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Abstract 

Temporal Binding (TB) is standardly regarded as an implicit 
measure of the sense of agency (Haggard, 2017). Though the 
TB effect is robust, an underlying mechanism has not been 
agreed upon (Hoerl et al., 2020). Here we propose a memory 
process as an explanation for the observed error in two publicly 
available datasets. We first replotted the data and found that on 
average, across both experiments, participants overestimate the 
length of the shortest timing interval and underestimate the 
longest interval, a classic regression to the mean pattern. 
Summary statistics extracted from the data from each 
experiment were then used as parameters in a simple Bayesian 
model of memory. Model simulations reproduced the 
behavioral data for almost all timing intervals and 
experimental trial-types across two experiments. Adjusting 
one of the parameters in the model (prior mean for actions) 
resulted in an improved qualitative fit. We suggest that other 
more likely sources of error, apart from experienced agency, 
may account for this result. 

Keywords: temporal binding; Bayesian models of cognition; 
sense of agency; memory 

Introduction 

The sense of agency is defined as the feeling of control over 

our actions and their associated consequences (Haggard, 

2017). Though this experience can be assessed explicitly by 

asking individuals to report their feelings of control over 

outcomes in their environment (Daprati et al., 1997; Metcalfe 

et al., 2013; Metcalfe & Greene, 2007; Spengler et al., 2009), 

it has also been assessed implicitly via measures like 

temporal (also sometimes referred to as “intentional”) 

binding. Temporal binding is the perceived subjective 

compression of the timing interval between a voluntary 

action and its associated outcome.  

Temporal binding is often (though not exclusively – see 

Haggard et al. (2002)) measured using a timing estimation 

method known as interval estimation (e.g., Caspar et al., 

2016; Engbert et al., 2008; Fereday et al., 2019; Obhi et al., 

2013; Pfister et al., 2014; Seghezzi & Zapparoli, 2020; Zhao 

et al., 2016). In the prototypical voluntary action trial, 

participants are asked to perform an intentional voluntary 

action, e.g., a button press, which triggers a tone 250ms later. 

At the end of each trial, participants are asked to freely recall 

their best estimation (in milliseconds) of the length of the 

interval that elapsed between the two events. This trial-type 

is typically compared to a baseline, observational (a.k.a. 

passive) condition where participants (most commonly) hear 

two computer-generated tones separated by 250ms and are 

again asked to recall the interval that elapsed between the two 

events. Participants, on average, show increased compression 

of the interval between events in the voluntary action 

condition compared to the baseline, which is referred to as 

the temporal binding effect. 

Since the original report (Haggard et al., 2002), the effect 

has more than 200 reported replications across multiple 

distinct timing estimation methods (e.g., Barlas & Kopp, 

2018; Berberian et al., 2012; Cavazzana et al., 2014; 

Takahata et al., 2012; see Tanaka et al., 2019 for a review). 

Several mechanisms have been proposed to explain this 

effect, though no consensus has been reached (Hoerl et al., 

2020). Initially, binding was thought to be specific to 

voluntary actions and so a pre-reflective motor mechanism 

was proposed (Haggard et al., 2002). This account posits that 

an implicit “feeling of control” yields temporal binding, a 

process that is thought to be driven by a motor control system 

that does not require conscious reflection. 

However, there have been reported instances where 

binding is present in passive/observational (Graham-Schmidt 

et al., 2016, other condition; Humphreys & Buehner, 2010; 

Poonian et al., 2015; Suzuki et al., 2019) as well as 

involuntary actions (Borhani et al., 2017; Buehner, 2015; 

Graham-Schmidt et al., 2016, passive condition; Kirsch et al., 

2019). As a result, another account proposes that the 

perceived causality between two events can by itself elicit 

binding. Importantly, this account predicts that binding can 

occur with cause/effect pairs that do not involve 

intentionality or voluntary motor action (Hoerl et al., 2020).  

More recently, cue integration, borrowed from perception 

research (Lush et al., 2019; Moore & Fletcher, 2012), has 

been suggested as a potential mechanism underlying the 

binding effect. Cue integration is the process by which an 

observer combines information associated with multiple cues 

from different domains to decrease error in perception. The 

cues are weighted differentially based on the perceptual 

certainty associated with each. For example, in the voluntary 

action case, the timing of the button press has more 

perceptual certainty compared to the timing of the first tone 

in the baseline trials (i.e., participants can control the timing 

of their voluntary actions which increases certainty compared 

to the occurrence of the first tone in the baseline condition 

which they do not control). Therefore, the estimation of the 

outcome is pulled toward the event with higher perceptual 

certainty which can explain the observed compression seen 

in binding. A Bayesian process has been suggested as a 

potential mechanism for optimally combining the 
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information from these varying cues (Moore & Fletcher, 

2012).  

Within this literature, a common assumption is that 

temporal binding is an implicit marker of agency. Therefore, 

the proposed accounts attempt to explain the effect by 

looking at the differences in potential agency between 

experimental conditions. However, these differences may not 

be related to agency. 

To see this, consider the fact that at its core, the interval 

estimation task is a free recall task in which, regardless of 

trial-type, participants are asked to encode a time interval 

between two events and then recall their estimation of that 

interval at the end of each trial. Approaching the problem 

from the perspective of memory opens the possibility that the 

effect may be explained, for example, by differences in how 

participants encode information across trials, regardless of 

agency. Therefore, the contribution of memory to the 

observed binding patterns should be assessed. 

Here we suggest that a simple memory mechanism can 

entirely account for the results reported in two publicly 

available temporal binding experiments (Weller et al., 2020, 

experiment 3A and 3B). We first demonstrate that when 

replotting the data as a function of the error (or bias from the 

objective timing) in the participants’ interval estimates, a 

classic regression to the mean pattern appears. This is 

important, as regression to the mean is a well-known pattern 

in time perception and memory. For example, Vierordt’s law 

is a well-established regression effect in time perception 

where participants tend to overestimate short durations and 

underestimate long durations (Lejeune & Wearden, 2009).  

What’s more, Huttenlocher et al. (2000) reported results 

from memory experiments where participants learned to 

represent a distribution over a particular stimulus feature 

(e.g., sizes of fish) and then regressed to the mean of that 

distribution when recalling. Here, we propose that 

participants might be doing the same thing in the temporal 

estimation task. To find out, we simulated observed results 

using the same Bayesian rational memory model that has 

been successfully implemented in other studies (Huttenlocher 

et al., 2000; Hemmer et al., 2015; Persaud & Hemmer, 2014). 

These results show, for the first time in the temporal binding 

literature, that we can qualitatively account for the pattern of 

results in two temporal binding studies with a memory 

mechanism and, importantly, without appealing to agency or 

causal inference as additional underlying mechanisms. 

Data Sets 

The data described here come from a publicly available paper 

(Weller et al., 2020, experiments 3A and 3B). Code for all 

analysis, figures, and supplementary material included in this 

paper are also publicly available (https://osf.io/juh5y/). A 

detailed description of the experimental method and 

procedure can be found in the supplementary material as well 

as in the original Weller et al. (2020) paper.  

Here we briefly describe the procedure for both 

experiments 3A and 3B. Both experiments included three 

trial-types: action, non-action, and baseline. At the beginning 

of each trial, participants were asked to choose between an 

action and a non-action which would each produce distinct 

outcomes. In the non-action trials, participants chose not to 

act and a default outcome would occur, whereas in the action 

trials, participants acted (i.e., pressed a button at a timing of 

their choosing) to change the default outcome. Note that a 

participant could in principle choose not to act on any trials. 

However, only participants with a minimum of five or more 

observations per cell were included in the final analysis.  

At the end of each trial, regardless of which type, 

participants were asked to recall and report their estimate of 

the interval between two events in milliseconds using a visual 

analog scale presented on-screen. There was also a baseline 

trial-type which was completely passive (i.e., no initial 

decision to act or not) and was compared to the other two 

trial-types. Three different time intervals were used between 

events (100ms, 400ms, and 700ms in 3A; 300ms, 500ms, and 

700ms in 3B). The presentation of these intervals was 

randomized across the different blocks of trials. Data 

                                 

                                                                   

Figure 1: Reproduced results from Weller et al. (2020) experiment 3A (left) and 3B (right) publicly available datasets. 

Bars depict average raw estimations by trial-type across intervals. Horizontal dotted black lines indicate average baseline 

error estimates for each timing interval. 
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presented here are from 27 participants from experiment 3A 

and 40 participants from experiment 3B.  

In the original publication (Weller et al., 2020), the authors 

compared trial-type and delay, and reported two significant 

results for experiment 3A: actions compared to baseline at the 

700ms interval and non-actions compared to baseline at the 

400ms interval. There were also two significant results for 

experiment 3B: actions compared to baseline at the 700ms 

interval and non-actions compared to baseline at the 700ms 

interval. No other comparisons were significant. From these 

results, the authors concluded that “temporal binding ha[d] 

[also] emerged for non-actions”. 

Figure 1 depicts the average raw estimation across the three 

trial-types (actions, non-actions, and baseline) and across the 

three different timing intervals used. These plots show a 

qualitative reproduction of the published results. 

Reanalysis 

We re-analyzed, replotted, and simulated the original results 

after using exclusion criteria reported in the published paper. 

While we sought to reproduce and present the data exactly as 

Weller et al. (2020) published them, our reanalysis did 

produce some minor differences in the total number of trials 

removed due to exclusionary criteria. Our reanalysis removed 

a total of 2.63% of trials due to error or SD criteria from the 

data for experiment 3A and a total of 2.46% of trials from the 

data for experiment 3B which are comparable to those 

reported in the paper (2.1% and 2.2% of trials in 3A and 3B, 

respectively).  

To evaluate the regression effect, we first replotted the raw 

estimates as error, or the difference between the average 

estimates and the objective timing at that interval. The 

regression pattern can clearly be seen in Figure 2 for 

experiments 3A and 3B. There is a consistent overestimation 

of the shortest interval (i.e., the value below the overall mean 

across intervals) and underestimation of the longest timing 

interval (i.e., the value above the overall mean) across both 

experiments. All regression lines have a negative slope across 

the three intervals and are significantly different from zero   

(p < 0.05). 

Note that sequential dependencies (i.e., the influence of a 

characteristic of the stimulus immediately prior to the current 

stimulus on the recall of the current stimulus) have been 

suggested as a potential cause of the regression pattern that is 

typically seen in memory experiments (Sailor & Antoine, 

2005). An important step was to ensure that this pattern of 

results cannot be explained by the effect of sequential 

dependencies.  

To that end, we first separated the trials into three groups: 

cases where the previous trial’s interval was longer than the 

current trial, cases where the previous trial’s interval was 

shorter than the current trial, and cases where the previous 

trial’s interval was the same as the current trial. In cases 

where the interval in the previous trial was shorter, we expect 

to see underestimation since the response will be drawn 

toward the shorter interval in the previous trial. We expect to 

see the opposite case when the previous trial’s interval was 

longer. The most informative case is when the previous trial’s 

interval was the same as the current trial. If the error 

disappears on these trials, this would suggest that sequential 

dependencies on the other trial types are driving the aggregate 

effect. However, if the error remains, a different explanation 

is in order. 

We completed this analysis by plotting the frequency of all 

error across participants for cases where the previous trial’s 

interval was the same. We further split this data into three 

subsets (over length of intervals) and calculated the mean at 

each interval. We also completed Bayesian paired samples t-

tests evaluating whether these means differed significantly 

from the overall means for each interval length. These 

analyses provided evidence in favor of the null hypothesis 

and confirmed that sequential dependencies do not account 

                            

                                                                 
Figure 2: Regression lines by experimental trial-type for Weller et al. (2020) experiment 3A (left) and 3B (right). Plots 

indicate average error (objective value subtracted from the average subjective estimation) of each interval across 

experimental trial-types. In experiment 3A, the slope for actions is significantly steeper compared to the other trial-types 

driven by larger average underestimation at the longest timing interval. For experiment 3B, the general pattern across trial-

types is similar to results from experiment 3A though there are qualitatively larger differences in slopes across conditions 

indicating more noise in the memory process. 
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for this pattern of results  (see Tables S1 and S2 in 

supplementary material for more detailed information). That 

is, the regression pattern remained for the “same as current” 

trials. 

A Bayesian Model of Memory 

Next, we used a Bayesian rational memory model to simulate 

the results from experiments 3A and 3B. As previously 

mentioned, our goal for implementing this model in this 

context was to provide a plausible alternative explanation for 

interval timing in this context. We planned to evaluate 

whether a memory mechanism could account for this pattern 

of results without appealing to the influence of experienced 

agency. The model we use here is based on the Bayesian 

models reported in Huttenlocher (1991, 2000) as well as 

Hemmer and Steyvers (2009). This simple Bayesian memory 

model assumes that recall is a combination of noisy memory 

traces and prior expectations of interval lengths learned 

across the trials.  

In the Weller et al. (2020) experiments, an observer is faced 

with the task of recalling features of a study stimulus (e.g., 

estimating a time interval). The observer’s goal is to 

reconstruct the original study stimulus feature 𝜃 using noisy 

samples 𝑦 retrieved from memory. Bayes’ rule gives a 

principled method for combining prior expectations and 

evidence from memory to calculate the posterior probability,  

 

 𝑝(𝜃|𝑦) ∝ 𝑝(𝑦|𝜃)𝑝(𝜃)  Eq (1) 

 

The posterior probability 𝑝(𝜃|𝑦) describes how likely 

attribute values 𝜃 are given the noisy memory contents 𝑦 and 

prior expectations about the attributes. Suppose the feature 

values of the stimulus are Gaussian distributed, 

𝜃 ~ Ν(𝜇∗, 𝜏∗), where 𝜇∗and 𝜏∗
 are the prior mean and 

precision of the feature values. Further suppose that the 

samples y being drawn from memory have a Gaussian noise 

distribution centered on the original studied value, 

𝑦 ~ Ν(𝜃, 𝜓). The variance of the noise process, 𝜓, 

determines the resemblance of the stored representations to 

the original feature of the study stimulus. Suppose the 

observer also has some expectations about the general 

distribution of attributes, 𝜃 ~ 𝑁(𝜇, 𝜏). This distribution 

corresponds to the prior in the observer’s memory model and 

assumes that the observer has learned the environmental 

statistics which can be used as a proxy for the prior in the 

observer’s model. That is, 𝜇 = 𝜇 ∗  and 𝜏 = 𝜏 ∗. Bayesian 

techniques can now be used to calculate the posterior 

distribution:   

        𝜃|𝑦, 𝜓, 𝜇, 𝜏  ~  N (
𝜓𝑦+𝜇𝜏

𝜓+𝜏
, 𝜓 + 𝜏)  Eq (2) 

 

The mean of the recalled stimulus values (e.g., time 

intervals) is a weighted linear combination of the prior mean 

𝜇 and the mean of memory content 𝑦. The prior mean 𝜇 is 

weighted more heavily when the prior has a higher precision 

(𝜏) or when the memory noise increases. This corresponds to 

the intuition that if the prior is strong, it will exert a strong 

influence. Similarly, if memory contents are very noisy, the 

prior will also exert a strong influence. This linear 

combination explicitly predicts the regression pattern that is 

well-known in memory. 

 
 

Figure 3: Results of the Bayesian memory model simulation  (including 95% CIs) for experiment 3A (top row) and experiment 

3B (bottom row) across experimental trial types. Model parameters extracted from the data using overall averages for prior 

mean and variance as well as memory noise value based on overall standard deviation from each experimental condition. 

Model qualitatively fits well for all intervals and trial-types across both experiments except for action trials in experiment 3B. 
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Simulation Results 

We applied this simple Bayesian rational model of memory 

described above to the Weller et al. (2020) data. The goal of 

this analysis was to compare the predictions of the Bayesian 

model of memory and the empirical data at a qualitative level.   

In the model, the priors were based directly on the 

environmental statistics, i.e., the average over subjective 

estimates. However, rather than hand fitting the parameters 

ad hoc, we used the summary statistics from the experimental 

data as parameter input. For the prior in Eq. 2, we used 

distinct mean μ and precision τ values corresponding to the 

overall error values from each experiment (μ = 454.78ms 

[overall mu] and τ = 91.11ms [overall SD] for experiment 3A 

and μ = 448.72ms [overall mu] and τ = 97.95ms [overall SD] 

for experiment 3B). Furthermore, we assumed the same prior 

and memory noise setting for all participants (i.e., no 

individual variation). We chose to use prior parameter values 

extracted from aggregate participant responses as we 

assumed that participants learned the mean of the intervals 

over the course of the experiment. We felt this choice was 

appropriate considering there is evidence to suggest that 

priors are learned early in an experiment (Berniker et al., 

2010). We also completed simulations using the mean of the 

stimulus feature (μ = 400ms for EXP 3A and μ = 500ms for 

EXP 3B) and did not find a substantial difference in 

qualitative fit (See Supplemental Material for more details).  

For the memory precision ψ, we used a value of 90, which is 

based on the overall standard deviation of timing estimates in 

the experimental data (while it is technically unitless, this 

value could be interpreted in milliseconds). We obtained 

1000 samples for each distribution and simulated the same 

number of participants, trials, and time intervals that were 

used in each experiment. The model simulated raw 

participant estimations for each trial which were then used to 

calculate the bias on each trial. Figure 3 depicts the simulated 

responses compared to those obtained from participants in the 

Weller et al. (2020) study. The triangles represent the 

maximum a posteriori (MAP) estimates from the posterior 

predictive recall distribution simulated from the model with 

a 95% CI around each simulated mean.  

For both simulated and observed responses, the results 

show effects of the prior (i.e., the overall mean across 

intervals). For experiment 3A, Figure 3 (top row) shows that 

the model qualitatively simulates the overall effect. The time 

intervals that are shorter than the mean of time intervals (i.e., 

400ms) are overestimated while the time interval that is 

longer than the mean is underestimated. The model 

qualitatively fits best for actions and non-actions while 

under- and over-estimating the error in the 400 and 700ms 

timing interval baseline trials, respectively. For experiment 

3B, Figure 3 (bottom row) shows that the model provides an 

excellent fit for baseline and non-action trials though 

interestingly, it does not fit action trials as well.  

This last result appears to be due to a substantially different 

y-intercept value in the regression line which suggests that 

the parameter values used in the model for action trials in this 

experiment are not likely the ones participants used. It is 

plausible that there may be more memory noise in the 

memory process for these trials compared to the baseline 

trials. It could also be that participants used a different prior 

mean or variance to make their estimates for these trials. To 

assess this, we tested larger and smaller memory noise values 

without changing the prior parameter values which did not 

improve the qualitative fit (see Supplemental Material Figure 

S2). We then varied the prior mean parameter value in the 

model and found that a value of 350 (slightly smaller than the 

448.72ms value used for the simulations in Figure 3) 

improved the fit substantially (see Figure 4).  

Discussion 

We investigated whether a memory process could explain the 

pattern of results reported in two publicly available temporal 

binding datasets. After replotting the raw estimations of 

timing intervals as error (or the difference between the 

estimations and the objective timing), a clear regression 

pattern emerged. We implemented a well-established 

Bayesian rational memory model and found that the model 

qualitatively simulates the experimental data across three 

different trial types. Using parameter values extracted from 

the data resulted in a good qualitative fit across all intervals 

and trial-types in experiment 3A. The model also produced a 

good qualitative fit for non-action and baseline trials but did 

not produce as good a qualitative fit for action trials in 

experiment 3B.  

The improved fit using a lower value for the prior mean 

parameter suggests that participants may be regressing to a 

shorter interval length when recalling estimations after action 

trials as compared to other trials in the experiment. This could 

be because participants perceive the time between their 

actions and the outcomes as shorter than in the other trials 

which may be due to an increase in perceived agency in these 

trials.  

 
Figure 4: Bayesian memory model simulation results 

(including 95% CIs) for Weller et al. (2020) experiment 

3B action trials. Decreasing the value of the prior mean 

parameter for action trials only improved the overall 

qualitative fit of the model to the trial data. This indicates 

that participants may have used a different prior mean 

when making estimations during action trials in this task. 
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A simpler and more likely explanation may be that 

encoding is different in the action trials compared to the 

nonaction and baseline trials. The presence of the action may 

be more distracting which would increase the error in the 

initialization of the timing process. There may also be 

increased noise in the recall process which was reflected in 

an increased standard deviation for actions (SD = 115.57ms) 

compared to nonaction (SD = 100.29ms) and baseline (SD = 

78ms) trials. However, these explanations are not entirely 

satisfactory, as the model fit is qualitatively better for 

experiment 3A compared to experiment 3B and there is no 

perceptual difference between the conditions in terms of 

agency or encoding across the experiments. This may 

represent a superficial and idiosyncratic feature of the 

experiment rather than the reflection of something deeper. 

We acknowledge that this is also not a satisfactory 

explanation and recognize it as an area for future research. 

Relatedly, the aggregated results across the studies also 

suggest that the range of intervals used in the experiment may 

have some effect on the pattern of errors. In experiment 3A, 

the range of possible intervals was larger than in experiment 

3B. Though the overall regression pattern was still the same, 

the directionality of the average error was switched at the 

middle timing interval: overestimation in 3A and 

underestimation in 3B. At first blush, this seems like a 

perplexing result. However, one should note that the overall 

average estimation value was close to the midpoint of the 

visual response scale: approximately 450ms for both studies 

(454ms for 3A and 448ms for 3B). This suggests that there 

may be a more general, environmental prior that participants 

are using to make estimations in these experiments or that 

they are being influenced by the range of responses presented 

to them. This could explain the reversal in directionality of 

the error for the middle timing interval across the two 

experiments. It is also possible that the length of the general 

prior differs depending on the type of action or the outcome 

modality. Finding out requires further investigation. 

The iteration of the model reported here assumed that all 

participants used the same parameter values to make their 

estimations. This is obviously an oversimplification and 

represents a limitation in our implementation as it is likely 

that the prior mean, variance, and memory noise values differ 

from person to person. Future iterations of the model will 

allow us to uncover individual differences in these 

parameters which may elucidate these results.  

Our model fits well with other models of time perception. 

Specifically, the idea that memory may be a significant 

influence for interval timing (and recall) is not new 

(Addyman et al., 2011; Addyman & Mareschal, 2014; 

Fountas & Zakharov, 2022; Jazayeri & Shadlen, 2010). The 

novel contribution of our work lies in the application of this 

simple Bayesian memory model in the context of temporal 

binding as well as our suggestion that memory can account 

for an effect commonly attributed to agency. We recognize 

that this is not a novel concept in the time perception 

literature more broadly and as such more complex models 

could also be incorporated in future work. 

Importantly, we also acknowledge that this model does not 

necessarily exclude agency as a potential influence on the TB 

effect. It could be that the mediating factor for a smaller prior 

mean for actions is an increase in perceived agency, though 

this seems unlikely since this result did not replicate across 

the experiments. Though the relationship between agency 

and binding remains unclear (Klaffehn et al., 2021; Suzuki et 

al., 2019), one could speculate that when participants perform 

voluntary actions, this may be preceded by a prior 

expectation based on their experience that they can use to 

make predictions or explicitly recall time intervals. Such 

intervals may have developed as a result of their experienced 

agency (i.e., “I expect an immediate interval in cases where I 

feel in control”), or it may be that the intervals determine their 

experienced agency (i.e., “if something happened that 

quickly after my action then I must have caused it”). 

Determining the answers to these intriguing questions will 

require further research. 

Additionally, it is important to note that our model is 

compatible with approaches based on cue integration. These 

approaches do not specify a memory process though one is 

necessary to explain the results in a temporal binding task. 

Cue integration attempts to explain the process by which an 

individual optimally encodes and combines information from 

multiple sources. Furthermore, it has been suggested that a 

Bayesian process may explain how this is accomplished 

thereby allowing us to experience agency (Legaspi & 

Toyoizumi, 2019; Moore & Fletcher, 2012). Though it 

remains unclear how cue integration can account for all 

aspects of the binding effect (Wolpe et al., 2013), our model 

could act as an extension to existing cue integration 

approaches. In this combined model, memory content would 

be updated using the cue integration process and then later 

combined with the prior mean and variance and memory 

noise parameter values in our model (using the linear 

weighted combination) to arrive at an estimate of the interval 

on each trial. This provides another interesting avenue for 

future research. 

Here we have provided evidence for a novel explanation of 

the temporal binding effect. Approaching binding from the 

perspective of memory allows us to account for the effect as 

(partially) epiphenomenal. Although the role of memory does 

not preclude that agency may also be involved, it needs to be 

fully accounted for before claims about agentic processes can 

be made. This perspective opens new avenues of research 

regarding the role of memory in temporal binding tasks and 

in our everyday experiences of control. 
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