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The nucleolus, once considered a mere ‘ribosome factory’, is now
recognized as a dynamic hub influencing nearly every aspect of cellular
life, from genome organization to stress response and ageing. Despite
being a hallmark of eukaryotic cells, recent discoveries reveal that even
prokaryotes exhibit nucleolus-like structures, hinting at ancient origins
for nucleolar functions. This review explores the evolutionary journey
of the nucleolus, tracing its roots back to early life and examining its
structural and functional diversity across domains. We highlight key
nucleolar proteins that play vital roles not only in ribosome production
but also in regulating cell cycle, DNA repair and cellular stress, linking
nucleolar activity directly to health and disease. Dysfunctions in nucleolar
processes are implicated in cancer, ribosomopathies and neurodegenerative
disorders, positioning the nucleolus as a critical target for innovative
therapeutic strategies. As advanced imaging and molecular techniques
unlock deeper insights into both canonical and mysterious non-canonical
roles, the nucleolus stands as a model for how cellular microenvironments
can evolve to meet complex biological demands. By addressing open
questions surrounding the evolution of the nucleolus, its organization and
diverse functions, the ideas presented here aim to contribute to the ongoing
discussion, challenging traditional paradigms and suggesting new avenues
for uncovering the fundamental principles that drive cellular life.

1. The nucleolus: a cellular powerhouse

The nucleolus is a membrane-less, highly regulated substructure within the
nucleus, formed around ribosomal RNA gene clusters known as nucleolar
organizer regions (NORs) (figure 1) [2]. It plays a critical role in riboso-
mal RNA (rRNA) synthesis, overseeing the transcription of rRNA genes,
processing precursor rRNAs and assembling ribosomal subunits essential
for ribosome biogenesis in eukaryotic cells [3,4]. Beyond its primary role in
ribosome production, the nucleolus is involved in regulating the cell cycle,
responding to cellular stress and influencing ageing [5]. It also facilitates the
assembly of signal recognition particles for protein synthesis and modifies
small nuclear RNAs (snRNAs), which are essential for gene expression [6].
Additionally, the nucleolus sequesters proteins involved in cellular metabo-
lism and gene regulation, serving as a hub for the assembly and modification
of these essential cellular components [7].

Alterations in nucleolar structure and function have been associated with
various diseases, including cancer, neurodegenerative disorders and viral
infections [8,9]. These links highlight the nucleolus as a critical player in
cellular regulation and a promising target for therapeutic interventions [10].
A deeper understanding of its diverse functions is essential to uncovering its
broader implications in cellular biology and disease.
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1.1. Understanding the known aspects of the nucleolus is essential to identify the unknown

While its role in ribosome production is well-established, its broader involvement in cellular processes remains less clear. This
knowledge gap highlights the need for a deeper exploration of nucleolar structure, functions and dynamics to fully grasp its
impact on cellular physiology (figure 1), studying the evolution of the nucleolus is crucial for understanding the complexity
of ribosomal biogenesis and cellular function across diverse organisms across the tree of life. Although bacteria and archaea
lack subcellular structures like those in eukarya, they rely on analogous ‘nucleolus-like’ mechanisms for essential functions. The
main tasks of the ‘nucleolus-like’ structure are essential for the correct function of those organisms.

The nucleolus has undergone significant evolutionary adaptations, reflecting selection pressures and changes in cellular
demands [11]. Gaining insight into fundamental nucleolar processes not only sheds light on cellular function but also provides
valuable perspectives on diseases linked to nucleolar dysfunction [12].

Nucleolar dysfunction is associated with various human diseases, including cancer and neurodegenerative disorders
[13]. Disruptions in nucleolar structure and function can impair ribosome biogenesis, destabilizing cellular homeostasis and
contributing to disease progression [9] (figure 2). By deepening our understanding of nucleolar function, we can uncover how
these dysfunctions influence disease, potentially paving the way for novel diagnostic and therapeutic strategies. This potential
for innovative treatments and diagnostic tools is a beacon of hope and inspiration in modern cellular and molecular biology.

Recent advancements in imaging, molecular biology techniques and proteomic approaches have provided unprecedented
insight into nucleolar dynamics and functions, revealing previously unexplored areas [14]. Super-resolution microscopy has
allowed detailed visualization of nucleolar architecture and its changes under different physiological conditions [15]. Techni-
ques like CRISPR-Cas9 genome editing enable precise manipulation of nucleolar components, facilitating the study of their
specific roles [16]. Meanwhile, proteomic analyses have identified over 1000 proteins involved in nucleolar processes, many of
which remain uncharacterized [17]. These innovations have significantly enhanced our understanding of the nucleolus and its
role in cellular biology.

Continual exploration of nucleolar biology is essential for uncovering new dimensions of its significance and potential
applications. Despite being a long-standing subject of scientific inquiry, this enigmatic nuclear subcompartment continues to
captivate researchers with its multifaceted nature and the wealth of unanswered questions regarding its structure, function and
regulation. The complexity and mystery of the nucleolus continue to inspire further research, driving the field of cellular and
molecular biology forward.

2. Structural complexity of the nucleolus: morphological and functional insights

As our understanding of nucleolar architecture has evolved, several key substructures have emerged as central to its function
(figure 1). The fibrillar centre (FC) is one such critical region, serving as the site where ribosomal DNA (rDNA) is housed.
While the FC contains inactive copies of rDNA, transcription itself primarily occurs at the interface between the FC and the
surrounding dense fibrillar component (DFC), where RNA polymerase I complexes initiate the synthesis of pre-45S rRNA [18].
This central hub provides a scaffold for the transcription machinery and sets the stage for ribosome production.

The dense fibrillar component (DFC) plays an instrumental role in processing pre-45S rRNA into the mature 18S, 5.8S and
285 rRNA segments, which are key building blocks of eukaryotic ribosomes. Additionally, important modifications, such as
methylation and pseudouridylation, occur within the DFC, preparing the rRNAs for their eventual integration into ribosomal
subunits. The DFC also facilitates the assembly of ribosomal proteins, imported from the cytoplasm, with the processed rRNAs
to ensure the proper maturation of ribosomal subunits. Its interaction with the granular component (GC) enables a coordinated
progression from rRNA processing to ribosome assembly [19].

The granular component (GC), which surrounds the DFC, is essential for the final stages of ribosome biogenesis. Here,
pre-ribosomal particles undergo maturation and assembly, with proteins such as nucleophosmin (B23) playing key roles in this
process. The size of the GC is directly linked to the metabolic activity of the cell, reflecting the demand for ribosome production
during growth and division [20]. The continuous collaboration between the GC, DFC and FC ensures the seamless synthesis and
maturation of functional ribosomes, which are essential for cellular homeostasis.

In addition to these well-characterized regions, recent discoveries have identified less-understood nucleolar substructures.
For example, nucleolar ‘vacuoles’ (NoVs), which are membrane-less structures observed primarily in plants and some animals
like Caenorhabditis elegans, represent areas with fewer granules and fibrils. Their exact functions, especially in relation to ageing
in germline cells, remain largely speculative, but their association with FCs suggests a potentially important role in nucleolar
dynamics [21].

A more recently discovered substructure is the nucleolar rim (NR), a distinct compartment characterized by its unique
proteomic composition. The proteins within the NR are notably more disordered compared to other nucleolar proteins, raising
intriguing questions about their function. The NR is thought to tether the nucleolus to chromatin, potentially influencing
processes such as cell cycle regulation and ribosome biogenesis, though this remains an active area of investigation [17].

Further adding to the complexity of the nucleolar landscape, recent studies have revealed the presence of physicochemi-
cal ‘barcodes’” within the nucleolus. These barcodes reflect distinct subcompartments that create unique microenvironments
characterized by varying electrical, electrochemical, mechanical, hydrodynamic and biochemical properties [22]. Understanding
these microenvironments could unveil additional layers of nucleolar function and regulation, offering new perspectives on how
the nucleolus adapts to the diverse demands of the cell.

Together, these substructures and emerging discoveries underscore the intricate organization and its ability of the nucleolus
to dynamically respond to cellular needs. As research continues to uncover new aspects of nucleolar architecture, it becomes
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Figure 1. Detailed structure of the eukaryotic nucleolus. This schematic illustrates the complex organization of the nucleolus, highlighting distinct regions and
functions. Key compartments include the fibrillar centre (FC), dense fibrillar component (DFC) and granular component (GC). The nucleolus contains transcription sites
where rDNA is transcribed, generating nascent RNA, which is then processed and assembled with ribosomal proteins in the granular component to form preribosomal
RNPs. Additional elements such as the coiled body, RNA polymerase | and spliceosomal components are present, illustrating the role of the nucleolus in ribosome
biogenesis and other cellular processes, Image inspired by [1, fig. 4].

increasingly clear that each component plays a vital role in maintaining cellular function and supporting essential biological
processes.

2.1. Communication and interaction between nucleolus and nuclear regions

The nucleolus not only drives ribosome biogenesis but also plays a significant role in organizing the genome within the nucleus.
It interacts with chromatin through nucleolar-associated domains (NADs), which are regions of the genome characterized
by low transcriptional activity and high heterochromatin density near the nucleolus [23]. These NAD domains are typically
enriched with H3K9me2 histone modifications, markers commonly associated with transcriptional repression. By organizing
these repressive chromatin regions, the nucleolus contributes to the overall architecture of the nucleus, which is divided into
areas of euchromatin (active) and heterochromatin (inactive). The nucleolus is often seen as a hub for the organization of
inactive chromatin, influencing gene expression patterns and maintaining genomic stability [24].

Techniques like nucleolus Hi-C (nHi-C) have been used to better map the interactions between nucleolus-associated
chromatin and the rest of the genome. This method allows the capture of nucleolus-specific chromatin interactions, revealing
that a significant portion of the genome forms high-confidence nucleolus-associated domains (hNADs) that cluster around
nucleolar organizer regions (NORs) and centromeres. These interactions are essential for maintaining the structural integrity of
chromatin and regulating transcriptional activity [23].

The nucleolus serves as a core centre that influences the spatial arrangement and function of other nuclear structures. For
example, disrupting nucleolar structure by knocking down specific genes and, therefore, down protein expression can lead
to significant changes in the spatial organization of nuclear bodies such as Cajal bodies. These structures are involved in the
maturation and modification of small nuclear RNAs (snRNAs) and small nucleolar RNAs (snoRNAs). Cajal bodies are also
essential for ribosome biogenesis, telomere maintenance, gene regulation, nuclear stress response and RNA splicing [25].

Nucleolar proteins frequently shuttle between the nucleolus and the nucleoplasm, especially in response to cellular stress.
Under conditions such as DNA damage, oxidative stress or when ribosome production is inhibited by treatments like Actino-
mycin D, proteins involved in ribosome biogenesis, such as nucleophosmin (NPM1), are translocated from the nucleolus to
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Figure 2. Functional roles of the nucleolus in cellular processes In addition to ribosome production, the nucleolus is involved in regulating cell cycle progression,
responding to DNA damage and managing cellular stress. It also plays a role in ageing, viral infections, oncogenic stress response and RNA metabolism. The diagram
reflects how the nucleolus integrates signals related to cell growth, repair and stress response, underscoring its importance in both normal cellular function and
disease.

the nucleoplasm. This translocation triggers stress response pathways, including the activation of the p53 signalling pathway, a
critical regulator of the cellular stress response [8].

The dynamic movement of these proteins underscores the direct communication between the nucleolus and the broader
nuclear environment. Maintaining nucleolar structural integrity is vital for its function in sensing and responding to stress.
Disruptions in nucleolar structure not only affect ribosome biogenesis but also lead to abnormal nucleolar morphology,
impaired signalling and contribute to cellular dysfunction [26].

3. The nucleolus’s cast of characters: proteins and their roles

3.1. Overview of some essential proteins found in the nucleolus and their functions

Understanding the diverse array of proteins in the nucleolus is crucial for revealing its functions and dynamics [18]. Advances
in proteomics have significantly improved our ability to identify and characterize the proteins in this subnuclear structure.
The nucleolus contains both ribosomal proteins and enzymes involved in ribosome biogenesis, as well as a wide range of
non-ribosomal proteins that contribute to processes like DNA repair, RNA processing, chromatin remodelling, transcription
regulation and cell death [18,27]. Comparative studies have shown that the composition and organization of the nucleolus
can vary among species. For example, yeast nucleoli lack certain proteins found in higher Eukaryotes, reflecting evolutionary
divergence in nucleolar function [28]. While over 40 nucleolar proteins have been identified (table 1), some of the most
extensively studied include ribosomal proteins, RNA polymerase I, nucleophosmin (NPM1), fibrillarin and nucleolin. Ongoing
research continues to uncover new proteins and their functions within the nucleolus. For instance, nucleostemin and nucleolar
protein 1 (NOL1/NOP2/Sun domain family, member 2) are involved in stem cell maintenance, nucleolar stress responses and
regulation of ribosome biogenesis [82]. Nucleolar protein 4 (NOL4), implicated in DNA repair, cell proliferation and metastasis,
has emerged as a potential target for cancer immunotherapy [83].

Both nucleophosmin (NPM1) and nucleolin play central roles in ribosome biogenesis, but their functions extend beyond this
process.

NPM1 regulates cell death pathways in response to cellular stress and DNA damage, specifically during apoptosis, where
it is involved in both intrinsic and extrinsic apoptotic pathways. Mutations in NPM1, such as those found in acute myeloid
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Table 1. Key nucleolar proteins, their functions and evidence of nucleolar association.

protein name

NPM1 (Nucleophosmin

TERC (telomerase RNA
component)

BAF (barrier-to-autointegration
factor)

hnRNPs (heterogeneous nuclear
ribonucleoproteins)

function

participating in ribosome biogenesis, mRNA processing, chromatin
remodelling, embryogenesis, cell cycle regulation and apoptosis

rDNA transcription, rRNA maturation, ribosome assembly,
nucleocytoplasmic transport and apoptosis regulation

involved in pre-rRNA methylation and processing and pre-ribosome
assembly

interaction with p53; plays an indispensable role in early
embryogenesis, cell growth regulation, the self-renewal of stem
or progenitor cells and ribosome biogenesis

chaperone, folding of newly synthesized proteins, the translocation of
polypeptides into mitochondria, chloroplasts and the endoplasmic
reticulum (ER), disassembling protein complexes and regulating
protein activity

requlates biological processes like the stress response, cell cycle,
proliferation, invasion, senescence, apoptosis and autophagy

RNA processing and modification are involved in the biogenesis
of small ribonucleoproteins (RNPs), snRNA transcription and
modification of snRNP assembly

protein assembly and transport proper biogenesis of membrane and
secretory proteins

mediate the deacetylation of histones and non-histone proteins
in an NAD*-dependent manner; transcription regulation and
metabolism

cell-cycle control, regulation through phosphorylation of the terminal
tail of RNA polymerase Il, metabolism and, in specific cell types,
differentiation

coordinates the assembly of nuclear aggregates named PML nuclear
bodies (PML-NBs)

the rRNA production regulates rDNA transcription in response to
growth factors and cell-cycle progression and replicates several
viruses

nuclear structure requlation protects genome integrity and ensures
the successful completion of mitosis

protein methylation; methylate, both histone and non-histone
proteins. Maintenance of tissue homeostasis as well as disease
phenotypes

regulates post-transcriptional gene expression via pre-mRNA
alternative splicing, mRNA stability, translation and regulator of
mRNA metabolism

they are implicated in RNA metabolism, such as alternative splicing,
mRNA stabilization and translational regulation; essential in
nucleic acids metabolism and function, regulatory factors in stem
cell potency and differentiation

FUTT mRNA stability plays a vital role in several key inflammation
signalling pathways by maintaining target mRNA stability by
regulating mRNA transcription, splicing and trafficking

evidence of relationship with the
nucleolus

important in nucleolar function and
ribosomal biogenesis

abundant protein in the nucleolus is
involved in RNA processing

protein identified in proteomic analyses
of nucleoli

localized in the nucleolus, unrelated to
ribosomal biogenesis

detected in the nucleolus, involved in
cellular stress responses

participates in DNA damage response in
the nucleolus

associated with nucleostemin in the
nucleolus

associated with Cajal bodies within the
nucleolus

involved in the localization of proteins in
the nucleolus

associated with gene expression

regulation in the nucleolus

implicated in cell cycle regulation in the
nucleolus

associated with nucleolar function in
cellular regulation

genes

participates in the modification of
nucleolar proteins

functions in the nucleolus in RNA
processing

they are involved in RNA processing in
the nucleolus

it is associated with gene expression
requlation

implicated in mitosis regulation in the
nucleolus

(Continued.)
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Table 1. (Continued.)

protein name

DDX21

function

ribosomal RNA processing and RNA polymerase Il (RNA Poll)-mediated
transcription, ribosome biogenesis and general transcription,
sensing of cellular glucose levels for epidermal differentiation

nuclear pore complex component transport, whereas the remainder
of the protein maintains pore integrity and is essential for nuclear
translocation

histone acetylation, transcription regulation and transcriptional
coactivators bridge DNA-binding transcription factors to
components of the basal transcriptional machinery

necessary and sufficient for centromere specification and function,
functional centromere maintenance

chromatin remodelling, fanconi anaemia (FA), nonsense-mediated
mRNA decay (NMD) and assembly and maturation of several large
macromolecular complexes such as RNA polymerases, the box (/D
small nucleolar ribonucleoprotein (snoRNP) and mTOR complexes

the cohesin complex component of sister chromatid cohesion and DNA
repair

DNA repair, DNA double-strand (dsDNA) break repair by homologous
recombination, protection of newly replicated DNA from nucleolytic
degradation, homology recognition and DNA strand exchange

regulation of p53 expression, a scaffolding protein important for
telomerase localization, telomere assembly, Cajal body integrity
and DNA double-strand break repair

mediates downstream heat shock proteins (HSPs) expression at the
transcriptional level to support cellular protein homeostasis by
facilitating nascent protein synthesis, folding and degradation

ribosome biogenesis participation, mRNA surveillance and ribosome-
associated quality control

transcription factors that deregulate transcriptional programs block
the differentiation of hematopoietic progenitor cells, thus causing
leukaemia

E3 ubiquitin ligase degrades p53, a regulator of p53 that regulates
several cellular processes, including cell-cycle control, apoptosis,
differentiation, genome stability and transcription

deacetylase, mono-ADP-ribosyltransferase and long fatty deacetylase
participate in various cellular signalling pathways, from DNA
damage repair in the early stage to disease progression

mRNA processing, defining functional 3" splice sites in pre-mRNA
splicing

evidence of relationship with the
nucleolus

itis associated with RNA processing in
the nucleolus

participates in nuclear transport
regulation

associated with gene expression
regulation

participates in transcription regulation
in the nucleolus

participates in nucleolar structure
regulation

associated with DNA organization in the
nucleolus

participates in DNA repair in the
nucleolus

associated with cell cycle regulation in
the nucleolus

involved in stress response in the
nucleolus

associated with RNA processing in the
nucleolus

associated with nucleolar disrupted
gene regulation in acute
promyelocytic leukaemia

associated with cell cycle regulation in
the nucleolus

participates in gene expression

regulation in the nucleolus

involved in RNA processing in the
nucleolus

SRSF3 regulates constitutive and alternative splicing and additional
aspects of RNA metabolism, such as alternative polyadenylation,
mRNA export, transcription termination and miRNA biogenesis

it is associated with RNA processing in
the nucleolus

stress response regulation is involved in the onset of HSPs' expression,
regulates (inhibits) their expression or controls the expression of
other developmental genes

involved in stress response in the
nucleolus

it is associated with nuclear
organization

(Continued.)
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Table 1. (Continued.)

protein name function evidence of relationship with the
nucleolus
GADD45 DNA damage response, DNA repair, cell-cycle arrest and apoptosis participates in DNA repair in the [78]
nucleolus

RPLT1 it inhibits its ubiquitin ligase activity, coordinates the p53 response to  associated with gene expression [79]
nucleolar stress and activates p53 under oncogenic and replicative regulation in the nucleolus
stresses

NOLT (Nucleolar Protein 1) regulation of ribosome biogenesis and cell growth and protein involved in nucleolar organization and [80]
production function

nucleophosmin-like 1 ribosome biogenesis, DNA repair, genomic stability, molecular it is associated with nucleolar function [81]
chaperoning, regulation of apoptosis and cell cycle regulation and stress responses

leukaemia (AML), lead to its mislocalization, disrupting its ability to regulate apoptosis [84,85]. Additionally, NPM1 acts as a
chaperone of proteins involved in chromatin remodelling and DNA repair mechanisms [86] and interacts with tumour suppres-
sor factors like ARF [87].

Nucleolin is essential for cell growth and proliferation, regulating gene expression through interaction with nucleic acids
involved in transcription and translation [88]. Interestingly, nucleolin also facilitates viral replication by interacting with viral
proteins, highlighting its role in viral pathogenesis [89]. Fibrillarin (FBL), a key player in rRNA methylation, is involved in
the 2'-O-methylation of numerous pre-rRNA sites, a process crucial for ribosome biogenesis. As a core component of small
nucleolar ribonucleoprotein (snoRNP) complexes, fibrillarin is vital for rRNA maturation and initiation of transcription by
RNA polymerase I. Fibrillarin can undergo liquid-liquid phase separation (LLPS), facilitating the formation of membrane-less
organelles like nucleolus [90]. This protein also interacts with p53 and ARF, suggesting a potential role in cancer progres-
sion [91]. Importantly, NPM1, nucleolin and fibrillarin all contain intrinsically disordered regions, which may regulate their
localization and function within the nucleolus.

Recent studies have shown the presence of telomerase components in the nucleolus, suggesting that part of telomerase
biosynthesis may occur there. This discovery has implications for cellular ageing and genomic instability, suggesting they
influence telomere maintenance. Moreover, some nucleolar proteins re-localize to the chromosomal periphery during mitosis,
indicating a role in nucleolar disassembly and reassembly during cell division. These proteins can be classified into two groups:
those recruited early during prometaphase and those recruited later during post-metaphase. Understanding these recruitment
dynamics helps clarify how the nucleolus disassembles and reassembles during the cell cycle.

4. A dynamic framework for nucleolar organization: liquid—liquid phase separation

Within the cell, certain biomolecules can undergo LLPS to form distinct, liquid-like compartments and facilitates the formation
of dense, dynamic, liquid-like compartments not enclosed by membranes; the nucleolus is a prime example of a membrane-less
organelle assembled through this process. LLPS is driven by interactions among intrinsically disordered regions (IDRs) in
proteins and RNA molecules, which promote the formation of dynamic, non-membrane-bound compartments [92]. In the
nucleolus, LLPS underlies the development of its well-defined subcompartments, the fibrillar centre (FC), dense fibrillar
component (DFC) and granular component (GC), as described in §2. For instance, the DFC forms a phase-separated environ-
ment that concentrates rRNA processing factors, thereby enhancing the efficiency of ribosome biogenesis [93]. Similarly, the
GC, which facilitates the final stages of ribosome assembly, arises through LLPS mediated by proteins such as nucleophosmin,
whose IDRs promote the formation of liquid droplets [94,95]. These phase-separated compartments are not static; they exhibit
fluid-like properties, allowing for the dynamic exchange of components and rapid adaptation to cellular needs. In essence, the
nucleolus functions as a multiphase condensate, with each subcompartment representing a distinct liquid phase characterized
by unique physicochemical properties [95].

Beyond its role in organizing nucleolar structures, LLPS is important for the nucleolus's ability to respond to cellular
changes in demand and stress. The fluid nature of phase-separated compartments enables the nucleolus to rapidly assemble
and disassemble in response to changes in ribosome production or environmental conditions. For example, under stress, such
as DNA damage or inhibition of transcription, nucleolar proteins like nucleophosmin (NPM1) can undergo phase separation in
the nucleoplasm, triggering stress response pathways such as p53 signalling [96]. This dynamic behaviour allows the nucleolus
to act as a sensor of cellular homeostasis. Additionally, LLPS can facilitate the spatial organization of ribosome biogenesis by
concentrating enzymes, substrates and cofactors within specific phases, thereby enhancing the efficiency and fidelity of rRNA
processing and ribosome assembly [97]. Overall, the nucleolus’s capacity to form distinct yet interconnected phases through
LLPS ensures the coordinated regulation of complex processes and enables rapid responses to cellular signals [95].
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5. Evolutionary mysteries: prokaryotic compartmentalization and the origins of the nucleolus

5.1. Compartmentalization in prokaryotes: membrane-bound or protein-based structures?

While eukaryotes are characterized by their membrane-bound organelles (e.g. nucleus, mitochondria), recent studies reveal a
surprising degree of compartmentalization in prokaryotes, both with and without membrane-bound structures. This emerg-
ing evidence challenges the traditional view of prokaryotic simplicity and suggests that prokaryotes possess sophisticated
mechanisms to organize biochemical processes, akin to those found in eukaryotic cells [98]. Prokaryotic cells exhibit various
compartmentalization strategies, ranging from protein-based microcompartments to membrane-bound organelles, offering
important insights into the evolutionary origins of cellular complexity.

Bacterial microcompartments (BMCs) are protein shells encapsulating specific enzymes and metabolites, creating localized
and specialized environments for metabolic processes. Notably, these structures serve as a prime example of protein-based
compartmentalization in prokaryotes. Examples include carboxysomes in cyanobacteria, which are critical for carbon fixation
through a CO,-concentrating mechanism (CCM); these icosahedral structures encapsulate the enzyme RuBisCo along with
carbonic anhydrase, enhancing photosynthetic efficiency by concentrating CO, and minimizing photorespiration [99]. Recent
studies have revealed the structural diversity of BMCs, with some variants, such as propanediol utilization and ethanolamine
utilization microcompartments, playing roles in the metabolisms of organic compounds [100]. The assembly of BMCs is tightly
regulated by specific targeting sequences that direct enzymes to the compartment lumen, a process reminiscent of the targeting
mechanisms employed by eukaryotic organelles [101].

In addition to protein-based compartments, other specialized structures further illustrate prokaryotic versatility. Gas vesicles
have been identified as another example that further illustrates the versatility of prokaryotic compartmentalization. These
structures aid buoyancy in aquatic environments through protein assemblies that allow gas diffusion [102]. Additionally,
some Planctomycetes, like those in the genus Planctomycetes, contain membrane-bound organelles such as anammoxosomes,
which support anaerobic ammonium oxidation essential to the nitrogen cycle. Anammoxosomes are uniquely characterized
by their ladderane lipid bilayers, which create a highly impermeable environment necessary for these reactions [103]. Another
example is Gemmata obscuriglobus, a Planctomycete with a double membrane surrounding its nucleoid, suggesting a level of
compartmentalization previously thought to be exclusive to eukaryotes [104]. These findings not only challenge the simplistic
view of prokaryotic cells but also hint at an ancestral toolkit of compartmentalization mechanisms that may have contributed to
the evolution of membrane-bound organelles, such as the nucleus, in eukaryotes.

5.2. The nucleoid and its role in prokaryotic compartmentalization

Another notable structure in prokaryotes is the nucleoid, an irregular, membrane-free region containing most of the genetic
material. Although lacking a surrounding membrane, the nucleoid exhibits a high degree of organization and spatial regula-
tion. In some prokaryotes, the nucleoid is positioned at the cell poles, suggesting an organized spatial arrangement that
separates it from ribosome-rich areas or riboids [105,106]. This spatial segregation is important for coordinating transcription
and translation. In the Pirellula marina, a Planctomycete, the nucleoid is enclosed within a structure called the pirellulosome.
This compartment not only contains the nucleoid but also includes ribosomes and transcription machinery, resembling the
compartmental organization observed in eukaryotic nuclei [107]. Recent studies have revealed that pirellulosome is surrounded
by a proteinaceous envelope, which may play a role in maintaining the integrity of this compartment [98]. The presence of these
structures in a prokaryote challenges the traditional view of prokaryotic simplicity and suggests that the evolutionary origins of
nuclear compartmentalization may be more complex.

Additional examples, such as the membrane-separated structures observed in Ignicoccus hospitalis [108] and the double
membrane surrounding the nucleoid in Gemmata obscuriglobus [109], further emphasize the complexity of prokaryotic cellular
organization. Moreover, structures similar to nuclear pores have been observed in Planctomycetes, suggesting that selective
molecular trafficking may also exist in these cells [110].

These findings challenge the simplistic view of prokaryotic cells and prompt intriguing questions about the evolution-
ary origins of eukaryotic cellular components, such as the nucleolus. While membrane-bound compartments are central to
eukaryotic cells, there are also membrane-free structures with specialized functions. Studying analogous structures in bacteria
and archaea may provide insight into the evolutionary development of the nucleolus and mechanisms for gene expression and
ribosome biogenesis in early life forms.

5.3. The evolutionary origins of the nucleolus

The eukaryotic nucleolus is a membrane-less subnuclear compartment with distinct structural regions (e.g. fibrillar centre (FC),
dense fibrillar component (DFC) and granular component (GC)), specialized in ribosome biogenesis. However, its functions
extended beyond this, encompassing critical roles in cellular stress responses, cell cycle regulation and the biogenesis of other
ribonucleoprotein particles. Despite its central role its evolutionary origins remain enigmatic, offering a rich study area for
evolutionary and cell biologists.

Comparative studies of prokaryotic and eukaryotic cells provide valuable clues into the nucleolus” evolutionary trajectory, as
some aspects of ribosome biogenesis and gene regulation seen in eukaryotes may have originated in prokaryotes. For example,
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Figure 3. Comparative structures between eukaryotic nucleolus and prokaryotic nucleolus-like components comparative view of eukaryotic and prokaryotic cells,
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nucleolus-like structure is observed, where DNA and ribosomal RNA components are organized in a central region. (c) In an archaeal cell model, a similar nucleolus-like
structure is shown, associated with circular DNA (circDNA) and flagella, hinting at compartmentalization mechanisms in prokaryotes that parallel eukaryotic nucleolar
functions.

while prokaryotes lack a true nucleolus, they perform comparable functions within the cytoplasm (figure 3), suggesting that
the foundational mechanisms of ribosome biogenesis and gene regulation may have originated in prokaryotic ancestors. For
instance, the presence of homologous proteins, such as fibrillarin and small nucleolar RNAs (snoRNAs) found in archaea,
hint at an evolutionary link to eukaryotic nucleolar functions, possibly tracing back to the last eukaryotic common ancestor
(LECA) [111]. The conservation of these proteins across domains of life underscores the importance of ribosome biogenesis as a
fundamental cellular process, one that has been refined and compartmentalized over billions of years of evolution.

A detailed comparison of nucleolar proteins in eukaryotes and their functional analogs in prokaryotes (table 2) reveals a
global vision of the conserved mechanisms and evolutionary connections shared among different life forms. These comparisons
highlight how certain core processes, such as rRNA processing and ribosome assembly, have been preserved across evolution-
ary time, even as the cellular structures housing these processes have diverged significantly. This conservation suggests that
the nucleolus, as we know it in eukaryotes, may have evolved through the gradual specialization and compartmentalization of
pre-existing prokaryotic functions rather than through de novo emergence of entirely new mechanisms.

The study of early-branching eukaryotes, such as Giardia lamblia, provides further clues to the nucleolus’s evolutionary
history. These organisms contain simplified nucleolar-like regions, which, while less complex than those in late divergent
eukaryotes, still perform essential nucleolar functions. This suggest that the nucleolus may have evolved differently across
eukaryotic lineages [162], adapting to the specific needs and constraints of each lineage.

The compartmentalization of cellular processes is linked to the emergence and specialization of the nucleolus; this functional
differentiation allowed the nucleolus to specialize in rRNA processing and ribosome assembly, functions that are distinct from
other nuclear activities (figure 4A). This spatial and functional segregation likely provided a selective advantage, allowing for
more efficient and regulated ribosome production.

Comparative studies of nucleolar proteomes between early and later-diverging eukaryotes reveal that many essential
nucleolar proteins are conserved, indicating that ribosome-related functions were primordial to nucleolar evolution. For
example, in Prorocentrum micans, a dinoflagellate, there is a “persistent’ nucleolus that remains intact during cell division, in
contrast to the ‘autonomous’ nucleoli in other dinoflagellate species that disassemble and reassemble during cell division [163].
This persistent nucleolus is intriguing because it suggests a unique interaction between nucleolar elements and chromosomes
during cell division. Moreover, this feature is shared with some plant species [164] and may be significant in terms of ribosome
biogenesis and cellular efficiency.

Some organisms like Trypanosoma brucei exhibit a single nucleolus, which lacks fibrillar centres (FCs) found in another
nucleolus; instead, they have a slightly dense fibrillar component (DFC). The absence of the FC may be correlated with a
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components. The fibrillar centre (FC) in which ribosomal RNA (rRNA) transcription occurs, dense fibrillar centre (DFC) contains newly synthesized rRNA along with
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such as fibrillarin, nucleophosmin and nucleolin are listedto underscore their roles in ribosome biogenesis. Additionally, liquid—liquid phase separation (LLPS) is
highlighted as an essential process for nucleolus organization. Panel (B) depicts a prokaryotic cell, showing its nucleolus-like structures that serve similar functions in
ribosome assembly. The diagram identifies the nucleoid, which contains prokaryotic DNA, alongside various components such as RNP granules, pre-ribosomal subunits
and assembled ribosomes. Key proteins involved in these processes are indicated, including archaeal fibrillarin, RbfA, Hfq and CsrA, which facilitate RNA processing
and ribosomal function in prokaryotes. Additionally, the role of LLPS is highlighted as a significant mechanism allowing the formation of distinct biochemical
compartments within the cell that may contribute to the organization of nucleolus-like structures in prokaryotes.

relatively low number of rRNA gene copies (with only one or two dozen) present in trypanosomes, compared with the
hundreds present in higher eukaryotes [165].

Comparative studies of prokaryotic and eukaryotic ribosome biogenesis also highlight evolutionary links. In bacteria,
ribosome assembly involves the transcription of precursor rRNAs (23S, 16S and 5 S) and the stepwise assembly of ribosomal
subunits in the cytoplasm. This highly efficient process, which produces up to 100 000 ribosomes per hour, relies on assembly
factors that facilitate RNA folding and protein binding under diverse conditions [166,167]; this process is highly efficient and
facilitated by assembly factors that guide RNA folding and protein binding for ensuring correct ribosome formation under
different cellular conditions [168]. Although less understood in archaea, ribosome biogenesis shares similar features with
bacteria, albeit with unique proteins and assembly pathways. Members of the TACK Archaea group possess nucleolar protein
homologues, such as fibrillarin, suggesting an evolutionary link with eukaryotic nucleolar functions [169].

Some bacterial species also exhibit nucleolus-like compartmentalization for the transcription process; co-localization
experiments of RNA polymerase and ribosomal RNA operons suggest a spatial organization to resemble eukaryotic nucleoli
organization inner nuclei (figure 4), which is evidence for the strategies for efficient transcription and translation optimizing
cellular functions despite the absence of membrane-bound compartments like nuclei in eukaryotes [170].

The principles of LLPS provide a compelling framework for understanding the evolutionary origins of the nucleolus as
a membrane-less structure. The formation of these type of compartments through phase separation likely provided an early
mechanism for organizing biochemical processes in primitive cells. Prokaryotes exhibit ribonucleoprotein (RNP) granules, that
its formation is through LLPS and perform functions similar to those of the nucleolus [171]. From an evolutionary perspective,
the nucleolus can be viewed as a product of the co-option of LLPS mechanisms that were already present in early life forms,
allowing for the efficient organization of ribosome biogenesis in response to the increasing demands of eukaryotic cells [95].
The presence of nucleolar-like structures in early branching eukaryotes, such as Giardia lamblia, further supports this idea,
highlighting the evolutionary conservation of LLPS in nucleolar function. Moreover, studies in model organisms like Drosophila
melanogaster have demonstrated the dynamic nature of LLPS in nucleolar proteins, underscoring its importance in maintaining
nucleolar integrity and function [172]. Thus, LLPS not only explains the dynamic organization of the modern nucleolus but also
provides a framework for understanding its evolutionary development.

The nucleolus is not merely a static structure; rather, it is a dynamic and fundamentally evolutionary entity. Its origins
may lie in the deep past, rooted in the molecular machinery of prokaryotic ancestors, and its evolution has shaped cellular
compartmentalization, specialization and functional diversification. Further exploration of archaeal ribosome biogenesis and the
spatial organization of transcription and translation in bacteria may shed light on the evolutionary origins of the nucleolus.
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Table 2. Some nucleolar molecules in eukaryotes and prokaryotes.

eukaryotic protein

or RNA molecule

fibrillarin rRNA modification archaeal fibrillarin, rRNA modificationin  both have a methyltransferase [31,112,113]
(methylation, (bf5 archaea domain and participate in rRNA
transcription and maturation
pseudouridylation) in
the DFC
nucleophosmin ribosome assembly, cell no direct homologue,  ribosome assembly,  both are involved in ribosome [114-120]
(NPM1/B23) cycle regulation, DNA but proteins like stress response assembly, stress response and
repair, stress response RbfA, RsgA, ERA and rRNA rRNA processing
and genomic stability and ObgE have processing
similar roles
nucleolin rRNA processing, cell no direct homologue, RNAregulationand  both are involved in RNA processing ~ [121-124]
growth, synthesis of but proteins like processing and regulation
ribosomes and Hfq and CsrA
transcription requlation regulate RNA and
may have
analogous roles
snoRNAs guide chemical sRNAs (small RNAs)  gene expression both are small, non-coding RNAs that ~ [125-128]
modifications of rRNA regulation and interact with proteins to modify or
(methylation and RNA processing regulate RNA
pseudouridylation)
RNA polymerase | transcription of rRNAinthe ~ RNA polymerase transcription of rRNA  both are responsible for rRNA [129-131]
nucleolus and ribosomal (bacteria/ in prokaryotes synthesis, though eukaryotic
biogenesis archaea) Pol s specialized for rRNA
transcription
pescadillo (PEST) pre-rRNA processing, no direct homologue,  rRNA processingand  both are involved in rRNA processing  [132-134]
ribosome biogenesis but proteins like ribosome and ribosome assembly
and DNA replication RimM and RbfA assembly
participate in
rRNA processing
and ribosome
assembly
UTP (U3 snoRNA- pre-rRNA processing and no direct homologue, ~ rRNA transcription both are involved in rRNA processing  [135—140]
associated ribosome biogenesis but proteins like and processing and transcription regulation
proteins) NusB and NusG
are involved in
rRNA
transcription and
processing
nopp140 ribosome biogenesis and no direct homologue, transcription both are involved in transcription [141,142]
nucleolar organization but proteins like regulation and regulation and RNA processing
NusA and NusG RNA processing
areinvolved in
transcription
regulation
RRN3 (Transcription required for RNA no direct homologue, transcription both are involved in transcription [143-146]
Initiation Factor) polymerase | but proteins like initiation initiation
transcription initiation sigma factors
(070) regulate
transcription
initiation
nop56/Nop58 rRNA modification and archaeal Nop56/ rRNA modificationin  both are involved in rRNA [147-150]
snoRNA binding Nop58 archaea modification and interact with
homologues snoRNAs/sRNAs

function in eEukaryotes

homologue/
analogue in
prokaryotes

function in
prokaryotes

similarities

references

(Continued.)
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Table 2. (Continued.)

eukaryotic protein  function in eEukaryotes homologue/ function in similarities references
or RNA molecule analogue in prokaryotes
prokaryotes
RPL5 (Ribosomal ribosome assemblyand5S  ribosomal protein ribosome assembly  both are ribosomal proteins involved  [151-157]
Protein L5) rRNA binding L18in and 5 SrRNA in rRNA binding and ribosome
prokaryotes binding assembly
RPL11 (ribosomal ribosome assembly and ribosomal protein ribosome assembly  both are ribosomal proteins involved  [158—161]
protein L11) p53 regulation L11in and stress in ribosome assembly and stress
prokaryotes response signalling

Such studies hold the potential to deepen our understanding of nucleolar specialization in early-diverging eukaryotes and may
reveal how prokaryotic cells developed the complex cellular architectures that later contributed to eukaryotic complexity.

6. The significance of studying the nucleolus: evolutionary origins and functions

6.1. Uncovering the evolutionary origins of the nucleolus

The nucleolus has long intrigued researchers due to its central role in ribosome biogenesis and broader cellular functions.
Although membrane-bound organelles are unique to eukaryotes, intriguing similarities between the nucleolus and certain
prokaryotic structures suggest a shared evolutionary history. For example, some bacteria show RNA polymerase clustering at
rRNA operons, forming ‘transcriptional factories” that resemble the organization seen in the eukaryotic nucleolus, optimizing
ribosome biogenesis under favourable conditions [170].

As we mentioned earlier, some research suggests that specific proto-nucleolar structures may exist in some archaea, hinting
at a possible evolutionary precursor to the nucleolus; however, these structures are still largely unknown, with many aspects
still to be investigated. Notably, specific protein domains found in nucleolar proteins are present in the three domains of life,
indicating that they form part of the repertoire of the last universal common ancestor (LUCA) [171]. Additionally, evidence
suggests that more protein domains associated with eukaryotic nucleolus are detectable in archaea than in bacteria. Protein
domains that suggest implications in ribosomal biogenesis hinting at an archaeal ancestry for core nucleolar proteins [173].
Recent studies have provided intriguing insights into the presence of nucleolus-like structures in some representants of archaea,
such as Sulfolobus solfataricus, which possess homologues of nucleolar proteins and exhibit ultrastructural features similar to
those of eukaryotic nucleoli [169], putting in mind that the evolutionary origins of the nucleolus may be more complex than
previously thought, potentially involving a shared ancestry with specific prokaryotic lineages. Moreover, discussions have
emerged regarding the absence of detectable nucleolus in prokaryotes and how some proteins are essential for maintaining
nucleolar integrity [174].

Many open questions still need to be addressed, and we expect discoveries to arise; these findings will likely be significant in
shaping and refining our current understanding of the nucleolus, shedding light on its evolutionary origins and relationships,
diversity of functions and role in cellular function. This ongoing exploration is vital not only for comprehending the nucleolus
itself but also for understanding potential implications for human health since dysfunctions of the nucleolus have been linked
to various diseases. Releasing fundamental biological principles of nucleolus evolution could lead to innovative therapeutic
strategies.

6.2. Medical significance of nucleolar research

The study of nucleolar function has implications beyond evolution, especially in understanding human health and disease. The
nucleolus is central to ribosome biogenesis, which directly affects protein synthesis, cell growth and proliferation. Abnormali-
ties in nucleolar function and structure are linked to various diseases, including ribosomopathies, genetic disorders resulting
from mutations in genes encoding ribosomal components or biogenesis factors [175,176]. This connection between ribosome
production and cellular function makes the nucleolus a significant focus in studying cell-cycle regulation and cancer [177].

Nucleolar dysfunction has been associated with ageing and complex diseases such as progeria, cancer and neurodegenera-
tive disorders [178]. Morphological changes in the nucleolus observed in these conditions indicate potential roles for non-canon-
ical nucleolar functions beyond ribosome biogenesis. Exploring these non-canonical functions could yield insights into disease
mechanisms and provide targets for personalized medical therapies. For example, understanding the nucleolus’s role in stress
responses and cellular regulation could lead to innovative treatments aimed at modulating nucleolar activity.

Despite considerable progress, many questions about the nucleolus’s role in health and disease remain open. Ongoing
research promises to deepen our understanding of nucleolar structure and function, potentially revealing new avenues for
therapeutic strategies that target nucleolar functions to treat diseases linked to its dysfunction.
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7. Conclusions: the nucleolus in focus

Ongoing research into the nucleolus and its evolutionary origins is essential for addressing unanswered questions about this
structure and its potential clinical implications [179]. This review has explored the nucleolus from structural, functional and
evolutionary perspectives, highlighting its role not only in ribosome biogenesis but also in broader cellular functions [180].
Understanding the nucleolus helps enrich our grasp of cellular biology and opens pathways for investigating lesser-known
aspects of this intriguing, and in some organisms, elusive substructure [99].

As new labelling, molecular and imaging technologies continue to advance, they allow for unprecedented insights into the
nucleolus’s dynamic nature [102,181]. While canonical roles, such as its involvement in the cell cycle and ribosome synthesis,
are well established, there is growing interest in the nucleolus’s non-canonical functions, which remain largely unexplored
[182]. Expanding our study of both canonical and non-canonical functions could deepen our understanding of cell biology and
provide new avenues for therapeutic innovation [178].

Addressing open questions surrounding nucleolar function and evolution also highlights the nucleolus’s critical role in
maintaining cellular homeostasis [26]. Exploring its structural and functional diversity across different lineages may uncover
fundamental biological principles that link the nucleolus to cellular complexity and adaptability [107]. Ultimately, the future of
nucleolar research holds promise for advancing our knowledge of cellular function, disease mechanisms and novel therapeutic
strategies that could impact significant health challenges [9,10].
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