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Abstract 

The words that children learn can be characterized as a 
semantic network, with links connecting related words. 
Recent analyses have shown these networks to have small-
world structure, with a few highly-connected hub words 
facilitating short paths between otherwise distant words. This 
structure contributes to network robustness, and differences in 
structure can predict differences in language learning 
outcomes. While previous studies have shown that semantic 
network structure reflects linguistic input structure, we 
provide the first evidence that it is related also to children’s 
own language learning biases. Two-year old children who 
show a mutual-exclusivity bias have significantly more hub-
like networks than children who do not, even when they know 
the same number of words. This finding contributes to our 
understanding of both semantic networks and the origins of 
mutual exclusivity. 

Keywords: word learning; mutual exclusivity; semantic 
networks; language acquisition 

Introduction 

Although the earliest analyses of human memory and 

learning concerned the learning of lists of unrelated words 

(Ebbinghaus, 1885/1962), researchers quickly discovered 

that the words people learn in more natural contexts are 

intricately connected. Vocabularies were conceptualized as 

richly structured networks, with links connecting 

semantically related words (Collins & Loftus, 1975). These 

connections play an important role in both learning and 

memory, and can be observed empirically in semantic 

priming experiments. Because activation spreads from 

words to their semantic neighbors, presenting a word, even 

subliminally, leads to faster processing of related words 

(Anderson, 1983). Even two-year old infants show semantic 

priming, suggesting that vocabularies have network 

structure early in language learning (Arias-Trejo & Plunkett, 

2009).  

Recently, the application of graph-theoretic methods to 

the study of these networks has begun to provide insight 

into their structural properties. For instance, Hills, Maouene, 

Maouene, Sheya, & Smith (2009a) analyzed the semantic 

network structure of 130 nouns typically learned before 30 

months. Compared to randomly-connected control 

networks, these semantic networks showed significant 

small-world structure, in which most words are sparsely 

connected, but a few are highly-connected hubs. This kind 

of structure results in networks robust to malfunction (e.g. 

forgetting a word; Albert, Jeong, & Barabási, 2000), and can 

help to explain some of the remarkable efficiency of human 

semantic memory (Raaijmakers & Shiffrin, 1981). Further, 

semantic networks lacking this structure are associated with 

slower language-learning, characterizing the vocabulary 

structure of late talkers (Beckage, Smith, & Hills, 2011). 

But why do children learn these words? Why do semantic 

networks have this structure? 

Undoubtedly, one answer to this question is that structure 

comes from the environment. Because children learn words 

from the language they hear, language input is a strong 

predictor of the words that children will learn. For instance, 

the frequency with which a child hears a word in isolation 

can predict how likely a child is to learn that word (Brent & 

Siskind, 2001). Similarly, the semantic networks 

constructed from corpora of both adult-directed and child-

directed language have many of the same structural 

properties as networks constructed from the words 30-

month-old children are likely to know (Hills, et al., 2009a; 

Steyvers & Tenenbaum, 2005). 

But perhaps a more complete explanation of the origin of 

semantic network structure is that it emerges from an 

interaction between structure in the linguistic environment 

and the child’s own learning system. Because children are 

not unbiased samplers of linguistic input, their attentional 

and learning biases mediate the link between language input 

and language learned (Hudson Kam & Newport, 2005; 

Smith, 2000). For instance, children who learn to attend to 

shape are likely to learn shape-based categories, and those 

who learn to attend to other properties (e.g. material) learn 

other kinds of words (Colunga & Sims, 2011; Smith, Jones, 

Landau, Gershkoff-Stowe, & Samuelson, 2002). Can word-

learning biases predict and explain semantic network 

structure? In this paper, we consider the case of 

disambiguation through mutual exclusivity. 

In the disambiguation task, a child is presented with a 

novel object among one or more familiar object competitors. 

The child then hears a novel label (e.g. ‘can you find the 

dax?’) and is asked to select an object. Both toddlers and 

adults reliably select the novel object as the target of the 

novel label (Markman & Wachtel, 1988; Golinkoff, Hirsh-

Pasek, Bailey, & Wenger, 1992), and studies with infants suggest 

that this disambiguation may arise as early as 18 to 22.5 months 

(Halberda, 2003; Mather & Plunkett, 2009). Preferential 
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mapping of novel labels to novel objects over known objects, 

which we will refer to as mutual exclusivity (ME), could arise for 

a number of reasons, and its mechanism of action is the topic of 

significant debate (e.g. Diesendruck & Markson, 2001; 

Golinkoff et al., 1992; Markman & Wachtel, 1988). We explore 

this question in the general discussion, but will sidestep it here 

and instead consider the potential consequences of mutual 

exclusivity for semantic network structure.  

Mutual exclusivity is a mechanism by which children can 

leverage prior knowledge to learn new words in the context 

of known objects. Consequently, children who show mutual 

exclusivity should have vocabularies that echo this kind of 

contextual structure. For these children, learning fork should 

ease the acquisition of spoon, bowl, and plate. In contrast, 

learning fork should have little effect on the acquisition of 

dog and coat. Thus, we propose that mutual exclusivity can 

help explain small-world structure of semantic networks, 

and those children who show mutual exclusivity will have 

more hub-like networks than those who do not. We begin by 

reporting empirical data from a disambiguation task with 

24-month-old children, continue by describing a semantic 

network analysis of these children’s vocabularies, and 

conclude with a discussion of how these results inform our 

understand of the relationship between mutual exclusivity 

and vocabulary development, as well as the origins of 

mutual exclusivity itself. 

Experiment 

Method 

Participants. Forty two-year-olds (M = 24.75 months; 

range = 24-26; 20 female) participated. All were typically 

developing children from households in which parents 

reported English to be the dominant language. A subset of 

34 infants (M = 24.9 months; range = 22.4-27.5; 16 female) 

participated in the followup analysis (explained below). 

 

Stimuli. Nine familiar objects (e.g. boat, glasses) were used 

in the warm-up trials. Twenty-five familiar (e.g. brush, cup) 

and 8 novel objects (e.g. massager, platypus) were used in 

the referent-selection task. 

 

Procedure. Parents first completed the MCDI (Fenson, 

Dale, Reznick, Bates, Thal, & Pethick, 1994) and an SES 

measure (Hollingshead, 1975). After this, each child 

participated in three warm-up trials. On warm-up trials, the 

experimenter set a tray containing three familiar objects on 

the table, initially covered by an occluder. The experimenter 

asked for the target object (e.g. “which one is the dog?”) 

three times: once while the items were occluded, again after 

lifting the occluder, and again three seconds later while 

pushing the tray towards the infant. The first reach, point, or 

grab, was scored as a response. On these trials, infants were 

praised for correct responses and corrected when necessary. 

Subsequently, each child participated in sixteen referent-

selection trials. On each trial, the experimenter presented a 

tray containing two familiar objects and one novel object. 

The procedure was identical except that children received 

neutral feedback on all trials. On half the trials, the 

experimenter asked for a familiar object, while on the other 

half she asked for a novel object (e.g. modi, taju). 

Results and Discussion 

Each participant made a total of 16 choices, picking 8 

targets on familiar trials, and 8 targets on novel trials. Any 

trial on which the child did not know the label for the 

familiar target, or the label for one of the familiar 

distractors, was excluded from analysis. The proportion of 

targets correctly chosen on these remaining trials was then 

analyzed to determine the child’s success in the task. 

Overall, children performed quite well, selecting the correct 

target on both familiar (Mf = .83, t(39) = 15.31, p < .001) 

and novel trials (Mn = .545, t(39) = 5.87, p < .001) at greater 

than chance levels. Thus, as a group, 24-month-old children 

used mutual exclusivity for disambiguation. Familiar trial 

performance, however, was significantly higher than novel 

trial performance (t(39) = 6.88, p < .001). 

Because the central question in this study is about the 

relationship between learning mechanisms and vocabulary 

development, we measured both vocabulary size (MCDI - 

Fenson, et al., 1994) and mother’s education (Hollingshead, 

1975), a potential correlate of rich language input. Mother’s 

education was reliably correlated with performance on 

familiar trials (r = .33, p < .05), but not novel trials (r = .01, 

n.s.), and vocabulary size was not significantly correlated 

with performance on either kind of trial (rf = .19, n.s.; rn = 

.15, n.s.). In the semantic network analysis to follow, we 

show that vocabulary structure is reliably related to novel 

trial performance. Because neither mother’s education nor 

vocabulary size predict ME in this data set, the relationship 

between ME and structure is likely to be quite robust. 

But perhaps this analysis is unfair. While most of the 

children had high levels of success on familiar trials, a few 

children did not perform as well. Since these children knew 

the words for all three objects on these familiar trials, their 

low levels of performance indicate that they may not have 

understood the task. Thus, for the same reason that response 

time analysis typically uses only correct response trials, 

excluding these children from individual-level analyses may 

give clearer correlations. In order to determine whether a 

child’s performance was significantly better than expected 

by chance, we modeled chance behavior on each trial as 

random selection of one of the three objects.  

The probability of success expected by chance is given by 

a binomial distribution with probability ⅓. Consequently, a 

child should be counted as performing differently from 

chance if he or she made enough correct selections to be 

outside the 95% confidence interval for a binomial 

distribution. A child who made 8 choices, for instance, 

needed to make at least 5 correct choices to be counted as 

performing better than expected by chance. Each child’s 

number of correct selections on familiar trials was thus 

submitted to a binomial test. Six of the 40 children were 

found to have performance levels on the familiar trials 
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indistinguishable from chance, and were thus excluded from 

further analysis. This left a subset of 34 children who could 

confidently be assumed to have understood the task. Figure 

1 shows novel and familiar trial performance for children 

both from the full set, and from this reduced subset. 

We also performed a similar analysis on novel trials, 

dividing children into two categories: those who reliably 

showed evidence of using mutual exclusivity (ME), and 

those who did not. Seventeen children were classified as 

ME users, and seventeen were classified as Nonusers. We 

are not arguing that ME is a binary phenomenon, but rather 

perform this binary split for technical reasons. Binarization 

loses some information separating children within the ME 

users category, but it also cleans up noise that may not 

meaningfully separate nonusers. Quantitative differences at 

or below chance levels are more likely to be generated by 

noise than they are to be generated by meaningful process 

differences, and thus are likely to dilute linear correlations. 

In subsequent analyses, because mutual exclusivity is 

analyzed as a binary phenomenon, we use Spearman’s ρ, a 

non-parameteric measure of correlation. In all cases, 

correlations were stronger for this binary measure. 

In this subset, mother’s education was still correlated with 

performance on familiar trials (r = .36, p < .05), as was 

vocabulary size (r = .39, p < .05). Neither mother’s 

education nor vocabulary size predicted performance on 

novel trials (ρ = -.11, n.s.; ρ = .08, n.s.). In the analyses that 

follow, we compare the semantic network connectivity of 

ME users and nonusers. Because use of mutual exclusivity 

was uncorrelated with vocabulary size, differences in 

network connectivity are unlikely to be a simple reflection 

of network size. Further, because mother’s education 

predicted performance on familiar, but not novel, trials, a 

relationship between ME and vocabulary structure arising 

from language input must come from more specific 

properties not indexed by mother’s education in this sample.  

 

 
Figure 1: Proportion of correct choices by participants in 

both the familiar and novel conditions. Dark blue bars show 

the complete sample, light red bars the subset. Error bars 

indicate +/-1 standard error. 

Semantic Network Analysis 

To understand how use of mutual exclusivity contributes to 

the structure of children’s vocabularies, we formalize these 

vocabularies as semantic networks. In semantic networks, 

vertices represent the words that children know, and edges 

represent semantic relationships among these words. In any 

such analysis, the first step is to formalize ‘semantic 

relatedness’ – the relationship used to link two words. 

Previous analyses have used a number of successful 

metrics of connectivity: co-occurrence in CHILDES (e.g. 

Beckage, Hills, & Smith, 2011), frequency of free-

association by adults (e.g. Steyvers & Tenenbaum, 2005), 

and common perceptual and conceptual features (e.g. Hills, 

et al., 2009b). In our analysis, we adopt and extend the last 

approach, connecting two words if they share a number of 

common semantic features. Features were drawn from the 

set of McRae feature norms (McRae, Cree, Seidenberg, & 

McNorgan, 2005). McRae and colleagues asked 725 adults 

to freely list up to 14 features of 541 English nouns. The 

number of features shared by two words gives a measure of 

their semantic relatedness.  

Although participants could generate any features they 

liked, McRae et al. (2005) subsequently divided the 

generated features into 4 categories: perceptual features 

accessible to the 5 senses (e.g. “has fur,” “tastes sweet”), 

functional features (e.g. “used for writing,” “is edible”), 

encyclopedic features (e.g. “is expensive”), and taxonomic 

features (e.g. “a crustacean”). Following Hills et al. (2009b), 

we analyze only features of the first and second kind, as 

these are the features likely to be available to two-year-old 

children. We create two different networks for each child: 

one in which connectivity is defined by perceptual feature 

overlap, and one in which connectivity is defined by 

functional feature overlap. This is because overlapping 

perceptual features indicate a very different kind of 

relatedness than overlapping conceptual features.  

Hills et al. (2009b) analyzed the clusters produced by 

each of these kinds of networks to quantify these different 

kinds of relatedness. Defining connectivity by perceptual 

feature overlap produced networks that were dense, highly 

connected, put words into more than one category, and 

produced categories that were overly inclusive relative to 

human judgments (e.g. MCDI categories, Fenson, et al., 

1994). In contrast, functional feature overlap produced 

networks that were sparser, had smaller, better defined 

categories, and were better at discriminating among near-

category members. In general, words connected in the 

functional network are more likely to be encountered in a 

relational context, facilitating learning by mutual exclusivity 

(e.g. cake-carrots, boots-coat). In contrast, words connected 

in the perceptual networks are less likely to be encountered 

in such situations, and learning one is thus less likely to 

facilitate learning the other through mutual exclusivity (e.g. 

sheep-sofa, pencil-stick). Thus, we can test a specific 

prediction about how mutual exclusivity builds vocabulary 

structure: it facilitates the acquisition of functionally related 

words. 
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Figure 2: Two 7-vertex networks with different connectivity 

structures.  The left network has a high clustering 

coefficient and a low degree centrality. The right network 

has a low clustering coefficient, but a high degree centrality.  

 

 

In addition to using these two kinds of features to define 

connectivity, we measure their resulting structure in two 

different ways. These different connectivity measurements 

represent different ways in which mutual exclusivity could 

build structure. Consider the networks in Figure 2.  

The first network (2a) has many local clusters, triangles in 

which any vertices with a common neighbor are likely to be 

neighbors themselves. One might predict mutual exclusivity 

to facilitate this kind of structure because using one word 

(e.g. scarf) to learn a semantic neighbor (e.g. sweater) 

should make a common neighbor even easier to learn (e.g. 

coat). This structure is measured by clustering coefficient 

(Equation 1), which has previously been used to distinguish 

the vocabulary structures of early and late talkers (Beckage, 

Hills, & Smith, 2011).  
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In contrast, the second network (2b) does not have any 

local clusters, but rather has a single highly salient hub: a 

single vertex with many neighbors. This kind of structure 

might be even more likely to arise through mutual 

exclusivity, as learning the hub word (bowl) makes each of 

its neighbors easier to learn (spoon, tray, cup). This kind of 

structure is measured by degree centrality (Equation 2). 

This measure is new to semantic network analyses, but is a 

mainstay of social network science (Freeman, 1979), and 

measures the structural property intuitively most likely to be 

related to learning words through exclusion. 
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Thus, we test two hypotheses in the following analysis: 

mutual exclusivity should predict connectivity structure in 

functional but not the perceptual networks, and it should 

manifest more strongly in high degree centrality should than 

in clustering coefficient. 

Method 

To construct semantic networks for each child, we used all 

words which are both measured by the MCDI, and for 

which McRae and colleagues collected feature norms. This 

resulted in a list of 130 nouns, encompassing animals, food, 

clothing, vehicles, etc. For a full list, see Hills et al. (2009b). 

Each child’s semantic network was constructed by adding 

one vertex for each word on that child’s productive MCDI. 

Vertices were connected if they shared a minimum number 

( ) of semantic features. To be consistent with Hills et al. 

(2009b), we set this features threshold to all possible values 

1-4. At    , for instance, two words were connected only 

if they shared three or more semantic features. However, 

networks become increasingly sparse as   increases, and we 

thus urge caution in interpreting results at high thresholds. 

Two networks were created for each child, one network in 

which only perceptual features defined connectivity, and 

one network in which only functional features were used to 

define connectivity (see above). Networks were defined by 

their set of vertices   and the set of edges   that connected 

them. A vertex’s degree ( ( )) is defined as the number of 

other vertices to which it is connected by an edge. These 

connected vertices are called neighbors, and together define 

a node’s neighborhood ( )   
Once each network was constructed, two properties of its 

connectivity structure were measured. The first, clustering 

coefficient ( ), measures the proportion of vertices with a 

common neighbor that are also neighbors of each other. 

(Equation 1). The second, degree centrality ( ), measures 

the proportion of edges connected to a single dominant hub 

vertex (Equation 2). These measures of structure trade off, 

with high degree centrality necessitating a low clustering 

coefficient. Both measures always range between 0 and 1, 

and thus are independent of the size of a child’s vocabulary. 

They are measures of structure independent of size. 

Results and Discussion 

As in the analysis above, children were divided into two 

groups: Mutual Exclusivity Users who performed better 

than chance on the novel trials of the disambiguation task, 

and Nonusers who did not. Again, we reiterate that this is 

not a theoretical commitment, but rather a tool for noise 

reduction. The structure of each child’s individual semantic 

networks – both perceptual and functional – was used to 

predict that child’s category of mutual exclusivity usage.   

Before presenting the results of network analyses, we 

recapitulate that vocabulary sizes were quite comparable 

between these groups. The 17 ME Users produced an 

average of 408.3 words on the MCDI while the 17 Nonusers 

produced an average of 388.1 (t(32) = .37, n.s.). They also 

did not differ in the number of words they knew from the set 

of 130 used in the network analysis (Mu = 92.6, Mn = 88.1, 

t(32) = .51, n.s.). However, the particular words they knew, 

and the semantic relationships among them, proved to be 

importantly different.  
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Figure 3 shows correlations between measures of network 

structure and the mutual exclusivity category to which each 

individual child belonged. For perceptual networks, 

constructed by connecting words by shared perceptual 

features (e.g. “has fur,” “tastes sweet”), neither clustering 

coefficient nor degree centrality were related to use of 

mutual exclusivity at any feature overlap threshold (Figure 

3, left column). As predicted, perceptual networks, in which 

connections are not a good proxy for words likely to occur 

in contrastive contexts, have structures not well predicted by 

use of mutual exclusivity.  

In contrast, for functional networks, those constructed by 

connecting words by shared relational, functional features, 

mutual exclusivity was a significant predictor of degree 

centrality when 2 or more overlapping features defined a 

connecting edge (   ). At this threshold, children who 

used mutual exclusivity at above-chance levels had semantic 

networks with higher degree centrality (ρ = .34, p < .05; 

Figure 3, bottom right). This same threshold is shown by 

Hills et al. (2009a) to best separate semantic categories in 

this set of words. Use of mutual exclusivity did not reliably 

predict clustering coefficient, but did show a positive trend, 

particularly at overlap threshold 3 (ρ = .28, p = .1; Figure 3, 

top right).  This trend should be interpreted cautiously, 

however, as conceptual networks were quite sparse at 

   , having at most 12 edges. 

 

 
 

Figure 3: Correlation between network structure and mutual 

exclusivity performance. The top row shows correlations 

clustering coefficient, the bottom row for degree centrality. 

The left column shows perceptual features, the right shows 

functional. Individual bars shows correlations when 

particular thresholds ( ) define the minimum number of 

overlapping semantic features required to connect two 

words. Error bars show +/-1 standard error as measured by 

1000 samples of bootstrap resampling (Lunnenborg, 1985). 

Mutual exclusivity was significantly correlated with degree 

centrality in the functional networks and showed a non-

significant trend towards correlation with correlation 

coefficient in these same networks. As predicted, ME was 

uncorrelated with perceptual network structure. 

Thus, the semantic network structures of children who 

reliably exhibit mutual exclusivity are predictably different 

from those of children who do not. Even though these 

children know the same number of words, the words they 

know are different. Semantic networks of ME users are 

characterized by more hub-like structure, a consequence of 

the kind of word learning facilitated by exclusion. 

Importantly, these differences are likely to matter (Beckage, 

Smith, & Hills, 2011). Differences in connectivity structure 

lead to differences in network robustness, with the networks 

of mutual exclusivity structure perhaps protecting them 

against forgetting and aiding future learning (Albert, Jeong, 

Barabási). These results represent a first step in 

understanding how children’s own learning mechanisms 

build the structure of their semantic networks. 

General Discussion 

While the words that children learn are, of course, a 

function of the linguistic input to which they are exposed 

(Brent & Siskind, 2001; Hills et al., 2009a), this link is 

likely to be moderated by children’s own attentional and 

learning mechanisms (Hudson Kam & Newport, 2005; 

Smith, 2000). For instance, children learn to extend newly-

learned object words to categories on the basis of particular 

feature dimensions. Normatively, children learn a bias to 

attend to shape, and this bias leads them to learn more 

categories organized by shape (Smith et al., 2002). 

However, children may learn a different bias, and 

consequently learn different words in the future (Colunga & 

Sims, 2011). We show that use of mutual exclusivity may 

play a similar role. Children who robustly use mutual 

exclusivity are likely to learn new words functionally 

related to words they already know. As atypical semantic 

network structure is related to slower language learning 

(Beckage, Smith, & Hills, 2011), these results point to a 

potential intervention for late-talking children. Learning to 

disambiguate the meanings of new words through exclusion 

could help late-talkers to catch up. 

These results also lead to two further insights about 

mutual exclusivity and its role in vocabulary development. 

While mutual exclusivity is often thought to be critical to 

early word learning, its relationship to vocabulary size is 

unclear. For every study that finds a significant correlation 

between mutual exclusivity and vocabulary size (e.g. de 

Marchena, Eigsti, Worek, Ono, & Snedeker, 2011; Mervis 

and Bertrand, 1994), another finds no correlation between 

the two (e.g. Halberda, 2003; Mather & Plunkett, 2009). 

These results help to shed light on this inconsistency by 

pointing out that the relationship between vocabulary 

development and mutual exclusivity may be found not in 

size but in structure. While we do not mean to argue that 

mutual exclusivity is required for rapid word learning, we 

do suggest that their relationship can be better understood 

by considering semantic network structure. 

Finally, these results may shed light on the origins of 

mutual exclusivity itself. Thus far, we have argued that 

mutual exclusivity builds vocabulary structure. But 
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vocabulary structure may also build mutual exclusivity. One 

can think of mutual-exclusivity as an overhypothesis, a 

probabilistic rule about the general structure of word-object 

mappings derived from the structure of individual word-

object mappings (Kemp, Perfors, & Tenenbaum, 2007; 

Mervis & Bertrand, 1994). For instance, mutual exclusivity 

may have its roots in an understanding that labels are often 

contrastive, pointing to differences between otherwise 

similar objects. If this is true, vocabularies that make this 

overhypothesis more probable should lead to stronger 

mutual exclusivity biases. Thus, one can think of the hub-

like structures characteristic of ME users in our sample as 

not only arising from mutual exclusivity, but helping to 

construct it as well. Hub words, which are connected to 

many semantically-related neighbors, may play an important 

role in discovery of this higher-order regularity. Thus, 

mutual exclusivity may operate much like the shape bias: 

being both built from regularities in the structure of 

linguistic input, and helping children to discover further 

regularities (Smith, et al., 2002). A deep understanding of 

the connection between mutual exclusivity and vocabulary 

structure, then, will come from understanding a three part 

relationship: how ME contributes to structure, how structure 

contributes to ME, and language input contribute to both. 
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