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Abstract 

The execution of a program may be viewed as the 

processing of a statement in a programming language by an 

underlying interpreter. This report discusses briefly ,the 

.advantages of a data flow language over conventional 

programming methods, and then presents a new interpreter for 

a data flow language. Using as a base the data flow language 

of Dennis ["First Version of a Data Flow Procedure Language" 

Computation Structures Group Memo .23., Project MAC, MIT, Nov. 

1973], the new interpreter magnifies the apparent asynchrony 

and speed of data flow, and it does so by (quite literally) 

exchanging blocks of processors for slices of 

report gives details of the operation 

interpreter, and identifies the consequences 

interpreter on machine architecture and design. 

time. 
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A New Interpreter for Data Flow Schemas 

and 

Its Implications for Computer Architecture 

1. INTRODUCTION 

Our interest in data flow schemas stems from a desire to 

develop \ 
improved architectures for computing systems~ It is our 

feeling that necessary improvements in computer systems behavior 

can come about only by some rather new and radical approaches to 

the basic design of machines [1]. The use of a data flow 

language as the computer's machine language is one such approach. 

Some advantages of data flow over conventional approaches are: 

(1) more functional behavior, and hence more modularity in 
programming. This is achieved through the elimination of the 
concept of a variable. 

(2) more asynchronous data-driven control of programs; as 
opposed to conventional machines, statements are ordered only by 
the data constraints of the algorithm. 

(3) more operations on structured data are provided at the 
elementary level of the language~ 

Other advantages are discussed in [9]. 

This report discusses a new interpreter for data flow 

schemas. For those familiar with data flow languages such as 

Dennis' [8,12], the following is a brief description of the 

functioning of the new interpreter. (For those not familiar with 

data flow l~nguages, we have included an introduction in Section 
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This report is organized in the following fashion: Section 

2 reviews schemas in general, and Section 3 describes the new 

data flow interpreter within the context of the particular · data 

flow language of Dennis. Section 4 proves that the new 

interpreter produces the same computation as the standard 

interpreter, and Section 5 discusses some architectural 

implications of this new interpreter. 

2. COMPARATIVE SCHEMATOLOGY 

2.1 Background 

Many schemas have been devised to represent asynchronous 

computation. Roughly speaking, the models fall into two general 

classes: those with a random access memory and data variables 

[2-4], and those without data variables [5-10]. Figure 1 gives 

an indication of how programs in the two classes ~ight compute 

the same function. The rules of operation are similar for both: 

Figure 1a (with variables) shows computation units, initial data 

conditions, and the flow of control along arcs"' The tokens shown 

on the arcs rep~esent initial control conditions"' A· box may 

comput~ whenever all input arcs have a token present, and llQ 

output·~· contains a token. Values are read from and written 

into ·the:.Yexternal memory during computation"' Figure 1b (a schema 

withou~~a~iables, or data flow) shows the computation units 

connected by arcs. The arcs hold tokens, and the tokens contain 

the data values (thus the initial input value for f is 1, and for 

g it is 2)~ A box in the data flow schema may compute whenever 
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incorporation of an arbiter [9] and a non-deterministic [14] 

operator~ We believe that a machine design based on Dennis' data 

flow language will not be unnecessarily restrictive and will have 

many of the important features that data flow languages .of the 

future will require. 

For those unfamiliar with data flow languages, the remainder 

of this section gives a sample program and explains its 

operation; An example of a program in Dennis' Data Flow (DDF) 

language is shown in Figure 2: the calculation of a root of the 

function f by ~ewton-Raphson approximation (i.e., the successive 

calculation of x. 1 = x. - f(x. )/f'(x.). 
l+ l l l 

Two initializing value tokens are required to begin the 

computation. A token with value zero must be placed on the arc 

inbranching to the False side of statement S1, and an initial 

root approximation value token must be similarly placed on 

statement S8. In addition, two initial control tokens (true and 

fals~ values only) are shown as inputs to the control side of S1 

and S8. Given this configuration, computation may begin. Either 

S1 or S8 or both may execute. Each is a merge·statement, and by 

definition of a merge, a false control token .selects for its 

input a value token from the False side. The merge then simply 

copies the input value onto·a new value token and the token is 

output ·from the merge. The input value token and the control 

token are destroyed. In the case of S1, only one output. token is 

produced, but S8 produces four output tokens. Each of these four 

out~ut tokens carries the same value (copied from the input value 
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the truth value of the S3 result)·. Statement S16 is a 

gate-if-false statement which produces an output value token 

whenever an input false control token and an input value token 

arrive; the output value is the same as the input value~ It is 

essentially an output gate. If, however, a true control token 

arrives at a iate-if-False statement, no output token is produced 

at all, but the inputs are still destroyed. Thus if the error is 

not acceptable to S15, a true token arrives at S14 and no answer 

is produced. 

At this point we come to the statements which set up the 

activity for a loop. We also encounter the addition we have made 

to the DDF language -- the D-box ("D" for delay). AD-box is an 

identity function and simply passes the input value to the 

output. We require a D-box be present at those points, and only 

those points, wpere there is an initial input token in DDF. The 

initial·token is then placed on the output arc of the D-box 

before execution~ (In DDF the D-box essentially performs no 

operation but is necessary when discussing the new interpreter.) 

So, assume S3 and S 15 have both produced a true token (S.3 will be 

discussed momentarily). Then S5 will produce five true control 

tokens as o~tput, two of which pass through D-boxes to S1 and to 

SB. SB will merge the new approximation, gated from S13; back 

into the computation loop. This looping will continue until 

either the error is acceptable (S15), or until we have looped 

more than n times (statements S1-S6). Statements S1-S6 are 

counting, in parallel with the main computation, the number of 

times a new root ·has been tried~ If nd acceptable solution is 
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executing on a PE for the ith time in· the current invocation of 

P. Then we may speak of the activity_ "P. s" occurring for the i th 

time in the current invocation of P~ 

As previously stated in the definition of DDF (similar 

definitions are used by Kosinski and some investigators of Petri 

nets), a PE can fire or begin execution whenever it has received 

all its operands, except that no token may be output onto an arc 

which already holds a token. Therefore in FI, to ensure that no 

more than one token is output onto a data path at any one time, 

we need explicit acknowledgement of the last token received on 

that particular data path. That is, all the communication 

between PEs must be of send/acknowledge (feedback) type as, for 

example, in [15]~ Hence the name feedback interpreter. 

3.2 Non-Feedback Interpreter (NFI) 

It is possible, however, to relax the condition that an 

operator can fire only when the output arc ·is empty. This can be 

done without destroying the determinacy properties of the system. 

According to Patil [13], if we can ensure that no token on any 

arc is lost and that a strict 

maintained on each arc, 

first-in first-out condition is 

then the system will still be 

determinatero Unfortunately, no finite amount of memory alone on 

the data paths can guarantee these conditions~ 

3 .. 2. 1 General Operation of NFI 
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The scheme described ·below for creating activity names 

removes the need for send/acknowledge, or feedback, 

communication; hence the name non-feedback interpreter~ It is 

imperative to understand the activity name generation procedure 

in order to understand NFI. 

3,2.2 Generating Activity Names for NFI 

Suppose statement s of procedure P belongs to some loop 

within P, and that s is executing for the ith time in the current 

invocation of P~ Further assume that the context from which 

procedure P has been called is represented by symbol u~ Then the 

activity name of this execution of statement s is given by 

ureP.s.i. For example, let u represent th~ context from which the 

procedure ..§1!.ill (Figure 3) has been called. Assume input data has 

been presented to sum which will cau?e it to loop three times-.. 

Figure.4 shows all activities which will be 6reated during the 

course of this execution. The ith position in the vertical 

dimension for a statement in Figure 4 represents the ·th 1 

initiation of that statement as an activity.· All statements at 

the ith level will have "u.sum. .i" in common in their activity 

names. The name generation process mu~t determine the 

appropriate iteration (or initiation) count i for each token 

produced. This will be further discussed later. 

Consider now the three activities that perform the "apply P" 

operation in Figure 4. Al though not detailed in Figure 4, ·each 

of these activities invokes procedure P, and thus gives rise to 

an entire 3-dimensional execution structure of P in the 
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f.ollowing paragraph. 

· Ever y gate w a i t s for a d ~f!.l~Y .!:_Q_ ~.5::_!! as we 11 as the usu a 1 

value and control tokens as shown in Figure Sc. The dummy token 

carries the value j which is the number of tokens so far passed 

through G .on previous executions. When a gate executes, .the gate 

sends a dummy token to u.P.G.i+l with value j+l or j depending 

upon whether the value token was allowed to pass through the gate 

statement (j+l) or not pass (j). · Figure Sc shows the rule for a 

g at~ - -~!_--:~E.. u ~ st ate rn en t ; 

9~!:~-i~::~~-!~~- statement. 

a corresponding rule exists for a 

3.2.2.3 D-box: A D-box has the property that if the input token 

. th ·th . h 1 . is e i token received, then the output token (w.ose va ue is 

a copy of the input token value) will be the i+lth token sent to 

the destination of the D-box. This is because a D-box is present 

if and only if.an initial token was specified, and the D-box may 

be said to have produced its first output token for no tokens 

input. The first token input is thus the second token produced, 

etc. This is shown in Figure Sd. 

3.2.2.4 M.~!:_g_~: A m~E_q~ (essentially the inverse of a gate) 

produces an output token on each initiation, but only requires 

tokens from two of the three inputs at each initiatidn. For 

example, a~~~~ control token and a value token on the True input 

side is sufficient to initiate and terminate one merge operation. 

Suppose a merge M has been initiated i times; then i tokens must 

have been received at its control input. Furthermore, suppose j 

tokens on the True input and k token~ on the False input have 
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communicated through the value portion of the dummy token sent 

from MC to MT or MF. 

3,2,2.5 Apply: Apply statement A needs two types of arguments to 

execute: a procedure Q and a list of arguments for the 

procedure.· Since Q can be a procedure already active (e.g., 

consider the case when the procedure containing the apply 

statement A is procedure Q - a recursive call) statement A must 

cause the activity names used in this invocation of Q to be 

different from the activity names currently in use. If we assume 

the activity name associated with the PE that executes statement 

A is u.P,A.i, then the unique activity names for statements in 

the called procedure Q can be created by assigning names of the 

type u'.Q._i_ where u'=u,P~Awi, Since u' is unique, u',Q._._ is 

guaranteed to be unique~ 

A reverse process must take place when procedure Q activated 

by A is terminatedi The last statement to execute in Q must send 

the result tok~ns to u~P,A~i. However, there is one problem, 

According to the rules for PE allocation, once a PE starts 

execution it must terminate after a finite but non-zero time. 

Hence, (as in [12]) we break each apply statement A into two 

parts called AA (for activate) and AT (for terminate) as shown in 

Figure 5f. Let us assume that the first and last statements of 

e~ch procedure are begin and end, respectively. These statements 

have some special properties which are described in the following 

paragraph~ 
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wish to incorporate the notion of nondeterministic machines, then 

s~veral procedures may be activated simultaneously and as soon as 

the first acceptable result is produced, all domains created by 

the apply will be destroyed~ Domains are discussed further in 

Section 5. 

4. THE FUNCTIONAL EQUIVALENCE OF DDF PROGRAMS UNDER THE FEEDBACK 

AND NON-FEEDBACK INTERPRETERS 

In this section we give an informal but rigorous proof that 

the feedback interpreter (FI) and the non-feedback interpreter 

(NFI) both produce the same results for a DDF procedure, given 

the same arguments. It should be noted that all DDF statements 

are functional, i.e~, they have no writeable local memory~ 

First, we give some definitions. An .§1:.Q a connects one 

output. of a statement s to one input of a statement t~ Arc a is 

then an output arc of s and an input arc of t~ In the 

following, let a be an output arc of statement s in procedure P. 

If p is called in context u, then vector A 

associated with arc a (Figure 6a) is defined as follows: 

Feedback interpreter (FI): the list of all tokens appearing in 

sequence on arc a such that A(i) is the it~ token. 

Note that the ith token on an arc under FI can appear 

only after the i-1th .token has appeared. 

Non-feedback interpreter (NFI): the list of all tokens such that 

the token with activity number u.P.s~i is element A(i). 

Figure 4 shows that activity UrP~s~i can occur before 
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To begin, let PA(i) be a partial function on the input 

vector A associated with input arc a of statement t. This 

function PA(i) gives the position of the output token in the 

output matrix of statement t corresponding to the input token in 

position i of input vector A~ For each statement type, the 

definition of PA(i) is given below~ 

Type 1 - function 1 predicate, apply statements 

In particular, for a function (y. z·)-f(v· w· x·) as shown 
l' l - l' l' l 

in Figure 6 b,. Thus P1 (i)=i for all i, and for all vectors I 

input to the function. 

That is, position i of vector I input to a function 

statement determines the output vector only in position i. This 

holds for any input to any function statement. Similarly, the 

relationship PI(i)=i holds for any input.to any statement of 

types predicate and apply as well. 

Type 2 - D-box statement 

By definition, a D-box is present if and only if there is an 

initial token, i.e~, the first token is produced by a D-box for 

zero tokens input. The first token input will be the second 

token output, etc. The D-box is present only for the purpose of 

incrementing initiation numbers of tokens~ 
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j if i = Ff al se ( j ) 

Pc(i)=Pv(i)= 

undefined otherwise 
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These equations give the relationships among the input and 

output matrix positions under FI for all statements in DDFw It 

remains to show that these, and on~y these relationships are 

preserved under NFiw 

Case 1 - function, predicate, apply statements 

By observation of Figures 5a, 5b, and the first and last 

snapshots of apply in Figures 5e and 5j, the required 

relationship PI(i)=i is preserved. 

Case 2 - D-box 

By observation of Figure 5c, PI(i)=i+1 holds under NFiw 

Case 3 - Merge 

There is only one output token produced at each termination 

of a merge statement, and its position in the output vector is 

determined by the position of the control token in the control 

input vector,. To show that the proper relationship between the 

input matrix and output vector of a merge under NFI is preserved, 

we make the following assertions by examining the rules given in 

Figure 5k,. 

(a) The control part of the merge (Mc). is initiated the kth time 

only after the k-1st initiation of Mc has terminated, 
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positions for any s~atement in DDF holds. Since under both FI 

and NFI the input matrices are the same, and the statements 

calculate the same function, then the output matrices must be the 

s.arne. 

QED. 

Corollary 1: All single statement procedures are in PEQ. 

Proof - Immediate by Lemma 1. 

'I1heor em 1: Let P be formed by interconnecting procedures P
1 

and 

P2 • If P1 and P2 are members of PEQ then P is also in PEQ. 

Proof - The proof to follow uses two program pieces P1 and P2 , as 

shown in Figure 7a. These two pieces are connected together in 

the fashion shown in Figure 7b to form a new system. Those 

inputs: to P1 which are connected to outputs of P2 are called V: 

those inputs to P2 which are connected to outputs of P1 are 

called u. The other inputs and outputs of P
1 

and P2 remain 

unconnected. The inputs to the new system are X, and the outputs 

~re Y. The proof shows that the operation· of program composition 

I. (=>) If X is an input matrix to P producing output matrix Y 

under FI, then P will also produce Y under NFI. 

(a) Let P produce matrices U, V, Y under FI. Assume P under NFI 

produces output matrix y', where y' is different from Y. 

Then there is an error in Y1 , or Y2 , or both. 

(b) There can be a.n error in Y1 if an.:J only if there was an error 
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in the input matrix of P1_ Similarly, an error in Y2 can be

due only to an error in the input matrix of P2� Since X1

cannot be in error, there must exist -an error in matrix V 

produced under NFI. 

(c) Let NFI make the first error in time in U, or V, or both, and

let this error be in position ku, or k v, or both, 

respectively� (All matrix position denotations are pairs; 

that is, ku and ky are each a pair specifying a single entry 

in matrix U and V, respectively�) 

(d) 1� Assume entry U(ku) is wrong_ Entry U(ku) depends upon

some entries in the input matrix to P1�

P
EQ

, U(k0) can be wrong if and 

Since P1

only if

i'S in 

some 

corresponding entry in the input matrix was wrong. X 

cannot be wrong, so the error must be in some entry 

V(i). U(ku) could not be propuced under NFI until V(i) 

has been produced. This is because every statement 

requires n'on-zero time to produce output tokens after 

all the required input tokens have been received. But 

V(i) cannot be wrong because U(ku) was hypothesized to 

be  the first such error. Thus U(ku) cannot be 

incorrect� Contradiction. 

2. Assume V(kv) is wrong. By the same argument as above,

V(ky) cannot be wrong. Contradiction 

3. If both U(ku) and V(ky) are wrong, then again by the same

arguments as above there must be entries U(i) and V(j) 

w hich are wrong and which have occurred before V(kv) 

and U(ky), respectively. Again, a contradiction. 
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(e) Thusr there can be no y' different from Y. 

iI. (<=) If X is an input matrix to P producing output matrix Y 

under NFI, then P will also produce Y under FI. The proof is the 

same as above, and can be stated simply by interchanging NFI and 

FI-in Part I. 

QED. 

5. IMPLICATIONS FOR MACHINE ARCHITECTURE 

A data flow program is a collection of statements or 

activities which initiate when inputs have arrived, then exectite, 

and produce outputs upon termination. We envision a machine 

composed of a large number of s~all physical processing elements 

of the type described in NFI. These PEs are interconnected by a 

communication system which transport~ tokens output by one 

activi~y to the in~ut of another activity. W~ note in passing 

that such PEs may be built with current LSI technology. 

With this view in mind, we. note the following points: 

(1) There is no method to determine a priori the total 
number of activities which may be generat~d by any given 
invocation of a procedure. Since activities are created 
dynamically, automatic allocation and deallocation of PEs to each 
activity is required. 

(2) Due to dynamic activity creation, there can be no 
connections among particular PEs; all token traffic 
logical (activity name) destination addressing. 

fixed 
is by 

(3) ,A machine architecture that caters to the dynamic 
allobation/deallocation of PEs will have inherent modularity, 
i.e., it should be possible to easily increase or decrease the 
total number of physical PEs ~t any time. 





Page 31 

6.. REI"ERENCES 

[l] 

[ 2] 

_[ 3] 

[4] 

[5] 

(6) 

[ 7] 

[ 8] 

[ 9] 

Glushkov, v. M., and M. B. Ignatyev, v. 
V. A. Torqashev, 1'Recursive Machines 
Technology'', !Fl~ ~~~!2£.i~t~' Stockholm, pp. 

A. Myasnikov, 
and Computing 

65-70 (1974). 

Karp, R. M. and R. E. Miller, "Parallel Program 
3, pp. Schemata 1 

, J. of C?1~Pl!~~~- and §.Y.§.t~f!l _§g·-~-~t!_~f::~, vol. 
1 4 7-19 5 ( 1 9 6 9 ) ... - . 

Slutz, D. R. The Flow-Graph Schemata Model of Parallel 
Computation, Ph. D ~--. ·nrsser-tatfon; l'1AC-TR=s3' - ( thesi sT ~ .. -L'UT, 
Sept ..... i968. 

Gostelow, K. P. and V. G. Cerf r G. Estrin, S. 
Volansky, ,, Proper Termination of Flow-of-Control in Programs 
Involving Concurrent Processes 11

, Proceedings of ACM National 
C~!!-~~J;-~Q~~ 1 Boston, vol. 2, pp. 742::.75-4·- {Aug: -I97if~- --- ·-- -

Holt, A. W. and F. Commoner, uEvents and Conditions 11
, 

Record of the Project MAC Conference on Concurrent Systems 
and-Par afl el Computaf Ion~-- vbo~Js--Hofe·~---Mass. -; .. PP~--- -3:...:sx·-·( j u11e 19-7 0 )-~·---~·~ --- -~-- - - ......... ~--·~ ·~- ---~-·-· -- -·~ 

Keller, R. M., Vector Replacement Systems: A Formalism for 
Mo~~Ji~~J Asynchr-O'nous---···sysferns :~-- 1fii ___ J.f7, ·cs ·-tabor a tor y, 
Department ~t ~f~~fiic~l ~riiirie~ring, Princeton University 
(Dec. 1972, revised Jan. 1974). 

Rodriguez, J. E. A Grar;>h Model for Parallel Computation, 
Ph. o. thesis, Mrr, -- De-par-tment._o'f Erectr ica1 Erii fneed~n\j, 
MAC-TR-64, Cambridge, Mass. (Sept. 1967). 

Dennis, J. B. and J. B. Fosseen, J.· P. Linderman, 
·Data Flow Schernas 11

, Symposium on 1I'heoretical ~-~()q~_~IT_!~~!!-9., 
N 0 v 0 s i bi r s k , us s R , pp . Is 1~2· 16 .. (Aug-~·-- --19 7 2 f ~- -

Kosinski, P. R., 11 A Data Flow Language 
Systems Programming", Proceedings of ACM 
Inter face Meeting, SIGPLAN Notfc_e.s - vol. --- 8, s 9-=9· .~c -( s e Pt-~ .. -1913 > -.-· -- · -· - - · -- - ·- ·· -

for Operating 
SIGPLAN-SIGOPS 

No. ---9 ~ - .. pp··.-

[10] Bahrs, A., "Operation Patterns (An Extensible Model of an 
Extensible Language) 1

, Symposium Theoretical ~f~g~~~~~ng, 
Novosibirsk, USSR pp. 217~246; - (Aug :·---·i972): 

[11] Gostelow, K. P., 11 Computation Modules and Petri Nets", 

[ 12] 

Proceedings of Third ACM-IEEE Milwaukee Symposium on 
Automatic ··--computation· "and control; -·1)p.- .... _.345-354 ··(Apr ii 
1 915 ) : -. -- -- ·- .. -- - _, .. ·- -· .... 

Dennis, J. B., "First Version of 
Lanquage", Computation Structures 
MAC, MIT (Nov.· 1973-, -revfsed Aug. 

a Data Flow Procedure 
Group Memo 93, Project 

19 7 4--; . May l 9 7 5-f • 





33 

Figure la· 

Asynchronous computation with variables 
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Figure 2 

A program in Dennis' Data Flow language 





Figure 4 

Three-dimensional activity space of procedure sum 
. under particular input data · 





Figure Sb 

Operation on activity names by predicate boxes 
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Figure Sd 

Operation on activity names by a D-box 
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The activate and terminate portions of apply 
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Vector A associated with arc a with a sequence of values 
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