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Abstract

Survival rates of large trees determine forest biomass dynamics. Survival 
rates of small trees have been linked to mechanisms that maintain 
biodiversity across tropical forests. How species survival rates change with 
size offers insight into the links between biodiversity and ecosystem 
function across tropical forests. We tested patterns of size-dependent tree 
survival across the tropics using data from 1,781 species and over 2 million
individuals to assess whether tropical forests can be characterized by size-
dependent life-history survival strategies. We found that species were 
classifiable into four ‘survival modes’ that explain life-history variation that 
shapes carbon cycling and the relative abundance within forests. 
Frequently collected functional traits, such as wood density, leaf mass per 
area and seed mass, were not generally predictive of the survival modes of
species. Mean annual temperature and cumulative water deficit predicted 
the proportion of biomass of survival modes, indicating important links 
between evolutionary strategies, climate and carbon cycling. The 
application of survival modes in demographic simulations predicted 
biomass change across forest sites. Our results reveal globally identifiable 
size-dependent survival strategies that differ across diverse systems in a 
consistent way. The abundance of survival modes and interaction with 
climate ultimately determine forest structure, carbon storage in biomass 
and future forest trajectories.

Main

Tropical forests store an estimated 500–1,000 Pg of carbon in biomass and 
soils1,2, making this biome the most important component of the terrestrial 
carbon cycle. Whether intact tropical forests will be sinks or sources of 
carbon in the future remains a critical question1,3 that will fundamentally 
depend on how different forest species respond to climate change4. The 
high species diversity of tropical forests may either buffer stands from 
shifts in standing biomass or promote changes due to the characteristics of
the species that best tolerate novel climate conditions. Forest carbon 
volume depends exponentially on the annual rate of tree survival, and tree 
survival rates in turn depend on climate5 and a given species tolerance of 
climate variation. Most forests include short-lived species that die within 
decades to long-lived species that retain carbon for centuries. Species may
be differentially vulnerable to novel climate variation or new regimes of 



extreme episodic events (for example, droughts and storms). Resulting 
changes in forest composition may cause large and rapid changes in the 
terrestrial carbon balance that could potentially persist for centuries. 
Climate-driven impacts on tree survival are potentially more important 
than impacts on forest productivity (that is, photosynthesis and allocation 
to growth), which has a relatively constrained and slower influence on 
forest carbon dynamics6,7,8,9.

For species to coexist in diverse forests, they must have roughly equivalent
fitness over long time periods10,11, yet differences in achieving that fitness 
can influence compositional shifts under novel long-term ecological 
changes. Tree species have evolved resource allocation strategies that, 
over the course of their life-history, variously emphasize investment in 
metabolic maintenance or in tissues that provide structural, defensive and 
reproductive functions. Diversity in resource allocation therefore scales up 
to variation in demographic rates (that is, survival, growth and 
reproduction). The survival rates that emerge from allocation to 
maintenance, defence and structure can then determine observed 
population distributions across space12, size and age structures13. 
Allocation to tissues that increase survival are typically negatively 
correlated (or exhibit trade-off) with allocation to tissues involved in other 
demographic rates14. For example, using resources to build defensive 
structures reduces the resources available for growth. Conversely, 
allocation to tissues for increased growth can lead to distinct vulnerability 
to agents of mortality, such as pathogens15, pests, storms, drought or 
extreme temperatures16. Trade-offs among life-history strategies should be 
reflected in variations in plant functional traits, which provide one way of 
classifying species into groups. Tolerance of various climate stressors may 
vary with allocation strategies, resulting in important implications for forest
biodiversity and stocks. A greater understanding of how demographic rates
vary with size should increase our ability to predict how diverse forests 
cycle carbon and provide insights into potential shifts in those cycles.

Here, we analyse variations in tree survival to provide a deeper 
understanding of basic ecological and evolutionary features of tropical 
forests. Using an exemplary dataset of more than 2 million trees across the
tropics, we developed statistical models of size-dependent survival. Using a
cluster analysis, we aggregated the results of these models into groups of 
similar survival strategies that we call ‘survival modes’ and analyse their 
relation to functional traits and climate and their ecological significance. 
First, we investigated how survival modes contribute to carbon fluxes 
through differences in growth rates and biomass turnover. Then we 
examined whether the modes of survival that emerge from the 
demographic data are related to the commonly collected plant traits of 
wood density, leaf mass per area (LMA) and seed mass. We also tested 
whether the relative abundance of these survival modes relate to climate 



variables and tested the ability of survival mode relative abundance to 
predict observed biomass dynamics at each site through time.

Results

Survival models were fit for 1,781 species from 14 pan-tropical large-area 
forest dynamics plots that are all part of the ForestGEO network17(ranging 
from 2 to 52 ha, each with 371 ha in total in which all stems ≥1 cm 
diameter at breast height are recorded; Supplementary Table 1). The 
parameters from these models were included in a principal component 
analysis (PCA) (Fig. 1 details the workflow; Supplementary Table 
2summarizes the survival curve parameters). The PCA revealed axes of 
evolved life-history variation (Supplementary Figs. 1,2). For example, PCA 
axis one defined a continuum characterized by relatively stable survival 
probability, either high or low survival, across the life-cycle at one extreme 
and at the other extreme by increases and decreases in survival probability
with size at small and large sizes. That is, species with more extreme 
thinning due to competition for resources when relatively small, or 
mortality causes related to large size and exposure to agents of mortality 
in the other direction18. Axis two differentiated species based on maximum 
survival rate (that is, the upper asymptote of the survival curve; Fig. 2).





Species survival curve parameters were hierarchically clustered by 
loadings of the PCA analysis, which creates a dendrogram from a similarity 
matrix, to find groups of species that were similar in size-dependent 
survival rates. An optimizing analysis across the dendrogram resolved four 
survival modes (Fig. 2; Methods). To test the robustness of our survival 
modes, we bootstrapped the Jaccard similarity index for all clusters that 
were substantially above the 0.75 threshold19, which indicates stable 
clustering for our size-dependent survival modes (Supplementary Table 2). 
We utilized these four survival modes in subsequent analyses of traits, 
climate and carbon dynamics in tropical forests.

Although annual survival probability across much of the life cycle was high 
for most species (>0.95), there were species with much lower maximum 
survival rates (<0.78; Supplementary Table 2). Furthermore, the degree of 
small stature mortality varied between modes, indicating differences in the
strength of mortality mechanisms in small sizes across the four modes. 
Finally, there were also clear differences in the maximum sizes; that is, the
diameter beyond which species showed increased mortality, indicating 
important mode-dependent life expectancies (Fig. 2).

The four survival modes clustered along multiple principal component 
axes. However, species within clusters tended to have similar life forms; 
that is, the size at which mortality occurred was similar. Understory species
are characterized by small maximum diameters, with an across-site mean 
99th percentile diameter of 9.8 ± 2.4 cm (mean ± 1 s.d.). Transient species 
were distinguished by their very low overall survival with an across-site 
mean maximum-survival rate of 78% per year and an across-site mean 
99th percentile diameter of 14.3 ± 9.4 cm. There were two groups of large 
stature tree species or species capable of reaching canopy sizes. Canopy 
species were the group with low small-diameter survival rates, 
intermediate maximum size and an across-site mean 99th percentile 
diameter of 27.8 ± 7.0 cm. Large Canopy species have relatively higher 
survival at smaller diameters and larger maximum diameter (68.4 ± 18.5 
cm). Our analysis had an abundance threshold of 200 individuals; species 
with lower abundance were not included and are therefore Unclassified. 
However, we cannot exclude the possibility that some of them displayed 
other survival modes too rare to describe statistically.

Survival modes varied in abundance (Fig. 3) and diversity among forested 
plots (Fig. 3). The species included in the cluster analysis represented 
76.7% (range, 46.9–97.0%) of the biomass on average across the plots 
(Supplementary Table 3; Supplementary Fig. 3). The Canopy mode was 
typically the most species-rich, followed by the Understory and Large 
Canopy modes (Supplementary Table 4).



We calculated carbon lost to mortality at each site to understand the 
influence of these survival modes on carbon residence times. Total carbon 
loss from tree mortality ranged from 0.14 Mg C ha−1 yr−1 at the dry tropical 
forest Palamanui plot in Hawaii to 5.6 Mg C ha−1 yr−1 at Lambir, Malaysia, 
with a mean of 2.28 Mg C ha−1 yr−1 for all survival modes, including 
Unclassified (Fig. 3). Surprisingly, the plots that are commonly struck by 
typhoons and hurricanes (Fushan, Luquillo and Palanan) had intermediate 
rates of carbon loss due to mortality even though the plots experienced 
storms during sampled intervals. This result demonstrates that species at 
these sites have potentially been selected to tolerate disturbances instead 
of recover from them. The overall proportion of carbon lost to mortality 
varied greatly among these forests, although on average, Indo-Malaysian 
forests had the highest rates of absolute carbon loss (Fig. 3). Conversely, 
relative to total biomass, neo-tropical forests lost slightly more biomass 
(Supplementary Table 3). Relative proportions of biomass lost to mortality 
ranged from 0.02 to 9.5% for Understory mode species, 0 to 0.4% for 
Transient mode species, 1.3 to 85.2% for Canopy mode species and 1.6–
61.8% for Large Canopy species.

Commonly measured plant functional traits had only limited ability to 
predict survival modes, which is due to the diversity among species within 
given survival modes in these traits. Across all sites, the Transient mode 
species had significantly less dense wood than the other survival modes (F 
= 9.65, P < 0.001 (analysis of variance (ANOVA)); Fig. 4a). When we limited
the analysis to sites (7 of 14) that had locally collected wood density 
values, the Large Canopy and the Transient groups both had significantly 



lower wood density than the Understory and Canopy survival modes 
(Supplementary Fig. 4). In parallel with wood density, the Transient and 
Large Canopy species had significantly lower LMA than the Understory and 
Canopy species (F = 7.28, P < 0.001 (ANOVA); Fig. 4b). Seed mass did not 
differ significantly among survival modes (F = 2.26 for log-transformed 
data, P = 0.086 (ANOVA); Fig. 4c). These analyses were constrained by the 
limited availability of functional trait data, whereby LMA was only available 
for 40.4% and seed mass for only 8.1% of species.



We related mean annual temperature (MAT), mean annual precipitation 
(MAP) and cumulative water deficit (CWD) at each forest to the relative 
percentage biomass of survival modes (Supplementary Fig. 5) to 
understand whether there were climate dependencies in survival mode 



composition. Multiple linear Tobit regression indicated that Large Canopy 
biomass relative abundance had a negative relation to MAT, a positive 
relation to CWD and no relation to MAP (P = 0.000083, McFadden’s20 
pseudo R2 = 0.24; note that this is not the same as ordinary least squares 
R2, and a model with a statistically good fit to the data will have 
McFadden’s pseudo R2 value between 0.2 and 0.4). The relative percentage
biomass of Canopy and Large Canopy survival modes were strongly 
inversely related (Supplementary Fig. 3). Transient survival mode biomass 
was negligible and was not modelled. The Understory mode relative 
biomass was positively related to MAT (P = 0.031, McFadden’s pseudo R2 = 
0.12), but lacked any significant relation to CWD or MAP.

To clarify how survival and growth interact to affect the progression of 
individuals through their life cycle, we calculated mean growth rates by 
survival mode. Growth rates significantly differed among survival modes, 
whereby the Large Canopy survival mode had the largest mean annual 
diameter growth rate 2.18 mm yr−1. Conversely, the Understory survival 
mode was the slowest growing at 0.52 mm yr−1 (Fig. 5). A similar pattern 
was found when growth was expressed in terms of biomass accumulation 
(Supplementary Fig. 6). The Canopy mode has nearly half the growth rate 
of the Large Canopy mode, suggesting that carbon residence times of 
these two groups may be similar, but the Large Canopy mode would 
sequester more carbon in a similar time frame.



We tested the ability of survival mode composition to predict whole-forest 
biomass in simulations. We found a strong correlation (marginal R2 = 0.97) 
between the observed biomass in each survival mode and the biomass 
predicted from an individual based model (IBM) run at each site, in which 
individuals were classified only by their survival mode (Fig. 6). Biomass 
was relatively small and changed little across census intervals for the 
Understory and Transient survival modes. The accuracy of predictions of 
biomass varied for the Large Canopy and Canopy modes. Predicted 



biomass was underestimated for the Large Canopy mode at Lambir and 
Laupahoehoe by 47.68 and 42.15 Mg ha−1, respectively. In contrast, 
expected biomass was overestimated by the IBM for the Canopy and Large 
Canopy modes at Barro Colorado Island (BCI) by 14.45 and 26.62 Mg ha−1, 
respectively.

Discussion

Our results provide objective and quantitative descriptions of global size-
dependent tropical tree survival that reflect some of the classical 
descriptors of tree species demographics21. We discovered groups of 
species that differ in how they survive as they grow and that the 
probability of survival at small sizes varied among the survival modes. This
result was derived from our classification of size-dependent survival curves
and are likely to reflect the trade-offs inherent in competition for limited 
resources (for example, light) in the understory22 or to susceptibility to 
pests23 and pathogens24,25. We also found that survival modes varied in 
large-sized mortality, in which causes of mortality are likely to be driven by
the reallocation of resources from resistance to or tolerance of structural 
damage26, water limitation16 and accumulation of pathogens27 and other 
factors18. Our contention that this difference in survival at large sizes is a 
life-history strategy and not simply a product of a lower average survival 
rate for earlier senescing modes. This contention is supported by the fact 
that three of the four modes had very similar maximum survival rates, but 
differed remarkably in their size at senescence.

Past studies have indicated that tree survival under environmental stress 
can depend on tree size16,28. We discovered that climatic factors correlated 
well with the relative biomass of survival modes across forests, indicating 
that climatic factors may influence forest composition. Because the climate
correlates with different proportions of survival modes suggests that there 
are differences in carbon residence times and forest structure with climate.
Higher relative biomass in the Large Canopy survival mode was observed 
in forests with lower MAT and longer dry seasons and less Canopy species 
biomass. Considering that larger individuals can be more susceptible to 
drought16, the CWD result seems counter-intuitive at first. However, 
drought and seasonally dry climate differ in their effects on large trees, 
with large trees in seasonally dry climates being adapted to dry seasons29. 
Additionally, the prevalence of the Large Canopy mode may be influenced 
by environmental factors not considered here, such as soils or 
biogeographical history. Differences in the dominance of survival modes 
among tropical forests are likely to be driven by many mechanisms, and 
understanding the drivers is an important next step towards accurately 
forecasting the fate of forests18.

Widely collected plant traits explained some of the differences in size-
dependent survival modes in our analysis. Wood density has been 
recognized as a significant predictor of tree survival30,31 and of growth 



survival trade-off in saplings32, but variation in size-dependent survival was
not explicitly considered in the studies. We found that a clear difference 
between wood density means and survival modes for the Transient mode, 
which is likely to describe aggressive light-dependent pioneering species. 
Lower LMA in the Transient and Large Canopy modes combined with higher
mean growth rates suggests that the species in these survival modes 
probably have higher metabolic costs, potentially higher leaf nitrogen 
concentrations and shorter life leaf-span33. Variation in seed mass may 
reflect a suite of strategies independent from allocation to size-dependent 
survival at the sizes we examined. Seed mass might correlate better with 
individual growth rates or with different the reproduction life-history 
strategies of species34. Alternatively, seed mass may correlate with survival
in individuals <1 cm diameter at breast height (DBH), which was not 
measured in our analysis. The variation in traits observed within survival 
modes suggests that survival is a key demographic axis to examine 
because trait variation is one condition for the coexistence of diverse 
species35. Overall, our results suggest that a greater variety of traits and 
measurement of traits in each forest could advance our understanding of 
the links between tree performance and tree functional traits.

Our IBM model predictions provided a good fit to the observed forest 
biomass. Despite large amounts of demographic data being available 
globally, few studies have moved beyond descriptions of mortality 
averaged over species or coarse size classes. Models in which survival 
probability changes as a continuous function of size are necessary to 
accurately represent the variation in the way that individuals of different 
species move through the life cycle. Such models will therefore allow more 
biologically nuanced forward projection of populations and communities. 
Even when combined with a relatively simple growth model, the average 
parameters from our survival modes were able to capture the change in 
biomass at each site attributed to each survival mode.

The IBM projections demonstrated that our survival modes can provide 
benchmarks for biome models that simulate forest dynamics at a global 
scale (for example, terrestrial biome models (TBMs) or dynamic global 
vegetation models (DGVMs)), whereby vegetation is coupled with climate. 
Attempts at modelling carbon fluxes in DGVMs have led to very divergent 
results due to the potential response of forests, both in estimates of future 
atmospheric carbon36 and in terrestrial vegetation carbon stocks6. The 
evolutionary strategies of tree survival, integrated within the ecological 
models of environmental conditions, might provide a better pathway 
towards forecasting these diverse systems6,37. To do so, however, requires 
integration of field data, statistical models and size-structured TBMs that 
can accept demographic data as inputs. In a post hoc analysis, we 
compared the observed mortality rates from our plot data with mortality 
rates from one size-structured DGVM, functionally assembled terrestrial 
ecosystem simulator (FATES), using simulation results of one tropical 



broadleaf evergreen plant functional type and climate drivers from a one 
degree area of the Amazon (E. C. Massoud et al., manuscript in 
preparation). We found that FATES underestimated small-diameter tree 
survival but overestimated large-diameter tree survival compared with our 
results. Specifically, the annual mortality rate of trees larger than 70 cm 
DBH in FATES was 1.47%, while the observed mean annual mortality rate 
from ForestGEO plots for the same size class was 2.85% (Supplementary 
Fig. 7), which could result in overestimation of carbon storage in the FATES
model. This deviation from the FATES model is not a large difference; 
however, mortality rates compound annually, and this almost twofold 
underestimate of annual mortality reflects a significant mismatch in the 
pace of forest dynamics over decades. Although this is only a simple 
comparison with one model, it indicates a way in which demographic data 
can be aggregated into life-history strategies, which in turn can provide 
benchmarks to assess vegetation model performance. Incorporation of 
size-dependent survival constraints, for example, could improve how we 
assess, and perhaps how we model, mortality for the suite of DGVMs that 
are able to incorporate size-based survival38.

Despite the large range of species diversity and biomass turnover 
represented in our analysis, we found consistent patterns of size-
dependent survival (Supplementary Fig. 8) that are not strongly tied to 
commonly collected plant traits. The relative abundance of different 
survival modes varied with temperature and water deficit, which has 
implications for community composition, dynamics and carbon storage. If 
the temperature–survival mode relation is mechanistically driven, then 
forests would shift from dominance by Large Canopy mode species to 
Canopy mode species as temperature rise, resulting in less carbon 
sequestered. Future work based on our findings should investigate how 
trade-offs in growth and survival affect the survival modes identified, and 
how forecasting tropical carbon stocks could be improved by explicitly 
considering large-tree survival mechanism to constrain terrestrial carbon 
dynamics.

Methods

We used a global dataset of tree demography to build models of survival 
probability as a function of size. We used data from 14 plots that follow the
same methodology: all woody stems ≥1 cm DBH have been identified to 
species, mapped and measured every 5 years (following that of a previous 
study39 and summarized in Supplementary Table 1). All species with >200 
observations across the censuses were included in the following analyses, 
comprising a total sample of over 2 million individuals in 1,781 species. All 
analyses were conducted in R package40.

We estimated size-dependent survival by fitting a functional form to the 
data for every species in each census interval (see Fig.1 for a workflow 
diagram). We used a Bayesian framework (see Supplementary Table 5 for 



details of model fitting) and fit the model in R using Stan41, a platform for 
statistical modelling. The basic form of the survival function allows for 
variations in the classic U-shaped mortality curve13,42,43,44 (ours is inverted 
to survival). Because the data are heavily weighted to small individuals and
the mechanisms that cause mortality across size can vary significantly, we 
combined two logistical functions to describe tree survival across size: one 
function to describe survival at small sizes and one for larger sizes45 (see 
Supplementary Fig. 8 for examples of the species-specific fits and 
Supplementary Fig. 9 for sites). The probability of survival is therefore 
given by the following equation:

where S is survival probability across the census interval, K, r and p are the
upper asymptote, the rate of change and the inflection point of the survival
curve, respectively, x is size (DBH in mm), t is the time in years between 
censuses, and thresh is the size threshold at which the two functions meet.
The threshold was set at the median DBH size (see Supplementary Fig. 8) 
to ensure that each species had an equal number of observations 
informing each of the two curves. Subscripts 1 and 2 denote parameters 
for the curves describing survival in individuals below and above the size 
threshold, respectively.

The parameters in these functions hold distinct meanings across tree life-
history. K determines the maximum annual survival probability and usually 
remains constant over most of the life history of a tree. Mortality of small 
individuals, often due to thinning in the understory, is determined by r1 and
p1. Their complementary parameters for the large function r2 and p2 define 
survival at the largest sizes and may indicate the maximum size observed 
for a species.

The five parameters from the joint survival functions (K, r1, p1, r2 and p2) for
each species in each census interval were included in a PCA to remove 
correlations among parameters and to find the orthogonal axes of variation
in survival strategies throughout the life cycle, with all parameters 
standardized to unit scale. To ensure that species from each site carried 
equivalent information in the PCA, species were weighted equal to the 
inverse of the number of census intervals over which they were modelled.

In order to group species into survival strategies, we derived survival 
modes based on species position in the PCA space that describe the 
greatest variation in species survival through the life cycle. We selected 
clusters based on the following three criteria: the statistical metric that 
identified significant separation of groups of species in PCA space; a 



qualitative meaning to these clusters that could be mapped to survival 
strategies known to exist among forest tree species; and survival modes 
that could inform forest dynamics based on their contribution to different 
forest types.

Hierarchical cluster analysis was performed on the first five dimensions of 
the PCA using the hierarchical clustering on principal components (HCPC) 
function from the R package FactoMineR46. The HCPC function builds a 
dendrogram of species survival similarity from a similarity matrix. It then 
calculates the within- and between-group sum of squares (also termed 
inertia) for a range of potential cluster numbers and selects the number of 
clusters for which the change in between group variance is minimized47. 
Four clusters were selected using this algorithm, and we tested the 
robustness of the recommended clusters with the Jaccard similarity index 
produced via the bootstrapping function clusterboot in the fpc package19. 
Along with being statistically robust, these clusters describe observed life-
history strategies. That is, the mean survival curve for each mode matches 
the observed size-dependent survival patterns (Fig. 2 and Supplementary 
Fig. 8). We used the mean values of parameter sets within each cluster 
(from the survival function fits) and their covariances to randomly draw 
1,000 simulated survival curves. At each millimetre increment, from one to
the maximum size, we then selected the mean, 50% and 90% quantile 
values. We also plotted the survival function corresponding to the most 
representative species of each mode (Supplementary Fig. 9); that is, the 
species from each cluster closest to the centroid.

In calculations of biomass or carbon loss due to mortality for each survival 
mode, biomass was calculated for the main stem of each tree using 
general tropical allometries for trees without height measurements48, as 
tree height measurements are not part of the ForestGEO monitoring 
protocol. These allometries estimate height based on the diameter of the 
stem and an environmental index to estimate biomass. For each survival 
mode, annual carbon loss (half of biomass loss) due to mortality was based
on the tree diameter at the beginning of the census interval and made to 
be annual by dividing by the mean census interval time (typically ~5 
years). We, also report mean mortality rate by survival mode at each site 
for comparability to other studies (Supplementary Fig. 10). Absolute annual
diameter growth rates were calculated for each survival mode by 
subtracting diameters at the beginning of the census interval from the 
ending diameter and dividing by the time between censuses for each tree.

We tested the correlation between survival modes and the following three 
common functional traits: wood density, LMA and seed mass. Trait values 
for wood density (n = 1,781, some species were assigned genus or family 
level values when species-specific values were not available) were 
obtained from compiled databases49,50,51, and half of the plots had locally 
collected wood density values. LMA (n = 719) and seed mass (n = 144) data
were collected locally32,52 (Sack et al., unpublished observations, and Sack 



and Yoshinaga, unpublished observations). Differences between trait 
means among survival modes were compared using ANOVA with Tukey 
HSD tests for multiple comparisons.

To test associations between survival modes and climate variables, we 
calculated the MAT17 (MAT), the MAP17 and mean CWD for each plot (1901–
2013)17. As a metric of aridity, annual CWD (mm yr−1) was calculated as the
sum of monthly deficit values, which is the difference between potential 
and actual evapotranspiration48,53. Because the response variable, the 
relative abundance of the survival mode on a plot, was a percentage 
bounded at 0 and 100, multiple Tobit regression models were run with 
backwards selection using the vglm function in the VGAM package54 in R on
MAT, MAP and CWD. Residual diagnostics indicated that the Palamanui plot
data was an outlier and was subsequently removed from the analysis of 
climate relations; none of the remaining plots data had undue leverage on 
the regression. The best fit model by Akaike Information Criterion (AIC) 
corrected for the small sample size of plots (AICc) contained MAT and CWD 
as significant predictors (Supplemental Table 6).

We compared observed changes in biomass at each plot with changes 
predicted from projecting each survival mode forward using an IBM 
parameterized with mean and 95% parameters for each survival mode. For
example, stems were assigned a survival mode and each year grew and 
survived with probabilities corresponding to the 95th percentile growth 
rate and the size-dependent survival curve of that mode. Each survival 
mode population in the IBM was initialized with the size distribution in the 
first census at the respective site and then projected forward in time for 
the length of the census interval at each site. At the end of the projection, 
we calculated the biomass in each survival mode based on the mean wood 
density of each mode. We used the 95th percentile of growth rates by 
survival mode in the model to best capture canopy tree growth rates that 
are the greatest contributors to biomass. We also present the results using 
mean growth rate for comparison (Supplementary Fig. 11). Biomass was 
calculated as above using the mean wood density of each survival mode 
rather than species-specific values.

Reporting Summary

Further information on experimental design is available in the Nature 
Research Reporting Summary linked to this article.

Data availability

The data supporting the findings of this study are available from 
https://forestgeo.si.edu/climate-sensitive-size-dependent-survival-tropical-
trees.
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