygous deletion CCR5, which renders cells highly resistant to

HIV-1 infection. The procedure worked, and the patient now appears to be free of both

cancer and HIV-1 for over five years (33). Despite intense efforts this outcome has not yet

been repeated. Finding suitable HLA-matched donors homozyogous for the CCR5 deletion

is challenging, and the few transplants that have been performed have failed due to

recurrence of the underlying cancer or emergence of CXCR4-tropic viruses. Nevertheless,

this case has galvanized gene therapy efforts to modify CD4+ T cells (34) and potentially

also stem cells (35, 36) to render them resistant to HIV-1 infection.
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A related approach is to utilize ART to protect transplanted donor cells until full chimerism

occurs. This strategy is illustrated by two cases of HIV-1-infected adults in Boston who

received hematopoietic stem cell transplants for treatment of refractory lymphoma (37).

Under the coverage of ART, full donor chimerism was apparently achieved, with the donor

immune cells eventually replacing the original immune cells over a period of years. As that

occurred, HIV-1 DNA gradually declined to undetectable levels. Therapy was then

interrupted in both individuals. Virus failed to rebound within the first few weeks, leading to

initial optimism that these individuals may have been cured. Unfortunately, virus

dramatically rebounded at weeks 12 and 32 after treatment interruption, indicating that the

transplant caused a profound but incomplete elimination of the viral reservoir. This failure

highlights the need either to eradicate all replication-competent virus or to enhance the

capacity of the host immune system to contain the limited residual virus that may persist

after a curative intervention. These observations also illustrate the limitation of our current

biomarkers for HIV-1 persistence. The development and validation of a highly sensitive

biomarker that can reliably detect and preferably quantify the total body burden of

replication-competent HIV-1 during ART is one of the highest current priorities of the field.

Comparing the outcomes of the Berlin and Boston cases is informative. GVHD occurred in

all three cases and likely contributed to reductions of the viral reservoirs. As has been

observed with beneficial graft-versus-tumor effects, alloreactive donor cells targeting

hematopoietic cells likely reduced the number of recipient CD4+ T cells harbouring latent

HIV-1. These cases have led to increased interest in modifying host responses with immune-

based therapeutics as part of a curative strategy (38). Assuming that the Berlin Patient

achieved a complete sterilizing cure, and that ART was fully effective in the Boston cases,

why was the virus eradicated only in the former case? One key difference in the transplant

protocols was the extent of pre-transplant myeloablation, which would be expected to reduce

the size of the reservoir. The Berlin Patient received an aggressive regimen of chemotherapy

and total body irradiation, whereas a milder approach was used in the Boston cases. The

Berlin Patient also received more aggressive immunosuppressive therapies to GVHD, and as

outlined below, suppressing T cell activation/proliferation might result in further control of

the reservoir.

“Shock and Kill”

Hematopoietic stem cell transplantation is too risky and too complex for the majority of

HIV-1-infected individuals worldwide. Other approaches that have generated considerable

enthusiasm include pharmacologic strategies to induce latently infected cells to produce

virus (“shock”) together with interventions that would enhance the ability of the host to clear

these virus-producing cells (“kill”) (Fig. 1). Histone deacetylase (HDAC) inhibitors have

been shown to increase production of HIV-1 RNA and to a lesser degree virus particles from

the viral reservoir in vivo (39). However, the magnitude of the effect of HDAC inhibitors

has to date been modest, and this class of drugs has not yet demonstrated a consistent effect

on the frequency of cells that harbor replication-competent HIV-1 (40–42). Other classes of

anti-latency drugs and immunomodulators are therefore being explored for their capacity to

stimulate the viral reservoir (40, 43, 44).
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To augment the capacity of the host to eliminate reservoir cells following activation, several

immunologic strategies are being explored. These strategies include therapeutic vaccines,

monoclonal antibodies, and immune checkpoint inhibitors (Fig. 2).

Therapeutic Vaccines

It is likely that a latency reversing agent will need to be coupled with an immunologic

strategy to clear virus-producing cells. One approach is to expand HIV-1-specific CD8+ T

lymphocyte responses (45). As has been well-established in natural control of HIV-1 (i.e.,

“elite” control), potent CD8+ T lymphocytes can control HIV-1 by selectively killing virus-

producing cells (46). This concept has led to a renewed interest in therapeutic vaccines,

namely the administration of candidate HIV-1 vaccines to HIV-1-infected individuals

typically on suppressive ART, with the goal of augmenting virus-specific immune responses

and either accelerating the decay of the reservoir during ART or improving the control of

viral rebound after interruption of ART. Several therapeutic vaccines have been evaluated in

HIV-1-infected subjects, including vector-based vaccines that express HIV-1 antigens from

harmless or attenuated viruses such as canarypox (ALVAC) or adenovirus serotype 5 (Ad5),

as well as plasmid DNA vaccines (47–52). Although these vaccines proved immunogenic,

most therapeutic vaccine studies have failed to show virologic or clinical benefit, and a few

have suggested harm, potentially as a result of increasing immune activation. Infusion of

antigen-pulsed autologous dendritic cells has shown potentially greater promise but requires

confirmation (53).

Most of these early generation therapeutic vaccines involved relatively weak or suboptimal

immunogens. Moreover, as was demonstrated in a study of DNA priming followed by Ad5

boosting, these therapeutic vaccines typically expand pre-existing T cell clones, which by

definition had already failed to control virus replication prior to ART (54), either because

they were dysfunctional or because they selected for a virus population containing CD8+ T

cell escape mutations. A successful therapeutic vaccine would ideally induce functional

CD8+ T cells specific for novel HIV-1 epitopes. The next generation of therapeutic vaccines

will also likely be combined with reservoir activating agents.

Several novel therapeutic vaccines will likely be evaluated in clinical trials over the next

several years. Such strategies include cytomegalovirus (CMV) vectors; adenovirus serotype

26 (Ad26) prime, modified vaccinia Ankara (MVA) boost regimens; and lymph node

targeted amphiphilic peptide vaccines. Prophylactic vaccination with CMV vectors has been

shown to result in the induction of broad cellular immune responses against novel epitopes

and apparent clearance of the stringent challenge virus SIVmac251 in approximately half of

vaccinated rhesus monkeys (55–57). The persistent replicative nature of CMV vectors is

likely critical for the highly functional effector memory T cells that appear to persist

indefinitely. Moreover, the ability of CMV vectors to induce unconventional class II-

restricted CD8+ T cell responses provides a potentially important benefit as they target

novel epitopes that likely were not previously subject to immune selection pressure (57).

Clinical development of CMV vectors will presumably require attenuated vectors, and

manufacturing and regulatory issues for CMV vectors remain to be determined.
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Another therapeutic vaccine platform that will likely be evaluated in clinical trials involves

Ad26 vectors. Prophylactic vaccination with Ad26-based prime-boost vaccine regimens,

such as priming with Ad26 and boosting with the poxvirus MVA, has proven highly

immunogenic and has afforded partial protection against acquisition of infection as well as

reduced setpoint viral loads following stringent SIVmac251 challenges in rhesus monkeys

(58, 59). Ad26 has several advantages over Ad5 as a vaccine vector, including the induction

of different innate immune profiles that may reduce undesirable inflammatory responses and

result in more functional T cell phenotypes. Moreover, Ad26-based prime-boost regimens

have demonstrated partial protective efficacy in the stringent rhesus monkey challenge viral

models in which Ad5-based regimens have failed (58–60), suggesting their potential for

greater clinical utility.

Another therapeutic vaccine concept utilizes amphiphilic peptides, which have been shown

to target antigen to lymph nodes and aim to induce cellular immune responses

simultaneously to two or more regions of immunologic vulnerability of HIV-1 (61, 62). The

extent to which these and other next generation vaccine candidates will afford therapeutic

efficacy in preclinical and clinical studies remains to be determined.

Broadly Neutralizing Monoclonal Antibodies

Potent broadly neutralizing HIV-1-specific monoclonal antibodies (mAbs) are another

potential HIV-1 eradication strategy under exploration. Prior studies using the earlier

generation of neutralizing mAbs were generally unsuccessful in both preclinical and clinical

studies (63–65), but the identification of a new generation of mAbs with improved potency

and breadth has led to a resurgence of interest in this approach. In particular, two studies in

rhesus monkeys demonstrated that infusion of mAb cocktails as well as certain individual

mAbs in chronically SHIV-infected rhesus monkeys resulted in substantial, albeit transient,

suppression of viremia (66, 67), building on previous studies in humanized mice (68).

Moreover, a subset of animals with the lowest starting viral loads did not exhibit viral

rebound even after mAb titers declined to undetectable levels, suggesting the potential for a

durable therapeutic effect in certain circumstances (66). Infusion of one particular mAb,

PGT121, resulted in not only rapid and profound suppression of plasma viral RNA but also

substantial reductions of proviral DNA in peripheral blood, lymph nodes, and

gastrointestinal mucosa (66). These data suggest that certain mAbs may be able to target

virus-infected cells in tissues, although it remains to be determined whether these mAbs can

impact the viral reservoir.

A growing number of potent and broadly neutralizing mAbs now exist that target various

epitopes on the HIV-1 envelope protein. However, a central question for HIV-1 eradication

strategies is whether mAbs will be able to target the viral reservoir and clear virally infected

cells, potentially via Fc-mediated mechanisms such as antibody-dependent cellular

cytotoxicity or antibody-dependent cell-mediated virus inhibition. Another possibility is that

direct neutralization of free virions will reduce chronic antigen stimulation and augment the

functionality of host virus-specific T cell responses, resulting in improved virologic control.

Supporting this latter possibility is the observation that following PGT121 infusion in SHIV-

infected rhesus monkeys, Gag-specific T cells exhibited decreased activation and exhaustion
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and demonstrated improved capacity to suppress virus replication in vitro (66). Another

caveat regarding broadly neutralizing mAbs is their limited accessibility to certain anatomic

reservoir sites, such as the central nervous system.

Immune Checkpoint Blockade

Another potential strategy to augment host immune control involves the blockade of

immune regulators. Activated T cells express a series of receptors that when engaged by

their ligands result in suppression of function and return to a non-activated state. The best

characterized immune regulator is PD-1, which is a marker of functional T cell exhaustion.

The ligands for PD-1, PDL-1 and PDL-2, are widely expressed in tissues. Inhibitors of the

PD-1 pathway restore T cell function and have shown efficacy in the cancer field (69).

These inhibitors may also enhance the capacity of the host immune system to clear chronic

viral infections. Indeed, a single dose of an anti-PD-1 antibody appeared to cure HCV

infection in a small subset of individuals (70). It is thought that inhibitors of other receptors

that keep T cells in a suppressed state (such as CTLA-4, LAG-3, TIM-3, TIGIT, and 2B4)

may also prove effective.

PD-1 inhibitors and other checkpoint blockers may also have direct effects on the

establishment and maintenance of the viral reservoir (11). Because activated cells are more

likely to become infected than resting cells, previously activated cells—including those

expressing PD-1—might be expected to be enriched for HIV-1 (11). Indeed, the size of the

reservoir is positively correlated with the frequency of PD-1 expressing cells (11, 22), and

HIV-1 is enriched in PD-1 expressing memory cells (11). Clinical trials of PD-1 inhibitors in

treated HIV-1 disease have been initiated.

Immune Modulating Drugs

After years of suppressive ART, the vast majority of the residual population of replication-

competent virus resides in long-lived memory CD4+ T cells. The estimated size of the

reservoir during ART is directly associated with the frequency of activated and proliferating

cells (11, 12, 22, 23, 25), and in some studies activated and proliferating cells also contain

more HIV-1 (11, 71). Therapeutic interventions that target T cell activation or proliferation

may therefore impact the viral reservoir (Fig. 2).

T cell activation and proliferation are controlled by a number of signalling pathways,

including those involving the mammalian target of rapamycin (mTOR), signal transducer

and activator of transcription 5a (STAT5a) and forkhead box O3a (FOXO3a) (72). Specific

inhibitors of these pathways might therefore reduce the size of the latent viral reservoir. For

example, sirolimus (rapamycin) is a naturally occurring macrolide that inhibits mTOR, and

as a consequence it blocks cell cycle progression from G1 to S phase in activated T cells and

reduces CCR5 expression (73). Sirolimus also enhances memory T cell formation in

response to vaccines in preclinical studies (74). We performed a retrospective analysis of

ART-treated HIV-1-infected kidney transplant recipients who received sirolimus or non-

mTOR-targeting drugs to prevent graft rejection. Only treatment with sirolimus was

temporally associated with lower levels of cell-associated HIV-1 DNA (75), suggesting that

mTOR inhibition may prove useful in a combination eradication strategy. A prospective

Barouch and Deeks Page 7

Science. Author manuscript; available in PMC 2015 January 11.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



clinical trial is being developed to evaluate this concept further. Other drugs that would limit

T cell activation, including those that inhibit the JAK/STAT pathway (76), are also being

developed. As chronic inflammation may contribute to excess morbidity in ART-

suppressed, HIV-1-infected individuals (9), a number of therapies that target the

inflammatory pathways are being developed as adjuncts to therapy (e.g., methotrexate, anti-

fibrotic drugs, anti-CMV therapy, and a number of agents aimed at gut mucosa and

microbial translocation). Measures of the viral reservoir are increasingly being incorporated

into these studies.

The role of the type I interferon family of cytokines in the context of chronic viral infections

is currently a focus of intense investigation and debate. An acute viral infection triggers

immediate and potent type I interferon production by a variety of cells, leading to

upregulation of hundreds of genes (the “interferon-stimulated genes”) (77). In the context of

chronic HIV-1 infection, persistent interferon signaling has been associated with increased

CCR5 and PD-1 expression, upregulation of indoleamine 2,3-dioxygenase and other

inflammatory pathways, reduced thymopoieses, the generation of dysfunctional T cells and

altered T cell homeostasis (78–81). Higher levels of interferon signaling are also correlated

with poor immune reconstitution (81, 82). In murine models of chronic lymphocytic

choriomeningitis virus (LCMV) infection, inhibition of type I interferon leads to decreased

immune activation, decreased PD-1/PD-L1 activity, decreased amounts of the

immunomodulatory cytokine interleukin (IL)-10, restored lymphoid architecture, improved

CD4+ T cell responses, and ultimately enhanced viral clearance (83, 84). Although chronic

type I interferon stimulation might be harmful, supra-therapeutic doses of type I interferon

have also been shown to have sustained anti-HIV-1 effects in untreated chronic infection

(85) and may impact reservoir size in treated disease (86). Proof-of-concept studies

involving interferon-alpha and inhibitors of interferon-alpha are both planned.

As a result of the correlation between markers of T cell activation/dysfunction and the size

of the viral reservoir, it is possible that immunosuppressive interventions may also

contribute to a cure. It should be noted, however, that the most direct way to “shock” HIV-1

out of a state of latency may be nonspecific and potent activation of infected CD4+ T cells

(87–89). The first generation of HIV-1 eradication studies performed over a decade ago

involved the use of anti-CD3 antibodies (90), which trigger T cell activation, but the

inflammatory response proved too toxic to pursue. An ideal immune modifying regimen

would reverse HIV-1 latency in a specific manner while preventing the negative

consequences of T cell activation and T cell proliferation. Given the inherent complexity of

the immune response and the fact that any immune modifying therapeutic agent will

invariably lead to complex and difficult-to-predict counter-regulatory responses, it is

difficult to predict how such interventions will impact the viral reservoir. The complexity of

attempting to use an activating agent to reverse latency is illustrated by recent studies with

interleukin-7 (IL-7). Pre-clinical studies suggested that this approach would reverse latency

(91). Although proof-of-concept clinical study found that IL-7 caused production of virions

in vivo (92), the overall impact of the approach was an increase in the estimated reservoir

size, presumably due to proliferation and expansion of infected cells (12). Experiments in
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improved preclinical models of ART-suppressed virus infection and proof-of-concept

clinical trials will hopefully provide clarity on these and other issues.

The PrEP, PEP, and Cure Continuum

Treating HIV-1 with ART shortly after infection may also contribute to HIV-1 eradication.

ART during acute HIV-1 infection reduces the size of the reservoir (93, 94), limits the

generation of escape mutants, and preserves immune function. For these reasons it is thought

that HIV-1-infected individuals who initiate ART during acute infection have the best

chance for HIV-1 eradication, although this group represents only a small fraction of total

HIV-1-infected individuals. It is also possible that very early ART may even be curative, as

illustrated by the case of an HIV-1-infected infant who exhibited HIV-1 viremia and was

started on ART at 30 hours of life. Therapy was discontinued after 18 months and virus

remained undetectable (through at least month 30), suggesting that very early initiation of

ART may prevent establishment of a long-lived reservoir (28). The applicability of these

findings to sexual HIV-1 transmission in adults, however, remains uncertain.

The potentially curative role of ART when administered within days of infection blurs the

traditional distinction between pre-exposure prophylaxis (PrEP), post-exposure prophylaxis

(PEP), and a cure (Fig. 3). It is well established that treating adults with ART within hours

of HIV-1 exposure (e.g., a needlestick injury in a healthcare worker) substantially reduces

the risk of acquiring HIV-1. However, antiretroviral drugs inhibit active virus replication in

host cells, and thus the clinical success of PEP strategies indicates that the first HIV-1-

infected cells following viral exposure can be eradicated. Indeed, if intensive virologic

monitoring were employed in these individuals, then it is possible that some might exhibit

transient low levels of virus in blood or tissues and thus would similarly be considered

“cured”. From this perspective, the use of very early ART to eradicate HIV-1 infection may

not be uncommon.

Early ART that fails to block the establishment of the viral reservoir might still prevent

some of the immunologic damage that typically occurs during acute HIV-1 infection, thus

augmenting the capacity of the host immune system to control viral replication. Such an

ART-induced shift towards a more effective host immune response and a smaller viral

reservoir may in rare cases lead to sustained control of the virus (a “functional cure”).

Among a cohort of adults in France who started ART during acute HIV-1 infection and then

discontinued therapy after several years (the VISCONTI cohort), approximately 10–15% of

subjects did not exhibit detectable viral rebound, although replication-competent virus still

persisted in these individuals and they lacked protective HLA haplotypes (95). This

observation has not yet been confirmed, and the mechanism for the “post-treatment

controller” phenotype remains to be determined. As compared to elite controllers who

naturally control HIV-1 infection without ART, the post-treatment controllers demonstrate

remarkably small viral reservoirs and low levels of T cell activation, both of which may

have contributed to the lack of rebound viremia when therapy was discontinued.
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Conclusions and Perspectives

Advances over the past several years have suggested that HIV-1 might be eradicated or

controlled under specific conditions. Thus, the increasing enthusiasm for HIV-1 eradication

research, and the growing public and private investment in the HIV-1 cure agenda, is

justifiable. However, as described in detail elsewhere (96, 97), major scientific challenges

remain. A more detailed understanding of the biology of the latent viral reservoir and the

partially effective virus-specific immune responses is critical. As the Boston patients

demonstrate, improved assays are needed to quantify the reservoir, and predictive

biomarkers for viral rebound are required. Reliable and predictive animal models are also

needed to evaluate multiple concepts and to inform clinical research strategies.

The establishment and maintenance of the viral reservoir appears to be impacted at least in

part by the immune system, and particularly by memory CD4 T cells. Immunotherapy

approaches will therefore likely have an increasing role in HIV-1 eradication strategies in

the future. However, the optimal strategies to stimulate viral release from latency, to

augment host immune responses, and to limit negative inflammatory responses remain to be

determined. Although a small number of case reports suggest that it might be possible to

eradicate HIV-1 infection in unusual circumstances, no proof-of-concept yet exists that

chronic HIV-1 infection can be cured by a safe and scalable intervention. Over the next few

years, multiple novel and promising HIV-1 eradication concepts will be evaluated. It is

likely that progress will be steady but unpredictable, and reaching the final goal may take

many years. Regardless, substantial expansion of rigorous basic research, preclinical studies,

and clinical trials in this field will undoubtedly lead to important advances in our

understanding of the biology of the HIV-1 reservoir and the challenges that face HIV-1

eradication strategies.
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Figure 1. “Shock and Kill” Strategies
Latent HIV-1 reservoirs in resting CD4+ T cells can be activated (“shocked”), which might

make them more susceptible to be eliminated (“killed”) by immunologic effector

mechanisms.
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Figure 2. Immunotherapeutic Strategies
Homeostatic proliferation and low levels of virus production likely contribute to the long-

term maintenance of the viral reservoir. When the viral reservoir is subject to sufficient

immunologic or pharmacologic stimulation, these cells may be eliminated by

immunotherapies such as therapeutic vaccines and broadly neutralizing monoclonal

antibodies, and may be modulated by immune modulating drugs such as PD-1 blockade,

sirolimus, type I interferon, and IL-7.
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Figure 3. PrEP/PEP/Cure Continuum
ART initiated prior to exposure is termed pre-exposure prophylaxis (PrEP), whereas ART

initiated shortly after exposure is post-exposure prophylaxis (PEP) and forms a continuum

with efforts aimed at virus eradication (cure). Even if early ART is not curative, it may

reduce the size of the viral reservoir and preserve immune function.
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